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The loop quantization of the negatively curved k � �1 Robertson-Walker model poses several
technical challenges. We show that the issues can be overcome and a successful quantization is possible
that extends the results of the k � 0, �1 models in a natural fashion. We discuss the resulting dynamics
and show that for a universe consisting of a massless scalar field, a bounce is predicted in the backward
evolution in accordance with the results of the k � 0, �1 models. We also show that the model predicts a
vacuum repulsion in the high curvature regime that would lead to a bounce even for matter with vanishing
energy density. We finally comment on the inverse volume modifications of loop quantum cosmology and
show that, as in the k � 0 model, the modifications depend sensitively on the introduction of a length scale
which a priori is independent of the curvature scale or a matter energy scale.
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I. INTRODUCTION

One of the major cosmological parameters yet to be
determined precisely pertains to the spatial curvature of
the universe. While current observations indicate that the
universe is very nearly flat, they do not yet provide irre-
futable evidence as to whether on very large scales the
curvature is positive, negative, or exactly zero (the k �
�1, �1, 0 Robertson-Walker (RW) models, respectively).
The current observations merely provide evidence of a
prediction of inflation; namely, the curvature scale is suffi-
ciently large such as to appear very nearly flat to an
observer. Such a feature is explained by inflation through
a period of accelerated expansion in the early universe that
inflates the curvature scale to very large values. Thus most
work on structure formation has assumed that the universe
is exactly flat with k � 0 which is a good approximation
for the post inflationary epoch. However, it is the period of
the early universe where the curvature can play an impor-
tant role and thus should not be neglected.

It is also the high energy regime of the early universe
where quantum gravity is expected to be a requirement for
a complete description. While no complete and fully ac-
cepted quantum theory of gravity exists, a leading candi-
date exists which is known as loop quantum gravity (LQG)
[1–3]. The application of LQG techniques to the cosmo-
logical setting, loop quantum cosmology (LQC), has so far
been restricted to the k � 0, �1 models (see [4] for a
review). One of the major successes of the models of
LQC so far is the resolution of the classical singularity
predicted in the k � 0,�1 models [5] which can result in a
repulsive gravitational force at high energies that leads to a
big bounce of the universe [6–9]. Thus an open question
remains as to whether these results hold in the negatively
curved k � �1 model and whether a loop quantization
even exists.

The k � �1 model has not been constructed in LQC due
to technical issues that inhibit a successful quantization.
The k � �1 model can be derived as the isotropic limit of
the homogeneous Bianchi V model which lacks a correct
Hamiltonian framework [10]. The Hamiltonian framework
is essential to the canonical quantization scheme of both
LQG and LQC and thus this failure presents a roadblock to
quantization. Notwithstanding this issue, as we shall show
the k � �1 model also leads to subtle features in the
choice of dynamical variables in LQC that require careful
attention when attempting a quantization.

In this paper we will show that these issues can be
successfully overcome leading to a loop quantization of
the model. We will show that the Hamiltonian framework
can be constructed specifically for the isotropic Bianchi V
model and that the theory can be quantized incorporating
techniques similar to those used in the loop quantization of
spherically symmetric models. The resulting quantum the-
ory is in a form that is similar to the k � 0, �1 LQC
models and thus shares many of the same features. We
show directly that the model predicts a big bounce in the
backward evolution of the universe sourced by a massless
scalar field. We describe this behavior in terms of an
effective Friedmann equation that is quadratic in the matter
energy density. Furthermore the effective Friedmann equa-
tion predicts a vacuum repulsion in the Planckian curvature
regime, whereby a bounce would be triggered even with
vanishing matter density. Finally, we comment on the
inverse volume effects predicted by LQC and show that
they are dependent on the introduction of a scale into the
model which is not determined from the curvature scale or
any matter energy scale. We discuss the phenomenological
implications of this.

II. CLASSICAL FRAMEWORK

We begin with the classical framework that will form the
basis of the loop quantization for the k � �1 model. Loop*Electronic address: Kevin.Vandersloot@port.ac.uk
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quantum gravity (and hence loop quantum cosmology) is
based on a Hamiltonian framework using connection-triad
variables as the gravitational field variables. The goal of
this section is to consider the connection-triad variables
which are invariant under the symmetries of the Bianchi V
group (which leads to the k � �1 model), and then con-
struct the Hamiltonian in terms of the reduced variables,
and finally show that the equations of motion derived from
the Hamiltonian give back the usual cosmological equa-
tions of motion for the open model.

The starting point for the homogeneous cosmological
model we consider are the Bianchi models. The homoge-
neous metric is given by

 ds2 � �N�t�2dt2 � �ij�t�
o!i

a
o!j

bdx
adxb; (1)

where �ij�t� are the dynamical components of the metric,
N�t� is known as the lapse and represents the rescaling
freedom of the time coordinate, and o!i

a are a basis of left-
invariant one-forms determined by the group structure of
the Bianchi model being considered. The left-invariant
one-forms satisfy

 d o!i � �1
2C

i
jk
o!j ^ o!k; (2)

where Cijk are the structure constants of the isometry
group and thus characterize the Bianchi model. For the
open k � �1 model, we consider the Bianchi V model
with structure constants that can be taken of the form

 Cijk � �ik�j1 � �
i
j�k1: (3)

The structure constants satisfy Ciij � 0 which in the lan-
guage of [11] implies that the Bianchi V model is class B.
This fact will be important in what we consider later.

In a particular choice of coordinates, Eqs (2) can be
solved explicitly to give the left-invariant one-forms as

 

o!1 � dx; (4)

 

o!2 � e�xdy; (5)

 

o!3 � e�xdz; (6)

where the coordinates x, y, z are valued on the real line
representative of the fact that we are considering the spa-
tially noncompact k � �1 model with topology homeo-
morphic to R3. Thus we have not chosen a particular
compactification of the k � �1 model and work in the
usual model with infinite spatial extent. If we consider the
isotropic limit of this Bianchi model with �ij�t� � a2�t��ij
with a�t� representing the scale factor, and fix the lapse to
be equal to one, then the metric

 ds2 � �dt2 � a2�ijo!i
a
o!j

bdx
adxb

� �dt2 � a2�dx2 � e�2xdy2 � e�2xdz2� (7)

can be shown to have constant negative spatial curvature

and hence corresponds to the open k � �1 model. The
usual hyperbolic metric in hyperbolic coordinates ds2 �
�dt2 � a2�d 2 � sinh2 �d�2 � sin2�d�2�� can be recov-
ered with the following transformation

 x � � ln�cosh � sinh cos��; y �
sin� cos�

coth � cos�
;

z �
sin� sin�

coth � cos�
:

With the form of the metric (7), Einstein’s equations lead to
a set of differential equations satisfied by the scale factor
a�t� given by the Friedmann equation

 

�
_a
a

�
2
�
�
3
�M �

1

a2 (8)

and the acceleration equation

 

�a
a
� �

�
6
��M � 3pM� (9)

with �M and pM being the matter density and pressure,
respectively. Here � � 8�G with G being Newton’s
constant.

In addition to the left-invariant one-forms, for what
follows we will also need a basis of vector fields oeai which
also are left invariant. The left-invariant vector fields have
commutators which provide a representation of the Lie
algebra under consideration

 �oei;
oej� � Ckij

oek (10)

and are also dual to o!i
a thus satisfying

 

oeai
o!j

a � �ji : (11)

In the chosen coordinates for the Bianchi V model, oeai are
given explicitly as

 

oe1 � @x; oe2 � ex@y; oe3 � ex@z (12)

whence it is simple to satisfy Eq. (10).
The classical framework of loop quantum cosmology

(LQC) diverges from the standard framework in two im-
portant ways. The first is that the equations of motion are
derived from a Hamiltonian framework which allows for a
canonical quantization of the theory. Second, the variables
that form the basis for quantization are not the usual metric
ones (i.e., the scale factor). This framework follows di-
rectly from that used in the full theory of loop quantum
gravity and it is these changes that allow for a rigorous
quantization of gravity. The canonical set of variables
consists of an orthonormal triad Eai (of density weight
one) which encodes the information of spatial geometry,
and an SU(2) valued connection Aia which is canonically
conjugate to Eai . The starting point of LQC is to reduce
these variables to the symmetry of the cosmological model.
We can use the basis provided by the left-invariant one-
forms and vector fields to accomplish this.
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Starting with the triad Eai , we expand using the basis
vector fields as

 Eai �
�����
oq

p
~p�t�oeai ; (13)

where ~p�t� represents the dynamical component of the
triad. The factor

�����oq
p

� e�2x is a density weight provided
by the hyperbolic metric oqab �

o!i
a
o!i

b which gives the
triad Eai its density weight. Eai encodes the spatial geome-
try in a specific fashion being that it is related to the spatial
three-metric qab through

 Eai E
bi � jqjqab: (14)

Using this relation, we find that ~p is related to the scale
factor as

 j~pj � a2; (15)

where the absolute value indicates that we are allowing ~p
to take on positive and negative values in contrast to the
scale factor which is usually assumed to be strictly non-
negative. A change in sign of ~p corresponds to a change in
orientation of the triad Eai leaving the metric qab invariant.

The first nontriviality of the k � �1 arises when we
consider a symmetric connection Aia. From the k � 0, �1
models, we expect that an isotropic connection can be
decomposed using the left-invariant one-forms as Aia �
~c�t�o!i

a [12,13] with ~c being the only dynamical compo-
nent. In this form, the connection is diagonal in the basis of
left-invariant one-forms. However, this form must be con-
sistent with the fact that on the half-shell (after solving
Hamilton’s equations for _Eai ), Aia is determined from the
dynamics of the spatial metric as

 Aia � �Ki
a � �ia; (16)

where Ki
a is the extrinsic curvature, � is known as the

Barbero-Immirzi parameter (a real valued ambiguity pa-
rameter of loop quantum gravity), and �ia is the spin
connection. Upon symmetry reduction, the extrinsic cur-
vature can be shown to be of diagonal form1 Ki

a �
sgn�~p� _ao!i

a which is consistent with the connection being
diagonal. However, this is not the case with the spin
connection �ia. The formula for the spin connection is
given by

 �ia � �
1
2	
ijkebj �@ae

k
b � @be

k
a � ecke

l
a@cemb �lm�; (17)

where eia is the physical triad satisfying

 eiaeib � qab: (18)

The physical triad eia is related to Eai through

 eai �
1������
jqj

p Eai : (19)

Using the symmetric form of Eai (13) and evaluating (17),
one finds that the spin connection is given by

 �ia � �ij
o!j

a (20)

with

 �ij �
0 0 0
0 0 �1
0 1 0

0@ 1A (21)

whence it is clear that the spin connection is nondiagonal,
and the assumption that the connection is diagonal is not
consistent. We must therefore take the connection to be of
nondiagonal form

 Aia � Aij�t�
o!j

a; Aij �
~c�t� 0 0
0 ~c�t� �~c2�t�
0 ~c2�t� ~c�t�

0@ 1A:
(22)

In this form, the connection has two dynamical compo-
nents ~c and ~c2, where on the half-shell ~c � sgn�~p�� _a is
determined from the extrinsic curvature and ~c2 � 1. This is
in contrast to the k � 0, �1 models where the connection
can safely be assumed to be diagonal and only has one
dynamical component.

With the symmetry reduced connection-triad variables,
the next step is to show that the Hamiltonian formulation
leads to the correct classical equations of motion. Yet here
another problem arises. The Bianchi V model is of class B
type where, as first shown in [10], the ADM Hamiltonian
formulation in the general homogeneous case fails. The
main issue is that the equations of motion derived from
the symmetry reduced Hamiltonian do not agree with
Einsteins’ equations after symmetry reduction. In other
words, the symmetry reduction and Hamiltonian formula-
tion do not commute in the class B models. While this may
seem a fatal issue for the k � �1 model, it was shown in
[10] that the Hamiltonian formulation does not fail for the
isotropic limit of the Bianchi V model which is precisely
the case in which we are interested. This failure does
hinder the extension of the results presented here to the
anisotropic Bianchi V model, but we will now show ex-
plicitly that the Hamiltonian formulation of the isotropic
model using the connection-triad variables leads to the
correct equations of motion. Another avenue worth explo-
ration is whether the analysis of [10] holds in general for
the Hamiltonian formulation based on the connection-triad
variables used in loop quantum gravity which is manifestly
different than the ADM Hamiltonian formulation and thus
may not suffer from the same issues. We do not attempt to
address this possibility here.

Therefore, our aim now is to plug in the symmetry
reduced connection (22) and triad (13) into the Hamil-

1The sgn�p� arises because the extrinsic curvature one-form
carries the signature of the triad which is evident from the
definition Ki

a � eaiKab where Kab is the usual extrinsic curva-
ture of the Arnowitt-Deser-Misner (ADM) formulation which
does not carry information about the orientation.
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tonian of the full theory and show that we get back the
correct equations of motion (8) and (9). The action written
in terms of the connection-triad variables2 is given as [1]
 

SGR�E;A; 
i; Na; N� �
Z
dt
Z
d3x

1

��
EaiLtAia

� �
iGi � NaCa � NCGR�; (23)

whence the Hamiltonian is a sum of constraints: Gi is the
Gauss constraint, Ca is the diffeomorphism constraint, and
CGR is the Hamiltonian constraint. The parameters 
i, Na,
N are Lagrange multipliers which enforce the vanishing of
the constraints. The first term of the action indicates that
the connection and triad are canonically conjugate with
Poisson brackets

 fAia�x�; E
b
j �y�g � ���ij�

b
a��x� y�: (24)

Hamilton’s equations for the connection Aia and triad Ebj
can then be shown to be equivalent to Einstein’s equations.

When inserting the symmetry reduced connection and
triad into the action, the first issue we face is that the spatial
integration in the action diverges since we are considering
the noncompact k � �1 model. This same issue arises in
the noncompact k � 0 model and would arise in any
cosmological quantization scheme based on a Hamil-
tonian or action framework. To overcome this, we choose
to follow the technique used in the k � 0 model for LQC
[15]; namely, we restrict the spatial integration to a finite
sized fiducial cell with a fixed background volume

 V0 �
Z
d3x

�����
oq

p
: (25)

Note that the extent of the fiducial cell is fixed on the
manifold or in other words has fixed comoving coordi-
nates. Thus, as the universe expands for instance, so would
the physical size of the fiducial cell. The choice in the
fiducial cell remains a quantum ambiguity and we will be
interested in determining whether the resulting quantum
theory makes predictions dependent on V0. As we now
show, the choice in fiducial cell has no effect classically,
but that is not true in the quantum case which we will
discuss later.

Now with the understanding that we are limiting the
spatial integrations in the action to the fiducial cell we can
insert the symmetry reduced connection and triad (13) and
(22). The canonical term is given by

 

Z
dt
Z
d3x

1

��
EaiLtA

i
a �

Z
dt

3V0

��
~p _~c (26)

which indicates that ~c and ~p are canonically conjugate with

Poisson brackets

 f~c; ~pg �
��
3V0

: (27)

The Gauss constraint in terms of the reduced variables is
given by

 Gi � @aE
a
i � 	

k
ijA

j
aEak �

2V0

��
~p�~c2 � 1��i1 (28)

and thus is nonvanishing. This is in contrast to the k � 0,
�1 models where the Gauss constraint vanishes indicative
of the fact that a complete gauge fixing of the Gauss
constraint was performed in those models. This suggests
that we should gauge fix the Gauss constraint by setting ~c2

to be identically equal to one. With this, the Gauss con-
straint vanishes and additionally the diffeomorphism con-
straint Ca can be shown to vanish. With this gauge fixing
the connection is now of the form

 Aij �
~c 0 0
0 ~c �1
0 1 ~c

0@ 1A (29)

and we are now left with two dynamical phase-space
variables ~p and ~c and one surviving constraint, the
Hamiltonian constraint. This is exactly the situation in
the k � 0, �1 models.

The dynamics of the model is now entirely encoded in
the Hamiltonian constraint which is given by

 C GR � �
6V0

�2

�������
j~pj

q
�~c2 � �2� (30)

and the entire gravitational action becomes3

 

SGR�~p; ~c;N� �
Z
dt

3V0

��
~p _~c�

N
2�

�
�

6V0

�2

�������
j~pj

q
�~c2 � �2�

�
;

(31)

whence the total Hamiltonian including matter is given by

 H � �
3V0N

��2

�������
j~pj

q
�~c2 � �2� �HM (32)

with HM denoting the matter Hamiltonian.
With the Hamiltonian and Poisson structure we can now

derive the classical equations of motion. We first have
Hamilton’s equations _x � fx;H g for any phase-space
variable x, and further the Hamiltonian itself must vanish
since it is proportional to the Hamiltonian constraint.
Starting with Hamilton’s equations for ~p we find

2The action can also be derived from a Legendre transform of
the covariant Holst action written in terms of a four dimensional
so (1) and (3) connection and a cotetrad [14].

3The extra factor of 2� appearing below the lapse N appears
because the Hamiltonian constraint used in previous works of
LQC differs from the Hamiltonian constraint in the full theory
given in [1] by the factor of 2�. A constant factor multiplying the
Hamiltonian constraint does not affect any physical results.
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_~p � f~p;H g � �
��
3V0

@H
@~c
�

2
�������
j~pj

p
�

~c; (33)

where for the equations of motion we have fixed the lapse
N � 1. Notice that the factors of V0 cancel appearing both
in the numerator of the Hamiltonian (32) and in the de-
nominator of the Poisson brackets (27). Furthermore, we
have assumed that the matter Hamiltonian only couples to
the spatial geometry i.e., is only a function of ~p and not ~c.
This assumption is true for scalar fields and perfect fluids,
though it is not true for fermions for instance which we do
not consider (see [16] for discussions for the inclusion of
fermions in LQG with physical effects dependent on the
Barbero-Immirzi parameter �). Using j~pj � a2 we can
write the left-hand side of the Friedmann equation as

 H2 �

�
_a
a

�
2
�

~c2

�2j~pj
: (34)

Now we can use the vanishing of the constraint to relate the
right-hand side to the matter density. Using H � 0 we
find

 H2 �
�
3

HM

V0 ~p3=2
�

1

j~pj
�
�
3
�M �

1

a2 ; (35)

where we have used HM=�V0 ~p3=2� � �M. Thus the re-
duced Hamiltonian gives back the correct Friedmann equa-
tion. Similarly the acceleration equation can be derived by
considering Hamilton’s equation for _~c once the matter
Hamiltonian is explicitly specified.

This derivation demonstrates explicitly that the
Hamiltonian framework presented here leads to Einsteins
equations for the open k � �1 model. This also demon-
strates that the equations of motion classically are insensi-
tive to the choice in fiducial cell V0 which was introduced
to regulate the divergent spatial integrals in the action and
resulting Hamiltonian. Furthermore, the Hamiltonian is
similar in form to the k � 0, �1 models and thus is
indicative that a successful loop quantization is possible.

Before turning to the quantization, we would like to
make a closer connection to the LQC work of the k � 0,
�1 models. There we can define untilded variables by
rescaling ~p and ~c by a factor dependent on the fiducial
cell as

 p � V2=3
0 ~p; c � V1=3

0 ~c: (36)

In terms of the untilded variables, the Poisson bracket is
now independent of V0

 fc; pg �
��
3

(37)

and the Hamiltonian constraint becomes

 C GR � �
3

��2

�������
jpj

q
�c2 � V2=3

0 �2�: (38)

The relation between the rescaled triad and the scale factor

is given by

 jpj � V2=3
0 a2 (39)

as well as the half-shell relation

 c � sgn�p�V1=3
0 � _a: (40)

We will use the Hamiltonian based on the untilded varia-
bles as the starting point for quantization. Notice that V0

appears explicitly in the Hamiltonian constraint (38) which
is in contrast to the k � 0 model where V0 drops out of the
constraint.

It will be important in the interpretation of the quantum
theory to understand the physical meaning of the variable
p. From the relation (39), we find

 jpj3=2 � V0a
3 � Vcell (41)

which one recognizes as representing the physical volume
of the fiducial cell. Note that in order to physically measure
the value of p, one would need to prescribe the size of the
fiducial cell. For instance, if today the fiducial cell is taken
to have Planckian physical volume: Vcell � l3P, then p is
similarly Planckian: p � l2P. This can be so despite the fact
that, assuming we live in an open k � �1 universe, the
value of the scale factor a is astronomically large. Thus
there is no direct correlation between the value of the scale
factor a, and the value of p. Again the value of p is highly
dependent on the size of the fiducial cell.

Let us conclude this section with a further note about the
fiducial cell. Since we will be interested in whether the
quantum predictions are sensitive to this choice, we would
like to know how the classical variables transform under a
change in its size. For instance, let us consider that the
fiducial cell is resized as

 V0 ! V00 � �3V0 (42)

then from their definition (36), the untilded variables trans-
form as

 p! p0 � �2p; (43)

 c! c0 � �c: (44)

Note that the scale factor a (and therefore ~p and ~c) do not
make reference to the fiducial cell and therefore do not
rescale under this change. The scaling of p can be under-
stood from (41) by noting that the value of p is determined
from the physical volume of the cell, and thus if the cell is
enlarged, we expect the value of p to be larger. The
untilded variables therefore do not classically have direct
physical meaning as they can be freely rescaled under this
transformation. What is physical classically are changes in
p and c where for instance the Hubble rate H � 1

2 �
_p
p� is

invariant under a resizing of the fiducial cell.
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III. QUANTIZATION

With the classical framework completed, we can now
turn to the loop quantization of the model. To achieve this
in the canonical quantization scheme involves the follow-
ing steps. First one chooses a set of basic variables and
finds a quantum representation of their algebra in order to
construct what is known as the kinematical Hilbert space.
The next step is to construct an operator corresponding to
the Hamiltonian constraint that is self-adjoint in the kine-
matical Hilbert space. Finally, the physical Hilbert space
consists of wave functions that are annihilated by the
constraint operator and that have finite norm in a suitable
physical inner product (which typically is not equivalent to
the kinematical inner product). One then interprets the
theory by evaluating expectation values of observables on
physical wave functions. By considering the k � �1
model sourced with a massless scalar field, this program
can be carried out to completion. The construction of the
k � �1 model presented here follows closely that of the
k � 0 model presented in [6], and thus we will omit many
of the technical details and refer the reader to that article
for a complete description.

A. Kinematical Hilbert space

To construct the kinematical Hilbert space we first must
consider the elementary variables that will form the basis
for quantization. From the full theory of LQG, one does not
take the bare connection Aia and triad Eai as the basic
variables. Rather, in the case of the connection, one inte-
grates Aia along edges and then exponentiates the quantity
leading to a holonomy. The holonomy variables are then
taken as the basic configuration variables. The momentum
variables are fluxes which are constructed by integrating of
the triad over a two-surface. In the cosmological setting,
fluxes are simply proportional to p which therefore forms
an elementary variable. On the other hand, the holonomies
amount to exponentials of the connection c and it is this
fact that becomes the departure point of LQC from pre-
vious versions of quantum cosmology based on a
Schrodinger-type quantization of the Hamiltonian.

Thus let us consider the holonomies in detail. In the
k � 0 model they consist of integrating the connection
along edges generated by the left-invariant vector fields
and assume the form hi � cos� ��c

2 � � 2 sin� ��c
2 �i where �� is

equal to the fiducial length of the edge divided by V1=3
0 , and

i are the generators of SU(2) satisfying fi; jg � 	ij
kk.

With holonomies of this form, the algebra generated is that
of the almost periodic functions (which look like exponen-
tials of the connection ei ��c) and the kinematical Hilbert
space assumes a simple form [15]. However, when we
consider holonomies of the connection in the k � �1
model considered here, they take on a more complicated
form where for instance the holonomy along the edge
generated by oea2 is given by

 h2� ��� � cos
��

���������������������
c2 � V2=3

0

q
2

�
2�c2 � V

1=3
0 3����������������������

c2 � V2=3
0

q
	 sin

��
���������������������
c2 � V2=3

0

q
2

(45)

and thus the algebra generated is no longer simply that of
the almost periodic functions. Finding a representation of
the algebra would be difficult.

However, we can exploit a technique used in the loop
quantization of other models such as the spherically sym-
metric models of LQG [17] as well as the quantization of
the Schwarzschild horizon interior [18]. The complicated
form of the holonomies of the connection arises because of
the nondiagonal form of the connection (29). If we con-
sider instead holonomies of the connection minus the spin-
connection (essentially holonomies of the extrinsic curva-
ture) as done in [17,18], then the holonomies are of a form
equivalent to the k � 0, �1 models

 hi � cos
�

��c
2

�
� 2 sin

�
��c
2

�
i; (46)

where again c refers to the diagonal component of the
connection in (29). In the full theory, the extrinsic curva-
ture is not a connection and hence its holonomies are not
defined. However, in the reduced setting we have per-
formed a complete SU(2) gauge fixing to arrive at sym-
metric connections and thus it is possible to regard the
extrinsic curvature as a connection. The resulting quanti-
zation will be a slight departure from that predicted by the
full theory and thus care must be taken when interpreting
the results. In Sec. V, we will comment on the regime
where we expect the differences to occur.

Additionally we shall follow the prescription of [6]
leading to improved dynamics for LQC. Namely, in con-
trast to the original literature of LQC, we assume that the
parameter �� appearing in the holonomies is a function of p
and not a constant. The motivation for this can be seen as
twofold. First let us consider the issue of the fiducial cell
dependence. The quantity ��c appears in the holonomies
(46) and we have shown that under a resizing of the fiducial
cell, the connection c scales according to Eq. (44).
Quantum corrections can arise when ��c becomes on the
order of 1 [19] and thus we can generate arbitrarily large
quantum corrections by choosing a larger fiducial cell as
long as �� is a fixed constant. However, if �� scales as

 �� /
1�������
jpj

p (47)

then we find that the quantity ��c is invariant under a
resizing of the fiducial cell. A direct result of this in the
k � 0 model is that the bounce occurs when the matter
energy density is on the order of Planckian [6] which is to
be expected on physical grounds. On the other hand, if �� is
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a fixed constant, the bounce can occur even at largely sub-
Planckian densities and even a cosmological constant can
trigger a future recollapse of the universe [7,8,20]. The
second motivation for this scaling comes from the method
proposed in [15] to constrain the value of �� based on using
the minimum area eigenvalue of LQG in constructing the
Hamiltonian constraint operator. We will discuss this in
more detail when we construct the constraint operator. For
now let us assume that �� is given as

 �� �

�������
�

jpj

s
; (48)

where � is a constant to be fixed later.
The kinematical Hilbert space can then be constructed

and a basis is given by eigenstates of the p̂ operator labeled
by a real parameter v with eigenvalues

 p̂jvi �
��@

6

�
jvj
K

�
2=3
jvi; (49)

where the constant K is given by

 K �
2

3

���������
��@
6�

s
: (50)

Similarly the states jvi are eigenstates of the fiducial cell
volume operator

 V̂ celljvi �
�
��@

6

�
2=3 jvj

K
jvi: (51)

The parameter v runs over the entire real line, but the
spectrum is discrete in the sense that the states jvi are
normalizable satisfying

 hv0jvi � �v0v: (52)

A general quantum state is a continuous sum over the basis
states jvi as well as any matter degrees of freedom. We will
interest ourselves in the inclusion of a scalar field degree of
freedom whence a general quantum state is given by

 j�i �
Z
d�

X
v

��v;��jv;�i (53)

with the kinematical inner product between two states
given by

 h�1j�2ikin �
Z
d�

X
v

��1�v;���2�v;��: (54)

A quantum state which lies in the kinematical Hilbert space
has a finite kinematical norm which implies

 

Z
d�

X
v

���v;����v;��<1: (55)

This constitutes the kinematical Hilbert space as well as
the action of the basic flux operator p̂. Additional basic
operators are required in the form of holonomy operators

which can be built using the formula (46) and the basic
exponential operators

 ĥ
 � exp��ic��c=2�: (56)

The basis jvi has been chosen such that the exponential
operators act simply as shift operators

 ĥ
��v� � ��v
 1�: (57)

An important feature of the quantization is that since
holonomies form the basic configuration variables, there
is no basic operator corresponding to the connection ĉ. In
order to construct such an operator, one has to approximate
it using the basic holonomy operators. An example of this
is given by the Hamiltonian constraint to which we turn
now.

B. Quantum difference equation

The next step in quantization is to construct a
Hamiltonian constraint operator that is self-adjoint on the
kinematical Hilbert space. The classical expression for the
gravitational part of the constraint is again given by

 C GR � �
6

�2

�������
jpj

q
�c2 � �2V2=3

0 � (58)

which is equivalent to the k � 0 model up to the �2V2=3
0

term in the parentheses. The main complication in con-
structing the gravitational part of the Hamiltonian con-
straint operator is the lack of an operator for the bare
connection. Thus the c2 term must be quantized using
holonomies. Following the results from the k � 0 model,
the following classical reexpression

 C GR � �
4

�@�3 ��3

X
ijk

	ijk tr��hihjh
�1
i h�1

j

� 2 ��2�2V2=3
0 ij�hkfh�1

k ; Vg� (59)

can be shown to give back the classical expression (58) in
the limit as �� is taken to zero. This expression is now
readily quantizable with the major nontriviality being that
we cannot take the limit as �� goes to zero as that would
require a ĉ operator. Thus in the quantum constraint op-
erator we do not take the limit, instead leaving �� to be a
finite parameter given by the expression (48).

In order to constrain the parameter � in the definition of
�� (or equivalently the parameter K in (50)), in the k � 0

model one can connect to the full theory of LQG by
shrinking �� until the closed loop spanned by the edges
of the holonomies hihjh�1

i h�1
j has the minimum physical

area eigenvalue of LQG. This fixes the value of � to be
equal to the minimum area eigenvalue of LQG � �

2
���
3
p
��l2P which implies that K is given by K � 2

��
2
p

3
�������
3
��
3
pp

[6]. However, in the k � �1 model this interpretation
does not hold since the edges do not close. Thus we cannot
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a priori make the same assignment of K. We can however
turn to the k � �1 model for guidance. There, the quan-
tization has been performed using holonomies of the ex-
trinsic curvature where the loop similarly does not close
[13,21]. The quantization of the k � �1 involving holon-
omies of the connection and using a closed loop for the
constraint operator appears in [9] and there the value of K
is constrained to the same value as the k � 0 model using
the same procedure. Furthermore, the quantization using
holonomies of the connection is quantitatively similar to
the one using holonomies of the extrinsic curvature in the
v� 1 regime which can be taken as evidence that the
same value ofK should be used in both quantizations. With
this in mind, we will leave this issue open and assume that
the parameter K is on the order of 1 without explicitly
fixing its value.

With the caveats mentioned, the construction of the
constraint operator follows that of the k � 0 model (see
[6] for details). The action on the operator is given by
 

ĈGR��v� � f��v���v� 1� � f0�v���v�

� f��v���v� 1� (60)

with the functions f given by

 f��v� �
27

16

���������
��@

6

s
K

�2 jv� 2jjjv� 1j � jv� 3jj; (61)

 f��v� � f��v� 4�; (62)

 f0�v� � �f��v� � f��v� � g�v�; (63)

and the function g�v� representing the modification com-
ing from the k � �1 model given explicitly as

 g�v� �
3V2=3

0

K1=3

���������
��@

6

s
jvj1=3jjv� 1j � jv� 1jj: (64)

Thus the contribution from the k � �1 model amounts to
the addition of a term g�v� that acts diagonally on the basis
states jvi.

To discuss dynamics and interpret the difference equa-
tion we can add matter in the form of a massless scalar field
as done in [6]. Since the difference equation will be of
similar form as the k � 0 model most of the results remain
valid. With a massless scalar field, the full constraint is
given by

 Ĉ � ĈGR � �p̂
�3=2P̂2

�; (65)

where P� is the canonical momentum to the scalar field.
Since the Hamiltonian is independent of the scalar field �,
the conjugate momentum P� is a constant of motion
classically. The classical Friedmann equation is given by

 H2 �
�
6

P2
�

V2
0a

6
�

1

a2 (66)

which can be solved explicitly in terms of conformal time
d� � adt giving

 a2��� �

����������
�P2

�

6V2
0

vuut sinh�2�� (67)

and similarly the scalar field evolves as

 ���� �
1

2

����
6

�

s
ln�tanh�� ��0: (68)

Both are monotonic functions and thus can play the role of
emergent time. If we choose the scalar field to play the role
of emergent time the evolution of a is given by

 a2��� �

����������
�P�

6

s
csch

�����������
2�=3

p
����0�: (69)

For the quantization of the matter part of the constraint,
the operator for P� acts simply as P̂� � �i@@=@�. The
inverse volume operator p̂�3=2 requires careful treatment
as the naive inverse of the p̂ operator does not lead to a
densely defined self-adjoint operator owing to the fact the
normalizable state jv � 0i lies in the spectrum of the p̂
operator. Using techniques from the full theory [22,23], the
application to LQC leads to a bounded self-adjoint opera-
tor [24] with eigenvalues given by [6]

 p̂�3=2��v� �
�

6

��@

�
3=2
B�v���v� (70)

with the function B�v� given by

 B�v� �
�
3

2

�
3
Kjvjjjv� 1j1=3 � jv� 1j1=3j3: (71)

This inverse volume operator represents one choice among
many possible choices of the types that have been explored
in [24]. In particular there is freedom to use a particular
spin J SU(2) representation to define the holonomies. The
operator shown here corresponds to using the fundamental
representation (J � 1=2) in accordance with arguments
indicating that the theory should be quantized using that
value [25,26]. The behavior of B�v� changes for v < 1 and
v > 1. For v < 1, B�v� behaves polynomially and in-
creases for large values of v while it vanishes at the
singularity v � 0. For v > 1, B�v� approaches the classi-
cal expression B�v�  ���@6 �

3=2p�3=2. The physical mean-
ing of v < 1 is dependent on the choice of fiducial cell and
we will discuss this in more detail in Sec. V.

With the matter constraint operator, the difference equa-
tion can be rearranged into the form

 

@2��v;��

@�2
� ��̂��v;�� � ���̂0 � �̂�1���v;��

(72)

with the �̂0 operator equivalent to the �̂ operator in the
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k � 0 model [6]
 

�̂0��v� � �B�v��1�C��v���v� 4� � C0�v���v�

� C��v���v��; (73)

 C��v� �
3�K
64
jv� 2jjjv� 1j � jv� 3jj; (74)

 C��v� � C��v� 4�; (75)

 C0�v� � �C��v� � C��v�: (76)

The k � �1 model contributes the �̂�1 operator which
acts diagonally on ��v� as
 

�̂�1��v� � �B�v��1 ��
2V2=3

0

12K1=3
jvj1=3jjv� 1j

� jv� 1jj��v�: (77)

The combined operator �̂ is self-adjoint4 but not posi-
tive definite. If we restrict ourselves to the positive part of
the spectrum of �̂ then the physical inner product can be
constructed in a simple fashion. Namely we restrict to
eigenstates e!�v� of the �̂ operator: �̂e!�v� � !2ek�v�.
Since �̂ is self-adjoint and we are restricting to the positive
part of the spectrum, by spectral analysis we can construct

an operator corresponding to the square root
�����
�̂

p
. Solutions

to the difference equation then split into positive and
negative frequency solutions satisfying a first order
Schrodinger-like equation

 � i
@��v;��
@�

�

�����
�̂

q
��v;��: (78)

In this form, the difference equation is like a standard
evolution equation in terms of the scalar field �. We can
restrict to the positive frequency solution space when con-
sidering physical wave functions whence the physical in-
ner product is given in analogy with the Schrodinger inner
product of quantum mechanics as

 h�1j�2iphys �
X
v

B�v� ��1�v;�0��2�v;�0�: (79)

As in quantum mechanics, the physical inner product can
be evaluated at any ‘‘time’’ �0, and the difference Eq. (78)
guarantees that the result is independent of �0.

Finally, to interpret the physical wave functions requires
the evaluation of expectation values of observables.
Technically, we require Dirac observables which corre-
spond to quantum operators which commute with the con-

straint operator so as to lead to unambiguous gauge
invariant observables. Following the k � 0 model [6] the
scalar field momentum P̂� � �i@@=@� is an observable
whose operator trivially commutes with the constraint
operator. An additional observable is the value of v at a
given instant in time �0 labeled vj�0

. The expectation
value of this observable is given by

 h�jv̂j�0
j�i �

P
v
B�v�v ���v;�0���v;�0�

h�j�iphys
: (80)

IV. DYNAMICS

With the inclusion of the massless scalar field, the
resulting dynamics and interpretation of the theory can
be understood by constructing suitable semiclassical states
[6,8,27]. The dynamics of the theory is most easily under-
stood by choosing the scalar field � to play the role of the
internal clock. Following the procedure set forth in [6,8],
eigenfunctions of the �̂ operator are calculated and then
Fourier transformed to get physical wave function solu-
tions to the quantum difference equation. Thus given the
eigenfunctions e!�v� we choose a Gaussian profile
e��!�!��

2=2�2
ei!�� peaked around a large value of the

scalar field momentum P� � @!� with spread � and
peaked around a value of the scalar field ��. Physical
wave functions are constructed through the Fourier trans-
form

 ��v;�� �
Z 1
�1

d!e��!�!��
2=2�2

ei!��e!�v�ei!� (81)

which are thus by construction solutions to the difference
equation. Numerically, the procedure is to first calculate
the eigenstates e!�v�. Typically, there is a twofold degen-
eracy in the eigenstates, and this is removed by choosing
the eigenstate that matches the positive frequency
Wheeler-DeWitt solution5 for large v. Once the eigenstates
are calculated, the Fourier transform (81) is calculated
using the Fast Fourier transform algorithm.

An example of a numerical simulation is shown in
Fig. 1. The state is initially peaked around a large value
of v and evolves towards the singularity while remaining
sharply peaked. Instead of plunging into the singularity as
expected from the classical dynamics, the state bounces
leading to an expanding universe. The results of the quan-
tum dynamics are qualitatively similar to the k � 0, �1
models [6,9] and the bounce occurs when the energy
density of the scalar field is Planckian.

The behavior of the dynamics can be understood in
terms of an effective classical description. This amounts

4Technically �̂ is self-adjoint on the Hilbert space
L2�RBohr; B�v�d�Bohr� where RBohr refers to the almost periodic
functions. The extra factor of B�v� is due to the fact the ĈGR is
self-adjoint in the kinematical Hilbert space L2�RBohr; d�Bohr�
and that �̂ / B�1�v�ĈGR

5Wheeler-DeWitt solutions are eigenstates of the operator �̂
which is the continuous differential operator that approximates
the difference operator �̂ in the large v limit. See [6,8] for more
details.
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to considering an effective modified Hamiltonian con-
straint through which effective classical equations of mo-
tion are calculated. Note that by nature this sort of effective
description cannot completely encode the predictions from
the quantum theory and care must be taken when applying
the effective theory in more general settings. In particular if
the wave function becomes nonsharply peaked, then addi-
tional modifications to the dynamics are expected to be-
come appreciable [28]. In the numerical simulations
performed for this work, the wave function remains sharply
peaked throughout the evolution, and the effective descrip-
tion provides an accurate description which we show ex-
plicitly now.

The effective Hamiltonian is given by (see
[19,20,25,28–30] for various discussions on the issue)

 H eff � �
3
�������
jpj

p
��2 ��2 sin2� ��c� �

3
�������
jpj

p
V2=3

0

�
� jpj3=2�M;

(82)

where again �� is a function of p given by

 �� �

�������
�

jpj

s
: (83)

Note that in this effective Hamiltonian, we are implicitly
assuming the v� 1 limit. In particular, in this limit the
B�v� eigenvalues that would appear in the matter part of
the Hamiltonian are approximated by the classical expres-
sion; namely

 B�v� �
K
v
� �v�3� (84)

and thus the matter density takes on its classical form

 �M �
P2
�

2p3 �O�p�9=2�: (85)

In this effective Hamiltonian we are therefore ignoring the
inverse volume corrections to the matter Hamiltonian and
will show that this is a good approximation by comparison
with the quantum dynamics.

With this effective Hamiltonian we can derive an effec-
tive Friedmann equation. To do this first we note that the
left-hand side of the Friedmann equation involving the
Hubble rate squared can be written as

 H2 �

�
_a
a

�
2
�

1

4

�
_p
p

�
2

(86)

which is a simple consequence from the fact that p / a2

from Eq. (36). The time derivative _p is calculated from
Hamilton’s equation _p � fp;H effg giving

 H2 �
1

4

�
_p
p

�
2
�

1

�2 ��2jpj
sin2 ��ccos2 ��c

�
1

�2 ��2jpj
sin2 ��c�1� sin2 ��c�: (87)

Finally, we can use the vanishing of the Hamiltonian to
relate sin2 ��c to �M which gives

 sin 2 ��c � �2 ��2V2=3
0 �

��2 ��2jpj
3

�M: (88)

Putting these together and writing in terms of the scale
factor jpj � V2=3

0 a2 we get for the effective Friedmann
equation

 H2 �

�
�
3
�M �

1

a2

��
1�

�2�

a2 �
��2�

3
�M

�
: (89)

The first term in parentheses is the classical right-hand side
of the Friedmann equation and thus the second term in
parentheses represents the quantum modifications. The
bounce can be understood as arising when the second
term vanishes; namely, when the matter density reaches a
maximum

 �max �
3

��2�
�

3

�a2 ; (90)

where the first term is precisely the same form as the
critical density �c �

3
��2�

arising in the k � 0 model and

the second term forms an additional contribution from the
k � �1 model. Notice that the actual value of the matter
density at the bounce point depends on the value of the
scale factor at the bounce point. To determine the bounce
scale factor ac and the value of the bounce energy density
for the massless scalar field, we can solve for when the
matter density equals the maximum value

 

P2
�

2V2
0a

6
c

�
3

���
�

3

�a2
c
: (91)
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FIG. 1 (color online). Evolution of the semiclassical state
initially peaked at a large value of v. The state remains sharply
peaked and bounces before reaching the singularity v � 0. After
the bounce, the state continues to remain sharply peaked and
leads to an expanding universe. The values of the numerical
parameters used in the simulation were !� � 700, � � 20,
V0 � 1, and K � 1=2.
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If the scalar field momentum is sufficiently large, then ac is
sufficiently large so that the second term is negligible and
we find that the bounce energy density agrees with the form
of the k � 0 critical density �max  �c. The actual value of
�c is dependent explicitly on the value of � which by (50)
depends on the value of K. If K is on the order of 1, then
(50) implies that � is on the order of the Planck length
squared, and one finds that �c is on the order of the Planck
density. From the arguments of [6], the critical density in
the k � 0 model is valued at �c � :82�p.

It is evident from the effective Friedmann equation (89)
and from the form of the maximum energy density (90)
that arbitrary matter with positive energy density will
trigger a bounce. Furthermore, the effective Friedmann
equation predicts a minimum scale factor amin that the
open universe can reach. Namely, even in the vacuum
energy density case the right-hand side of the effective
Friedmann equation is negative and thus forbidden for
values of the scale factor below

 amin � �
����
�
p

(92)

which again is on the order of the Planck length if � is on
the order of the Planck length squared. Thus the open
model constructed here predicts a vacuum repulsion in
the high curvature regime.

We can compare the predictions of the effective
Friedmann equation with the quantum dynamics as a
method of testing the validity of the effective theory. In
Fig. 2, the expectation value of observable hv̂j�0

i is plotted

along with the spread hc�vj�0
i. The solid line is the trajec-

tory predicted from the effective Friedmann equation (89)
which agrees quite well with the expectation values. We
see that the effective Friedmann equation accounts for the
bounce at the right moment and agrees very well in the post
bounce regime. This testifies as to the validity of the
effective theory in the massless scalar field model consid-
ered. Furthermore, we have ignored the inverse volume

corrections to the matter part of the effective Hamiltonian
and thus the quantum dynamics are not sensitive to those
effects. The reason for this is that the bounce occurs at a
value of vmuch larger than 1. In particular for the values of
the parameters chosen in Fig. 2, the bounce value of v is
228.015. In order to probe the small v regime, one would
need a semiclassical state with a small value of P� yet such
states behave nonsemiclassically with large spread and
thus the effective description would not be valid and the
quantum state would not be a good description of our
universe.

However, as we mentioned one should keep in mind that
in more complicated models, the effective theory shown
here can in principle deviate from the quantum dynamics
with deviations that may depend of the quantum state. Thus
it is an open issue to understand better in what regimes the
deviations occur and whether or not the deviations can be
accounted for in a more complete effective picture. An
effective theory that takes into account the quantum de-
grees of freedom (such as the spread of the wave function)
can be found in [28], and thus merits testing with the
quantum dynamics in more complicated scenarios.

V. DISCUSSION

We have shown explicitly that a successful loop quanti-
zation of the k � �1 model exists with the correct semi-
classical limit. In this quantization the results of the k � 0,
�1 models are extended and the classical singularity can
be resolved even leading to a big bounce with a massless
scalar field. This is further testament to robustness of the
predictions of LQC.

Several caveats of the model require discussion. First is
that our model was constructed using holonomies of the
extrinsic curvature as opposed to holonomies of the con-
nection as done in the full theory. The reason for using this
quantization is that the holonomies of the connection (an
example of which is given in formula (45)) are not almost
periodic functions thus rendering a loop quantization diffi-
cult. As stated, this technique has been utilized in the loop
quantization of the spherically symmetric models as well
as in the inhomogeneous cosmological model of [31]. An
important question is therefore what are the implications of
the quantization using holonomies of the extrinsic
curvature.

We can turn to the closed k � �1 model where both
quantizations have been performed, with holonomies of the
extrinsic curvature being used in the earlier work [13]
while holonomies of the connection comprising the quan-
tization are in the more recent work of [9]. The two
quantizations can be shown to be in agreement in the v�
1 limit, with the differences restricted to the small volume
v� 1 regime. We can understand the reason for this
behavior in the following heuristic way. The holonomies
of the connection consist of exponentials of �� times the
connection; i.e., ����Ki

a � �ia� where for the nonflat mod-
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FIG. 2 (color online). Expectation value (dots) of vj� observ-
able with the error bars representing the dispersion. The expec-
tation values are approximated well by the predicted values
(solid line) from the effective Friedmann equation (89).
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els the spin-connection components �ia are constant val-
ued. Since we are taking �� to scale as p�1=2 (equivalently
v�1=3), then for large values of v the quantity ���ia is
guaranteed to be small. Thus, the difference of holonomies
of the connection and extrinsic curvature are expected to be
negligible in the large v limit. This is precisely what is
observed in the k � �1 model.

Therefore, the results of the k � �1 model indicate that
for the k � �1 quantization presented here, the results are
expected to be valid in the v� 1 regime. This does not
affect any of the results presented here provided that the
semiclassical state does not approach the v < 1 regime. As
we have mentioned, the bounce occurs at a value of v� 1
for universes which behave semiclassically. Furthermore,
in the k � �1 model similarly the bounce occurs at v� 1
for universes which reach macroscopic size before recol-
lapsing [9]. Thus we expect that the physical results pre-
sented in this paper, such as the quantum bounce, are
largely insensitive to whether the quantization is performed
using holonomies of the connection or extrinsic curvature.

Additionally there is the issue of the dependence of the
quantum results on the size of the fiducial cell. First we can
ask if the effective Friedmann equation (89) is dependent
on the fiducial cell and therefore the prediction of the
quantum bounce. Classical quantities such as the scale
factor a and matter energy density do not make reference
to the fiducial cell and thus do not rescale. This implies that
the effective Friedmann equation (89) is invariant under a
change in fiducial cell. Note that the result crucially de-
pends on the fact that �� is not taken to be a constant, but
scales as p�1=2. Thus the prediction of the bounce does not
make reference to the fiducial cell.

The same statement cannot be made about the inverse
volume corrections appearing in the quantum matter den-
sity of the scalar field. The eigenvalues B�v� give back the
classical behavior for v� 1 but in general behave as

 B�v� /
�
v4 v� 1
v�1 v� 1

: (93)

The parameter v is proportional to the physical volume of
the fiducial cell, and thus must scale if we resize the
fiducial cell. The exact scaling under a resizing of the
fiducial cell V0 ! V 00 � �3V0, is given as

 v! v0 � �3v: (94)

For a given value of the scale factor, a larger fiducial cell
implies a larger value of v. In terms of the scale factor, v is
related as

 v � V0K
�

6

8��

�
3=2 a3

l3P
(95)

which makes evident that the value of v depends explicitly
on the fiducial cell volume V0 for a fixed value of the scale
factor. If we enlarge the fiducial cell, then the value of v
should also increase which in turn reduces the effects of the

inverse volume eigenvalues. Vice versa, a smaller fiducial
cell implies stronger inverse volume effects.

Thus, when considering phenomenological applications
involving the inverse volume modifications, one must
specify the scale at which the inverse volume effects are
non-negligible. In other words, the critical scale separating
the quantum regime from the classical regime corresponds
to v � 1 which in terms of a critical scale factor a� gives

 a� �

����������
8��

6

s
lP
K1=3

V�1=3
0 (96)

which indicates the explicit dependence on the fiducial
cell. Again, a larger value of V0 implies a smaller a� which
pushes the quantum effects into the higher curvature re-
gime and vice versa. If the fiducial cell volume V0 and K
are on the order of 1, then a� is on the order of the Planck
length, but note that the critical scale is not necessarily
Planckian.

The issue of the scale dependence of the inverse volume
modifications occurs additionally in the k � 0 model
where again a fiducial cell is required to quantize the
spatially infinite model (see discussions in [6,32]). The
preceding arguments remain valid for this model and a
scale must be introduced. On the other hand, the compact
k � �1 model does not require a fiducial cell since the
spatial integrations do not diverge. There, inverse volume
modifications occur when the physical volume of the entire
universe is Planckian. In other words, the scale at which the
quantum effects occur is provided by physical volume of
the universe. For the closed model this is equivalent to the
high curvature Planckian regime.

Since the scale at which the inverse volume effects occur
is given by the physical size of the fiducial cell in the k �
0,�1 models, an important issue is to determine what sets
the scale in loop quantum cosmology. The fiducial cell was
introduced in order to regulate the infinite spatial integra-
tions appearing in the action and Hamiltonian and thus is
not expected to be physically relevant. One possibility is
that the scale is provided in an inhomogeneous treatment of
loop quantum cosmology. An inhomogeneous model of
loop quantum cosmology has been developed in [31] based
on a fixed lattice quantization. In that model, the scale
corresponds to the physical size of the lattice links. Yet, the
inhomogeneous model does not provide a prescription to
determine the size of the scale, which must be specified by
hand and is not necessarily tied to matter degrees of free-
dom or the curvature scale. The naive expectation would be
that the lattice spacing should be Planckian in size, but if
the model describes the current universe then we would
expect to see inverse volume modifications occurring to-
day, a prediction which is clearly ruled out by observations.

Whatever determines the scale inherent in LQC models,
one is faced with constraining the predictions with obser-
vations. As mentioned, if the scale is too small, then
inverse volume corrections might be predicted in the near
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past which would alter the Friedmann dynamics and be
observationally detectable. If the lattice links of an inho-
mogeneous model provide the scale, the links must be
sufficiently larger than the Planck scale in the recent
history of the universe, but presumably not too large to
spoil particle physics. If the scale provided by the lattice
links expands with the growing universe (i.e. the lattice
links grow with the universe), then ensuring that they are
not too large today, while being not too small in the earlier
universe could be challenging and might require fine tun-
ing. The inhomogeneous model of [31] has the behavior
that the lattice links expand with the universe and thus
would face this constraint. However, as mentioned in [31],
one possibility is that in a more systematically derived
inhomogeneous lattice model of loop quantum cosmology,
the scale provided by the lattice links would dynamically
change and thus might not grow with the expanding uni-
verse. This type of behavior is mimicked in the homoge-
neous setting when �� scales as a function of p�1=2, a
quantization feature which was first proposed in [6] and
has been utilized in this paper. With this scaling behavior,
the holonomy edges defining the Hamiltonian constraint
operator decrease in physical length with the expanding
universe. The results of the improved quantization appear

better grounded on a physical basis and thus this behavior
would seem to be a requirement for constructing inhomo-
geneous models.

Furthermore, we have shown that the inverse volume
modifications play no important role in the quantum dy-
namics for universes which behave semiclassically since
the bounce occurs for v� 1. Additionally, in the k � �1
model, for universes which grow to macroscopic size,
again the inverse volume modifications play no role [9].
We these indications, along with the arguments that the
ambiguity parameter j should be its lowest value 1=2
[25,26], these results give evidence that the inverse volume
modifications may not play a significant role in the evolu-
tion of the universe.
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