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We propose a simple power-law parametrized quintessence model with time-varying equation of state
and obtain corresponding quintessence potential of this model. This model is compared with Supernova
Type Ia (SNIa) Gold sample data, size of baryonic acoustic peak from Sloan Digital Sky Survey (SDSS),
the position of the acoustic peak from the CMB observations and structure formation from the 2dFGRS
survey and put constrain on the parameters of model. The parameters from the best fit indicates that the
equation of state of this model at the present time is wy = — 1.401’8:22 at 1o confidence level. Finally we
calculate the age of universe in this model and compare it with the age of old cosmological objects.

DOI: 10.1103/PhysRevD.75.023512

L. INTRODUCTION

Observations of the apparent magnitude and redshift of
type la supernovas (SNIa) provide the main evidence for
the positive acceleration of the Universe [1,2]. A combined
analysis of SNIa data and the cosmic microwave back-
ground radiation (CMB) indicates that the dark energy
filled about 2/3 of the total energy of the Universe and
the remained part is dark matter with a few percent in the
form of baryonic matter [3—5].

The “‘cosmological constant” is a possible explaining
for the acceleration of the universe [6]. This geometrical
term at the right hand side of the Einstein field equation can
be regarded as a fluid with the equation of state of w = —1.
However, there are two problems with the cosmological
constant, namely, the fine-tuning and the cosmic coinci-
dence. In the framework of quantum field theory, the
vacuum expected value is 123 order of magnitude larger
that the observed value of 10747 GeV*. The absence of a
fundamental mechanism which sets the cosmological con-
stant zero or very small value is the cosmological constant
problem. The second problem as the cosmic coincidence,
states that why are the energy densities of dark energy and
dark matter nearly equal today? In another word, to fulfill
the present condition, cosmological constant has to be fine
tuned at very early universe.

One of the solutions to this problem is a model with
varying cosmological constant decays from the beginning
of the universe to a small value at the present time. A
nondissipative minimally coupled scalar field, so-called
quintessence model can play the role of time-varying
cosmological constant [7-9]. The ratio of energy density
of this field to the matter density increases by the expan-
sion of the universe and after a while the dark energy
becomes the dominant energy in the universe. One of the
features of the quintessence models is the variation of the
equation of state of dark energy during the expansion of the
universe. Various quintessence models as k-essence [10],
tachyonic matter [11], Phantom [12,13] and Chaplygin gas
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[14] provide various equation of states for the dark energy
[13,15-22].

There are also phenomenological models as the parame-
trization of the equation of state of dark energy in terms of
redshift [23—25]. For a dark energy with the equation of
state of py = wpy, using the continuity equation, the
density of dark energy changes with the scale factor as

px = pgg)a73(l+v‘v(a))’ (1)
where w(a) is the mean of the equation of state in the
logarithmic scale

a / /
_ [¢ w(a")dIn(a')
= = - 2
w(a) [7 din(d) (2)
The main aim of the phenomenological models is to re-
move the fine-tuning of dark energy by means that the ratio
of dark energy density to the matter (p,, ~ a ),

(0)
ﬂ — piXa—Nz(a) (3)
Pm p)

approach to unity at the early universe in contrast to a very
small value in the case of cosmological constant. Here we
propose a simple power-law model for the mean value of
equation of state as

w(a) = woa*, 4

This model is expressed with the two parameter of wy
(equation of state at the present time) and the exponent
of a. The radio of dark energy to the matter in terms of the
scale factor is plotted in Fig. 1, shows that the dark energy
and matter densities at the early universe are in the same
order. The equation of state of this model according to the
definition of w(a) obtain as

w(a) = woa®(1 + Ina®). (5)

One of the features of this model is that for the scale factors
in the range of a < e/, the sign of the equation of state
will change to the positive value. From Fig. 1 for o < 1.3
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FIG. 1 (color online). Ratio of dark energy to the matter
density as a function of scale factor. For 0 < & < 1.3 we have
2 times of dark energy dominance over the (cold dark) matter.
We chose wy = —1, Q,, = 0.3 and Q,, = 1.0.

we have 2 times of domination of dark energy during the
history of universe: once for the early universe and later at
the lower redshifts. However, since the sign of the equation
of state of dark energy at the early universe is positive, it
will not accelerate the universe and we will have only a late
time acceleration. One of the advantages of this model is
that the ratio of corresponding energy density of power-law
quintessence model to the matter energy density at the
early universe is not sensitive to the choice of parameters
of model. For the early universe as the scale factor goes to
zero, we find that lim,_Q,/Q,, = Q,/Q,,(a = 1) and
this means that the dark energy density does not need to be
fine tuned at t — 0.

Figure 2 shows the acceleration parameter (¢ = i/ H(z)a)
of the universe in this model in terms of the scale factor for
various values of a. Increasing the a-exponent causes the
universe to enter the acceleration phase at the later times
but speed-up to enter the de Sitter phase faster (see Fig. 2).

The organization of the paper is as follows: In Sec. II we
reconstruct a quintessence potential equivalent with the
power-law parametrized model. In Sec. III we study the
effect of this model on the age of Universe, comoving
distance, comoving volume element and the variation of
angular size by the redshift [26]. In Sec. IV we put con-
strain on the parameters of the model by the background
evolution, such comparing with the Gold sample of
Supernova Type Ia data [27], the position of the observed
acoustic angular scale on CMB and the baryonic oscilla-
tion length scale. We study the linear structure formation in
this model and compare the growth index with the obser-
vations from the 2-degree Field Galaxy Redshift Survey
(2dFGRS) data in Sec. V. We also compare the age of the
universe in this model with the age of old cosmological

PHYSICAL REVIEW D 75, 023512 (2007)

e <
S v A

o
[\S]

o-0.4

S o
=)

’l_‘ 1
[\®) —

I R R R A AN R EEE RN EEREE RN

ca b b b b b b b by

TR -
0.75 0.5 0.25

o

FIG. 2 (color online). Acceleration parameter (¢ = i/ H%a) in
the power-law model as a function of redshift for various values
of a-exponent. Increasing a causes that universe to enter the
acceleration phase at later times. We chose wy = —1, Q,, = 0.3
and QO = 1.0.

structures. Sec. VI contains summary and conclusion of
this work.

II. CORRESPONDING QUINTESSENCE
POTENTIAL OF POWER-LAW DARK ENERGY

One of the mechanism to generate a time-varying dark
energy is using a scalar field that can provide a positive
acceleration for the universe at the present time. The
essential condition for a given scalar field to play the role
of dark energy is that the equation of state at the lower
redshifts can provide the condition of w < —1/3. From the
Lagrangian of uniform scalar field with the potential term
of V(¢) and kinetic term of ¢?/2, the energy density and
pressure is as follows:

px = id* + V(¢) (6)

Py =1¢> — v(¢). 7

Using, the definition of equation of state of dark energy,
w = Pyx/py, the equation of state in terms of kinetic and
potential energies of scalar field can be written as
_T-=V
YTryv
The kinetic and potential energies of scalar field from the

Egs. (7) and (8) in terms of py and the equation of state of
dark energy obtain as

T =1px(1+w) 9

®)

V=1py(1—w). (10)

023512-2



POWER-LAW PARAMETRIZED QUINTESSENCE MODEL

For a positive T and V the equation of state is bounded to
the interval —1 <w < +1. For T > 0 and V < 0 we have
|w| > 1 and for the case of T < 0 the equation of state can
be w < —1 (i.e. kinetic term of Lagrangian has negative
sign). Here we reconstruct a scalar potential which can
generate the power-law quintessence model. The kinetic
term of the scalar potential from the Eq. (9) in terms of
redshift obtain as

d¢ _ , lox@U +w)'” an
dz ~  H@(+z2)

where the minus or plus sign are chosen if ¢ > 0 and ¢ <
0, respectively. Choosing the sign is arbitrary as it can be
changed by the field redefinition of ¢ — —¢. Here we
choose the negative sign for convenient. The Hubble pa-
rameter also is given by

H%(z; a, wy, Q,,) = H3[Q,,(1 + 2)?
+ (1= Q,)(1 + gl HiGawl] (12)

We substitute the Hubble parameter in Eq. (11) and for the
Hubble parameter at the present time we replace with
H2 = p0/ 3M,, where p¥ is the critical density at the
present time and M/, is the Planck mass. From the numeri-
cal integration of Eq. (11) we obtain the dependence of the
scalar field, d; = ¢/ M, in terms of the redshift (see
Fig. 3). On the other hand from the Eq. (10) we can obtain
the quintessence potential in terms of redshift

V(z) = 31 = w)F(2), (13)

where F(z) = px(2)/px(0) and V(z) = V(2)/V(0). We
eliminate numerically the redshift between the scalar field,
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FIG. 3 (color online). Dependence of scalar field ¢ = ¢(z) to
the redshift in power-law dark energy model. The curve results
from the numerical solution of Eq. (11).
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FIG. 4 (color online). Dependence of exponential potential to
the scale factor in power-law quintessence model.

(ﬁ = (i(z) and potential in Eq. (13) and obtain an explicit
relation between the potential and scalar field as shown in
Fig. 4. The shape of potential shows the scalar field starts to
role from <5 ~ 0 at high redshifts, and at the low redshifts
we have a slow role condition, similar to the inflationary
scenarios. The dependence of the kinetic term of the scalar
filed in terms of the scale factor for various equation of
state at the present time (wg) is shown in Fig. 5. For the
case of wy < —1, we will have negative kinetic term at the
present time.
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FIG. 5 (color online). Kinetic term in terms of scale factor for
various equetion of state at the present time. The equation of
state as a function of scale factor also represented in the smaller
figure. Here we chose (),, = 0.30 and a = 1.0.
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ITII. THE EFFECT OF VARIABLE DARK ENERGY
ON THE GEOMETRICAL PARAMETERS OF
UNIVERSE

The cosmological observations are mainly affected by
the background dynamics of universe. In this section we
study the effect of the power-law dark energy model on the
geometrical parameters of universe.

A. Comoving distance
The radial comoving distance is one of the basis pa-
rameters in cosmology. For an object with the redshift of z,
using the null geodesics in the FRW metric, the comoving
distance obtain as

Hz; &, wo, ) (14

Z d7
ﬁfmﬁmW@QM’
where H(z; a, wg, (1,,) is the Hubble parameter and we can
express it in terms H, and matter and dark energy density
of the universe at the present time.

By numerical integration of Eq. (14), the comoving
distance in terms of redshift for the case of wy = —1 and
Q,, = 0.3 for different values of « is shown in Fig. 6.
Increasing the & exponent, leads the dark energy dominant
at the higher redshifts and results a smaller comoving
distance. One of the main applications of the comoving
distance calculation is on analyzing of the luminosity
distance of SNIa data.

B. Angular size

Measurement of apparent angular size of an object
located at the cosmological distance is another important
parameter that can be affected by the amount and variation
of dark energy during the history of universe. Distance
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FIG. 6 (color online). Comoving distance, r(z; &, wy, ,,) (in
unit of ¢/H,) as a function of redshift for various values of a.
We chose wy = —1, Q,, = 0.3 and Q,, = 1.0.
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between two points in the flat universe with the comoving
size of D, located at the comoving distance of r from the
observed is seen with the angular separation of

D
0=—.
r

(15)

Here we assume that the distance between two points
increases with the expansion of the universe. The main
applications of Eq. (15) is on the measurement of the
apparent angular size of acoustic peak on CMB and bar-
yonic acoustic peak at the lower redshifts. By measuring
the angular size in different redshifts (so-called Alcock-
Paczynski test) it is possible to probe the variability of dark
energy [26]. The variation of apparent angular size A6 in
terms Az from Eq. (15) is given by

AZ _ H(Z’ a, Wy, Qm)r(z; a, Wy, Qm)

= 16
A6 0 (16)

Figure 7 shows Az/A# in terms of redshift, normalized
to the case with @ = 0 and wy = —1 (i.e. ACDM model).
The advantage of Alcock-Paczynski test is that it is inde-
pendent of standard candles and a standard ruler such as
the size of baryonic acoustic peak can be used to constrain
the dark energy model.

C. Comoving volume element

The comoving volume element is an other geometrical
parameter which is used in number-count tests such as
lensed quasars, galaxies, or clusters of galaxies. The co-
moving volume element in terms of comoving distance and
Hubble parameters is given by
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FIG. 7 (color online). Alcock-Paczynski test, compares
Az/A6 normalized to the case of ACDM model as a function
of redshift for four different as. We chose wy = —1, Q,, = 0.3
and QO = 1.0.
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_av
f(Z, a, wo, Qm) = m

= rz(Z; a, Wy, Qm)/H(Z, a, Wy, Qm)
(17)

According to Fig. 8, the comoving volume element be-
comes maximum around z = 2. For a larger o exponents,
the position of the peak in the comoving volume element
shifts to the lower redshifts.

D. Age of universe

The ‘“‘age crisis” is one the main reasons for the exis-
tence of dark energy. The problem is that the universe’s age
in the cold dark matter (CDM) universe is less than the age
of old stars in it. Studies on the old stars [28] suggests an
age of 1373 Gyr for the universe. Richer et al. [29] and
Hasen et al. [30] also proposed an age of 12.7 = 0.7 Gyr,
using the white dwarf cooling sequence method (for full
review of the cosmic age see [5]). The age of universe
integrating from the big bang up until now can be obtained
as

to( Q) fto dt ]m dz

a, Wy, 3L4,,) = = s

R 0 o (1+2H(z a wy, Q,,)
(18)

Figure 9 shows the dependence of Hyt, (Hubble parame-
ters times the age of universe) in terms of a-exponent for a
typical values of cosmological parameters (e.g. {1,, = 0.3
and wy = —1 in flat universe). Increasing « results a
shorter age for the universe.
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FIG. 8 (color online). The comoving volume element in terms
of redshift for various « exponents. Increasing « shifts the
position of maximum value of the volume element to the lower
redshifts. We chose wy = —1, ,, = 0.3 and Q,, = 1.0.
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FIG. 9 (color online). Hyt, (age of universe times the Hubble
constant at the present time) as a function of «. We choose the
cosmological parameters in flat universe as 2,, = 0.3 and w, =
—1.0 (Hyty does not depend on /). Increasing a-exponent makes
a shorter age for the universe.

IV. OBSERVATIONAL CONSTRAINT FROM THE
BACKGROUND EVOLUTION

In this section we compare the SNIa Gold sample data,
the location of baryonic acoustic peak from the SDSS and
the location of acoustic peak from the CMB observation to
constrain the parameters of the model.

A. Examining model by Supernova type Ia:
Gold sample

The Supernova Type la experiments provided the main
evidence of the existence of dark energy. Since 1995 two
teams of the High-Z Supernova Search and the Supernova
Cosmology Project have been discovered several type la
supernovas at the high redshifts [18,31]. Recently Riess
et al. (2004) announced the discovery of 16 type Ia super-
novas with the Hubble Space Telescope. This new sample
includes 6 of the 7 most distant (z > 1.25) type Ia super-
novas. They determined the luminosity distance of these
supernovas and with the previously reported algorithms,
obtained a uniform 157 Gold sample of type Ia supernovas
[27,32,33]. In this subsection we compare the predictions
of the dark energy model with the SNIa Gold sample. The
apparent magnitude of supernovas m includes the redden-
ing, K correction is related to the (dimensionless) lumi-
nosity distance, D;, of a an object at redshift z through

m= M + 5logD;(z; a, wy, 1,,), (19)

where for a spatially flat universe we have

z dg
: =Hy(l+2) | o
DL(Z, a, Wy, Qm) HO(I Z) /;) H(é” a, W, Qm)

(20)
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Also

M =M+5lo ( /;>+25 (21)

where M is the absolute magnitude. The distance modulus,
M, is defined as

nw=m-—-M

H,
= 5logD; (z; a, wy, Q) + 5 10g<lc{\/1[?c> + 25 (22)

To compare the theoretical results with the observational
data, we compute the distance modulus, as given by
Eq. (22). We compare the distance modulus in dark energy
model with that from the observation through the least
squares fitting

(233, Wo, @, h)]2
2 y

i 7i

X2 _ Z[Mobs(zi) - 23)

where o; is the observational uncertainty in the distance
modulus. To constrain the parameters of model, we use the
likelihood analysis. Marginalizing over the nuisance pa-
rameter of % in a flat universe (,; = 1), the best fit values
for the parameters of model obtain as wy = —2.60* 159,
Q,, = 04539 and a = 1.007}30 with x2, /Nyor =
1.13 at 1o level of confidence. Priors on the parameter
space in the likelihood analysis is given in Table 1. We keep
these priors in all the observational tests in the next section.
The corresponding value for the Hubble parameter at the
minimized y? is h = 0.66 and since we have already
marginalized over this parameter we do not assign an error
bar for it. Figure 10 shows the best fit of model to the Gold
sample of SNIa. We compare our result with that of Riess
et al. (2004), for &« = 0 and recover their results (see
Fig. 11).

For the age-consistency test we substitute the parameters
of model from the SNIa fitting in Eq. (18) and obtain the
age of universe about 13.19 Gry, which is in good agree-
ment with the age of old stars.

B. Combined analysis: SNIa + CMB + SDSS

In this section we combine SNIa Gold sample, CMB
data from the WMAP with recently observed baryonic

TABLE I. Priors on the parameter space, used in the likelihood
analysis.

Parameter Prior

Qi =9, +Q, 1.00 Fixed

Q,, 0.00 — 1.00 Top hat
Q,h? 0.020 = 0.005 Top hat (BBN)[34]
h — Free [35,36]

wo —10.00 — 0.00 Top hat

a — Free
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FIG. 10 (color online). Fitting the distance modulus of the
SNIa Gold sample in terms of redshift with the power-law
dark energy model. Solid-line shows the best fit with the corre-
sponding  parameters of & =0.66, w,= —2.607180
0,,0.45709 and @ = 1.00;}33 in 1o level of confidence with
Xmin/Naog = 1.13.

peak from the SDSS to constrain the parameters of
power-law dark energy model [37].

The angular size of the acoustic peak is the most relevant
parameter in the spectrum of CMB which can be used to
determine the geometry and the matter content of the
universe. The acoustic peak corresponds to the Jeans length
of photon-baryon structures at the last scattering surface

OIIIIIIIIIIIIIIIIIIIIII

FIG. 11 (color online). Joint confidence intervals for (,, and
wy for the case of @ = 0 with 1o (solid line), 2o (dashed line)
and 3o (long dashed line) confidence level. This result is in good
agreement with that of Riess er al. (2004).
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some ~379 Kyr after the big bang [5]. The apparent
angular size of acoustic peak in a flat universe can be
obtained by dividing the comoving size of sound horizon
at the decoupling epoch r,(z4.) to the comoving distance
of observer to the last scattering surface r(zqe.)

s (Zdec)

0, = .
4 r(zdec)

(24)
The size of sound horizon at numerator of Eq. (24) corre-
sponds to the distance that perturbation in pressure can
travel from the beginning of universe up to the last scat-
tering surface and is given by

” v@ o

roGasci @00 Q) = | we 0,0
> & W0 2&m

Zdec

where v,(z)"2 =3 +9/4 X p,(2)/p,(2) is the sound ve-
locity in the unit of speed of light from the big bang up to
the last scattering surface, p,(z) and p,(z) are the energy
density of baryonic and radiation, respectively [20,38].

Changing the parameters of the dark energy can change
the size of apparent acoustic peak and subsequently the
position of I, = 7/6, in the power spectrum of tempera-
ture fluctuations on CMB. Here we plot the dependence of
l4 on @ and w, for a typical values of cosmological
parameters (see Fig. 12). In order to compare the observed
angular size of acoustic peak with the dark energy model,
we use the shift parameter R as [39]

R=.0Q, f we_ dz (26)
0

E(z; a, wo, )

where E(z; o, wg, ,,) = H(z; a, wo, Q,,,)/Hy. The shift
parameter is proportional to the size of acoustic peak to

ARRRERERRY RRERE RERRSN RRRRE AR Y RRARE RARRS RRRRN REARRS RRRRN LARR
ask -
4_ -

3 [ o ]
35F .
3F 4

i N \ ]

RN SRENE ERREE SNENE SRR FEREE SRREE ANENE FSRENE FREEL FREEE AV

-7 65 -6 -55 -5 45 -4 35 -3 -25 -2 -15 -1

W

FIG. 12 (color online). Dependence of acoustic angular scale
14 on a and w for the three cases of I, = 290 (solid line), 300
(dashed line) and 320 (dashed-dotted line). We chose ,, = 0.3
and QO = 1.0.

PHYSICAL REVIEW D 75, 023512 (2007)

that of flat pure-CDM, A = 0 model, (R « 6,/6%2). The
observational result of CMB experiments correspond a
shift parameter of R = 1.716 £ 0.062 (given by WMAP,
CBI, ACBAR) [5,40]. One of the advantages of using the
parameter R is that it is independent of Hubble constant.

Recently detected size of baryonic peak in the SDSS is
the third observational data for our analysis. The correla-
tion function of 46748 Luminous Red Galaxies (LRG)
from the SDSS shows a well detected baryonic peak
around 100 Mpch™!. This peak has an excellent match
to the predicted shape and the location of the imprint of the
recombination-epoch acoustic oscillation on the low-
redshift clustering matter [41]. For a flat universe we can
construct the parameter A as follows:

A =/Q,,E(z;; a, wg, Qm)m[l

4|

2 dz 2/3
X _— . 27
]o E(z; a, wy, Qm)} @D

We use the robust constraint on the dark energy model
using the value of A = 0.469 = 0.017 from the LRG ob-
servation at z; = 0.35 [41].

In what follows we perform a combined analysis of
SNIa, CMB and SDSS to constrain the parameters of
dark energy model by minimizing the combined y?> =
Xonta T X2up T Xipss- The best values of the model pa-
rameters from the fitting with the corresponding error bars
from the likelihood function marginalizing over the
Hubble parameter in the multidimensional parameter space
results:  Q,, = 032759, @ =1.60728 and wy=
—2.0019% at 1o confidence level with x2. /Nyor =
1.13. The Hubble parameter corresponds to the minimum
value of y? is h = 0.66. Here we obtain an age of
12.82 Gyr for the universe. Table II indicates the best fit
values for the cosmological parameters with one and two o
level of confidence.

TABLE II. The best values for the parameters of power-law
dark energy model with the corresponding age for the universe
from the fitting with the SNIa, SNIa + CMB + SDSS and
SNIa + CMB + SDSS + LSS experiments at one and two o
confidence level.

Observation Q,, a wy age (Gyr)
0.457092 1.001139 —2.607180

SNIa 13.19
0.4570)3 1001300 —2.60713)

SNIa+ CMB 0327003 160080 —2007088 1282
2 <=—0.04 2 —=0.90 *YY—-0.40 .

+ SDSS
0.3279% 1.607140 —2.00%139

SNIa + CMB 0.317307 0.80%070 —1.40703 1372

+ SDSS + LSS

0.317004 .80+ 160 —1.407060
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V. CONSTRAINTS BY LARGE SCALE STRUCTURE

So far we have only considered observations related to
the background evolution. In this section using the linear
approximation of structure formation we obtain the growth
index of structures and compare it with result of observa-
tions by the 2-degree Field Galaxy Redshift Survey
(2dFGRS).

The continuity and Poisson equations for the density
contrast 8 = 8p/p in the cosmic fluid provides the evolu-
tion of density contrast in the linear approximation (i.e.
0 <K 1)[42,43] as

§5+2%6 - (v2V2+47Gp)s =0,  (28)
a

where the dot denotes the derivative with respect to time.
The effect of dark energy in the evolution of the structures
in this equation enters through its influence on the expan-
sion rate. Here we assume that dark energy distributed
uniformly as the background fluid and does not contribute
in clustering of matter. The validity of the linear Newtonian
approach is restricted to perturbations on the subhorizon
scales but large enough where structure formation is still in
the linear regime [42,43]. For the perturbations larger than
the Jeans length, A, = 7w'/2v,/\/Gp, Eq. (28) for CDM
reduces to

5§+2%6 —4nGps =o. (29)
a

The equation for the evolution of density contrast can be
rewritten in terms of scale factor as
2 déra 2H 3H}
o] 3

i =20.0,6=0,  (30)
a

2a%a’
where dot denotes the time derivative. Numerical solution
of Eq. (30) in the FRW universe with the power-law dark
energy model is shown in Fig. 13. In the CDM model, the
density contrast 6 grows linearly with the scale factor,
while we have a deviation from the linearity as soon as
dark energy begins to dominate. As larger « is, universe
enters the dark energy domination earlier (see Fig. 1)
which results in a lesser growth of the density contrast.

In the linear perturbation theory, the peculiar velocity
field v is determined by the density contrast [42,44] as

a’>  a

X —
v =t [sw =y o
4 Ix —yl
where the growth index f is defined by
dIné
= , 32
f dlna (32)

and it is proportional to the ratio of the second term of
Eq. (29) (friction) by the third (Poisson) term.

We use the evolution of the density contrast o to com-
pute the growth index of structure f, which is an important
quantity for the interpretation of peculiar velocities of
galaxies, as discussed in [44,45] for the Newtonian and
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FIG. 13 (color online). Evolution of density contrast as a
function of scale factor for different values of a exponent in
the flat universe with ,, = 0.3 and w, = —1.0.

the relativistic regime of structure formation. Replacing
the density contrast with the growth index in Eq. (30)
results in the evolution of growth index as

df _3Hi o o [, Hi[2 O,
dlna  2d’a =1 f[Z 2 [H% i
+ Q@)+ 3w(a))ﬂ. (33)

Figure 14 shows the numerical solution of (33) in terms of
redshift.

The observation of 220000 galaxies with the 2dFGRS
experiment provides the numerical value of growth index
[41]. By measurements of two-point correlation function,
the 2dFGRS team reported the redshift distortion parame-

3_ T T I i
25F .
- - o=0.0 1
- ———— =05 ]
2F =10
w15} .
- ST T T T T T T T T T T T T

L
0.5_— ]
[ ] ] ] ]
00 6 12

1+z

FIG. 14 (color online). Growth index versus redshift for differ-
ent values of a. Here we took a typical values for the cosmo-
logical parameters as ,, = 0.3 and Q,,, = 1.0 and wy = —1.0.
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ter of B = f/b = 0.49 = 0.09 at z = 0.15, where b is the
bias parameter, describes the difference in the distribution
of galaxies and mass. Verde et al. (2003) used the bispec-
trum of 2dFGRS galaxies [46,47] and obtained b, .4, =

Ju—

T T
SNIa
— ——— SNIa+ CMB + SDSS
- — — — SNIa+CMB
+ SDSS+LSS
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FIG. 15 (color online). Marginalized likelihood functions of
three parameters of dark energy model (£),,, a and wg). The
solid line corresponds to the likelihood function of fitting the
model with SNIa data, the long dashed line with the joint SNIa +
CMB + SDSS data and dashed line corresponds to SNIa +
CMB + SDSS + LSS. The intersections of the curves with the
horizontal solid and dashed lines give the bounds with 1o and
20 level of confidence, respectively.
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FIG. 16 (color online). Joint confidence intervals of (),, and
wy, fitting with SNIa (solid line), SNIa + CMB + SDSS (dashed
line) and SNIa + CMB + SDSS + LSS (long dashed line) with
1o level of confidence.

1.04 = 0.11 which resulted f = 0.51 £ 0.10. Now we fit
the growth index at the present time derived from the
Eq. (33) with the observational value. This fitting gives a
loss constraint to the parameters of the model, so in order
to have a better confinement of the parameters, we com-
bine this fitting with those of SNIa + CMB + SDSS which
has been discussed in the last section. We perform the least
square fitting by minimizing x> = X3\ + Xemp T
X3pss T Xiss- The best fit values with the corresponding
error bars for the model parameters are: 0, = 0.317:92,
a = 0.80737% and wy = —1.40*5%2 at 1o confidence
level with anin/Nd_O_f = 1.15. The error bars have been
obtain through the likelihood functions (L e X/ 2) mar-
ginalizing over the nuisance parameter of h [48]. The
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FIG. 17 (color online). Joint confidence intervals of « and wy,
fitting with the SNIa (solid line), SNIa + CMB + SDSS (dashed
line) and SNIa + CMB + SDSS + LSS (long dashed line) with
1o level of confidence.
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FIG. 18 (color online). Joint confidence intervals of (),, and «,
fitting with the SNIa (solid line), SNIa + CMB + SDSS (dashed
line) and SNIa + CMB + SDSS + LSS (long dashed line) with
1o level of confidence.

Hubble parameter corresponds to the minimum value of x>
is h = 0.65. The likelihood functions for the three cases of
(i) fitting model with Supernova data, (ii) combined analy-
sis with the three experiments of SNIa + CMB + SDSS
and (iii) combining all four experiments of SNIla +
CMB + SDSS + LSS are shown in Fig. 15. The joint
confidence contours in the (), wy), (o, Q,,) and (w,, a)
planes also are shown in Figs. 16—18.

Finally we do the consistency test, comparing the age of
universe derived from this model with the age of old stars
and Old High Redshift Galaxies (OHRG) in various red-
shifts. Table II shows that the age of universe from the
combined analysis of SNIa + CMB + SDSS + LSS is
13.72 Gyr which is in agreement with the age of old stars
[28]. Here we take three OHRG for comparison with the
power-law dark energy model, namely, the LBDS
53W091, a 3.5-Gyr old radio galaxy at z = 1.55 [49], the
LBDS 53W069 a 4.0-Gyr old radio galaxy at z = 1.43 [50]
and a quasar, APM 08279 + 5255 at z = 3.91 with an age
of t = 2.1*57 Gyr [51]. The later one has once again led to
the “‘age crisis”’. An interesting point about this quasar is
that it cannot be accommodated in the ACDM model [52].
To quantify the age-consistency test we introduce the ex-
pression T as:

Hzy a, wp, Q) 125, wy, Q,,)H,

, (34)
tobs tobsHO

where #(z) is the age of universe from the Eq. (18) and 7,
is an estimation for the age of old cosmological object. 7 >
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TABLE III. The value of 7 for three high redshift objects,
using the parameters of the model derived from the fitting
with the observations.

Observation LBDS 53W069LBDS 53W091 APM
08279 + 5255
z=143 z=1.55 z =391

SNIa 0.92 0.97 0.59
SNIa + CMB 0.83 0.88 0.50

+ SDSS
SNIa + CMB 1.01 1.07 0.65

+ SDSS + LSS

1 provides a compatible age for the universe. Table III
shows the value of 7 for three mentioned OHRG. We see
that the parameters of dark energy model from the SNIa
and CMB observations do not provide a compatible age for
the universe, however combining with the LSS data results
a longer age for the universe. Once again in the power-law
dark energy model, APM 08279 + 5255 at z = 3.91 has
longer age than the universe.

VI. CONCLUSION

We proposed a power-law parametrized dark energy
model with the mean-equation of state of w(z) = wya®.
An equivalent quintessence potential of scalar field was
calculated for this model. The effect of this model on the
age of universe, radial comoving distance, comoving vol-
ume element and the variation of apparent size of objects
with the redshift (Alcock-Paczynski test) have been
studied. In order to constrain the parameters of model we
fit our model with the Gold sample SNIa data, CMB shift
parameter, location of baryonic acoustic peak observed by
SDSS and large scale structure data by 2dFGRS. The best
parameters from the fitting obtained as: & = 0.65, (,, =
0.3139%2, o = 0.80757% and wy = —1.4075¢2 at 1o con-
fidence level with x2. /Ny, ¢ = 1.15, theoretical attempts
for w < —1 can be found in [53-58].

We also did the age test, comparing the age of old stars
and old high redshift galaxies with the age derived from the
power-law dark energy model. From the best fit parameters
of the model we obtained an age of 13.72 Gyr for the
universe which is in agreement with the age of old stars.
We also chose two high redshift radio galaxies at z = 1.55
and z = 1.43 with a quasar at z = 3.91. The two first
objects were consistent with the age of universe by means
that there were younger than the age of universe while the
later one was older than the age of universe.
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