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We discuss a robust data analysis method to detect a stochastic background of gravitational waves in the
presence of non-Gaussian noise. In contrast to the standard cross-correlation (SCC) statistic frequently
used in the stochastic background searches, we consider a generalized cross-correlation (GCC) statistic,
which is nearly optimal even in the presence of non-Gaussian noise. The detection efficiency of the GCC
statistic is investigated analytically, particularly focusing on the statistical relation between the false-alarm
and the false-dismissal probabilities, and the minimum detectable amplitude of gravitational-wave signals.
We derive simple analytic formulas for these statistical quantities. The robustness of the GCC statistic is
clarified based on these formulas, and one finds that the detection efficiency of the GCC statistic roughly
corresponds to the one of the SCC statistic neglecting the contribution of non-Gaussian tails. This
remarkable property is checked by performing the Monte Carlo simulations and successful agreement
between analytic and simulation results was found.
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I. INTRODUCTION

A stochastic background of gravitational waves is ex-
pected to be very weak among various types of
gravitational-wave signals. Such a tiny signal is produced
by an incoherent superposition of many gravitational-wave
signals coming from the irresolvable astrophysical objects
and/or diffuse high-energy sources in the early universe.
Up to now, various mechanisms to produce stochastic
signals have been proposed and their amplitudes and spec-
tra are estimated quantitatively (for the review see
Ref. [1,2]).

Despite the small amplitude of the signals, the stochastic
backgrounds of gravitational waves contain valuable cos-
mological information about cosmic expansion history and
astrophysical phenomena. Because of its weak interaction,
the extremely early stage of the universe beyond the last
scattering surface of the electromagnetic waves would be
probed via the direct detection of inflationary gravitational-
waves background. In this sense, gravitational-wave back-
grounds are an ultimate cosmological tool and the direct
detection of such signals will open a new subject of
cosmology.

As a trade-off, detection of stochastic background is
very difficult and the challenging problem. Recently, the
observational bound of stochastic background has been
updated by Laser Interferometer Gravitational Wave
Observatory (LIGO [3]) third scientific run [4] and the
amplitude of signal is constrained to �gw & 8:4� 10�4,

where �gw is the energy density of gravitational wave
divided by the critical energy density. While this is the
most stringent constraint obtained from the laser interfer-
ometer [5], this bound is still larger than the limit inferred
from the big-bang nucleosynthesis. Hence, for the direct
detection of stochastic signals, a further development to
increase the sensitivity is essential. To do this, one obvious
approach is to construct a more sophisticated detector
whose sensitivity level is only limited by the quantum
noises. Next-generation of ground-based detectors, such
as LIGO II and Large-scale Cryogenic Gravitational-wave
Telescope (LCGT) [6], will greatly improve the sensitivity
that reaches or may beat the standard quantum limit.
Furthermore, the space-based interferometer will be suited
to prove gravitational wave backgrounds due to its lower
observational band [7]. Another important direction is to
explore the efficient and the robust technique of data
analysis for signal detection.

In this paper, we shall treat the latter issue, particularly
focusing on the signal detection in the presence of the non-
Gaussian noises. When we search for the weak stochastic
signals embedded in the detector noise, we have no prac-
tical way to discriminate between the detector noise and a
stochastic signal by using only a single detector. To detect a
stochastic signal, we must combine the two outputs at
different detectors and quantify the statistical correlation
between them. This cross-correlation technique is the ro-
bust statistical method that is still useful in the cases with
large detector noises. The so-called standard cross-
correlation technique has been frequently used in the
data analysis of laser interferometers. Note that the stan-
dard cross-correlation statistic was derived under the as-
sumption that both the signals and the instrumental noises
obey stationary Gaussian process [8–10]. In practice, how-
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ever, gravitational wave detectors do not have a pure
Gaussian noise. Because of some uncontrolled mecha-
nisms, most experiments exhibit a non-Gaussian tail. In
the presence of non-Gaussianity, the direct application of
the standard cross-correlation statistic significantly de-
grades the sensitivity of signal detection. A more appro-
priate cross-correlation statistic to reduce the influence of
the non-Gaussian tails should be desirable in the data
analysis of signal detection.

In Refs. [11,12], the standard cross-correlation analysis
was extended to deal with more realistic situation. They
found that such a modified statistic shows a better perform-
ance compared to the standard cross-correlation statistic
[11]. This modified statistic is called the locally optimal
statistic [13]. Roughly speaking, the usual standard cross-
correlation statistic uses all detector samples, while the
locally optimal statistic excludes the samples of the non-
Gaussian tails outside the main Gaussian part from the
detector samples. As a result, the statistical noise variance
in the locally optimal statistic becomes small due to the
truncation of the samples of the non-Gaussian tail, so that
the effective signal-to-noise ratio becomes large.

In this paper, we derive analytical formulas for the false-
alarm and the false-dismissal probabilities and the mini-
mum detectable signal amplitude to quantify the perform-
ance of the locally optimal statistic. Then, we demonstrate
the detection efficiency of locally optimal statistic in a
simple non-Gaussian noise model, in which the probability
distribution of the instrumental noise is described by the
two-component Gaussian noise. Based on the analytical
formulas, the efficiency of the locally optimal statistic is
quantified compared to the standard cross-correlation
statistic.

The structure of this paper is as follows. In the next
section, we briefly review the detection strategy for a
stochastic background. We then introduce the generalized
cross-correlation statistic which is nearly optimal in the
presence of non-Gaussian noise. In Sec. III, particularly
focusing on the two-component Gaussian model as a sim-
ple model of non-Gaussian noises, we analytically estimate
the false-alarm and the false-dismissal probabilities. Based
on this, we obtain the analytic expression for the minimum
detectable amplitude of stochastic signals. The resultant
analytic formulas imply that the detection efficiency of the
GCC statistic roughly corresponds to the one of the SCC
statistics neglecting the contribution of non-Gaussian tails.
These remarkable properties are checked and confirmed by
performing the Monte Carlo simulations in Sec. IV.
Finally, in Sec. V, we close the paper with a summary of
results and a discussion of future prospects.

II. OPTIMAL DETECTION STATISTIC IN THE
PRESENCE OF NON-GAUSSIAN NOISE

As we previously mentioned, the gravitational-wave
background (GWB) signal is expected to be very week

and is usually masked by the detector noises. To detect
such tiny signals, it is practically impossible to detect the
GWB signal from the single-detector measurement. Thus,
we cross-correlate the two outputs obtained from the dif-
ferent detectors and seek a common signal. We denote the
detector outputs by ski with

 ski � hki � n
k
i ; �i � 1; 2; k � 1; � � � ; N�; (1)

where i � 1, 2 labels the two detectors, and k � 1; � � � ; N
is a time index. Here, hki is the gravitational-wave signal,
whose amplitude is typically �, and nki is the noise in each
detector. The N � 2 output matrix S is made up of these
outputs. Throughout this paper, we discuss the optimal
detection method under the assumption of weak signal,
i.e., jhki j � �	 jn

k
i j.

A. Detection statistic

To judge whether a gravitational signal is indeed present
in detector outputs or not, the simplest approach is to use a
detection statistic � � ��S�. When � exceeds a threshold
�
, we think that the signal is detected, and not detected
otherwise. The statistic �, which is made up of random
variables S, exhibits random nature under the finite sam-
pling and because of this, we have two types of error
depending on the detection criterion �
. The probabilities
of these errors are often called false-alarm rate and false-
dismissal rate. The probability of the false alarm is the one
that we conclude to have detected a signal, but the signal is
in fact absent. We denote the probability by PFA��


�. On
the other hand, the probability of the false dismissal which
we denote by PFD��


� is the probability that we fail to
detect a signal even though the signal is in fact present.
Thus, one may say that the detection statistic is optimal
only when the two errors are minimized. Neyman and
Pearson showed that the likelihood ratio is the optimal
decision statistic that minimizes PFD for a given value of
PFA [14]. The likelihood ratio is given by

 � �
p�Sj��
p�Sj0�

: (2)

Here, the quantity p�Sj�� is the probability distribution
function of the observational data set S in the presence of
the signal, whose amplitude is given by �. We are specifi-
cally concerned with the detection of weak signals. In such
a situation, regarding � as a small parameter, one can
expand � as

 � � 1� ��1 � �
2�2 �O��

3�: (3)

As long as � is small, the higher-order terms of O��2� are
neglected and the quantity �1 approximately becomes the
optimal decision statistic. This statistic is called the locally
optimal statistic [11]. If �1 becomes zero, then �2 is the
optimal decision statistic.
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B. Standard and generalized cross-correlation statistics

In order to obtain some insights into the locally optimal
statistic, we consider the simplest situation for the data
analysis of signal detection. For any two detectors, we
assume that their orientations are coincident and coaligned
without any systematic noise correlation between them, so
that two detectors receive the same signal, i.e., hk1 � hk2 �
hk. There are several missions that realize such a situation.
The ongoing LIGO project has two colocated detectors in
the Hanford site, although the arm length of each detector
is different [3]. The LCGT detector proposed by the
Japanese group also has two colocated detector sharing a
common arm cavity [6].

In addition to the orientation of the detectors, we further
assume that each detector has a white and stationary noise.
In this case, the joint probability distribution of the detector
noises is given by

 pn�N � �
YN
k�1

e�f1�sk1�h
k��f2�sk2�h

k�; (4)

where the symbol N represents the noise contribution to
the output matrix S. Note that Eq. (4) reduces to a multi-
variate Gaussian distribution if the function fi becomes
quadratic in its argument. Thus, the function fi other than
the quadratic form implies the non-Gaussianity of the
detector noises. As for the probability of the signal ampli-
tude, we also assume that the signal is white, so that the
probability distribution function for H � h1; . . . ; hN is
expressed by

 ph�H � �
YN
k�1

phk�h
k�: (5)

From Eqs. (1), (4), and (5), the numerator in the likelihood
ratio (2) is given by

 p�Sj�� �
Z
dh1 � � �

Z
dhNph�H �pn�N �: (6)

Expanding the likelihood ratio with respect to jhkj � �	
1 around zero, we obtain the locally optimal statistic
[11,12]. In the present case, �1 in Eq. (3), which includes
the linear term of the signal, vanishes because the stochas-
tic gravitational wave is usually a zero-mean signal.
Therefore, �2 turns out to be the optimal decision statistic.
�2 is composed of second derivative terms and some
quadratic of the first derivative terms with respect to ski .
We then classify these terms into single-detector statistic
and two-detector statistic [11]. The former statistic, which
is described by quantities such as f00i and �f0i�

2, are only
relevant in the cases when the gravitational-wave signal
dominates the detector noises. The latter two-detector
statistic is given by [11]

 �GCC /
1

N

XN
k�1

f01�s
k
1�f
0
2�s

k
2�; (7)

where we used the fact that the signal is white. In this
paper, we especially call it generalized cross-correlation
(GCC) statistic.1

In what follows, for the purpose of our analytic study, we
treat the non-Gaussian parameters in the function fi as
known parameter. Furthermore, we define the counterpart
of the GCC statistic in the absence of non-Gaussianity as:

 �SCC 
1

N

XN
k�1

sk1s
k
2; (8)

which we call the standard cross-correlation (SCC) statis-
tic. Strictly speaking, the decision statistics derived here
are not the optimal decision statistics [10,15]. For instance,
in the case of the Gaussian noises with unknown variances,
the optimal decision statistic differs from Eq. (8) by a
factor ��̂1�̂2�

�1, where �̂i is the square-root of the auto-
correlation function for the output signals ski , i.e., �̂2

i 
�1=N�

P
k�s

k
i �

2. Nevertheless, in the large-sample limitN !
1, statistical fluctuations in the autocorrelation function
become negligible relative to those in �SCC and the auto-
correlation functions can be treated as constants. Thus, in
the limit N ! 1, the factor ��̂1�̂2�

�1 is irrelevant and one
can identify Eq. (8) as the optimal decision statistic [15]. In
this sense, Eq. (8) may be regarded as an nearly optimal
statistic. Although it seems difficult to prove that the
statistic �GCC really approaches the (locally) optimal sta-
tistic in the large-sample limit with the non-Gaussian
noises, the essential properties in the statistic �GCC is the
same as those in the optimal decision statistic derived from
Bayesian treatment [10]. We hope that the resultant ana-
lytic formulas for detection efficiency are also useful in the
practical situation that we do not know the noise parame-
ters a priori.

III. ANALYTIC ESTIMATION OF THE
DETECTION EFFICIENCY

We wish to clarify how the GCC statistic improves the
detection efficiency in the presence of non-Gaussian noise
in an analytic way. For this purpose, we treat the simple
non-Gaussian model, in which the probability distribution
of the detector noises is characterized by the two-
component Gaussian distribution given by [11,16]:
 

pn;i�x� � e�fi�x� �
�1� Pi��������

2�
p

�m;i

e�x
2=2�2

m;i

�
Pi�������

2�
p

�t;i

e�x
2=2�2

t;i ; �i � 1; 2�: (9)

The left panel of Fig. 1 illustrates the probability distribu-
tion function of (9). This model can be characterized by the

1Although we extracted the cross-correlation term by hand, the
Bayesian derivation automatically eliminates the self-correlation
terms [12].
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two parameters, i.e., the ratio of variance, ��t;i=�m;i�
2 and

the fraction of non-Gaussian tail, Pi. Here, Pi means the
total probability of the non-Gaussian tail. Of particularly
interest is the case that�t;i=�m;i > 1 and Pi 	 1. Thus, the
detector noise is approximately described by the Gaussian
distribution with the main variance �2

m;i, but to some ex-
tent, it exhibits the non-Gaussian tail characterized by the
second component of the Gaussian distribution with a large
variance �2

t;i. The examples of this situation are illustrated
in the right panel of Fig. 1.

On the other hand, we assume that the probability func-
tion of the stochastic signal is simply described by the
Gaussian distribution with zero mean and with a small
amplitude of the variance �2:

 phk�h
k� �

1�������
2�
p

�
e��h

k�2=2�2
: (10)

Using these probability distribution functions, we derive
the analytical formula for detection efficiency of the GCC
statistic, i.e., PFA � PFD curve and minimum detectable
amplitude of the signal for gravitational-wave background.

A. PFA versus PFD curve

In order to quantify the detection efficiency of the GCC
statistic and compare it with that of the SCC statistic, it is
convenient to compute the PFA � PFD curve. For any
detection statistic �, the false-alarm and the false-
dismissal probabilities, PFA and PFD are expressed as

 PFA��

� �

Z 1
�

dxp�0�� �x�;

PFD��

� � 1�

Z 1
�

dxp�1�� �x�:

(11)

Here, p�0�� �x� and p�1�� �x� are the probability distributions of
the decision statistic in the absence and the presence of the
signal, respectively. Thus, the PFA � PFD curve is simply
obtained from Eq. (11) as the parametric function of the
threshold �
. According to the Neyman and Pearson cri-
terion, the best strategy to detect the stochastic signal is to
choose the optimal statistic that minimizes the PFD for a
given value of PFA. In other words, if the PFD of the GCC
as function of PFA is always smaller than that of the SCC,
the GCC statistic is said to be more optimal compared to
the SCC statistic.

In the large-sample limit (N � 1), the central-limit
theorem would be applicable and the probabilities p�0��

and p�1�� can be treated as a Gaussian function. We then
have

 p�T �� �x� �
1�������

2�
p

���T �
exp

�
�
�x� h��T �i�2

2����T ��2

�
;

�T � 0; 1�:

(12)

Here and in what follows, quantities h��0�i and ����0��2

denote the mean and the variance for a decision statistic in
the absence of signal, while h��1�i and ����1��2 are the
mean and the variance for a decision statistic with a signal.
From Eqs. (11) and (12), the PFA � PFD curve is given by

 

FIG. 1 (color online). Left: Probability distribution function of instrumental noise given by Eq. (9). The model parameters are set to
�m � 1, �t � 4 and P � 0:1. Here we dropped the detector label i. Right: Time-series data of the non-Gaussian noise generated by
Eq. (9). Top panel shows the result with tail fraction P � 0:01, while the bottom panel plots the case with larger value, P � 0:1. In both
panels, we specifically set the model parameters �m and �t as �m � 1 and �t � 4. For comparison, we also plot the weak signal of the
stochastic gravitational waves with � � 0:1.
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PFD � 1�
1

2
erfc

�� ���
2
p

erfc�1�2PFA� �
h��1�i

���0�
�
h��0�i

���0�

�

�
1���
2
p

���0�

���1�

�
: (13)

Here, erfc�x� is the complementary error function defined
by

 erfc �x� �
2����
�
p

Z 1
x
dze�z

2
: (14)

Note that in the case of the SCC statistic, the quantity
h��1�i=���0� just coincides with the usual meaning of the
signal-to-noise ratio (SNR). In general, the false-dismissal
probability PFD is a decreasing function of the quantity
h��1�i=���0� for a given probability of false-alarm PFA.

B. Mean and variance for detection statistic

Our task is to calculate the means and the variances for
the detection statistic, i.e., h��T �i and ����T ��2. In order to
compare the performance of the GCC statistic to that of the
SCC statistic, we first consider the means and the variances
for the SCC statistic. From Eqs. (1) and (8)–(10), the
ensemble averages become

 h��0�SCCi � 0; (15)

 ����0�SCC�
2 � h���0�SCC � h�

�0�
SCCi�

2i �
hn2

1ihn
2
2i

N
; (16)

 h��1�SCCi � �2; (17)

 

����1�SCC�
2 � h���1�SCC � h�

�1�
SCCi�

2i

�
1

N
�2h��1�SCCi

2 � h��1�SCCi�hn
2
1i � hn

2
2i�

� hn2
1ihn

2
2i�; (18)

where

 

����T �SCC�
2  h���T �SCC � h�

�T �
SCCi�

2i and

hn2
i i � �1� Pi��

2
m;i � Pi�

2
t;i:

(19)

Next, we calculate the means and the variances for the
GCC statistic (7). For the non-Gaussian model (9) of the
instrumental noises, the derivative f0i�x� in Eq. (7) is given
by

 f0i�x� �
x

�2
m;i

�
�1� Pi� � Pi��m;i=�t;i�

3ex
2���2

m;i��
�2
t;i �=2

�1� Pi� � Pi��m;i=�t;i�e
x2���2

m;i��
�2
t;i �=2

�
:

(20)

The expression (20) seems rather intractable to further
develop the analytical calculation. However, in the situ-
ations we are interested in, i.e., �t;i=�m;i > 1 and Pi 	 1,
the above function simply behaves like f0i�x� � x=�2

m;i for
small value of jxj and f0i�x� � x=�2

t;i for large value of jxj.
Thus, one may apply the two-step approximation to the
function (20) as:

 f0i�s
k
i � 

�
ski ; jski j � jxcr;ij;
�
�m;i

�t;i
�2ski ; jski j> jxcr;ij:

(21)

Here, the quantity xcr;i is the critical value that character-
izes the boundary between small jski j and large jski j. Note
that we adjust the overall factor of the function f0i�s

k
i � so

as to coincide with the SCC statistic (8) in the limit
jxcr;ij ! 1.

Figure 2 shows the dependence of the function f0�x� on
the model parameters Pi (left) and �t;i=�m;i (right). As
decreasing the tail fraction or increasing the ratio �t;i=�m;i,
the asymptotic behavior of f0�x� steeply changes from
x=�2

m;i to x=�2
t;i around the inflection point of f0�x�.

Hence, it seems reasonable to set the critical value xcr;i to
the inflection point of f0�x�. Then, the quantity xcr;i is
approximately expressed as

 

FIG. 2. Derivative of the function f�x� in the two-component Gaussian noise model. Left panel shows the dependence of the tail
fraction Pi keeping the ratio of noise variance fixed, i.e., �t;i=�m;i � 4. On the other hand, right panel presents the dependence of the
ratio �t;i=�m;i keeping the tail fraction fixed, i.e., Pi � 0:1.
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 x2
cr;i �

�2
m;i�

2
t;i

�2
t;i � �

2
m;i

� �������������������������������������������������������
12�

�
log

�
Pi

1� Pi

�m;i

�t;i

��
2

s

� log
�

Pi
1� Pi

�m;i

�t;i

��
: (22)

Here, we only considered the solution satisfying the con-
dition �xcr;i=�m;i�> 1.

Adopting the critical value Eq. (22), with a help of two-
step approximation, the means and the variances of the
GCC statistic can be analytically calculated. The details of
the calculation are presented in Appendix A. The resultant
expressions become

 h��0�GCCi � 0; (23)

 ���0�GCC �
1����
N
p �hn2

1iGhn
2
2iG�

1=2; (24)

 

h��1�GCCi � f1� �P1 � P2�gPG�xcr;1; �m;1�PG�xcr;2; �m;2��
2

� higher order terms; (25)

 ���1�GCC �
1����
N
p �hn2

1iGhn
2
2iG �O��2 � hn2

i iG��
1=2; (26)

where we defined

 PG�x;��  erf
�
x���
2
p
�

�
�

����
2

�

s
x
�
e��x=��

2=2; (27)

 hn2
i iG  �1� Pi��

2
m;iPG�xcr;i; �m;i� � Pi�2

t;iPG�xcr;i; �t;i�:

(28)

Here the quantity erf�x� is the error function. In deriving
Eqs. (23)–(26), we have neglected contributions of the
integral from the region �xcr;i;1�. In Ref. [11], this treat-
ment is called clipping. The explicit expressions of the
higher-order terms in Eq. (25) are given in Appendix A.
These terms turn out to be subdominant if the non-
Gaussian parameters become Pi & 0:2 or �t;i=�m;i * 3.
In what follows, we neglect the higher-order terms in
Eq. (25) unless otherwise stated.

Now, we substitute the expressions Eqs. (22)–(26) into
Eq. (13). The analytic PFA � PFD curve for the GCC
statistic is written as
 

PFD � 1�
1

2
erfc

�� ���
2
p

erfc�1�2PFA� � �
�
�eff

�

��

�
����
2
p

�
�eff

�

��
; (29)

where

 

� �
h��1�SCCi

���0�SCC

; � �
���0�SCC

���1�SCC

;

�eff �
h��1�GCCi

���0�GCC

; �eff �
���0�GCC

���1�GCC

:

(30)

 

FIG. 3 (color online). The quantity �eff=� defined in Eq. (29)
as function of �t=�m in the case of the two identical detectors.
From top to bottom, the tail fraction P is chosen as P � 0:2, 0.1,
0.05 and 0.01.

 

FIG. 4 (color online). Analytic PFA � PFD curves for the stan-
dard and generalized cross-correlation statistics in the presence
of the non-Gaussian noises described by the specific model (9).
The sold (dashed) lines represent the PFA � PFD curves for the
GCC (SCC) statistic for the stochastic signals with amplitude
� � 0:03, 0.06 and 0.12 (top to bottom). Here, we assume that
the two detectors are identical (see Eq. (31)). For each curves,
the parameters are set as P � 0:01, �t=�m � 4 and N � 104.
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In the expression (29), we have introduced the auxiliary
quantities � and � to clarify the differences between the
GCC and the SCC statistics. Obviously, the ratios �eff=�
and �eff=� become unity when the probability distribution
of noises is Gaussian, leading to the PFA � PFD curve for
SCC statistic. Thus, the deviation of these quantities from
unity characterizes the efficiency of the GCC statistic.

Figure 3 shows the ratio �eff=� as the function of�t=�m

for various tail fraction P. To plot the curves, just for
simplicity, we assume that two detectors are identical:

 �m  �m;1 � �m;2; �t  �t;1 � �t;2;

P  P1 � P2; xcr  xcr;1 � xcr;2:
(31)

In Fig. 3, the ratio �eff=� is always larger than unity for any
values of P and �t=�m. Recall that the quantity � has the
usual meaning of the SNR, this result implies that the
clipping taken in the GCC statistic always leads to a larger
effective SNR than that of the SCC statistic. On the other
hand, when we evaluate the quantity �eff=�, one finds that
this ratio is always less than 1. These two facts indicate that
the false-dismissal probability PFD of the GCC statistic is
always smaller than that of the SCC statistic. Note also that
�eff � 1 and � � 1 as long as the signal � is small. Thus,
for a good approximation, we can set �eff to unity. Hence,

the performance of the GCC statistic is mainly attributed to
the ratio �eff=�.

Based on this consideration, in Fig. 4, we plot the
analytic PFA-PFD curves for various signal amplitudes.
Here, the parameters P, �t=�m and N are specifically
chosen to P � 0:01, �t=�m � 4 and N � 104. The solid
and dotted lines represent the PFA � PFD curves for the
GCC and the SCC statistics, respectively. In each signal
amplitude �, the false-dismissal probability PFD of the
GCC statistic is always smaller than that of the SCC
statistic for any PFA. As expected, the performance of the
GCC statistic improves as the parameter � increases.

C. Minimum detectable amplitude

In addition to the PFA � PFD curves, the minimum
detectable amplitude of the stochastic signal, �detect is a
direct measure to quantify the performance of the detect-
ability. In order to estimate this statistically, we must first
specify the threshold values �P
FA; P



FD� called detection

point [15]. For given threshold values, the minimum de-
tectable amplitude �detect can be uniquely determined from
Eq. (29). For simplicity, we set P
FA � P
FD. The resultant
amplitude for the GCC statistic, �GCC

detect is

 

f�GCC
detectg

2 �
fhn2

1iGhn
2
2iGg

1=2����
N
p

2
���
2
p
�

f1� �P1 � P2�gPG�xcr;1; �m;1�PG�xcr;2; �m;2�
;

� G2��m;1; �m;2; �t;1; �t;2; P1; P2�f�
SCC
detectg

2; (32)

where we have assumed �eff � 1. The quantity � is given by � � erfc�1�2P
FA� and the amplitude �SCC
detect means the

minimum detectable amplitude for the SCC statistic in the large N limit [15]:

 f�SCC
detectg

2 �
2
���
2
p
�fhn2

1ihn
2
2ig

1=2����
N
p : (33)

In Eq. (32), the important quantity is the function G characterizing the gain compared to the amplitude �SCC
detect:

 G2��m;1; �m;2; �t;1; �t;2; P1; P2� 
1

f1� �P1 � P2�gPG�xcr;1; �m;1�PG�xcr;2; �m;2�

�
hn2

1iGhn
2
2iG

hn2
1ihn

2
2i

�
1=2
: (34)

The function G becomes unity when the noise probability
functions reduce to the Gaussian distribution. It also ap-
proaches unity if the ratio of the noise variance �t;i=�m;i
becomes unity. For the stochastic signal �, we have the
relation �gw / �2 / SNR. Thus, the minimum detectable
�gw using the GCC statistic is improved by a factor G2,
compared to that of the SCC statistic.

In Fig. 5, the thick lines show the quantity G as function
of �t=�m in the case of two identical detectors (see
Eq. (31)). The thin lines represent the same plot, but we
have taken account of the higher-order terms (A9) in
Appendix A. As the tail fraction becomes smaller and the
ratio �t=�m becomes larger, the thick lines tend to ap-
proach thin lines. The quantity G monotonically decreases

as increasing the ratio �t=�m or the tail fraction P.
Specifically, for the parameters P � 0:1 and �t=�m �
10, we obtain G� 0:35. This implies that the sensitivity
to the stochastic signal is improved by a factor 10 in terms
of SNR, compared to the sensitivity achieved with the SCC
statistic.

In the situation with Pi 	 1 and ��m;i=�t;i� & 1, a more
compact form of the approximation for G2 is found:

 G2 ’

�
hn2

1iGhn
2
2iG

hn2
1ihn

2
2i

�
1=2

’
Y
i�1;2

�
1� Pi

�1� Pi� � Pi��t;i=�m;i�
2

�
1=2
: (35)
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Thus, when the quantity Pi��t;i=�m;i�
2 is larger than unity,

the GCC statistic can become more powerful than the SCC
statistic.

IV. MONTE CARLO SIMULATION

In this section, we perform Monte Carlo simulations of
the cross-correlation analysis and compare the PFA � PFD

curves and the minimum amplitude �detect from the analytic
estimates with those obtained from the numerical simula-
tions. For the rest of this paper, we specifically assume that
the two detectors are identical and satisfy the condition
(31).

A. Algorithm of Monte Carlo simulation

Our Monte Carlo algorithm basically follows Ref. [15].
We numerically calculate the false-alarm and false-
dismissal probabilities PFA and PFD by conducting an
ensemble over the NCHUNK simulated experiments. For
each experiment, we randomly generate two kinds of (N �
2) matrix S made up of the detector outputs, in which one
output contains stochastic signals and other data contain
only the instrumental noises. We then compute the decision
statistic in the presence or the absence of the stochastic
signals. Choosing the threshold for the decision statistic,
we obtain PFA � PFD curve. The details of the algorithm
are summarized as follows (see also Ref. [15]):

(i) Generate two kind of (N � 2) data matrix S: For a
specific parameter set �P;�m; �t; �; N�, we first gen-
erate the N data train which only contains the in-

strumental noises, i.e., ski � nik �i � 1; 2; k � 1;
� � � ; N�. These random data are created according
to the probability distribution function (9). We then
duplicate the data train and further add the stochastic
signals (Eq. (10)), to the one data train, i.e., ski �
hik � n

i
k �i � 1; 2; k � 1; � � � ; N�.

(ii) Compute the decision statistics ��T �GCC and ��T �SCC

from the matrix S for T � 0 and 1: Based on the
expressions (7) and (8), under a prior knowledge of
the noise parameters �P;�m; �t�, we compute the

decision statistics ��T �GCC and ��T �SCC from the data
matrix S in both absence and presence of the sto-
chastic signals �T � 0; 1�. Note that the derivative
f0x�x� in Eq. (7) is given by Eq. (20).

(iii) Set a threshold value �
 to determine a point
�PFA��


�; PFD��

�� for GCC and SCC: For a given

value �
, we increase PFA by the factor 1=NCHUNK

when the condition ��0� >�
 is satisfied. Also, we
increase PFD by 1=NCHUNK if the relation ��1� <
�
 holds. These operations are performed in each
case of the GCC and the SCC statistics by varying
the threshold value �
.

(iv) Repeat the above steps NCHUNK times to estimate
the probabilities �PFA��


�; PFD��

�� for various

threshold values �
.

In the simulations presented below, the numbers of samples
and trials are set to N � 104 and NCHUNK � 5� 103,
respectively. Note that the N � 104 samples roughly cor-
respond to the data points appropriate for the low-
frequency detector like Laser Interferometer Space
Antenna (LISA) [17], for which 1 yr observation and the
effective bandwidth 10�3 Hz are assumed. Below, we will
present the results under keeping the noise variance �2

m �
1 fixed.

B. Simulation results and discussion

Let us first show PFA � PFD curves. In Fig. 6, the
symbols denote the simulated PFA � PFD curves for
GCC (left) and SCC (right) statistics in a variety of the
tail fractions P. Here, the signal amplitude � � 0:1 and the
ratio of the root of noise variance �t=�m � 4 are kept
fixed. Basically, the false-dismissal probability for a given
PFA becomes large as the tail fraction increases. However,
for fixed P, the false-dismissal probabilities of the GCC
statistic are always smaller than that of the SCC statistic. In
left panel of Fig. 6, the three thick lines indicate the
analytic PFA � PFD curves without the higher-order terms
in Eq. (25), which quantitatively agree with the
Monte Carlo simulations. A closer look at the results for
GCC statistic for the tail fraction P � 0:2 shows a small
discrepancy between analytic and simulation results,
which is mainly attributed to the higher-order terms ne-
glected in the analytic results. The thin line in left panel of

 

FIG. 5 (color online). The function G plotted against the ratio
�t=�m in the case of two identical detectors (see Eq. (31)). Here,
the tail fraction P is specifically chosen as P � 0:01, 0.05, 0.1
and 0.2 from top to bottom. The thick and thin lines are the
function G defined in Eq. (34) and the one taking account of the
higher-order terms (A9), respectively.
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Fig. 6 show the same analytic PFA � PFD curves, but we
take into account the higher-order terms (A9), where the
agreement becomes excellent. Note that, most of the
gravitational-wave detectors have a fairly small non-
Gaussian component and the analytic formulas for P	
1 without the higher-order terms would be applicable in
practice.

Figure 7 shows another plot of the PFA � PFD curves. In
each panel, fixing the tail fraction P to 0.1, the dependence

on the ratio �t=�m is depicted, in which both the analytic
and the simulation results yield the similar trends. From
this figure, performance of the GCC statistic seems re-
markably good. Even for larger non-Gaussian tails, the
PFA � PFD curves for GCC statistic almost remain un-
changed. On the other hand, the SCC statistic gets worse
significantly as increasing the ratio �t=�m > 1. This is
indeed anticipated from the behavior of the quantity
�eff=� in Eq. (29) (see Fig. 3).

 

FIG. 6 (color online). PFA � PFD curves for the GCC (left) and the SCC (right) statistics. Symbols denote the simulation results,
while the lines indicate the analytic prediction from Eq. (29). In each panel, the ratio of the noise variance is fixed to �t=�m � 4 and
the amplitude of stochastic signal is set to � � 0:1. Note that for the tail fraction P � 0:0, corresponding to the Gaussian noise case, the
solid line and the filled circles in left panel are identical to the one in right panel: P � 0:0 (filled circles and solid); P � 0:05 (open
circles and dotted); P � 0:2 (filled squares and dashed). The thin dashed line for P � 0:2 indicates the analytic PFA � PFD curve
taking account of the higher-order terms (A9).

 

FIG. 7 (color online). Same as in Fig. 6, but we here plot the dependence on the ratio �t=�m, fixing the tail fraction and the
amplitude of stochastic signals to P � 0:1 and � � 0:1: �t=�m � 2 (filled circles and solid); �t=�m � 4 (open circles and dotted);
�t=�m � 8 (filled squares and short-dashed); �t=�m � 16 (open squares and long-dashed).
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Turning to focus on the minimum detectable amplitude,
we plot in Fig. 8 the dependence of the amplitude �detect on
the tail fraction P (left) and the ratio of variance �t=�m

(right). In this plot, we specifically set the detection point
to �P
FA; P



FD� � �0:1; 0:1�. Note that for numerical inves-

tigation of the amplitude �detect, we ran the Monte Carlo
simulation several times and vary the amplitude � to find
the point satisfying the condition �PFA; PFD� � �0:1; 0:1�
until the accuracy with a few percentage has been
achieved. In each panel, the solid and dotted lines represent
the analytic estimates of the minimum amplitude for GCC
and SCC statistics, respectively, (Eqs. (32) and (33)). The
thin line in left panel shows the analytical prediction
including the higher-order terms (A9). For the smaller
tail fraction P & 0:1, the analytic results for GCC statistic
reasonably approximate the simulation results and the
resultant amplitude �detect is insensitive to the non-
Gaussian tails. On the other hand, the minimum amplitude
of SCC statistic increases in linearly proportional to the
ratio of noise variance �t=�m. This remarkable feature is
precisely what we expected from the analytic estimate of
the minimum detectable amplitude (see Sec. III C and
Fig. 5). That is, the dependence of the ratio �t=�m on
the functions G and �SCC

detect almost cancels out each other,
leading to the insensitivity of �GCC

detect. Since the two-step
approximation in our analytic formulas becomes a good
description for a larger value �t=�m, as long as the tail
fraction P is small, the analytic estimation of �GCC

detect pro-
vides a robust and a quantitative prediction for the detec-
tion efficiency of the GCC.

V. SUMMARY

In this paper, we discussed the robust data analysis
method to detect a stochastic background of gravitational
wave in the presence of the non-Gaussian noise.
Specifically, we have discussed the generalized cross-
correlation (GCC) statistic which is a nearly optimal sta-
tistic and quantified the detection efficiency in an analytic
manner. To do this, we have focused on a simple but
realistic non-Gaussian noise model, i.e., two-component
Gaussian noise. We derived the analytic formulas for the
false-alarm and the false-dismissal probabilities as a func-
tion of threshold value �
 and obtained the PFA � PFD

curves. Also, we derived the minimum detectable ampli-
tude of stochastic signal, �detect. These analytic results are
compared with the Monte Carlo simulations for the cross-
correlation analysis and found that the analytic formulas
provide a good description.

For small tail fraction Pi & 0:1, from Eqs. (32)–(34),
minimum detectable amplitude of the stochastic signal for
GCC statistic is related to that of the SCC statistic:
 

�GCC
detect ’ �f1� P1��t;1=�m;1�

2g

� f1� P2��t;2=�m;2�
2g��1=4�SCC

detect

where the quantity �SCC
detect become

 

�SCC
detect ’

�
2
���
2
p
�����
N
p �m;1�m;2

�
1=2
�f1� P1��t;1=�m;1�

2g

� f1� P2��t;2=�m;2�
2g�1=4

 

FIG. 8 (color online). Minimum detectable amplitude of the gravitational-wave signals as function of the tail fraction P (left) and the
ratio of noise variance �t=�m (right). The ratio of noise variance in left panel is specifically chosen as �t=�m � 4, while the tail
fraction in right panel is set to P � 0:1. In both panels, filled (open) circles represent the simulation results derived from the GCC
(SCC) statistic. The corresponding analytic curves are also shown in solid and dotted lines based on the expressions (32) and (33). The
thin line in left panel is the analytical prediction including the higher-order terms (A9). Note that in these plots, detection point is
specifically set to �P
FA; P



FD� � �0:1; 0:1� with sample points N � 104.
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with � being � � erfc�1�2PFA�. Thus, these two equations
indicate that the minimum amplitude of GCC statistic is
mainly determined by the main part and is insensitive to
the tail part of the noise probability distribution. Therefore,
the quantity �GCC

detect is almost equivalent to the one derived
from the SCC statistic just dropping the contribution of
non-Gaussian tails:

 �GCC
detect ’

�
2
���
2
p
�����
N
p �m;1�m;2

�
1=2
:

Finally, we close this paper with comments and discus-
sions. Throughout the paper, we have considered the two
coincident and coaligned detectors with the white noise
spectra. In practice, these restrictions must be relaxed.
According to Refs. [11,12], the GCC statistic has been
extended to deal with a more realistic situation with non-
coincident and non-co-aligned detectors of the colored
noises. In this context, the analysis in the present paper
roughly matches the narrow-band analysis in the Fourier
domain, where the noise spectrum can be approximately
described by a white noise. The extension of the present
analysis to the broad-band case would be straightforward
and this should deserve consideration. Another important
simplification in our analysis is the stationarity of the
instrumental noises and neglect of a noise correlation
between two detectors. In practice, the noise correlation
is known as a big obstacle in the LIGO at the Hanford site
[18] and it would potentially be a serious problem in the
future detector, LCGT [6]. Thus, exploration of optimal
data analysis strategy in the presence of not only the non-
Gaussian noise but also the nonsteady noise and the noise
correlation is very important task for future detectors.

It will be rather difficult to improve the sensitivity of the
detectable amplitude by building a more sophisticated
detector, due to the limitation of available technology
and funds. Hence, efficient methods for data analysis
such as the GCC statistic should be further exploited and
it must be properly incorporated into the future detection of
stochastic gravitational waves. Extending the present work
to deal with a more realistic situation, we will continue to
address these issues.

ACKNOWLEDGMENTS

We are grateful to the anonymous referee for his con-
structive suggestions and many useful comments, which
improve the original manuscript, especially in the analytic
treatment of the detection efficiency (Sec. III B and III C
and Appendix A). We also would like to thank Takahiro
Tanaka for useful discussions. Y. H. thanks Bruce Allen for
fruitful discussions in the Amaldi 6 meeting. This work
was partly supported by a Japan Society for the Promotion
of Science (JSPS) Research Grant (Y. H., H. K. and T. H.).
A. T. acknowledges the support by a Grant-in-Aid for
Scientific Research from the JSPS (No. 18740132).

APPENDIX A: ANALYTICAL EXPRESSIONS FOR
THE MEANS AND THE VARIANCES FOR THE

GCC STATISTIC

In this Appendix, we derive the analytical expressions
(23)–(26) for the mean and the variance of the GCC
statistic.

First, we compute the mean and the variance in the
absence of signal, i.e., T � 0. Adopting the two-step
approximation (21) with the critical value (22), we obtain

 h��0�GCCi � 0; (A1)

 ����0�GCC�
2 �
hn2

1iGhn
2
2iG

N
; (A2)

where

 hn2
i iG �

Z xcr;i

�xcr;i

dni�n2
i pn;i�ni�� � 2

�
�m;i

�t;i

�
4

�
Z 1
xcr;i

dni�n2
i pn;i�ni��: (A3)

In the situation we are interested in, i.e., Pi 	 1 and
��m;i=�t;i� & 1, the contribution of second term in the right
hand side of Eq. (A3) is negligibly small. Thus, the vari-
ance of noise is approximately described by the first term.
In Ref. [11], this effect has been called clipping. Then, we
have

 hn2
i iG �

Z xcr;i

�xcr;i

dni�n2
i pn;i�ni��

� �1� Pi��2
m;iPG�xcr;i; �m;i� � Pi�2

t;iPG�xcr;i; �t;i�:

(A4)

Here, the quantity PG�x;�� is defined in Eq. (27):

 PG�x;��  erf
�
x���
2
p
�

�
�

����
2

�

s
x
�
e��x=��

2=2:

Next, we consider the mean and the variance in the
presence of gravitational-wave signals. The mean h��1�GCCi
is expressed as

 h��1�GCCi �
1

N

XN
k�1

Z
dsk1ds

k
2f
0
1�s

k
1� � f

0
2�s

k
2�ps�s

k
1; s

k
2�; (A5)

where ps�sk1; s
k
2� is the joint probability distribution func-

tion for the two detector outputs defined by
 

ps�s
k
1; s

k
2� 

Z
dhkdnk1dn

k
2��s

k
1 � h

k � nk1�

� ��sk2 � h
k � nk2�phk�h

k�pn;1�n
k
1�pn;2�n

k
2�:

(A6)

As long as the two-step approximation with clipping holds,
the quantity (A5) up to O��2� becomes
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 h��1�GCCi � h�
�1�
GCCi

�‘� � h��1�GCCi
�h�; (A7)

where,

 

h��1�GCCi
�‘� � �2f1��P1�P2�gPG�xcr;1;�m;1�PG�xcr;2;�m;2�

(A8)

and

 

h��1�GCCi
�h� � �2�P1PG�xcr;1; �t;1�PG�xcr;2; �m;2� � P2PG�xcr;1; �m;1�PG�xcr;2; �t;2�� � �2P1P2�PG�xcr;1; �m;1�PG�xcr;2; �m;2�

� PG�xcr;1; �t;1�PG�xcr;2; �m;2� � PG�xcr;1; �m;1�PG�xcr;2; �t;2� � PG�xcr;1; �t;1�PG�xcr;2; �t;2��: (A9)

Under the situation that Pi 	 1 and ��m;i=�t;i� & 1, the
critical value xcr;i defined in Eq. (22) satisfies the condition
�m;i 	 xcr;i 	 �t;i, then PG�xcr;i; �m;i� and PG�xcr;i; �t;i�
approximately become unity and zero, respectively.
Therefore, one can regard the term h��1�GCCi

�h� as the negli-
gible higher-order terms.

Finally, using the two-step approximation with clipping,
the leading order result of the quantity ���1�GCC becomes

 ���1�GCC �

��������������������������������������������
h���1�GCC�

2i � h��1�GCCi
2

q
(A10)

 �
�hn2

1iGhn
2
2iG�

1=2����
N
p

�
1�O

�
�2

hn2
i iG

��
: (A11)

Thus, in the present situation that the detector noises
dominate the gravitational signal, we can reasonably treat
the quantity ���1�GCC as

 ���1�GCC �
�hn2

1iGhn
2
2iG�

1=2����
N
p � ���0�GCC: (A12)
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