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High-precision data from observation of the cosmic microwave background and the large scale
structure of the universe provide very tight constraints on the effective parameters that describe
cosmological inflation. Indeed, within a constrained class of �CDM models, the simple ��4 chaotic
inflation model already appears to be ruled out by cosmological data. In this paper, we compute
constraints on inflationary parameters within a more general framework that includes other physically
motivated parameters such as a nonzero neutrino mass. We find that a strong degeneracy between the
tensor-to-scalar ratio r and the neutrino mass prevents ��4 from being excluded by present data.
Reversing the argument, if ��4 is the correct model of inflation, it predicts a sum of neutrino masses
at 0:3! 0:5 eV, a range compatible with present experimental limits and within the reach of the next
generation of neutrino mass measurements. We also discuss the associated constraints on the dark matter
density, the dark energy equation of state, and spatial curvature, and show that the allowed regions are
significantly altered. Importantly, we find an allowed range of 0:094<�ch2 < 0:136 for the dark matter
density, a factor of 2 larger than that reported in previous studies. This expanded parameter space may
have implications for constraints on SUSY dark matter models.
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I. INTRODUCTION

The past few years have seen a dramatic increase in the
precision of cosmological data, ranging from measure-
ments of the cosmic microwave background (CMB) an-
isotropies by the Wilkinson Microwave Anisotropy Probe
(WMAP) satellite [1–3] and the large scale structure (LSS)
of the universe by the Sloan Digital Sky Survey (SDSS)
[4,5], to the observation of distant type Ia supernovae
(SNIa) [6]. All these measurements point to the so-called
concordance model of cosmology, wherein the physical
parameters are the baryon density �b, the matter density
�m, the dark energy density ��, and the present Hubble
expansion rate H0. The model geometry is flat so that
�� � 1��m, and the initial perturbations are assumed
to be adiabatic and Gaussian, with a power law spectrum
described by a spectral index ns and an amplitude As.
Together with the optical depth parameter �, this six-
parameter ‘‘vanilla’’ model provides a good fit to all ob-
servational data to date.

A common assumption in cosmological parameter esti-
mation is that one can always improve a fit marginally by
including extra free parameters. This assumption has led to
the adoption by many authors of the Occam’s razor ap-
proach, in which an extra parameter is retained only if by
its inclusion the goodness-of-fit of the model is substan-
tially improved. Indeed, the success of the vanilla model is
rooted in the fact that, given the current data, no addition of
a single extra parameter produces a �2 value that is sig-
nificantly lower.

However, there are many more physically well-
motivated parameters beyond the vanilla model. Indeed,
some of these, such as a nonzero neutrino mass, are known

to be present. In such cases, a blind enforcement of
Occam’s rule can lead to significant underestimation of
parameter errors, as well as bias in the parameter estimates.
One well-known example is the interplay between the dark
energy equation of state and the neutrino mass [7–9].
When the dark energy equation of state is allowed to
vary, the neutrino mass bound is relaxed by almost a factor
of 3 if only CMB and LSS power spectrum information is
used. Conversely, by imposing a prior on the neutrino
masses according to the Heidelberg-Moscow claims [10–
12], Ref. [8] finds that a cosmological constant is ruled out
at more than 95% C.L. by CMB� LSS� SNIa data.

One could argue that parameter estimation coupled with
Occam’s rule is a ‘‘bottom-up’’ approach, for which a full
Bayesian analysis complete with Bayes factor calculations
may also be appropriate [13,14]. However, if one’s aim is
to exclude specific models, then a more conservative ap-
proach that takes into account possible degeneracies be-
tween the ‘‘standard’’ and the ‘‘new’’ parameters is
warranted. Such a ‘‘top-down’’ approach does not neces-
sarily imply a decrease in the predictability of the model.
In fact, we will show that, given the present cosmological
data, a nonvanishing neutrino mass could be viewed as a
prediction of the ��4 inflationary model. We argue that,
when constraining or excluding specific theoretical mod-
els, one should in principle allow for uncertainties in all
physically well-motivated parameters, even if they have a
priori no direct link to the models concerned. If, for
instance, it turns out later that the universe is indeed
composed of a nonvanishing neutrino fraction, it would
be counterproductive to have already discarded a model of
inflation that predicts this outcome.
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In the present work, we investigate in this spirit how
parameter constraints change when the parameter estima-
tion analysis is performed within a much more general
model framework. In principle there are some 20 or more
parameters that could influence cosmology, although the
precision of the present data is not yet sufficient to probe
some of them (e.g., the primordial helium fraction and the
effective sound speed of dark energy). Here, we focus on a
11-parameter model outlined below.

A. The model

We test a general 11-parameter model space consisting
of

 � � �!c;!b; f�;�k; w;H0; ns; r; �s; �; As�: (1)

The vanilla model is defined by f� � �k � r � �s � 0,
and w � �1. In addition, we marginalize over a nuisance
parameter b which describes the relative bias between the
observed galaxy power spectrum Pg�k� and the underlying
dark matter spectrum Pc�k� via Pc�k� � b2Pg�k�.

Three different parameter sets will be considered in this
work:

(i) Set A: All 11 parameters.
(ii) Set B: A 10-parameter set with �k � 0. This pa-

rameter set covers all standard inflationary models.
(iii) Set C: A 9-parameter set with �k � �s � 0. This

reduced set corresponds to the large subset of the zoo
of inflationary models that predict negligible run-
ning, including large field chaotic inflation models
[15].

1. Matter content

We assume the matter content to be specified by the
following parameters: the curvature �k � 1��m ���,
the physical dark matter density !c � �ch

2, the baryon
density !b � �bh

2, the neutrino fraction f� � ��=�c,
and the dark energy equation of state parameter w.

Other parameters not included here, but which could
have an observable effect, include a time-dependent dark
energy equation of state, nonstandard interactions in any of
the dark sectors (cold dark matter, neutrinos, or dark
energy), etc. We mention this as a caution that, while our
parameter space is much larger than that normally used in
parameter estimation analyses, it is not necessarily
complete.

2. Initial conditions

The initial conditions for structure formation are as-
sumed to be set by inflation, characterized by scalar and
tensor fluctuations with amplitude As and At � rAs, re-
spectively. Each component is specified by a spectral index
ns or nt, and the inflationary consistency relation requires
that nt ��r=8. However, the precision of current data is
not yet at a level where a violation of the consistency

relation can be tested. This also means that, while the
running parameter �s should be included for the scalar
spectrum, the inclusion of its tensor counterpart �t would
have no effect. This set of initial parameters encompasses
all standard inflationary models, but not models with fea-
tures from potential steps, particle production, etc. during
inflation. We define �s at the pivot scale k �
0:002 Mpc�1, in concordance with most recent analyses.

Note that an alternative approach would be to perform
the analysis directly in terms of the slow-roll parameters
instead of the observables ns, �s, and r [16–18].
Particularly for models where �s is not negligible this
can lead to somewhat different results. However, in models
with small �s, such as chaotic inflation, the results are
identical.

II. DATA ANALYSIS

Cosmic microwave background (CMB).—We use CMB
data from the WMAP experiment after three years of
observation [1–3]. The data analysis is performed using
the likelihood calculation package provided by the WMAP
team on the LAMBDA homepage [19].

Large scale structure (LSS).—The large scale structure
power spectrum of luminous red galaxies (LRG) has been
measured by the SDSS. We use the same analysis tech-
nique on this data set as advocated by the SDSS team [4,5],
with analytic marginalization over the bias b and the non-
linear correction parameter Qnl.

Baryon acoustic oscillations (BAO).—In addition to the
power spectrum data, we use the measurement of baryon
acoustic oscillations in the two-point correlation function
[20]. The analysis is performed following the procedure
described in [20,21] (see also [22]), including analytic
marginalization over the bias b, and nonlinear corrections
with the HALOFIT [23] package.

Type Ia supernovae (SNIa).—We use the luminosity
distance measurements of distant type Ia supernovae pro-
vided by the Supernova Legacy Survey (SNLS) [6].

Lyman-� forest.—We do not include data from the
Lyman-� forest in our analysis. These data were used in
some previous studies that found very strong bounds on
various cosmological parameters [24]. However, the
strength of these bounds is due mainly to the fact that the
Lyman-� analysis used in [24] leads to a much higher
normalization of the small-scale power spectrum than
that obtained from the WMAP data. Other analyses of
the same SDSS Lyman-� data find a lower normalization,
in better agreement with the WMAP result [25–27]. This
kind of discrepancy between different analyses of the same
data probably points to unresolved systematic issues, and
for this reason we prefer to discard the Lyman-� data
entirely.

For a large part of our analysis, we use two different
combinations of data sets, one consisting of WMAP and
SDSS data only, and one which uses in addition data from
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SNIa (SNLS) and BAO. The latter case is sometimes
referred to as ‘‘the full data set.’’

We perform the data analysis using the publicly avail-
able COSMOMC package [28,29], modified to include the
BAO likelihood calculations.

III. RESULTS

A. Inflationary parameters

Almost all inflationary models predict �k to be zero.
This prediction is also supported by our analysis of pa-
rameter set A (see Sec. III D). Therefore, in this section, we
will work with the reduced 10-parameter set B, in which
�k is already fixed at zero. Figure 1 shows the 2D like-
lihood contours for the parameters ns, r, and �s using the
full data set and parameter set B. These contours are
obtained by marginalizing over the other (10� 2) parame-
ters not shown in the plot.

Figure 1 should be compared with, e.g., Figs. 2 and 3 of
Kinney et al. [30], which use data from WMAP and SDSS,
and a parameter set similar to our set B but with f� and w
fixed at 0 and �1, respectively. The comparison reveals
that the two sets of likelihood contours are roughly similar,
but with one important exception: the allowed range for the
tensor-to-scalar ratio r in our case is much larger even in
the light of additional data.

In order to understand this effect we plot in Fig. 2 the 2D
likelihood contours for r and our additional parameters f�
and w. Interestingly, a substantial degeneracy exists be-
tween r and the neutrino fraction f�, which in turn allows r
to extend to much higher values. Table I displays the 1D
95% C.L. allowed ranges for ns, r, and �s, assuming
parameter set B and using both WMAP� SDSS only
and the full data set.

B. Chaotic inflation

Single field inflation models with polynomial potentials
generally predict negligible running. These models are
thus represented by our 9-parameter set C in which �s �
0. The corresponding 2D likelihood contours for ns and r,
marginalized over the other (9� 2) parameters, are shown
in Fig. 3.

Figure 3 should be compared with Fig. 4 of Kinney et al.
[30], with Fig. 14 of Spergel et al. [1], and with Fig. 19 of
Tegmark et al. [4] (see also [31]). In all cases our
WMAP� SDSS contours encompass a markedly larger
region. In particular, even with the inclusion of SNIa and
BAO data, we find that the simplest ��4 model is still
allowed by data, contrary to the conclusions of [1,4,30,31].
We note that the end points of the model lines in Fig. 3
correspond to 46 and 60 e-foldings, respectively.1

Interestingly, ��4 is compatible with data only if the
number of e-foldings is relatively large, or equivalently,
if the reheating temperature is high [33,34].

Again, the explanation for our enlarged ns, r allowed
region lies in our expanded model parameter space. In
Fig. 4, we see that the degeneracy between r and f�
encountered earlier in parameter set B is present also in
parameter set C, albeit to a smaller extent. If a neutrino

 

FIG. 1 (color online). Two-dimensional 68% and
95% C.L. contours for the inflationary parameters ns, r, and
�s, using the full data set and parameter set B, and marginalized
over the other (10� 2) parameters.

1When taking into account one-loop effects in the chaotic
inflationary scenario, the model lines in this plot may actually be
smeared at the percent level [32].
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fraction of 0:03! 0:05 is allowed (corresponding roughly
to
P
m� � 0:3! 0:5 eV), new parameter space opens up

for ns and r. We note in passing that the converse is not
true. Allowing r to run does not change the upper bound on
the neutrino mass significantly. Interestingly, this f�, r
degeneracy also means that ��4 in its simplest form
predicts quasi-degenerate neutrino masses with a sum in
the 0:3! 0:5 eV range. This range is compatible with
present laboratory limits from tritium beta decay experi-
ments, m� < 2:2 eV [35,36], as well as the claimed detec-
tion of neutrinoless double beta decay, and hence detection
of the effective electron neutrino mass mee � j

P
jU

2
ejm�j j

at 0:1! 0:9 eV, by the Heidelberg-Moscow experiment

[10–12]. The upcoming tritium beta decay experiment
KATRIN will also probe neutrino masses to a comparable
level of precision [37].

Also of interest is the case of a fixed dark energy
equation of state w. Figure 5 shows the equivalent of the
lower panel of Fig. 3 (full data set and parameter set C), but
with the additional restriction w � �1. Clearly, there is
very little difference between Figs. 3 and 5, since the
combination of SNIa and BAO data effectively fixes w to
�1 in the former case, as shown in Fig. 4.

As a consistency check we present in Fig. 6 also the 2D
constraints on ns, r for the vanilla model with one extra
parameter r, i.e., the same model analyzed in [1,4,30]. The
general shapes of the contours in this figure are almost
identical to those in Fig. 19 in Tegmark et al. [4] which
uses the same data sets. In addition, we find a 1D
95% C.L. upper bound of r<0:31, while Tegmark et al.
report an almost identical r<0:33. Kinney et al. also found
r < 0:31 for the same vanilla� r model [30], but from a

TABLE I. The 95% C.L. allowed ranges for ns, r, and �s for
parameter set B, marginalized over the other (10� 1) parame-
ters.

Parameter WMAP� SDSS Full data set

ns 0:97! 1:35 0:98! 1:28
r 0! 1:05 0! 0:81
�s �0:140! �0:005 �0:135! �0:004

 

FIG. 3 (color online). Two-dimensional 68% and 95% C.L.
contours for ns and r, using parameter set C (consistent with
predictions of chaotic inflation), and marginalized over (9� 2)
parameters. The upper panel uses WMAP� SDSS data and the
lower the full data set. The two short black/solid lines with boxes
at the ends correspond to predictions of ��4 (top left) and m2�2

models of inflation, with 46 to 60 e-foldings (left to right).

 

FIG. 2 (color online). Degeneracies between r and f�, w for
the full data set and parameter set B, marginalized over (10� 2)
parameters.
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combination of WMAP and the SDSS main galaxy
samples (as opposed to SDSS LRG used in this work and
in [4]). For comparison [38] found r < 0:26 for an analysis
of WMAP and 2dF.

Using additional data from the Lyman-� forest, Seljak
et al. [24] derived an even stronger upper bound, r<0:22,
for the same model space. The reason for the improvement
is a degeneracy between r and �8, such that a higher value
of r leads to a smaller preferred value of �8. Since the
Lyman-� data used in [24] prefer a high value of �8, a
small r value is correspondingly favored. In fact, from a
parameter fitting point of view, a negative r would be even
better. All these conspire to give a much stronger upper
bound on r. However, as noted in Sec. II, this phenomenon
likely points to a systematic uncertainty in the Lyman-�
normalization, rather than a genuinely strong constraint on
r.

Finally, we stress again that the difference between the
allowed ns, r regions in Figs. 3 and 6 lies in a degeneracy
between r and the neutrino fraction f�. It should also be
noted that the addition of SNIa and BAO data has very little
impact on the vanilla� r model, because no strong pa-
rameter degeneracies are present in the WMAP� SDSS
data. With SNIa and BAO included, we find a 1D
95% C.L. bound of r < 0:30, instead of 0.31 for WMAP�
SDSS alone.

 

FIG. 4 (color online). Degeneracies between r and f�, w for
the full data set and parameter set C, marginalized over (9� 2)
parameters.

 

FIG. 6 (color online). Two-dimensional marginalized contours
for the vanilla� r parameter space, for both WMAP� SDSS
only (upper panel) and the full data set (lower panel).

 

FIG. 5 (color online). Two-dimensional marginalized con-
straints on ns and r for the parameter set C, but with the
restriction w � �1.
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C. The effect of nonlinearity

So far we have used exactly the same analysis technique
as the SDSS team when treating the LRG data. However,
beyond a wave number of approximately k� 0:06!
0:07h Mpc�1, nonlinear effects begin to dominate the
matter spectrum (see, for instance, Fig. 9 of [4]). To test
whether or not our results are subject to these effects, we
perform the same analysis as in Fig. 3, but retain data only
up to k� 0:06h Mpc�1 (band 11). We call this reduced
data set SDSSlin, and the result is shown in Fig. 7. Using
only the linear part of the power spectrum data has no
bearing on our conclusions. In fact, the 2D allowed region
in ns, r for parameter set C is only affected in the region
where ns > 1. The SDSS data probes ns more precisely
when all data points are included, and this in turn leads to a
truncation of the allowed region at high ns.

Table II summarizes the 1D marginalized constraints on
ns and r for parameter set C and its subsets.

D. Dark matter and dark energy

In order to derive robust bounds on the physical dark
matter and dark energy properties, all other plausible pa-
rameters should be allowed to vary. With respect to the
initial conditions this is almost impossible since the most

general inflationary models do not necessarily give
smooth, power law-like spectra. Instead, the primordial
power spectrum can have various features [39–45] (see
also [46–51] for more observationally oriented discus-
sions), which may bias estimates of parameters and their
errors. Here we present just a small step towards dark
matter and dark energy parameter estimation in the context
of more general models.

The physical dark matter density �ch2 is a crucial input
in dark matter model building. A prime example of this is
models with low energy SUSY where the dark matter
particle is usually either the neutralino or the gravitino.
Large regions in parameter space in these models have
been excluded by the fact that the predicted dark matter
density is too high or too low [52–62].

In the vanilla model �ch
2 is a very well constrained

quantity, with WMAP� SDSS giving a 68% C.L. limit of
�ch2 � 0:1050�0:0041

�0:0040 [4]. This corresponds to a relative
uncertainty of ���ch

2�=�ch
2 ’ 0:04. The SDSS collabo-

ration also provide bounds on �ch
2 in extended models in

which one additional parameter is added to the vanilla
parameter set [4]. In most cases the bound on �ch2 does
not change significantly. However, when either �k or w is
allowed to vary, ���ch

2�=�ch
2 increases to about 0.06

[4].
We have taken this investigation further by calculating

the bound on �ch2 for our various parameter and data sets.
In Fig. 8 we show the joint 2D marginalized constraints on
�ch

2 andw for three different cases using parameter sets B
and C. If only WMAP and SDSS data are used, a very
strong degeneracy between �ch2 and w weakens the
bounds on both parameters. This degeneracy is broken
when SNIa and BAO are included (as is also the case
with the degeneracy between f� and w), yielding strong
constraints on both parameters.

When spatial curvature is also allowed to vary, the bound
on �ch2 does change considerably. Figure 9 shows the 2D
marginalized contours for �ch

2, �k, and w, using parame-
ter set A and the full data set. Here we find
���ch2�=�ch2 ’ 0:1, so that 0:094<�ch2 < 0:136,
�0:022<�k < 0:026, and �1:19<w<�0:88 (1D at
95% C.L.). It is interesting to compare our more general
constraints on �k with that given by the SDSS collabora-
tion from a vanilla��k fit (� 0:015<�k < 0:023,

 

FIG. 7 (color online). Two-dimensional marginalized con-
straints on ns and r for parameter set C. Only the linear part
of the SDSS power spectrum has been used.

TABLE II. The 1D marginalized 95% C.L. allowed ranges for ns and r for parameter set C and
its subsets.

Parameter set Data set ns r

C WMAP� SDSS 0:927! 1:038 0! 0:51
C WMAP� SDSS� SNLS� BAO 0:932! 1:018 0! 0:41
C WMAP� SDSSlin� SNLS� BAO 0:931! 1:025 0! 0:47
C, w fixed WMAP� SDSS� SNLS� BAO 0:933! 1:019 0! 0:40
C, w, f� fixed WMAP� SDSS 0:931! 1:011 0! 0:31
C, w, f� fixed WMAP� SDSS� SNLS� BAO 0:931! 1:010 0! 0:30
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95% C.L.) [4]; our allowed range is slightly larger even in
the light of additional data from the distance measurements
of SNIa and BAO. We note also that, even though the
allowed range for �ch

2 increases considerably with the
inclusion of �k, the same is not true for the dark energy
equation of state parameter w. In Table III, we summarize
the 1D 95% constraints on �ch2 and w from Figs. 8 and 9.

Finally, let us stress that some caution should be applied
whenever the dark matter density is used as an input to
constrain models such as the minimal supersymmetric
standard model. Parameter regions that are excluded in
the simplest vanilla model can easily be allowed in more
general models, even without the introduction of more
exotic features such as isocurvature modes. If one is to
take one single number inferred from cosmological obser-
vations as an input to constrain particle physics models,
then the safest approach is to allow for the possibility that
cosmology is not described by the vanilla model, but by
something more general. From our calculations, we rec-
ommend using 0:094<�ch

2 < 0:136 (95% C.L.), but we
caution that even this may not be the most conservative
estimate.

IV. DISCUSSION

We have performed a detailed study of cosmological
parameter estimation in the context of extended models
that encompass a larger model parameter space than the
standard, flat �CDM cosmology. Using the 6-parameter
vanilla model as a basis, we include as additional parame-
ters only those that are physically motivated, such as a

 

FIG. 8 (color online). Two-dimensional marginalized 68% and
95% C.L. contours for �ch

2 and w, using various parameter and
data sets. Top: Parameter set B, WMAP� SDSS. Middle:
Parameter set B, the full data set. Bottom: Parameter set B
with �s � 0 (i.e., parameter set C), the full data set.

 

FIG. 9 (color online). Two-dimensional marginalized 68% and
95% C.L. contours for �ch

2, �k, and w, using parameter set A
and the full data set.
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nonzero neutrino mass. We consider a 11-parameter model
and subsets thereof, in contrast with the vanilla� 1 ap-
proach adopted in most previous analyses which treats one
extra parameter at a time.

In this more general framework, we find that in the
context of standard slow-roll inflation, constraints on the
dark matter and dark energy parameters can be substan-
tially altered. If only CMB and LSS data are used, the
larger parameter space introduces new, strong parameter
degeneracies, e.g., between the physical dark matter den-
sity �ch2 and the dark energy equation of state w. These
degeneracies can be broken to a large extent by adding type
Ia supernova and baryon acoustic oscillation data to the
analysis. However, even with this expanded data set, we
find that the bound on the physical dark matter density
�ch

2 relaxes by more than a factor of 2 compared to the
vanilla model constraint.

In the same spirit, we have studied how bounds on the
inflationary parameters ns, r, and �s are affected by the

introduction of extra parameters in the analysis. We find
that the simplest ��4 model of inflation is still compatible
with all present data at the 95% level, in contrast with other
recent analyses [1,4,30]. The source of this apparent dis-
crepancy is a strong degeneracy between the tensor-to-
scalar ratio r and the neutrino fraction f�, the latter of
which was fixed at zero in the analyses of [1,4,30].
Reversing the argument, if ��4 is the true model of in-
flation, then it strongly favors a sum of quasi-degenerate
neutrino masses between 0.3 and 0.5 eV, a range compat-
ible with present data from laboratory experiments. This
represents a clear example of how neutrino masses well
within laboratory limits can bias conclusions about other,
seemingly unrelated cosmological parameters.
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