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A static wormhole solution for gravity in vacuum is found for odd dimensions greater than four. In five
dimensions the gravitational theory considered is described by the Einstein-Gauss-Bonnet action where
the coupling of the quadratic term is fixed in terms of the cosmological constant. In higher dimensions
d � 2n� 1, the theory corresponds to a particular case of the Lovelock action containing higher powers
of the curvature, so that in general, it can be written as a Chern-Simons form for the AdS group. The
wormhole connects two asymptotically locally AdS spacetimes each with a geometry at the boundary
locally given by R� S1 �Hd�3. Gravity pulls towards a fixed hypersurface located at some arbitrary
proper distance parallel to the neck. The causal structure shows that both asymptotic regions are connected
by light signals in a finite time. The Euclidean continuation of the wormhole is smooth independently of
the Euclidean time period, and it can be seen as instanton with vanishing Euclidean action. The mass can
also be obtained from a surface integral and it is shown to vanish.
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The quest for exact wormhole solutions in general rela-
tivity, which are handles in the spacetime topology, has
appeared repeatedly in theoretical physics within different
subjects, ranging from the attempt of describing physics as
pure geometry, as in the ancient Einstein-Rosen bridge
model of a particle [1], to the concept of ‘‘charge without
charge’’ [2], as well as in several issues concerning the
Euclidean approach to quantum gravity (see, e.g., [3]).
More recently, during the 80’s, motivated by the possibility
of quick interstellar travel, Morris, Thorne and Yurtsever
pushed forward the study of wormholes from the point of
view of ‘‘reverse engineering’’, i.e., devising a suitable
geometry that allows this possibility, and making use of
the Einstein field equations in order to find the correspond-
ing stress-energy tensor that supports it as an exact solution
[4]. However, one of the obstacles to circumvent, for
practical affairs, is the need of exotic forms of matter, since
it is known that the required stress-energy tensor does not
satisfy the standard energy conditions (see, e.g., [5]).
Besides, the pursuit of a consistent framework for a unify-
ing theory of matter and interactions has led to a consensus
in the high energy community that it should be formulated
in dimensions higher than four. However, for general rela-
tivity in higher dimensions, the obstacle aforementioned
concerning the stress-energy tensor persists. Nonetheless,
in higher dimensions, the straightforward dimensional con-
tinuation of Einstein’s theory is not the only option to
describe gravity. Indeed, even from a conservative point
of view, and following the same basic principles of general
relativity, the most general theory of gravity in higher
dimensions that leads to second order field equations for
the metric is described by the Lovelock action [6], which is
nonlinear in the curvature. In this vein, for the simplest
extension, being quadratic in the curvature, it has been
found that the so-called Einstein-Gauss-Bonnet theory,

admits wormhole solutions that would not violate the
weak energy condition provided the Gauss-Bonnet cou-
pling constant is negative and bounded according to the
shape of the solution [7].

Here it is shown that in five dimensions, allowing a
cosmological (volume) term in the Einstein-Gauss-
Bonnet action, and choosing the coupling constant of the
quadratic term such that the theory admits a single anti–de
Sitter (AdS) vacuum, allows the existence of an exact static
wormhole solution in vacuum. As explained below, the
solution turns out to have ‘‘mass without mass’’ and con-
nects two asymptotically locally AdS spacetimes each with
a geometry at the boundary that is not spherically sym-
metric. It is worth to remark that no energy conditions can
be violated since the whole spacetime is devoid of any kind
of stress-energy tensor. In what follows, the five-
dimensional case is worked out in detail, and next we
explain how the results extend to higher odd dimensions
for a special class of theories among the Lovelock class,
which are also selected by demanding the existence of a
unique AdS vacuum.

Static wormhole in five dimensions.—The action for the
Einstein-Gauss-Bonnet theory with a volume term can be
written as

 I5 � �
Z
�abcde

�
RabRcd �

2

3l2
Rabeced

�
1

5l4
eaebeced

�
ee;

where Rab � d!ab �!a
f!

fb is the curvature 2-form for
the spin connection !ab, and ea is the vielbein. The cou-
pling of the Gauss-Bonnet term has been fixed so that the
theory possesses a unique AdS vacuum of radius l. In the
absence of torsion, the field equations can be simply writ-
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ten as

 E a :� �abcde �Rbc �Rde � 0; (1)

where �Rbc :� Rbc � 1
l2
ebec. These equations are solved by

the following metric

 ds2
5 � l2��cosh2��� �0�dt2 � d�2 � cosh2���d�2

3�;

(2)

where �0 is an integration constant and d�2
3 stands for the

metric of the base manifold which can be chosen to be
locally of the form �3 � S1 �H2. The radius of the hyper-
bolic manifold H2 turns out to be 3�1=2, so that the Ricci
scalar of �3 has the value of �6, as required by the field
equations. The metric (2) describes a static wormhole with
a neck of radius l, located at the minimum of the warp
factor of the base manifold, at � � 0. Since�1< �<1,
the wormhole connects two asymptotically locally AdS
spacetimes so that the geometry at the boundary is locally
given by R� S1 �H2. Actually, it is simple to check that
the field equations are solved provided the base manifold
�3 has a negative constant Ricci scalar. Indeed, for a metric
of the form (2) the vielbeins can be chosen as

 e0 � l cosh��� �0�dt; e1 � ld�;

em � l cosh���~em;

where ~em is the dreibein of �3, so that the curvature two
form is such that the only nonvanishing components of �Rab

read

 

�R 0m � cosh��0�dt ^ ~em; �Rmn � ~Rmn � ~em~en: (3)

Replacing Eqs. (3) in the field Eqs. (1) it turns out that the
components E0 and Em are identically satisfied. The re-
maining field equation, E1 � 0, reads

 cosh��0�dt ^ �mnp� ~R
mn~ep � ~em~en~ep� � 0;

which implies that �3 must be a manifold with a constant
Ricci scalar satisfying

 

~R � �6: (4)

One can notice that the field Eqs. (1) are deterministic
unless �3 were chosen as having negative constant curva-
ture, i.e., being locally isomorphic to H3. If so, the field
equations would degenerate in such a way that the compo-
nent gtt of the metric becomes an arbitrary function of �.
This degeneracy is a known feature of the class of theories
considered here [8], and is overcome by choosing a base
manifold satisfying (4) but not being of constant curvature.
A simple example of a compact smooth three-dimensional
manifold fulfilling these conditions is given by �3 � S1 �
H2=�, where H2 has radius 1��

3
p , and � is a freely acting

discrete subgroup of O�2; 1�. It worth pointing out that �3

is not an Einstein manifold, and that any nontrivial solution

of the corresponding Yamabe problem (see e.g. [9]) pro-
vides a suitable choice for �3.

The causal structure of the wormhole is depicted in
Fig. 1, where the dotted vertical line shows the position
of the neck, and the solid bold lines correspond to the
asymptotic regions located at � � 	1, each of them
resembling an AdS spacetime but with a different base
manifold since the usual sphere S3 must be replaced by �3.
The line at the center stands for � � �0. It is apparent from
the diagram that null and timelike curves can go forth and
back from the neck. Furthermore, note that radial null
geodesics are able to connect both asymptotic regions in
finite time. Indeed, one can see from (2) that the coordinate
time that a photon takes to travel radially from one asymp-
totic region, � � �1, to the other at � � �1 is given by

 �t �
Z �1
�1

d�
cosh��� �0�

� �2 arctan�e���0���1�1 � �;

which does not depend on �0. Thus, any static observer
located at � � �0 says that this occurred in a proper time
given by �l. Note also that this observer actually lives on a
static timelike geodesic, and it is easy to see that a small
perturbation along � makes him to oscillate around � �
�0. This means that gravity is pulling towards the fixed
hypersurface defined by � � �0 which is parallel to the
neck. Hence, the constant �0 corresponds to a modulus
parametrizing the proper distance between this hypersur-
face and the neck. Actually, one can explicitly check that
radial timelike geodesics are always confined since they
satisfy
 

1

2
_�2 �

E2

2cosh2��� �0�
� C0;

_t�
E

cosh2��� �0�
� 0;

 

FIG. 1. Penrose diagram for the wormhole.
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where the dot stand for derivatives with respect to the
proper time �, and the velocity is normalized as u�u� �
2l2C0. Thus, one concludes that the position of a radial
geodesic, ����, in proper time behaves as a particle in a
Pöschl-Teller potential. Therefore, as it can also be seen
from the Penrose diagram, null and spacelike radial geo-
desics connect both asymptotic regions in finite time.
Furthermore, timelike geodesics for which 2l2C0 � �1
are shown to be confined.

Euclidean continuation and a finite action principle.—
The Euclidean continuation of the wormhole metric (2) is
smooth independently of the Euclidean time period, so that
the wormhole could be in thermal equilibrium with a heat
bath of arbitrary temperature. It is then useful to evaluate
the Euclidean action for this configuration. It has been
shown in [10] that the action I5 can be regularized by
adding a suitable boundary term in a background indepen-
dent way, which can be written just in terms of the extrinsic
curvature and the geometry at the boundary. The total
action then reads IT � I5 � B4, where the boundary term
reads

 B4 � �
Z
@M
�abcde�abec

�
Rde �

1

2
�df�

fe �
1

6l2
edee

�
:

(5)

For the wormhole solution, the boundary of M is of the
form, @M � @M� [ @M�, where @M� has a reversed
orientation with respect to that of @M�. Using the fact
that the only non vanishing components of the second
fundamental form �ab for the wormhole (2), for each
boundary, are given by

 �01 � sinh��� �0�d�; �m1 � sinh���~em; (6)

where � now stands for the Euclidean time, it is simple to
verify that the action principle IT attains an extremum for
the wormhole solution.

Let us evaluate the action IT for the wormhole (2) with a
base manifold of the form �3 � S1 �H2=�. Assuming
that the boundaries, are located at � � �� and � � ��,
respectively, one obtains that

 I5 � B4

� 2�l�	�3 sinh��0� � 8cosh3��� sinh��� �0��
��
�� ;

where � is the Euclidean time period, and 	 � 8�2

3 R0�g�
1� is the volume of the base manifold �3 in terms of the
radius of S1 and the genus of H2=�, given by R0 and g,
respectively.

Therefore, remarkably, the regularized Euclidean action
IT does not depend on the integration constant �0, and it
vanishes for each boundary regardless their position. This
means that the Euclidean continuation of the wormhole can
be seen as an instanton with vanishing Euclidean action.

Consequently, the total mass of the wormhole is found to
vanish since M � � @IT

@� � 0. The same results extend to
any base manifold with a Ricci scalar satisfying Eq. (4).

It is worth pointing out that the value of the regularized
action for the wormhole is lower than the one for AdS
spacetime, which turns out to be IT�AdS� � 6�3��,
where �3 is the volume of S3. However, AdS spacetime
has a negative ‘‘vacuum energy’’ given by MAdS �
�6�3�.

Mass from a surface integral.—The fact that the action
principle IT has an extremum for the wormhole solution,
also allows to compute the mass from the following surface
integral [10]

 Q�
� � �
Z
@�
�
�
I
�

e
l
� �I


e
l

��
~R�

1

2
�2 �

1

2l2
e2

�
; (7)

which is obtained by the straightforward application of
Noether’s theorem [11]. The mass is obtained evaluating
(7) for the timelike Killing vector 
 � @t, and one then
confirms that the mass, M � Q�@t�, vanishes for the
Lorenzian solution. We would like to remark that, follow-
ing this procedure, one obtains that the contribution to the
total mass coming from each boundary reads

 Q	�@t� � 	6	� sinh��0�; (8)

where Q	�@t� is the value of (7) at @�	, which again does
not depend on �� and ��. This means that for a positive
value of �0, the mass of the wormhole appears to be
positive for observers located at ��, and negative for the
ones at ��, such that the total mass always vanishes. This
provides a concrete example of what Wheeler dubbed
‘‘mass without mass’’. Hence, the integration constant �0

could also be regarded as a parameter for the apparent mass
at each side of the wormhole, which vanishes only when
the solution acquires reflection symmetry, i.e., for �0 � 0.

The wormhole in higher odd dimensions.—The five-
dimensional static wormhole solution in vacuum, given
by Eq. (2), can be extended as an exact solution for a
very special class of gravity theories among the Lovelock
family in higher odd dimensions d � 2n� 1. In analogy
with the procedure in five dimensions, the theory can be
constructed so that the relative couplings between each
Lovelock term are chosen so that the action has the highest
possible power in the curvature and possesses a unique
AdS vacuum of radius l. The field equations then read

 E A :� �ab1


b2n
�Rb1b2 
 
 
 �Rb2n�1b2n � 0; (9)

which are solved by the straightforward extension of (2) to
higher dimensions

 ds2 � l2��cosh2��� �0�dt2 � d�2 � cosh2���d�2
2n�1�;

where �0 is an integration constant, and d�2
2n�1 stands for

the metric of the base manifold. In the generic case, the
base manifold must solve the following equation [12]
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 �m1


m2n�1
�Rm1m2 
 
 
 �Rm2n�3m2n�2 ~em2n�1 � 0; (10)

where ~em is the vielbein of �2n�1. Note that this is a single
scalar equation.

As in the five-dimensional case, it is worth to remark
that the field Eqs. (9) are deterministic unless �2n�1 solves
the field equations for the same theory in 2n� 1 dimen-
sions with unit AdS radius. If so, the field equations would
degenerate and the metric component gtt would be an
arbitrary function of �. In particular, the hyperbolic space
H2n�1 falls within this degenerate class. Therefore, in order
to circumvent this degeneracy, the base manifold must
fulfill Eq. (10), but without solving simultaneously the
field equations for the same theory in 2n� 1 dimensions
with unit AdS radius.

A simple example of a compact smooth (2n� 1)-
dimensional manifold fulfilling the latter conditions is
given by �2n�1 � S1 �H2n�2=�, where H2n�2 has radius
�2n� 1��1=2, and � is a freely acting discrete subgroup of
O�2n� 2; 1�. Note that �2n�1 is not an Einstein manifold.

The metric in higher odd dimensions then describes a
static wormhole with a neck of radius l connecting two
asymptotic regions which are locally AdS spacetimes, so
that the geometry at the boundary is given by R� S1 �
H2n�2=�. The wormhole in higher dimensions shares the
features described in the five-dimensional case, including
the meaning of the parameter �0, and its causal structure is
depicted in Fig. 1.

As in the five-dimensional case, the Euclidean continu-
ation of the wormhole metric is smooth and it has an
arbitrary Euclidean time period. The Euclidean action
can be regularized in higher odd dimensions in a back-
ground independent way as in Ref. [10], by the addition of
a suitable boundary term which is the analogue of (5), and
can also be written in terms of the extrinsic curvature and
the geometry at the boundary. The nonvanishing compo-
nents of the second fundamental form �ab acquire the same
form as in Eq. (6) for higher dimensions, so that it is easy to
check that the regularized action has an extremum for the
wormhole solution. As in the five-dimensional case, the
Euclidean continuation of the wormhole can be seen as an
instanton with a regularized action that vanishes indepen-
dently of the position of the boundaries, so that its mass is
also found to vanish. This means that AdS spacetime has a
greater action than the wormhole, but a lower ‘‘vacuum
energy’’.

The wormhole mass for the Lorenzian solution can also
be shown to vanish making use of a surface integral which
is the extension of (7) to higher odd dimensions [10]. The
contribution to the total mass coming from each boundary

does not depend on the location of the boundaries and is
given by

 Q	�@t� � 	�n	� sinh��0�;

so that for a nonvanishing integration constant �0, the
wormhole appears to have ‘‘mass without mass’’. Here
�n :� ��1� 2n�n�1 � 2n�1� n�n�1��2n� 1�!.

It is simple to show that for different base manifolds, the
Euclidean action also vanishes, and the surface integrals
for the mass possess a similar behavior.

Final remarks.— The existence of interesting solutions
in vacuum could be regarded as a criterion to discriminate
among the different possible gravity theories that arise only
in dimensions greater than four. Indeed, it has been shown
that, among the Lovelock family, selecting the theories as
having a unique maximally symmetric vacuum solution
guarantees the existence of well-behaved black hole solu-
tions [13,14]. In turn, it has been shown that demanding the
existence of simple compactifications describing exact
black p-brane solutions, selects the same class of theories
[15] (see also [16]). In this sense, the theory possessing the
highest possible power in the curvature with a unique AdS
vacuum is particularly interesting and it is singled out for
diverse reasons. It is worth to mention that in this case, the
Lagrangian can be written as a Chern-Simons gauge theory
for the AdS group [17], so that the local symmetry is
enlarged from Lorentz to AdS. One can see that the worm-
hole solution found here is not only a vacuum solution for
these theories, but also for their locally supersymmetric
extension in five [18] and higher odd dimensions [19]. The
compactification of the wormhole solution is straightfor-
ward since it has been shown that it always admits a base
manifold with a S1 factor. This means that in one dimen-
sion below, the geometrical and causal behavior is similar
to the one described here, but in this case the base manifold
is allowed to be locally a hyperbolic space without pro-
ducing a degeneracy of the field equations. Note that the
dimensionally reduced solution is supported by a nontrivial
dilaton field with a nonvanishing stress-energy tensor.
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