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The issue of the equivalence between Jordan and Einstein conformal frames in scalar-tensor gravity is
revisited, with the emphasis on implementing running units in the latter. The lack of affine parametrization
for timelike worldlines and the cosmological constant problem in the Einstein frame are clarified, and a
paradox in the literature about cosmological singularities appearing only in one frame is solved. While,
classically, the two conformal frames are physically equivalent, they seem to be inequivalent at the
quantum level.
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I. INTRODUCTION

Conformal (or Weyl) transformations are widely used in
scalar-tensor theories of gravity [1], the theory of a scalar
field coupled nonminimally to the Ricci curvature R, and in
modified gravity theories in which terms nonlinear in R are
added to the Einstein-Hilbert action (due perhaps to quan-
tum corrections [2]). The present acceleration of the
Universe discovered with the study of supernovae of
type Ia [3] calls either for an exotic form of dark energy
(in Einstein gravity or in scalar-tensor theories), or for
modifications of gravity described by terms nonlinear in
R in the Lagrangian [4], or the addition of terms containing
the invariants of the Riemann tensor RabR

ab and
RabcdR

abcd [5]. To fix the ideas and the terminology, con-
sider a scalar-tensor theory of gravity, described in the
Jordan frame by the action [6]
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where f > 0, S�m� �
R
d4x

�������
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p

L�m�, and L�m� is the
Lagrangian density describing ‘‘ordinary’’ matter (as op-
posed to the gravitational scalar field �, which effectively
plays the role of a form of nonconventional matter in the
field equations. Here gab is the metric tensor with deter-
minant g, f��� and !��� are arbitrary coupling functions,
� is the Brans-Dicke-like scalar field with potential V���,
and  m collectively denotes the matter fields. The Jordan
frame in which the theory (1.1) is formulated is the set of
dynamical variables �gab; �� describing the gravitational
field. The effective gravitational coupling is

 Geff �
1

8�f���
; (1.2)

as can be immediately deduced from inspection of the
action (1.1). However, in a Cavendish experiment the
effective coupling is instead [7,8]

 G���eff �
2!f� 2�dfd��

2

8�f�2!f� 3�dfd��
2�
: (1.3)

This expression can also be derived from cosmological
perturbation theory [9]. Note that in the Jordan frame
description the Lagrangian density L�m��gab;  m� only de-
pends on the metric gab and the ordinary matter fields  m.
As a consequence, this matter is described by the stress-
energy tensor

 T�m�ab �
�2�������
�g
p

�S�m�

�gab
; (1.4)

and the invariance of S�m� under diffeomorphisms leads to
the covariant conservation of T�m�ab [10]

 rbT�m�ab � 0: (1.5)

As a consequence, test particles in the Jordan frame follow
geodesics, the weak equivalence principle [8] is satisfied,
and the theory (1.1) is metric. In this frame the kinetic
energy term of the scalar �, i.e., �!���ra�ra�=2, is
noncanonical and has indefinite sign. The experimental
constraint j!��0�j> 40 000, where�0 is the present value
of the scalar field, applies [11], unless a potential V���
gives the field a very short range.

Let us consider now the conformal transformation

 gab ! ~gab � �2gab; � �
�����������
f���

q
; (1.6)

and the scalar field redefinition

 �! ~� �
Z d�
f���

����������������������������������
f��� �

3

2

�
df
d�

�
2

s
: (1.7)

This transformation brings the theory into the Einstein
conformal frame, i.e., to the set of variables �~gab; ~�� in
which the action (1.1) takes the form
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where

 

~U� ~�� �
V��� ~���

�2 ; (1.9)

and ~ra is the covariant derivative operator of the metric
~gab. Note that the ‘‘new’’ scalar field ~� exhibits a canonical
kinetic energy term and it couples minimally to the Ricci
curvature ~R of the new metric ~gab. However, the action
(1.8) does not describe simply general relativity with an
extra scalar field ~�, because ~� couples explicitly to matter
via the prefactor �G�� ~����2 in front of the matter
Lagrangian L�m�. The exceptions are forms of conformal
matter which obey equations invariant under the conformal
transformation (1.6), such as the Maxwell field, a radiation
fluid, or a scalar field  conformally coupled to R and with
zero or quartic potential. The explicit coupling of ~� to all
forms of nonconformal matter spoils the equivalence prin-
ciple in the Einstein frame. In this frame all massive
particles deviate from geodesics due to the force, propor-
tional to ~ra ~�, exerted by ~�. By contrast, zero mass
particles still move along null geodesics. (This can be
realized by noting that the conformal transformation
(1.6) does not change the conformally invariant Maxwell
equations in four dimensions, which reduce to geometric
optics in the high frequency limit.)

The issue has been raised of ‘‘which conformal frame is
physical,’’ i.e., should one regard the Jordan frame metric
gab, or the Einstein frame metric ~gab as physical? This
issue has been the subject of much debate and is still
contentious due to incorrect formulations of this question.
In fact, the question is answered, to a large extent, by
Dicke’s paper [12] which originally introduced the confor-
mal transformation for Brans-Dicke theory [13], the pro-
totype of scalar-tensor gravity theories. The answer of
Ref. [12] is that the two frames are equivalent, provided
that the units of mass, length, time, and quantities derived
there from scale with appropriate powers of the conformal
factor � in the Einstein frame. However, Dicke’s treatment
is valid only at the classical level, while in modern cos-
mology and in gravitational theories alternative to Einstein
gravity, quantum fields in curved space play a significant
role and the equivalence of the conformal frames is not
clear at all—indeed there are certain indications that the
equivalence breaks down at the quantum level. Of course,
nothing is known about this equivalence in quantum grav-
ity due to the lack of a definitive theory of quantum gravity.

In view of Dicke’s paper, many authors consider the
issue of which conformal frame is physical a pseudo
problem, and we agree with them to a large extent, apart
from the two problems mentioned above. However, while

the answer to the question of the physical equivalence of
conformal frames may be clear in principle, its application
to practical situations is a completely different matter. The
scaling of units in the Einstein frame is usually forgotten or
not taken into account, producing results that range from
nonsensical to marginally incorrect, to correct but it is not
easy to understand if the conformal transformation (1.6)
and (1.7) is applied correctly. (It is worth noting that Dicke
himself applied the conformal transformation and the scal-
ing of units incorrectly in the simpler context of Einstein
gravity [14]). Misinterpretations of the conformal trans-
formation abound in the literature and fuel the debate on
the issue (or pseudoissue) of the conformal frame, while
other authors consider the problem a closed one and
sharply state that the Einstein frame is physical while the
Jordan frame should not be considered at all. The argument
for this choice is the positivity of the kinetic energy and the
existence of a ground state, but this argument is usually not
explored in detail for the specific theories considered. The
existing review papers on the subject [15,16] fail to clarify
this issue because they do not explicitly state the assump-
tions made. It appears that they refer to a version of scalar-
tensor gravity in the Einstein frame in which the units of
mass, length, time, etc. do not scale with powers of �. This
version of the theory has nothing to do with the original
Jordan frame and it is physically inequivalent to it, but it
has come to be implicitly accepted as a valid theory, which
adds to the confusion. It is our opinion that the issue
deserves some clarification and that the open problems
(Cauchy problem, extension to quantum matter) should
be clearly formulated and addressed. In this paper we state
as clearly as possible what the problems are, and we show
how the divergence of opinions between different authors
is due to the fact that two physically different theories in
the Einstein frame (with or without scaling of units, re-
spectively) are considered by different authors without
realizing, or explicitly stating, which one is the version
under examination. As a consequence, much of the existing
debate becomes meaningless, the two opposite viewpoints
are both correct but they really refer to physically different
theories (one of which is not as well motivated as the
other), while they are erroneously reported as pertaining
to the same physical theory. From a more conservative
point of view, instead, only the Einstein frame version of
the theory incorporating scaling units is physically moti-
vated. Even accepting this point of view, however, it is not
always obvious how to incorporate this scaling of units in a
calculation, for example, computing the spectrum of infla-
tionary perturbations in scalar-tensor gravity, and this issue
deserves some attention.

Many (perhaps most) researchers in gravitation and
cosmology are unaware of the importance of scaling units
in the Einstein frame, which is neglected. This issue is
discussed in Sec. II, where it is shown that the scaling of
units is related to the ‘‘anomalous’’ coupling of the scalar
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~� to matter in the Einstein frame, and to the subsequent
violation of the equivalence principle. In Sec. III we exam-
ine some consequences of allowing or not the units of
fundamental quantities to scale in the Einstein frame, and
we resolve an apparent paradox in the literature regarding
energy conditions and singularity theorems in the two
conformal frames in Sec. IV. The cosmological constant
problem and the Cauchy problem are discussed in Sec. V,
while Sec. VI contains the conclusions.

II. CONFORMAL TRANSFORMATIONS, JORDAN
FRAME, AND EINSTEIN FRAME

Here we recall the basic properties of the conformal
transformation to the Einstein frame, the transformation
properties of various geometrical quantities, and the con-
servation equations for the matter stress-energy tensor. The
reader is referred to Refs. [10,15–17] for further details.

Consider a spacetime �M;gab� where M is a smooth
manifold with dimension n > 1 and gab is a Lorentzian
or Riemannian metric onM. The conformal transformation

 gab ! ~gab � �2gab; (2.1)

where � is a smooth, nowhere vanishing, function of the
spacetime point is a point-dependent rescaling of the met-
ric. It changes the length of timelike and spacelike intervals
and vectors, but it preserves their timelike or spacelike
character. Similarly, null intervals and null vectors accord-
ing to the ‘‘old’’ metric gab remain null according to the
new metric ~gab. The light cones are not changed by the
conformal transformation (2.1) and the spacetimes
�M;gab� and �M; ~gab� have the same causal structure; the
converse is also true [10]. The inverse metric gab, the
metric determinant g, and the Christoffel symbols trans-
form according to [10,17]

 ~g ab � ��2gab; ~g � �2ng; (2.2)

 

~� a
bc � �abc �

1

�
��abrc�� �

a
crb�� gbcra��; (2.3)

while the Riemann and Ricci tensor obey
 

~Rabc
d � Rabc

d � 2�d
�arb�rc�ln�� � 2gdegc�rb�re�ln��

� 2r�a�ln���db�rc�ln��

� 2r�a�ln��gb�cg
dere�ln��

� 2gc�a�
d
b�g

efre�ln��rf�ln��; (2.4)

 

~Rab � Rab � �n� 2�rarb�ln�� � gabgefrfre�ln��

� �n� 2�ra�ln��rb�ln��

� �n� 2�gabgefrf�ln��re�ln��: (2.5)

For the Ricci curvature,

 

~R � ~gab ~Rab

�
1

�2

�
R� 2�n� 1���ln�� � �n� 1��n� 2�

	
gabra�rb�

�2

�
: (2.6)

In n � 4 dimensions it is

 

~R �
1

�2

�
R�

6��

�

�

�
1

�2

�
R�

12��
�����
�
p
������

�
p � 3

gabra�rb�

�2

�
: (2.7)

The Weyl tensor Cabc
d with the last index raised is con-

formally invariant,

 

~C abc
d � Cabc

d: (2.8)

However, the same tensor with the other indices raised or
lowered is not conformally invariant. Note that in the
conformally rescaled world the conformal factor � plays
the role of a form of matter. In fact, if the original metric is
Ricci-flat (Rab � 0), the new metric is not ( ~Rab � 0).

If the Weyl tensor of gab vanishes, also the Weyl tensor
of ~gab in the conformally related frame vanishes (and vice
versa), conformally flat metrics are mapped into confor-
mally flat metrics.

Let us consider covariant conservation for the matter
energy-momentum tensor T�m�ab . In the Jordan frame it is

 rbT�m�ab � 0; (2.9)

this equation is not conformally invariant and Tab scales as
[10]

 

~T ab
�m� � �sTab

�m�;
~T�m�ab � �s�4T�m�ab ; (2.10)

where s is an appropriate conformal weight. As a conse-
quence, the conservation equation in the conformally re-
scaled world is
 

~ra��
sTab�m�� � �sraTab�m� � �s� 6��s�1Tab�m�ra�

��s�1gabT�m�ra�; (2.11)

in four spacetime dimensions [10]. By conveniently choos-
ing s � �6 one obtains

 

~r a
~Tab�m� � � ~T�m�~gab ~ra�ln�� (2.12)

and

 

~T �m� 
 ~gab ~T�m�ab � ��4T�m�: (2.13)

Hence, in the new conformal frame, the stress-energy
tensor ~T�m�ab is not covariantly conserved unless it describes
conformally invariant matter with vanishing trace T�m� �
0, in which case also ~T�m� � 0 and ~rb ~T�m�ab � 0.
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It is well known that null geodesics of the Jordan metric
gab are mapped into null geodesics of the Einstein frame
metric ~gab [10]. Timelike geodesics will be considered in
the next section.

III. JORDAN FRAME, EINSTEIN FRAME WITH
RUNNING UNITS, AND EINSTEIN FRAME WITH

FIXED UNITS

In this section only classical physics of spacetime and
matter is considered. Quantum matter will be discussed in
Sec. VI.

A viewpoint shared by many authors (see [15,16] for
references) states that the Einstein and Jordan conformal
frames are physically equivalent. This viewpoint is gener-
ally correct as shown below, and it is in open conflict with
the viewpoint that the Jordan frame should be abandoned in
favor of the Einstein frame because of the presence of
negative energy.

A. Einstein frame with running units

The argument of the physical equivalence between the
Jordan and Einstein frames dates back to Dicke’s 1962
paper introducing the conformal transformation technique
for Brans-Dicke theory [12], a paper often forgotten or
misread. The basic idea is that the two conformal frames
are physically equivalent provided that in the Einstein
frame the units of time, length, mass, and derived quanti-
ties are allowed to scale with appropriate powers of the
conformal factor �. Physics must be invariant under a
choice of the units—this includes not only transformations
of units by factors which are the same everywhere in
spacetime (‘‘rigid’’ changes of units or ‘‘dilatations’’),
but also changes of units that depend on the spacetime
point. A rescaling of the units of length and time (and, on
dimensional grounds, also of mass) is a conformal trans-
formation. Since physics is invariant under a change of
units, it is invariant under a conformal transformation
provided that the units of length, time, and mass lu, tu,
and mu are scaled. The novelty of Dicke’s approach con-
sists in allowing these units to be rescaled by different
factors at different spacetime points, with the change in
each unit being a smooth, nowhere vanishing, function of
the spacetime point. Instead of a system of units rigidly
attached to the spacetime manifold, the Einstein frame
contains a system of units that change with the spacetime
location. If one accepts this point of view, the symmetry
group of classical physics is enlarged to include conformal
transformations with the associated rescaling of units.

It is shown in Ref. [12] that gab scales with the dimen-
sions of a time squared, and since ~gab � �2gab, it follows
that times and lengths scale with �, so that

 dt! ~dt � �dt; dxi ! ~dxi � �dxi

�i � 1; 2; 3�;
(3.1)

while for masses

 m! ~m � ��1m; (3.2)

on dimensional grounds.
Since the speed of light in vacuum c is a ratio of space

and time, it is invariant and local Lorentz invariance is
preserved. The Planck constant, which has dimensions
�h� � �ML2T�1� is left unchanged, while energy with
dimensions �Mc2� scales like a mass. In the Jordan frame
of scalar-tensor gravity the effective coupling (1.2) varies,
while h, c, the masses of elementary particles, and the
coupling constants of physics are true constants, together
with the units. The weak equivalence principle holds and
the theory is metric. On the contrary, in the Einstein frame
the gravitational coupling G is constant and so are h and c,
while the masses of elementary particles and the coupling
‘‘constants’’ of nongravitational physics vary with time
together with the units of time, length, and mass ~tu, ~lu,
and ~mu. In Dicke’s viewpoint the Jordan and Einstein
frames are merely two equivalent representations of the
same physics. One can consider, for example, the proton
mass, which has a constant value mp in the Jordan frame.
In the Einstein frame the proton mass depends on � (or�)
and is ~mp � ��1mp. However, in an experiment one
measures the ratio ~mp= ~mu between the proton mass and
an arbitrarily chosen mass unit ~mu. Hence, in the Einstein
frame it is not ~mp that matters, but the ratio

 

~mp

~mu
�

��1mp

��1mu
�
mp

mu
(3.3)

(in the Jordan frame as well, it is only mp=mu that is
measured). A measurement of the proton mass with respect
to the chosen mass unit therefore yields the same value in
the Jordan and the Einstein frame. No preferred frame is
selected by such a measurement. The outcome of an ex-
periment is the same when analyzed in the Jordan or the
Einstein frame. In this context, the problem of which frame
is physical is void of content.

In the Einstein frame not only the masses of elementary
particles and the mass units, but also the coupling constants
of nongravitational physics vary with�. To understand this
variation it is useful to consider the following example, to
which we will return later [18].

1. Examples

Consider as an example Brans-Dicke theory [13] with a
massive Klein-Gordon field  as the only form of matter,
as described in the Jordan frame by the action
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S � S�BD� � S�KG� �
Z
d4x
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2 2�; (3.4)

where �KG � 16�G is the Klein-Gordon coupling con-
stant. The conformal transformation (1.6) and the scalar
field redefinition (1.7) yield

 

�������
�g
p

�L�BD� � �KGL
�KG�� �

�������
�~g

p
f ~L�GR�

� ~�KG��� ~L
�KG��~gab;  �g;

(3.5)

where ~L�GR� � ~R� 1
2 ~gab ~ra ~�~rb ~� is the Einstein-Hilbert

Lagrangian density with a canonical scalar field ~�,

 ~� KG� ~�� � ��2�KG � 32�G exp
�
�8

����������������
�G

2!� 3

s
~�
�
;

(3.6)

 

~L �KG��~gab;�� �
1

2
~gab ~ra ~rb �

~m2

2
 2; (3.7)

and

 ~m� ~�� �
m
�
� m exp

�
�4

����������������
�G

2!� 3

s
~�
�
; (3.8)

in accordance with Eq. (3.2). In the Einstein frame the mass
~m of the Klein-Gordon field  and its coupling constant
~�KG acquire a dependence from the Brans-Dicke scalar.
This holds true for all forms of matter except conformally
invariant matter, which satisfies conformally invariant
equations. As an example of such matter, consider the
Maxwell field in four spacetime dimensions, described
by the matter action

 S�em� �
Z
d4x

�������
�g
p

�emL
�em� � �

Z
d4x

�������
�g
p

FabFab;

(3.9)

with �em � 4 and L�em� � � 1
4FabF

ab, where Fab is the
antisymmetric Maxwell tensor. The conformal invariance
can be directly verified by computing
 �������
�g
p

L�em� � �1
4

�������
�g
p

gacgbdFabFcd

� �1
4��

�4
�������
�~g

p
���2 ~gac���2 ~gbd�FabFcd

� �1
4

�������
�~g

p
~gac~gbd ~Fab ~Fcd; (3.10)

where ~Fab � Fab.

2. Terminology

Implementing the idea that physics should be confor-
mally invariant when units are rescaled leads to conflict
with current terminology. Consider, for example, a con-
formally coupled Klein-Gordon field  with a nonzero
mass, obeying the equation

 � �
R
6
 �m2 � 0: (3.11)

According to standard terminology, the introduction of the
mass m breaks the conformal invariance that is present
when m � 0. One can, however, generalize the notion of
conformal invariance by allowing the mass to vary with the
scalar �. Upon the use of the relation

 gabrarb �
R
6
 � �3

�
~gab ~ra ~rb ~ �

~R
6

~ 
�
; (3.12)

where ~ 
 ��1 , one obtains from Eq. (3.11)

 

~� ~ �
~R
6

~ � ~m2 ~ � 0; (3.13)

where now ~m 
 ��1m, in agreement with Eq. (3.2).
Hence, the Klein-Gordon equation (3.11) is invariant in
form if the current definition of conformal transformation
is enlarged to include the notion that masses scale with
Eq. (3.2). However, Eq. (3.11) is not conformally invariant
according to standard terminology.

B. The equation of motion of massive particles in the
Einstein frame with running units

In the Einstein frame the equation of timelike geodesics
receives corrections and, as a result, massive particles do
not follow geodesics. First, we want to find the transfor-
mation property of the four-velocity ua � dxa=d� of a
massive particle, where � is a parameter along the geode-
sic, which is usually not discussed in the literature. The
Jordan frame normalization is uaua � �1; by assuming
that ~ua � �wua, where w is an appropriate conformal
weight, and by imposing the Einstein frame normalization
~gab~ua~ub � �1, one obtains w � �1, or

 ~u a � ��1ua; ~ua � �ua: (3.14)

These relations can be used to find the relation between the
parameters � and ~� along the geodesic in the two confor-
mal frames. Since ua � dxa=d�, ~ua � d~xa=d~�, and
lengths scale as d~xa � �dxa, by setting d~� � ��d� one
obtains ~ua � �1��ua which, compared with Eq. (3.14)
yields � � 2, or

 d~� � �2d�; (3.15)

which agrees with Eq. (D.6) of Ref. [10]. This relation can
also be obtained from the fact that, in terms of proper times
d� and d~�, we have
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d~s2 � �d~�2 � ~g00d~t2 � ��2g00���
2dt2�

� ��4d�2 � �4ds2; (3.16)

which yields again d~s � �2ds for the parameter along the
timelike curve.

We are now ready to write the equation of motion of
massive particles in the Einstein frame. Under the confor-
mal transformation (2.1) the Jordan frame geodesic equa-
tion uaraub � 0 is mapped to [10]

 ua ~rau
b � 2ub

ucrc�
�

�
gbd ~rd�

�
: (3.17)

By rewriting this equation in terms of tilded quantities we
have

 ~u a ~ra~ub �
�

~uc ~rc�

�

�
~ub �

~gbd ~rd�

�
: (3.18)

The first term on the right-hand side appears because the
equation is not expressed using an affine parameter, while
the second term proportional to the gradient ~ra�ln��
describes the direct coupling of the field � to nonconfor-
mal matter in the Einstein frame; it has been likened to a
fifth force violating the equivalence principle and making
scalar-tensor theory in the Einstein frame nonmetric. It is
impossible to achieve an affine parametrization of this
timelike curve and thus remove the first term on the
right-hand side of Eq. (3.18). In fact, if this could be
achieved, the result would be incompatible with the nor-
malization ~ua~ua � �1. To prove this statement, note that
the normalization implies that the four-acceleration ~ab 

~ua ~ra~ub is orthogonal to the four-velocity (~ub~ab � 0), a
well-known fact [10,19]. Then,

 0 � ~ub~ab 
 ~ub~ua ~ra~ub � ~ub ~rb�; (3.19)

implying that the gradient of the conformal factor must be
orthogonal to ~ua for any possible choice of ~ua: this is
clearly absurd. For example, in scalar-tensor cosmology
where � � ��t�, t being the comoving time of a
Friedmann-Lemaitre-Robertson-Walker metric (FLRW),
and by choosing ~ua as the four-velocity of comoving
observers, it follows that @�=@t � 0, which is impossible
[20]. Therefore, the term �~uc ~rc�ln���~ub in Eq. (3.18) can-
not be eliminated or, in other words, affine parametrization
cannot be achieved. Equation (3.18) can be rewritten using
Eq. (3.2) as

 ~u a ~ra~ub � �
�

~uc ~rc ~m
~m

�
~ub �

~gbd ~rd ~m
~m

: (3.20)

Equation (3.20) suggests the interpretation that massive
particles deviate from geodesics because their mass is a
function of the spacetime point, and this deviation is
proportional to the mass gradient. The impossibility of
using an affine parametrization is then traced back to the
impossibility of eliminating the variation ~uc ~rc ~m of the

mass ~m along the direction of motion of the particle. By
introducing the three-dimensional metric on the 3-space
orthogonal to the four-velocity ~ua of the particle,

 

~h ab 
 ~gab � ~ua~ub; (3.21)

where hab is the projection operator on the 3-space of the
observer ua (i.e., habu

b � ha
bua � 0), Eq. (3.20) is rewrit-

ten as

 ~u a ~ra~ub � �
~hbd ~rd ~m

~m
; (3.22)

which shows explicitly that the correction to the equation
of motion is given entirely by the variation of the particle
mass ~m in the 3-space of an observer moving with
the particle. Removing the term ��~uc ~rc ~m= ~m�~ub from
Eq. (3.20) by means of affinely parametrizing the curve
would mean introducing corrections to the right-hand side
of Eq. (3.22) which are proportional to the derivative of ~m
in the direction of motion ~ua, and this is impossible. It
would mean that the right-hand side of Eq. (3.20) could not
be written explicitly as a purely spatial vector, as is instead
done in Eq. (3.22), and therefore it could not be the four-
acceleration ab � uaraub, which satisfies uaaa � 0.

Equation (3.22) has consequences for cosmology. In the
FLRW metric

 ds2 � �dt2 � a2�t�
�

dr2

1� Kr2 � r
2�d�2 � sin2�d’2�

�
;

(3.23)

let ua be the four-velocity of comoving observers. Since in
FLRW scalar-tensor cosmology the scalar field depends
only on the comoving time in order to preserve spatial
homogeneity, it is � � ��t�, � � ��t�, and ~m � ~m�t�,
which implies that the spatial gradient ~hbd ~rd ~m vanishes
identically, and the equation of motion of comoving ob-
servers, which is the equation of timelike geodesics when a
dust fluid with pressure P � 0 fills the Universe, receives
no correction in the Einstein frame. Similarly, when there
is pressure, the timelike geodesic equation gets corrected
by an extra term in P, but no ‘‘fifth force’’ corrections
�~hbd ~rd�ln ~m� appear. The equivalence between Jordan and
Einstein frames with respect to redshift, Boltzmann equa-
tion, and particle physics reaction rates in the early
Universe is discussed in Ref. [21].

The trajectories of particles with zero mass ~m � m � 0
do not receive corrections when going to the Einstein
frame.

C. Einstein frame with fixed units

By now it is clear that if one performs the conformal
transformation (1.6) and (1.7) but does not allow the units
of length, time, and mass to scale with � in the Einstein
frame (‘‘fixed units’’), one obtains a different physical
theory altogether. In this case, the conformal transforma-
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tion is merely a mathematical device relating the two
conformal frames, and the Jordan and Einstein frame are
physically inequivalent. If the Jordan frame and the
Einstein frame with fixed units were physically equivalent,
it would mean that the entire realm of (classical) physics is
conformally invariant, according to current terminology.
But, to quote an example, the Klein-Gordon field obeying
Eq. (3.11) with m � 0 is not conformally invariant in this
sense. As another example, consider conformally related
metrics which are physically inequivalent such as the
Minkowski metric �ab and the FLRW metric given by
the line element

 ds2 � gabdxadxb � a2�����d�2 � dx2 � dy2 � dz2�;

(3.24)

where � is conformal time and gab is manifestly confor-
mally flat: gab � �2�ab with ���� � a. When da=d� >
0, gab describes an expanding universe with spacetime
curvature, cosmological redshift, possibly a big bang
and/or other singularities, and matter. By contrast, the
conformally related metric �ab cannot be associated to
any of these spacetime features. The two metrics gab and
�ab are physically equivalent only when the fundamental
units are allowed to scale with a��� in the spirit of
Refs. [12,14]. Then, the Universe (3.24) appears flat
when the units of time and length scale as dt � a���d�,
d~xi � a���dxi, giving (see [16] for references)

 ds2 � �d~t2 � d~x2 � d~y2 � d~z2: (3.25)

The recurring debate on the issue of which conformal
frame is physical arises from the fact that many authors
refer to the Einstein frame by keeping the fundamental
units fixed in this frame. The result is a theory, which we
shall call ‘‘Einstein frame with fixed units’’ version, which
is physically inequivalent to the Jordan frame version of
scalar-tensor gravity. These same authors often claim that
the Jordan frame version and the Einstein frame with fixed
units version are equivalent, forgetting about the scaling of
units and Dicke’s paper. The Einstein frame with fixed
units version does not share the physical motivations that
lead to its Jordan frame cousin. It can even be said that the
former arises from a mistake, but given the number of
works devoted to this ‘‘wrong’’ theory, we are perhaps
facing an (unintentional) new theory of gravity. We leave
to the reader the judgment of whether there is enough
physical motivation to pursue Einstein frame with fixed
units versions of gravitational theories, and we content
ourselves to clarify the issue [22].

Let us return for a moment to the Einstein frame with
running units: in this frame ~m��� � ��1m and the ratio of
the mass of a particle to the variable mass unit is constant,

 

~m���
~mu���

� constant: (3.26)

This implies that

 

~rc ~m
~m
�

~rc ~mu

~mu
; (3.27)

and therefore the equation of motion of massive particles
(3.22) in the Einstein frame with running units can be
written as

 ~u a ~ra~ub � �
~hbd ~rd ~mu

~mu
; (3.28)

in other words, the correction to the equation of timelike
geodesics and the violation of the equivalence principle
can be seen as arising completely from the variation of the
mass unit. Therefore, in the Einstein frame with fixed units
this correction vanishes and the equivalence principle is
satisfied unless, of course, one reintroduces these viola-
tions by hand into the theory, but the latter now bears no
relation to the original Jordan frame one.

The running of fundamental units can also be seen as the
fact that there is an anomalous coupling of ~� to the matter
sector in the Einstein frame with running units. This will be
clear at the end of this section. We now want to make
contact with a different notation that appeared recently in
Ref. [23]. The author E. Flanagan parametrizes different
conformal frames of a scalar-tensor theory using three
different functions of the scalar field A���, B���, and
����. The action is written as
 

S �
Z
d4x

�������
�g
p

�
A���
16�G

R�
B���

2
gabra�rb�� V���

�
� S�m��e2����gab;  �m��: (3.29)

A conformal transformation is described by

 gab ! ~gab � e�2	���gab; (3.30)

 �! ~� � h�1���; or � � h� ~��; (3.31)

where 	 and h are regular functions with h0 > 0. The
action can be rewritten as
 

S �
Z
d4x

�������
�g
p

� ~A� ~��
16�G

~R�
~B� ~��

2
~gab ~ra ~�~rb ~�� ~V� ~��

�
� S�m��e2 ~�� ~��~gab;  �m��; (3.32)

where

 ~�� ~�� � ��h� ~��� � 	� ~��; (3.33)

 

~V� ~�� � e4	� ~��V�h� ~���; (3.34)

 

~A� ~�� � e2	� ~��A�h� ~���; (3.35)
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~B� ~�� � e2	� ~��
�
h0� ~��B�h� ~��� �

3

4�G
h0� ~��	0� ~��A0�h� ~���

�
3

4�G
�	0� ~���2A�h� ~���

�
: (3.36)

(i) In these notations the Jordan frame corresponds to
the choice

 � � 0; B � 1; (3.37)

and to the free functions A��� and V���. In our
notations this corresponds to identifying A with f
and (3.29) with the Jordan frame action
 

S �
Z
d4x

�������
�g
p

�
f���
16�G

R�
1

2
rc�rc�� V���

�
� S�m��gab;  �m��: (3.38)

In fact, Flanagan’s Jordan frame action can be gen-
eralized to arbitrary B���, which corresponds to our
!���, obtaining the Jordan frame action
 

S �
Z
d4x

�������
�g
p

�
f���R
16�G

�
!���

2
rc�rc�� V���

�
� S�m��gab;  

�m��: (3.39)

(ii) The Einstein frame with running units corresponds
to the choice

 A � 1; B � 1; (3.40)

and to the free functions ���� and V���. In our
notations with a tilde denoting Einstein frame quan-
tities, ~V � ~U and e2 ~� � ��2 and the action (3.29)
corresponds to
 

S �
Z
d4x

�������
�g
p

� ~R
16�G

�
1

2
~gab ~ra ~�~rb ~�� ~U� ~��

���2L�m��~gab;  
�m��

�
: (3.41)

(iii) The Einstein frame with fixed units corresponds to
the choice

 A � 1; B � 1; � � 0; (3.42)

and, in our notations, to the action
 

S �
Z
d4x

�������
�g
p

� ~R
16�G

�
1

2
~gcd ~rc ~�~rd ~�� ~U� ~��

�L�m��~gab;  
�m��

�
; (3.43)

in which there is no anomalous coupling of the

scalar ~� to matter (� � 0). The difference between
Einstein frame with running units and with fixed
units is in the choice of the function �. It could be
said that in the Einstein frame with fixed units the
function � is not correctly transformed according
to Eq. (3.33), while the functions A and B are
transformed according to Eqs. (3.34), (3.35), and
(3.36). Keeping the units fixed in the Einstein frame
causes the masses to remain constant. In our first
example of Sec. III A 2, this would correspond to
replacing Eq. (3.13) with

 

~� ~ �
~R
6

~ �m2 ~ � 0; (3.44)

with a constant mass m introduced by hand. Of
course, one can postulate this equation, which is
debatable, but it should at least be made clear that it
cannot be derived from Eq. (3.11) by using Dicke’s
spacetime-dependent rescaling of units. In other
words, the first two terms in Eq. (3.44) are obtained
with a conformal transformation while the third one
is arbitrarily replaced by �m2 ~ .

There are situations in cosmology in which the scalar
field � is assumed to dominate the dynamics of the
Universe and ordinary matter is ignored, setting S�m� � 0.
In these situations (corresponding tom � 0 in the example
of Eqs. (3.11) and (3.44)) the running of units does not
matter as long as only cosmological dynamics is studied.
However, the issue will resurface whenever massive test
particles or test fields, or nonconformal matter are intro-
duced into this picture, or when redshift or reaction rates
are considered [21].

There is a way that is, in principle, consistent to obtain
the Einstein frame with fixed units: if one introduces in the
Jordan frame a factor that exactly compensates for the ��2

factor in front of the matter Lagrangian density when
conformally transforming to the Einstein frame, the scalar
~� will couple minimally to matter in this frame. This is
done, e.g., in Ref. [24]. However, the price to pay is the
nonminimal coupling of � to matter, and the violation of
the equivalence principle, in the Jordan frame, which is
alien from the spirit of Brans-Dicke and other scalar-tensor
theories.

IV. ENERGY CONDITIONS AND SINGULARITY
THEOREMS

We now want to discuss the energy conditions in the
Jordan and Einstein frame. Let us consider, for the sake of
illustration, Brans-Dicke theory represented by the action

 S �
Z
d4x

�������
�g
p

�
�R�

!
�
rc�rc�� V���

�
� S�m�

(4.1)

(the arguments proposed apply, however, to general scalar-
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tensor theories). The field equations can be written as

 Gab �
8�
�
T�m�ab � Tab���; (4.2)

 �� �
1

2!� 3

�
8�T�m� ��

dV
d�
� 2V

�
; (4.3)

where
 

Tab��� �
!

�2

�
ra�rb��

1

2
gabr

c�rc�
�
�

V
2�

gab

�
1

�
�rarb�� gab���; (4.4)

is often identified with an effective stress-energy tensor of
the scalar �. There are three possible ways of identifying
an effective stress-energy tensor for � [25,26] and the
choice of Eq. (4.4) has sometimes been criticized in the
literature [26–28]. If the choice (4.4) is accepted, as is
common in the literature, it is easy to see that the strong,
weak, and dominant energy conditions of general relativity
[10] can all be violated by the scalar � regarded as an
effective form of matter. This is due to the noncanonical
form of Tab; the last term in Eq. (4.4) is linear in the second
derivatives of � instead of being quadratic in the first
derivatives, and it makes the sign of T00��� indefinite,
even causing negative energy densities. The possibility of
negative energy is regarded by certain authors as a criterion
to discard the Jordan frame a priori as unphysical (see
[15,16] for references). Since we know that Jordan frame
and Einstein frame with running units are physically
equivalent, we argue that these authors are left with the
Einstein frame with fixed units version of the theory, which
is physically ill-motivated. Moreover, it is not a negative
kinetic energy that is worrisome, but rather an energy that
is unbounded from below, so that the system can decay to
lower and lower energy states ad infinitum (the electron in
the hydrogen atom has negative total energy but there is a
ground state of the Hamiltonian which corresponds to a
minimum for the spectrum of energy eigenvalues). Hence,
the mere possibility of negative energies is not, by itself, an
argument to rule out the Jordan frame. As pointed out in
Ref. [23], the energy conditions differ in the two frames but
there is no physical observable corresponding to the sign of
Gabuaub for all timelike vectors ua, hence there is no
measurable inconsistency between the two frames.
Furthermore, a positive energy theorem has been shown
to hold for special scalar-tensor theories in the Jordan
frame [29].

The validity of the energy conditions for the Einstein
frame scalar ~� has been emphasized in relation with the
Hawking-Penrose singularity theorems [10,30]. If the
strong and dominant energy conditions hold for ~� and
for ordinary matter in the Einstein frame, the singularity
theorems apply, even though the same energy conditions
are violated in the Jordan frame. This situation is seen by

some as the possibility to circumvent the singularity theo-
rems. In the cosmological context this would imply that it
is possible to find solutions that are free of big bang
singularities just by going to the Jordan frame. This is
clearly impossible if these two conformal frames are physi-
cally equivalent: the absence of singularities in one frame
and their occurrence in the conformally rescaled theory has
thus lead to an apparent paradox [31,32]. If, following
Dicke [12], the Jordan and Einstein frames are equivalent,
singularities occur in the Einstein frame if and only if they
occur in the Jordan frame. The puzzle is quickly resolved
as follows (see also Ref. [26]): consider the FLRW metric
in the Jordan frame

 ds2 � �dt2 � a2�t�
�

dr2

1� Kr2 � r
2�d�2 � sin2�d’2�

�
;

(4.5)

and its Einstein frame cousin

 d~s2 � �d~t2 � ~a2�~t�
�

dr2

1� Kr2 � r
2�d�2 � sin2�d’2�

�
;

(4.6)

with d~t � �dt, ~a � �a, and proper length d~l � ~ajdxj �
�ajdxj � �dl. To ascertain whether there is a big bang or
other singularity in the Einstein frame with running units it
is not sufficient to examine the behavior of the scale factor
~a�~t� as ~t! 0. One must instead study the ratio of a typical
physical (proper) length ~a�~t�jd~xj to the unit of length
~lu� ~�� � �lu, where lu is the fixed length unit in the
Jordan frame and jd~xj is the (comoving) coordinate dis-
tance in the Einstein frame. This ratio is

 

~a�~t�jd~xj
~lu� ~��

�
�a�t�jdxj

�lu
�
a�t�jdxj
lu

: (4.7)

Therefore, ~ajd~xj
~lu� ~��
! 0 if and only if ajdxjlu

! 0, or a singularity

occurs in the Einstein frame if and only if it is present in the
Jordan frame. The argument is not yet complete, because
one has to make sure that the finite time at which the
singularity occurs (‘‘initial time’’ for a big bang singular-
ity) is not mapped into an infinite time in the other frame.
This is easily accomplished by examining the ratio of ~t to
the varying unit of time ~tu� ~�� � �tu in the Einstein frame,
where tu is the fixed unit of time in the Jordan frame. This
ratio is

 

~t
~tu
�

R
t
0 ����dt0

����tu
�

t
tu
; (4.8)

as t! 0 for an initial big bang singularity. Therefore, ~t!
0 in the Einstein frame is equivalent to t! 0 in the Jordan
frame.

One can also check whether a singularity in the matter
energy density occurs in both frames. The energy density
of the cosmic fluid transforms as ~
 � ��4
 on dimen-
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sional grounds (for a formal derivation see, e.g., Ref. [26]).
The Einstein frame unit of energy is

 ~
� ~�� �
~m
~l3u
�

��1mu

�3l3u
� ��4
u; (4.9)

where 
u � m=l3u is the (constant) unit of energy density in
the Jordan frame. In a big bang singularity, however, it is
the ratio ~
=~
u that matters, not ~
. We have

 

~

~
u
�

��4


��4
u
�




u
; (4.10)

hence ~

~
u
!1 if and only if 



u
! 1, establishing once

again the equivalence of the two frames. If one were to
consider merely ~
 instead of ~
=~
u, one would erroneously
conclude that singularities occur in one conformal frame
but not in the other. This happens if the Einstein frame with
fixed units is considered, which is not physically equivalent
to the Jordan frame (if one wishes to regard it as a physical
theory).

V. THE � PROBLEM AND THE CAUCHY
PROBLEM

In this section we briefly discuss other issues in the
realm of classical physics in which the Jordan and the
Einstein frames (with running units) prove to be physically
equivalent, in spite of claims to the contrary. These are the
cosmological constant problem and the Cauchy problem.

It has been claimed that the issue of the conformal frame
has implications for the notorious cosmological constant
problem [33] of why the cosmological constant energy
density is 120 orders of magnitude smaller than what can
be calculated with simple quantum mechanics. The stress-
energy tensor associated with a cosmological constant
T���ab � �gab=�8�G� provides a Jordan frame energy den-
sity 
� � �=�8�G� which is constant, and a conformal
cousin ~
� � ��4
� � e�� ~�� in the Einstein frame,
where �> 0 is an appropriate constant. Thus, ~
� repre-
sents a decaying cosmological ‘‘constant’’; the opinion is
often voiced that the exponential factor e�� ~� multiplying
� in the Einstein frame helps alleviating, if not outright
solving, the cosmological constant problem (see, e.g.,
Sec. 4.22 of Ref. [34]). Again, this would mean that the
two conformal frames are physically inequivalent in con-
trast with the spirit of Dicke’s paper [35].

It is easy to see that this argument fails to ease off the
cosmological constant problem. Again, what matters in the
Einstein frame is not the form (or numerical value) of ~
�,
but the ratio ~
�=~
u, where ~
u � ��4
u is the unit of
energy density in the Einstein frame, and 
u is the corre-
sponding Jordan frame unit. The ratio

 

~
�

~
u
�

�e�� ~�

8�G
ue
�� ~�

�
�

8�G
u
; (5.1)

is the same in the Jordan and Einstein frames and, barring
unforeseen complications at the quantum level, the cosmo-
logical constant problem is not alleviated a bit by choosing
the Einstein frame with running units.

Of course, one could then state that the Einstein frame
with fixed units solves the problem because then one would
consider ~
�=
u / e

�� ~� instead of ~
�=~
u � constant; this
would be nonsense because the cosmological constant
cannot be calculated in one theory (where it is huge) and
then mapped into the Einstein frame with fixed units which
bears no physical relation with the original Jordan frame.
� should be calculated directly in the Einstein frame with
fixed units and it is still huge. The argument presented here
applies also to situations in which the cosmological con-
stant term changes [36].

Finally, we want to comment on the Cauchy problem for
scalar-tensor gravity and its implications for the equiva-
lence of the two conformal frames. The folklore about the
Cauchy problem is that the mixing of the spin two and spin
zero degrees of freedom gab and � in the Jordan frame
makes these variables an inconvenient set for formulating
the initial value problem, which is not well posed in the
Jordan frame: on the other hand, the Einstein frame vari-
ables �~gab; ~�� admit a well-posed Cauchy problem com-
pletely similar to that of general relativity (see, e.g., the
influential paper [37]). Were this true, it would appear that
the Jordan and Einstein frame are physically inequivalent
in this respect. This position toward the Cauchy problem,
however, ignores two older references showing that the
Cauchy problem is well posed in the Jordan frame for two
specific scalar-tensor theories: Brans-Dicke theory with a
free scalar � [38] and the theory of a scalar field confor-
mally coupled to the Ricci curvature [39]. The task of
studying the Jordan frame Cauchy problem for general
scalar-tensor theories has been taken on in a recent paper
[40] in which it is shown, using generalized harmonic
coordinates, that the Cauchy problem is well posed,
although further study is necessary for implementing a
full 3� 1 formulation à la York [41] in practical (numeri-
cal) applications [40]. This shows that, contrary to the
common lore, the Jordan and the Einstein frames are
physically equivalent also with respect to the initial value
problem. The issue of mapping the details of the Jordan
frame Cauchy problem into details of the corresponding
Einstein frame problem and, in particular, clarifying the
role played by running units, will be discussed elsewhere.
It is clear that the equivalence between the two conformal
frames breaks down when the conformal transformation
breaks down, i.e., when f��� � 0 or f1 
 2f�
3�df=d��2 � 0 (cf. Eqs. (1.6) and (1.7)). However, the
Jordan frame initial value problem may not be well posed
as well when f � 0, and requiring f > 0 eliminates also
the singularities f1 � 0 (see Refs. [42,43] for a discussion
of these singularities and Ref. [44] for conformal continu-
ation past these points).
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VI. CONCLUSIONS

It appears that, at the classical level, the Jordan and
Einstein frames are physically equivalent when the units
of fundamental and derived quantities are allowed to scale
appropriately with the conformal factor � in the Einstein
frame. Previous doubts on the physical equivalence with
respect to the Cauchy problem [37] seem to dissipate in the
light of recent work [40], although a more comprehensive
picture is desirable. The arguments against the equivalence
of the two frames raised in the past regard positivity of the
energy in the Einstein frame and the indefiniteness of its
sign in the Jordan frame ([15,16] and references therein).
This is particularly relevant at the quantum level: negative
energies do not allow a stable ground state and the system
would decay to a lower and lower energy states ad infini-
tum. However, as was pointed out in [23], there is no
physical observable corresponding to the sign of Tabuaub

or Gabuaub, where ua is a timelike four-vector, and spe-
cific examples of scalar-tensor theories that are stable in
the Jordan frame have been found [29]. The relevant
question to ask, at least at the classical level, is not what
the sign of the energy is, but rather whether the energy is
bounded from below, which may well occur in scalar-
tensor gravity (see, e.g., [45]).

At the quantum level, the issue of the ground state
becomes more delicate, as there are more decay channels
than at the classical level. Although the conformal equiva-
lence seems to hold to some extent at the semiclassical
level, in which the matter fields are quantized while the
variables �gab; �� are classical (see Ref. [23] for a brief
discussion and references), this equivalence definitely
breaks down when � is quantized [16]. When also gab is
quantized in full quantum gravity, inequivalent quantum
theories have been found [23,46– 48]. This is not surpris-
ing because the conformal transformation can be seen as a
Legendre transformation [15]. A similar Legendre trans-
formation is used in the classical mechanics of particles to
switch from the canonical coordinates q of the Lagrangian
description to the variables �q; p� of the Hamiltonian for-
malism, and this Legendre map is an example of a canoni-
cal transformation [49]. Now, it is well known that
Hamiltonians that are classically equivalent become in-
equivalent when quantized: they exhibit different energy
spectra and scattering amplitudes [50]. Therefore, we ex-
pect the analogous ‘‘canonical transformations’’ between
different conformal frames not to be unitary and to yield

physically inequivalent theories at the quantum level [51].
A common objection to this statement arising among par-
ticle physicists is based on the equivalence theorem of
Lagrangian field theory, which states that the S-matrix is
invariant under local (nonlinear) field redefinitions [52].
Since the conformal transformation (2.2) and (2.3) is a
local nonlinear redefinition of the fields gab and �, it
would seem that quantum physics is invariant under
change of the conformal frame. However, this is not true
in general because the field theory approach in which the
equivalence theorem is derived applies to gravity only in
the perturbative regime in which the fields describe small
deviations from Minkowski space. In this regime, tree-
level quantities can be calculated in any conformal frame
with the same results. However, when the metric tensor is
allowed full dynamical freedom and is not restricted to be a
small perturbation of a fixed background, the field theory
approach and the equivalence theorem do not apply. It is
plausible that the equivalence theorem can be proved also
for fixed backgrounds that are curved and do not coincide
with the Minkowski space of effective field theory.
However, we are not aware of such a generalization in
the literature on quantum field theory on curved space (a
proof of a generalized equivalence theorem will be pursued
elsewhere). Thus, it is clear that the equivalence theorem
fails in the nonperturbative regime; nevertheless, one can
consider semiclassical situations in which the metric is
classical and the full scalar � is quantized, and it is quite
possible that the conformal transformation leaves the quan-
tum physics of � unaffected—after all, the physics of the
classical metric is invariant under change of conformal
frame and quantization of a scalar field in a fixed back-
ground metric poses no problems [53]. Indeed, there are
examples in which such semiclassical theories related by a
conformal transformation seem to be equivalent [54]. A
precise and detailed understanding of the conformal (in)-
equivalence at the quantum level, however, requires further
work.
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