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We have previously shown that spherically symmetric, inhomogeneous universe models can explain
both the supernova data and the location of the first peak in the spectrum of the cosmic microwave
background (CMB) without resorting to dark energy. In this work, we investigate whether it is possible to
get an even better fit to the supernova data by allowing the observer to be positioned away from the origin
in the spherically symmetric coordinate system. In such a scenario, the observer sees an anisotropic
relation between redshifts and the luminosity distances of supernovae. The level of anisotropy allowed by
the data will then constrain how far away from the origin the observer can be located, and possibly even
allow for a better fit. Our analysis shows that the fit is indeed improved, but not by a significant amount.
Furthermore, we find that the supernova data do not place a rigorous constraint on how far off-center the
observer can be located.
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I. INTRODUCTION

When analyzed within the framework of homogeneous
FRW models, observations indicate that the universe is in a
state of accelerated expansion. This is interpreted as proof
that the energy content of the universe is presently domi-
nated by some kind of dark energy with negative pressure
[1–8]. However, for inhomogeneous universe models this
needs not be the case. When one allows for inhomogene-
ities, the picture is complicated considerably by the fact
that the emitted photons are affected not just by the expan-
sion of the universe, but also by any inhomogeneities
encountered in their path towards the observer. The first
comprehensive treatment of how inhomogeneities affect
observable quantities was given by Kristian and Sachs in
[9]. This has later been elaborated on by Ellis and others in
[10–12].

Since a general inhomogeneous solution to Einstein’s
field equations does not exist, one needs to limit oneself to
simpler models for which solutions exist when comparing
with actual observations. One popular model is the
Lemaı̂tre-Tolman-Bondi (LTB) model [13–15], which is
a spherically symmetric solution containing dust only.
Observable relations within this model have been studied
previously by several authors [16–20] in different con-
texts. More recently, the interest in such models, and in
inhomogeneous models in general, has grown increasingly
as an alternative way to explain the apparent acceleration
without introducing dark energy. A nonexhaustive list of
references investigating this possibility is [21–40].

In [27] we showed that an LTB model can easily explain
the supernova Hubble diagram. Because of lack of a com-
plete understanding of how perturbations behave in such

inhomogeneous models, it is at present time not possible to
calculate a theoretical CMB power spectrum to compare
with that measured by the WMAP satellite [41]. However,
one can still extract some information from the CMB, in
the form of the location of the first peak in the power
spectrum, that can be used to constrain the model. In
[27], it is shown that specific spherically symmetric models
can account for both the supernova Hubble diagram and
the location of the first CMB peak.

In such a scenario, the ‘‘accelerated expansion’’ is not a
real effect, but is explained by the fact that the local
expansion rate no longer is the same everywhere in space
at a given time. Since the observations probe the expansion
rate along the past light-cone, which at different redshifts
corresponds to different points in space, the observed in-
creasing expansion rate can just as well be explained by an
appropriate spatially varying expansion rate. Qualitatively,
the expansion rate would have to increase radially towards
the observer. A specific model was found in Ref. [27]
where there is a very good agreement with both SNIa
data and the location of the first CMB peak. In this model,
the observer was located at the center of a large under-
density in an otherwise flat and matter dominated universe.
Although the model is able to explain these data without
the introduction of dark energy, it does so at the expense of
the Copernican Principle, since the observer is located at a
unique place in space. A more philosophically appealing
scenario would be one where the observer does not neces-
sarily have to be positioned exactly at the center of the
underdensity.

For an off-center observer in our model, the universe
appears to be anisotropic. In an earlier work [28], we
showed that this anisotropy induces additional anisotropies
in the temperature map on top of the intrinsic anisotropies
from the CMB. The farther away from the origin the
observer is, the greater these induced anisotropies are.
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Thus, the observed CMB imposes a constraint on how far
away from the origin the observer can be located. In [28]
we found the principal constraint to arise from the dipole,
with a largest possible displacement from the origin of
around 15 Mpc. Similarly, the luminosity distance-redshift
relationship will also become anisotropic. This might pro-
vide further constrains on the position of the observer
inside the underdensity from an independent data set,
namely, the supernova observations.

In addition, it is in principle an interesting question
whether the supernova data lend support to the idea of
anisotropic surroundings, since the CMB indicates that the
universe is extremely isotropic on large scales. This has
previously been studied by Kolatt and Lahav [42] and
Bochner [43]. Although their approaches were somewhat
different, they both looked in essence for evidence of a lack
of uniformity in the Hubble flow from a statistical point of
view. They both concluded that there is no statistically
significant evidence for discarding the hypothesis of a
homogeneous universe. However, the advantage of our
approach is that we can compare the data with a specific
model, with actual predictions for the luminosity distance-
redshift relation in different directions, rather than just
treating angular variations in the supernova data with
statistical tools. Therefore, our method could yield inter-
esting results despite the low number of supernova obser-
vations available.

The structure of this paper is as follows. In Sec. II we
present the solution to the field equations for the model in
[27] and look specifically at how the luminosity distance-
redshift relation is altered for an off-center observer. In
Sec. III we calculate the theoretical luminosity distance-
redshift relation and compare it with that inferred from the
supernovae in the Riess et al. Gold Set. Finally, in Sec. IV
we summarize our work and discuss the implications of our
results.

II. THE LUMINOSITY DISTANCE IN AN
INHOMOGENEOUS UNIVERSE

The universe model we will focus on in this work is that
described in [27]. This is the spherically symmetric LTB
model, for which the line element that can be written as

 ds2 � �dt2 �
�R0�r; t��2

1� ��r�
dr2 � R2�r; t��d�2 � sin2�d�2�;

(1)

where R�r; t� is a position-dependent scale factor, and ��r�
is related to the spatial curvature. For an extensive review
of the properties of this model the interested reader is
referred to Ref. [44].

One of the advantages of working in this spacetime is
that the Einstein equation can be solved analytically. The
exact form of the solution depends on the sign of ��r�. For
a model with a positive ��r�, corresponding to negative
local spatial curvature, the solution can be written para-

metrically in terms of a conformal time �
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where ��r� is related to the density of matter. We must
assume ��r�> 0 for the matter density to remain positive
everywhere. Furthermore, we have defined R0 � R�r; 0�,
interpreting t � 0 as the time of last scattering, when
photons decoupled from baryons.

The scenario considered in [27] was one where the
observer is at the center of an underdense bubble. The
angular diameter distance is then isotropic and is given by

 dA�z� � R�r̂�: (4)

where r̂�z� describes the past light-cone of the observer at
t � t0. As indicated in the introduction, if the observer is
placed at an off-center location, the distance measures will
become anisotropic. The explicit effect this has on the
expression for the angular diameter distance has been
analyzed previously, first by Ellis et al. [12], and also later
by Humphreys et al. [45] and Biswas et al. [36]. We use the
expression presented in [45], which reads

 d4
Asin2� � ~g��~g�� � ~g2

��: (5)

where ~g�	 is the metric in the observer frame, and � and �
correspond to the polar and azimuth angles in this frame.

In our case, such a frame can be constructed using the
light-cones specified by �t; t0; �; ��, where t is cosmic time,
and t0 is the time when the photons hit the observer at
angles � and �. In order to simplify the calculations, but
still keep the results completely general, we choose the
z-axis in the direction of the off-center observer. The
spatial coordinates of the observer in the reference frame
defined by the metric Eq. (1) are then r � robs and � � 0,
with� being degenerate. Transforming the coordinates for
the photon trajectories back to this frame from the observer
frame, we get

 t � t (6)

 r � r̂�t; t0; �� (7)

 � � �̂�t; t0; �� (8)

 � � � (9)

where the r̂ and �̂ functions are solutions to the geodesic
equation as a function of t and the initial conditions r0, t0
and �. Note that due to the axial symmetry about the
z-axis, these functions do not depend on the azimuth angle
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�. A more thorough discussion of these solutions and their
implications can be found in Ref. [28].

The metric ~g�	 in the observers local coordinate system
is given by a simple coordinate transformation, i.e.

 ~g �	 � g
�
@x


@~x�
@x�

@~x	
; (10)

which yields the following components

 ~g �� � grr

�
@r̂
@�

�
2
� g��

�
@�̂
@�

�
2
; (11)

 ~g �� � g�� � R2sin2�; (12)

 ~g �� � 0: (13)

Substituting these into Eq. (5), we arrive at the following
expression for the angular diameter distance

 d4
A �

R4sin2�

sin2�

�
�R0�2

R2�1� ��

�
@r̂
@�

�
2
�

�
@�̂
@�

�
2
�
: (14)

As a simple consistency check, we should recover the usual
expression in Eq. (4) in the limit where the observer is at
the origin of the coordinate system. In this limit, the two
angles � and � coincide and the radial coordinate becomes
independent of �. This means that the two partial deriva-
tives in Eq. (14) become 0 and 1, respectively, and we end
up with Eq. (4) as expected.

The distance measure probed by the supernova data is
not the angular diameter distance, but rather the luminosity
distance dL. However, there exists a general relation [10]
which allows us to relate these two distance measures:

 dL � �1� z�2dA: (15)

Roughly, the two factors of (1� z) take into account the
reduction of energy per photon due to redshifting and the
reduced arrival rate of incoming photons due to time
dilation.

Replicating the approach in [28], we solve the geodesic
equations which determine the path of infalling photons
relative to an off-center observer. Next, we use Eqs. (14)
and (15) to obtain a theoretical prediction for the luminos-
ity distance-redshift relation in this scenario. However,
what we measure when we observe the supernovae is not
the luminosity distance directly, but rather the apparent
magnitude. These can be related to each other through the
expression

 � � 5log10
dL

Mpc
� 25; (16)

where � is the distance modulus, which is simply the
apparent magnitude minus an absolute magnitude [46].

III. RESULTS

In the scenario which we considered in [27], the func-
tions ��r� and ��r� were parametrized as

 ��r� � H2
0r
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2
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2
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��
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This corresponds to a smooth interpolation between two
homogeneous regions where the inner region has a lower
matter density than the outer region, thus describing a
spherical bubble in an otherwise homogeneous universe.
The parameter H0 � 100hout km s�1 Mpc�1 is the Hubble
constant of the outer homogeneous region today, while �0

and �0 are the relative densities of matter and curvature in
this region. Furthermore, �� and �� determine the dif-
ference in matter density and curvature between the re-
gions, while r0 and �r specify the position and width of the
transition. In the original analysis we restricted the parame-
ter space by imposing the constraint �� � ��� and
choosing �0 � 1 and �0 � 0. We will keep these con-
straints in the present analysis too.

Assuming that the observer was positioned at the center
of the bubble, we then found a model that gave a good
agreement with the Hubble diagram of observed SNIa and
the position of the first CMB peak. The density profile for
this model in plotted in Fig. 1. For a more detailed dis-
cussion of the properties of this model the interested reader
is referred to Ref. [27].

As explained in the preceding sections, we will inves-
tigate what effect moving the observer away from the
center of the inhomogeneity has upon the luminosity
distance-redshift relation. To get an idea of how much
the luminosity distance then varies across the sky, we
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FIG. 1 (color online). The relative matter density today as a
function of physical distance from the center.
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have plotted in Fig. 2 the distance modulus as seen by an
observer located at a physical distance Dobs � 200 Mpc
from the center. The blue line in the plot represents the
average distance modulus, while the shaded area shows the
maximal variation across the sky. Also plotted in the same
figure are binned data points from the Riess et al. Gold
Sample (RGS) of supernovae [5] and the best-fit �CDM
model. It is evident that our model allow for relatively large
variations in the distance modulus for redshifts z < 1 for
off-center observers. One can therefore get a potentially
even better fit to the data by placing the observer away
from the origin, and taking into account the directions in
which the various supernovae have been observed.

The coordinates of supernovae in the RGS can be found
at the CBAT website [47], which contains comprehensive
information about all observed supernovae. The angular
coordinates of the supernovae in the RGS are plotted in
Fig. 3. The marker and color coding in the figure is as
follows. Red circles correspond to supernovae with z <
0:5, blue pluses to 0:5< z< 1:0, green stars to 1:0< z <
1:5 and black crosses to z > 1:5. As we can see, the super-
novae appear to be distributed relatively evenly across the
sky except for in the proximity of the galactic plane.

By moving the observer away from the center of the
inhomogeneity, we add three additional degrees of freedom
to the original model. These are the radial displacement
from the center and the two angles that specify the direc-
tion of the displacement. We can treat these extra degrees
of freedom in two different ways according to how we deal
with the angles. First, we can average over all possible
orientations of the underdensity. Basically, what we do
then is throw away all information about angular depen-

dence. If we did not have any information about the
direction in which the supernovae occurred, this would
be the appropriate way to calculate the fit. The resulting
�2 value as a function of the observer’s position is plotted
as red circles in Fig. 4. It is clear that the fit becomes
increasingly worse the farther away from the center the
observer is placed. Thus, if one takes into account only the
redshift and neglect information about the exact direct
direction on the sky of the supernovae, the data disfavor
an off-center observer.

The other approach is to make use of the explicit angular
dependence of the observed supernovae. Since this infor-
mation is actually available to us, this would seem to be the
more fitting way to do the analysis. The approach then is to
minimize the �2 with respect to the two angles for each
radius. These minimal �2 values are plotted as blue crosses
in Fig. 4. It is evident from this plot that one can indeed
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FIG. 2 (color online). The average distance modulus for an
observer located 200 Mpc from the center in our model. The
shaded area represents the maximal deviation from the average
across the sky. The data points and error bars are binned data
from the Riess et al. Gold Set, while the red dashed line is the
corresponding best-fit �CDM model.
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FIG. 3 (color online). The directions on the sky for 157 super-
novae of the Riess et al. Gold Sample. Supernovae with z < 0:5
are marked with red circles, while supernovae with 0:5< z <
1:0 are marked with blue pluses, 1:0< z < 1:5 with green stars
and z > 1:5 with black crosses.
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FIG. 4 (color online). The �2 fit to observed supernovae as a
function of the observer’s position. The red circles show the
angle-averaged values, while the blue crosses show the angle-
optimized values.
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reduce the residuals by moving the observer away from the
center, if one also takes into account the specific directions
in the sky of the supernovae.

The minimized �2 value is smallest for an observer
located at a physical distance of around Dobs � 94 Mpc
from the center of the inhomogeneity. In Fig. 5, we have
plotted the �2 seen by an observer at this distance as a
function of the direction towards the center of inhomoge-
neity. The �2 reaches a minimum at �2

min � 174:9, with a
direction towards the center of the inhomogeneity of
�l; b� � �271	; 21	�.

As we discuss in [28], such an off-center placement of
the observer will necessarily induce an additional dipole in
the temperature of the cosmic microwave background.
CMB photons arriving at the observer’s from the direction
of the center of the inhomogeneity will have traveled
through a larger region with a high Hubble parameter
compared to those from the opposite direction. They will
therefore be more redshifted, and hence, appear to have
lower temperatures. The COBE satellite [48] shows that
the measured dipole in the background temperature points
in the direction �l; b� � �264	; 48	�. This means that the
temperature is perceived to be higher in this direction
compared to the opposite direction. Thus it appears that
the measured and the induced dipole for the best-fit off-
center observer point in almost the opposite directions.
However, this does not necessarily represent a problem.
In the analysis so far we have disregarded any peculiar
motion of the observer. Such motion would give rise to an
additional contribution to the CMB dipole. It is the sum of
these together that should point towards the direction
measured by COBE. Observations give an estimate of a
temperature dipole of the order 
10�3 from peculiar mo-
tion [49–51]. As long as the contribution from the off-
center placement is smaller than this, the peculiar motion
will dominate the dipole, in which case we would not
expect a correlation between the direction of the measured

dipole and the direction towards the center of the
inhomogeneity.

IV. DISCUSSION

In this work we investigated the inhomogeneous but
spherically symmetric model which we have explored
previously in [27,28]. In this model the observer is located
inside an underdensity in an otherwise homogeneous and
flat universe, described by the Lemaı̂tre-Tolman-Bondi
spacetime. In [27] we showed that it is possible for such
models to explain both the supernova data and the position
of the first peak in the CMB power spectrum. The aim of
the current work was to learn whether it is possible to
improve the fit to the supernova data by moving the ob-
server away from the center of the inhomogeneity, and also
how much these data constrain such a movement. In addi-
tion to possibly providing a better fit to the data, allowing
the observer to be located at a different position than the
dead center of the inhomogeneity is also more appealing
from a purely philosophical perspective. After all, if we
imagine placing several imaginary observer randomly in-
side the underdensity, the chance of any of them ending up
at the exact center vanishes. On the other hand, there is a
finite probability that an observer will end up inside any
region with a finite radius.

The universe no longer appears to be isotropic for an off-
center observer. This induced anisotropy is an effect that
should be detectable in the observations. Specifically for
the supernova observations, this manifests itself in the form
of an anisotropic relation between the luminosity distance
and the redshift. For such an observer, supernovae at the
same redshifts but at different direction in the sky, do not
necessarily shine with the same brightness.

We placed the observer at different radii from the center
of the underdensity, and for each radius chose the direction
from the observer to the center to be that which optimized
the fit. In this way we were able to improve the fit com-
pared to the isotropic observer. The fit was found to be
optimal for a radial displacement of Dobs � 94 Mpc in the
direction �l; b� � �271	; 21	� in galactic coordinates.
However, the improvement turns out to be only slight.
The minimal �2 for an off-center observer is 174.9 com-
pared to 176.2 for an observer at the center. Although the
�2 has been reduced, the fit can not be said to have
improved, considering that the off-center placement adds
additional degrees of freedom. In fact, the �2 per degrees
of freedom is higher for all off-center observers compared
to observers at the center.

Looking at Fig. 4, we see that the �2 is lower for off-
center observers for radial distances out to about D �
225 Mpc. From this we can conclude that anisotropies in
the supernova data do not constrain very well how far away
from the center the observer can be located. In [28] we
looked at such constraints arising from the dipole in the
CMB temperature. We found that the observer had to
remain within a radius of around 15 Mpc for the dipole

 

FIG. 5 (color online). The �2 residual for supernovae seen by
an observer at a radial distance of Dobs � 94 Mpc. The plot
shows the residuals as a function of the direction towards the
center of the underdensity.
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to be be in agreement with COBE measurements. It is clear
that the current supernova data cannot improve this con-
straint any further.

The main conclusion we can draw from our analysis is
that the current supernova data do not offer any substantial
evidence for an off-center observer. Nor does it constrain
very well how far off-center such observers can be located.
This is partly due to the fact that there are too few super-
novae in the sample. In the future, substantially larger and
better supernova samples will be available, such as those
which will be provided by the Supernova Legacy Survey

[52], and hopefully the Supernova Acceleration Probe
(SNAP) [53]. These might allow us to draw stronger con-
clusions regarding the anisotropy of the local universe.
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