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Complete model of a spherical gravitational wave detector with capacitive transducers:
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We report the results of a detailed numerical analysis of a real resonant spherical gravitational wave
antenna operating with six resonant two-mode capacitive transducers read out by superconducting
quantum interference devices (SQUID) amplifiers. We derive a set of equations to describe the
electromechanical dynamics of the detector. The model takes into account the effect of all the noise
sources present in each transducer chain: the thermal noise associated with the mechanical resonators, the
thermal noise from the superconducting impedance matching transformer, the backaction noise, and the
additive current noise of the SQUID amplifier. Asymmetries in the detector signal-to-noise ratio and
bandwidth, coming from considering the transducers not as pointlike objects but as a sensor with
physically defined geometry and dimension, are also investigated. We calculate the sensitivity for an
ultracryogenic, 30 ton, 2 m in diameter, spherical detector with optimal and nonoptimal impedance
matching of the electrical readout scheme to the mechanical modes. The results of the analysis are useful
not only to optimize existing smaller mass spherical detector like MiniGrail, in Leiden, but also as a
technological guideline for future massive detectors. Furthermore we calculate the antenna patterns when
the sphere operates with one, three, and six transducers. The sky coverage for two detectors based in The
Netherlands and Brazil and operating in coincidence is also estimated. Finally, we describe and
numerically verify a calibration and filtering procedure useful for diagnostic and detection purposes in

analogy with existing resonant bar detectors.
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I. INTRODUCTION

Resonant bar antennas are in continuous operation at
4.2 K with sensitivity and bandwidth never reached before
[1,2]. These detectors could improve their sensitivity of 1
order of magnitude in the coming years when operating at
100 mK. The first ultracryogenic spherical gravitational
wave (GW) detectors [3,4] are currently completing their
engineering phase and will soon be operational with an
expected sensitivity better than 1072! Hz~!/2 at 3 kHz.
Much interest is now directed towards the next generation
of acoustic detectors, which will be large mass spheres [5]
equipped with traditional resonant transducers and broad-
band dual resonators [6,7]. The resonant spheres rely on
available technology [1,2], a rather extensive theoretical
work [8-13], and the ground-breaking experimental work
performed so far on the ultracryogenic small mass sphere
MiniGrail [3], and Mario Schenberg [4]. The wide-band
dual detector potentially solves the problem of relative
narrow bandwidth of current resonant bar and spheres,
but the required technology needs to be assessed in sepa-
rate experiments [7]. Here we numerically analyze the
sensitivity and performance of an ultracryogenic spherical
detector, equipped with capacitive, SQUID-based, reso-
nant transducers. A general analysis of the problem of
the readout system for a linear detector is given in
[14,15]. Previous works [10,12,13,16—18] have provided
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a solution for the readout and inverse problem of a spheri-
cal detector, deriving equations of motion for the five
degenerate quadrupole spheroidal modes coupled to N
identical, pointlike, single-mode resonant transducers lo-
cated at arbitrary points on the sphere surface. The effects
of transducer asymmetries on the strain sensitivity and
bandwidth were studied in [10,13] for rather generic radial,
pointlike, single-mode, identical resonators. In [19] the
strain sensitivity for a spherical gravitational wave detector
with a three-mode inductive transducer with optimal pa-
rameters is calculated.

The present paper shows the results of a detailed nu-
merical calculation of the performance of a spherical de-
tector, which uses 2-mode capacitive transducers where the
electrical resonant mode of a superconducting matching
network can be tuned to the resonant mechanical modes.
The signal current from the superconducting matching
transformer is read out by sensitive SQUID amplifiers.
We chose this transduction system mainly for two reasons:
first, most existing bars and spherical antennas use capaci-
tive transducers, second, the technology involved is so far
the most advanced. As recently experimentally demon-
strated on the currently most sensitive resonant antenna
AURIGA [1], such a readout scheme enhances both the
sensitivity and the bandwidth of a resonant detector when
working in the tuned mode. Two-stage SQUID amplifiers
coupled to a high quality factor load can reach nowadays
an energy resolution only an order of magnitude higher
than its quantum limit when properly cooled down to
100 mK [20]. Two-stage SQUID amplifiers operate at 4—
5 K on the bar antenna AURIGA [1], and on the spherical
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antenna MiniGRAIL [21], with a sensitivity of about 6007,
never reached before.

We use the analysis presented here to study the detector
sensitivity as a function of the SQUIDs, the superconduct-
ing matching network, and the mechanical resonators in-
trinsic parameters, and to define the optimal coupling
between the antenna, transducer, and amplifiers. The simu-
lations consider the effect of all the parameters involved in
a real detector, including the effect of the cold-damping
network used in the fluxed lock-loop (FLL) of the SQUID
amplifier to stabilize the readout of high Q loads [22]. We
study also the sensitivity and signal bandwidth deteriora-
tion coming from the transducer being a geometrically
extended object rather than a pointlike mass. Finally we
describe and numerically test a method to fully calibrate a
spherical detector and to derive the optimal filter parame-
ters from the experimental data. This method is a general-
ization of the one used with the resonant bar antenna
AURIGA [23]. The codes generated to perform such an
analysis can be used as a guideline for the development of
future detectors as well as a tool to evaluate the perform-
ance of present small mass spherical detectors.

In Sec. II we give an overview of the equations necessary
to describe the coupling of a gravitational wave to a sphere
and of a sphere to a N mechanical resonator following the
formalism introduced by Johnson and Merkowitz [16]. We
complete the equation of motion for a capacitive trans-
ducer coupled to a SQUID amplifier through a supercon-
ducting matching transformer. The detector strain
sensitivity, noise temperature, and signal bandwidth are
derived using the generalized vector approach proposed
by Stevenson [13]. This method is particularly powerful
when transducers are not identical not only in their me-
chanical parameters, but also with respect to their noise
sources. It indicates a rather simple method to handle the
correlation between transducer output channels and to
form statistically independent channels (the mode channel
concept used in [16]) in the absence of symmetries. In
Sec. III we describe all the noise sources acting on the
sphere and the transducer chain. The results of the numeri-
cal analysis are reported in Sec. IV. First, following the
description of a parameter optimization procedure, we
calculate the strain sensitivity for an ultracryogenic spheri-
cal detector, 2 m in diameter, made of a copper and
aluminum alloy (CuAl 6%), and equipped with one and
six transducers located in the positions of the truncated
icosahedral (TI) configuration proposed by Johnson and
Merkowitz [16]. Second, the antenna patterns are calcu-
lated for two spherical detectors with optimal sensitivity
located in the north and south hemisphere of the earth. The
sky coverage is estimated for such spheres operating with
one, three, and six resonators, both when working inde-
pendently and in coincidence. Finally, the effect on the
sensitivity is evaluated when nonidentical and nonideal
transducers are employed. In Sec. V a complete calibration
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procedure for a spherical detector is described. First we
show a way to derive experimentally the equivalent tem-
perature of the mechanical modes of a sphere equipped
with six transducers. Then we discuss a procedure to
measure the detector transfer functions and to calibrate
its force response. Such a method is finally tested by
calculating the detector mode channels response with si-
mulated gravitational wave bursts. Finally, Sec. VI sum-
marizes the results.

II. SPHERICAL GW RESONANT DETECTORS

In this section we describe the model used to derive the
sensitivity of a spherical gravitational wave antenna with N
transducers coupled only to radial motion. We consider a
capacitive transducer, which can be operated in a 2-mode
configuration when the electrical mode is tuned to the
mechanical one.

The dynamics of a sphere coupled to radial transducers
and interacting with gravitational waves is described below
using the mode channels formalism introduced by Johnson
and Merkowitz [16], and matrices notation suitable to
derive the signal-to-noise ratio (SNR) and the noise tem-
perature of a multichannel system [13].

A. Coupling of a bare sphere with the gravitational field

A gravitational wave is a time-dependent deviation of
the metric perturbation. In the coordinate frame of the
wave, denoted here by primed coordinates and indices,
with the origin at the detector center of mass and the z’
axis aligned with the propagation direction of the wave, the
spatial metric perturbation in the traceless and transverse

(TT) gauge is given by
hi(t)  hy() 0
H’(t)=<hx(t) —h.(1) 0>, (1
0 0 0

with A, and hy corresponding to the two independent
wave polarizations. A wave with polarization 4, deforms
a test ring into an ellipse with axes in the x and y directions.
A wave with polarization hy deforms the ring at a 45-
degree angle to the x and y directions. A circularly polar-
ized wave has A, = *h, and rotates the deformation of a
test ring in the right-handed (or left-handed) direction [24].

The dynamics of a bare resonant sphere can be described
by ordinary elastic theory. A force f acting on the body will
cause a displacement of the sphere mass element at its
equilibrium position. The mechanics are described by the
standard equations of motion of a forced oscillator. In this
section we limit ourselves to review the main result. More
complete treatments can be found in [8,9,11,12,16]. In
particular we make use of the formalism introduced by
Merkowitz [10,16].

Denoting by f(x, 7) the total force that acts on the sphere,
including the gravitational wave force, at the position x =
{x, y, z} and time ¢, one finds that the equation for each
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mode amplitude is the one for a forced harmonic oscillator.
After Fourier transforming, each mode amplitude can be
written as

a. () 3 1
w =
m 4pmR? w2 — 0 + joui,®,,
x f W, ()F(x, 0)dx, 2

where R is the radius of the sphere and p the density. On
the right-hand side of the equation, the first factor is an
arbitrary normalization constant. The second factor de-
scribes the oscillating nature of the displacement where
w,, and &, = 1/Q,, are, respectively, the resonance fre-
quency and the loss angle associated with the quality factor
Q,, of the mth mode. The integral is calculated over the
entire volume of the sphere where W, ,,(x) are the time-
independent orthogonal elastic eigenfunctions of the
sphere with [ =0 or [ = 2.

In general relativity only 5 quadrupolar modes of vibra-
tion (€ = 2) will strongly couple to the force density of a
gravitational wave due to the fact that the tensor H' is
traceless. In a perfect sphere they are all degenerate, having
the same angular eigenfrequency w,. The quadrupolar
modes can be written in terms of the convenient set of
the five real spherical harmonics Y,,(6, ¢), which are
defined as follows:

Y, cos2¢sin’6

Y, sin2¢sin’6

Y; [ =, 2| singsin26 | 3)
Y, 1 cos¢ sin26

Ys 75(3cos20 -1

They are the result of a linear combination of the usual
complex-valued spherical harmonics Y,,,.

For a sphere of radius R the eigenfunctions can be
written as:

W, = [a(nt + B(r)RV]Y, (6, $). )

The radial eigenfunctions a(r) and B(r) determine the
motion in the radial and tangential directions, respectively.
An explicit description of the motion in the radial and
tangential directions is given by Ashby and Dreitlein [8].

In the lab frame with origin at the center of mass of the
detector and the z axis aligned with the local vertical, a
gravitational wave produces an effective time-dependent
tidal force FS, on each mode m of the sphere equal to the
overlap integral of Eq. (2). One finds

F3(0) = [12pln(OR Tela(gR) + 3D (kR)]

1.
= Ehm(t)mSXR’ (5)

where J, is the spherical Bessel function of order 2, the
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coefficients ¢, d specify the shape of the eigenfunctions
and are weakly dependent on the material Poisson ratio [9],
myg is the physical mass of the sphere, and Ry is the
effective length of each mode where y depends on the
Poisson ratio and is equal to 0.327 for the CuAl sphere
considered in the following analysis. &,, are the spherical
amplitudes [16], a complete and orthogonal representation
of the metric perturbation. ¢ and k are, respectively, the
longitudinal and transverse wave vectors as defined in [8].
The effective force F3, on the corresponding mode of a
sphere is therefore uniquely determined by each spherical
component of the gravitational field.

The force acting on each spheroidal mode m in the lab
frame can now be written in terms of the gravitational wave
amplitudes

1 h
Fh = 5msrRo?Ty( ) ©
where Ty, given by
X1 + cos?0) cos2¢p  cosf sin2¢

—3(1 + cos?6) sin2¢p  cosf cos2¢p

Ty = —1sin26 singd sinf cos¢
% sin26 cos¢ sinf sing
\/gsinzﬁ 0
cos2y  sin2y
x ( —sin2y  cos2iy ) @

is the transformation matrix, which converts the gravita-
tional wave amplitude in the wave frame into the spherical
amplitude in the lab frame. Here we used the y-convention
of the Euler angles shown in Fig. 1 and the linear combi-
nation of the spherical harmonics described in Eq. (3). The
angle ¢ is the first Euler angle in the rotation relating the
wave frame to the laboratory frame and it carries informa-
tion about the GW polarization.

a) b)

FIG. 1 (color online). (a) The truncated icosahedral (TI) ar-
rangement for a spherical gravitational wave antenna with reso-
nator locations indicated. The numbering of the resonators
corresponds to the ordering used in the numerical calculations.
(b) Euler angle transforms convention.
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B. Sphere with N resonant transducers

Resonant transducers are used on resonant detectors,
either bars or spheres [1,3,25], in order to improve their
sensitivity and bandwidth. We consider here the same type
of transducers as displacement sensors. They consist of a
mechanical resonator with the fundamental mode tuned to
the quadrupolar modes of the antenna. At resonance, there
is a transfer of momentum between the resonator and the
antenna, turning small displacements of a large antenna
into large displacements of the small resonator.

Let us consider a set of N resonators attached to the
sphere at arbitrary positions (6;, ®;). The values of the
relative radial displacement of the sphere at the transducers
location can be grouped together into pattern vectors for a
particular mode. These column vectors, in turn, may be put
together to form a pattern matrix B,,; defined by [26],

1
ij = EI’ . \I’m(ej’ ¢j), (8)

where « is the radial eigenfunction introduced in Eq. (4).
One gets

Assuming that each resonator is designed to obey the one-
dimensional harmonic oscillator law, the coupled equa-
tions of motion for the sphere modes, written in matrix
form, are

e I B el )

_ I —aB7[ F5(r) (10)
0 I FR(p) |

where matrices are denoted by bold fonts and capital letters
and vectors by bold fonts and lower case letters. The vector
a has 5 components and the vector q has N components.
They represent the radial displacement of the sphere and
the resonator, respectively. For identical sphere modes and
identical transducers, the factors m, k, indicating, respec-
tively, mass and spring constants are identical and can be
treated as numbers. In reality, each mode has its own mass,
quality factor, and spring constant, so they have the form of
a diagonal matrix with components m$, ki = mfw?(1 +
iP;(w)) for the sphere, with i = 1,...,5 and m] and K’ =
m;a)?(l + i®;(w))) for the resonators, with j = 1,..., N.
Here w,, with n = i, j, is the natural frequency and ®,(w)
is the loss angle of each resonant mode. It represents the
frequency dependence of the loss of a mode. For com-
monly observed dissipations in metals [27], losses do not
depend on frequency and ®,(w) = 1/0Q,, where Q,, is the
mode quality factor. In the case of viscous damping, due,
for example, to eddy-current effects, the loss angle is
proportional to the frequency and is given by ®,(w) =
w/w,Q,. We consider the first dissipation mechanism to
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FIG. 2. Single-mode electromechanical model of a spherical
antenna with mechanical resonator and capacitive transducer
coupled to a SQUID through a superconducting matching trans-
former.

describe the losses in the mechanical modes. FS and FR are
the driving forces, which include the gravitational waves
contribution as well as the forces generated by noise
sources.

Equation (10) fully describes the mechanical system
sphere-resonators when the pattern matrix B,,; is known.
Here we consider the special transducer configuration pro-
posed by Johnson and Merkowitz [16,28]. It consists of a
set of six transducers placed on the 6 pentagonal faces of a
TI. The resonators are located at two polar angles, 1 =
37.3773° and 79.1876° as illustrated in Fig. 1. Their
azimuthal angles 7 are multiples of 60°.

Below we derive the complete equations of motion for a
spherical detector equipped with capacitive transducer and
SQUID amplifiers. In a capacitive transducer, the resonat-
ing mass, tuned to the spheroidal modes, modulates the
charge of a parallel plate capacitor biased at a large con-
stant voltage. The capacitor is formed by the resonating
mass top surface and an electrode, assembled with a gap of
the order of tens of micrometers. The input coil of the dc-
SQUID chip is coupled to the capacitive transducer via a
high-Q superconductive transformer, which can have,
eventually, the electric resonance coupled to the mechani-
cal modes in order to enhance the bandwidth. The super-
conducting transformer is essential to match the low
impedance of the SQUID with the high impedance of the
capacitor. In the model, which is schematically shown in
Fig. 2, we include the relevant Gaussian noise sources of
the readout scheme.

C. Equation of motion of a spherical detector with
resonant capacitive transducers

The motion equations of a single capacitive transducer
coupled to one mechanical mode of the sphere can be
generalized to include the complete mechanical response
of a sphere coupled to N resonators, described by Eq. (10),
and all the equations for the electrical circuit of each
resonator. After Fourier transforming, Eq. (10) can be
simplified defining the following 5 + N square matrices:
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B msl 0
M == ’
mRaBT mRI
(kI —kpaB
K=| " o (11)
0 Kl
T —aB
A= .
i 0 I

They are, respectively, the mass, elastic, and force ma-
trices of the coupled sphere. The force matrix A describes
the mechanical coupling between the 5 + N resonant
modes of the detector. We can finally write

w S w
[—w’M + K][ :Ewﬂ = A[ Eggw; } (12)

We assume that each of the N transducers mounted on
the sphere has the same electrical circuit configuration
described in Fig. 2, but not necessarily the same value
of the parameters. We shall define then the vectors
I(w) =, ... 1N, Li(w) = ...I;x), Vilo)=
(Vii---Ven), Vplw) =(V,;...V,y), which describe,
for each transducer, respectively, the current in the super-
conducting matching transformer, the current in the input
coil of the de-SQUID amplifier, the voltage noise gener-
ated in the LC superconducting resonators, and the voltage
noise of the dc-SQUID amplifiers.

Denoting by E; the electric field stored in the ith capaci-
tive transducer, we define the electric field matrix as fol-
lows:

E = diag(E,, ..., Ey). (13)

The electrical circuit equations can be written in matrix
form as follows

(5 o 2] bl [ <[4 ST ] o

We chose the electric matrix E to be diagonal, because
we made the reasonable assumption that the electric field
force acts only on the resonator which the field is applied
to. The impedance matrix

le Z12j|
7 = 15
[Zzl Z (1)

is a (N + N) X (N + N) matrix. Each of the four N X N
matrices Z;; is diagonal if we consider as negligible the
possible crosstalk between the readout electronics of each
transducer. Each diagonal member of Z;; is equal to

Ziy=r +ri+ joLi + R Zi, = —joM,
zy = —joM', 2, = joi+L,), U0

where 1! is a resistance associated with the losses in the
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superconducting resonator. Cl, is the total transducer ca-
pacitance resulting from the parallel between the trans-
ducer and parasitic capacitance. r, is a lossless resistance
resulting from operating the SQUID amplifier in the FLL.
There is no thermal noise contribution associated to r;
because it is the result of a feedback mechanism. Such a
resistance can be controlled by implementing a cold-
damping system [22]. In this way the detector has a virtual
low quality factor making the FLL electrically stable. We
remark that introducing such a damping scheme in
our calculations brought benefit to the numerical analysis,
by eliminating the computational problem of sharp
resonances.

To fully describe the mechanical and electrical dynamics
of the detector we have to introduce the backaction of the
electrical readout circuit on the mechanical system. The
current flowing in the LC loop of the circuit in Fig. 2
generates a force on the mechanical resonator proportional
to the current itself and the applied electric field. The
backaction force vector Fg (@) adds to the Langevin force
generators FR(w) introduced in Eq. (12) and is equal to

Ellp,l ENIp,N _ EIp((l))

FE, () = < (17)

The complete set of coupled equations of motion be-
comes finally:

PR =AML =
[0 y  Z } Lw |~ Vi [ Y
(o) Valo)

where M = —w?M + K, Zg, is the (5 + N) X N back-
action matrix given by

— E
ZBA:|: ?B}., (19)
](1)
and
,_[A 0
A _[0 1} (20)

The (5 + 3N) square matrix on the left side of Eq. (18)
can be seen as the impedance matrix Z of the electrome-
chanical system. Defining G = Z~'A’, the SQUID input
current for each transducer is given by

D)
FY(o)
Vi(w)
Va(w)

I; =Gy = G(F, (21)

where Gy is a submatrix of the admittance matrix G with
components G, ,, where s =5+ 2N,...,5+ 3N and r =
1I,...,5+ 3N. The vectors FS, FR, V., and V, are the
forces generated by each noise source.
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The noise of the detector, referred to the SQUID ampli-
fier input, in absence of the signal, is described by the
spectral density matrix Sy [29]. Each component of the
matrix,

5= [ e R = )y @), (22)

is the Fourier transform of the correlation function for the
mth and nth outputs defined as

Ro(7) = (01Nt — 7)) = ] " mOne - fd. (23)

From Eq. (23), each component of the spectral density
matrix becomes the product of the Fourier transforms of
the transducer outputs, as shown in the second equality of
Eq. (22). The white current noise /i of the SQUID ampli-
fier, which will be better defined below, needs to be added
to the spectral matrix S;. In matrix notation we can easily
write the total SQUID current spectral density matrix as

S 1= GIF}?XGIIK + SI,O’ (24)

where the N square matrix Sy, has components S7y" =
ITIG*. The diagonal elements of S;, are equal to the
current spectral density given in Eq. (33). The correlation
between the N SQUIDs additive current noise is expected
to be negligible so, in the following, we will consider
diagonal the matrix Syg. The spectral density defined in
Eq. (24) can be numerically calculated and experimentally
measured by means of techniques where the phase infor-
mation is preserved.

The optimal signal-to-noise ratio p, for a gravitational
wave signal of amplitude /(w), is given by

o h*(w) do
2 — -~
7o 4ﬁ) Sin(w) 271’ *
where
Sun(@) = h*(0)[(F3)* G, [ Fau] ™ 'h(w)
4

= W[T*VGSIg St l(w)Gsig,lTV] b (26)
is the one-sided total strain noise power spectrum.

In the equation above, we called h the vector (h;hyx)
and the N X 5 matrix Ggjg 1 is a submatrix of the admit-
tance matrix G(w) with components G, ,, where s = 5 +
2N+ 1,...,5+3Nandr=1,...,5.

Each transducer line should be considered as a linear
system with the (5 + 2N + 2) uncorrelated noise sources
described above, if we consider as negligible the correla-
tion between the voltage and current noise in the SQUID
amplifier. However, the outputs of the N transducers do
have correlated noise and the off-diagonal components of
the spectral density matrix are nonzero. One can always
find linear combinations of transducers outputs, which
produce N uncorrelated signals [13]. Since S;isa N X N
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Hermitian matrix it can be diagonalized by a unitary matrix
U(w). A new output channel vector is then obtained and is
related to the original vector I; by

1 = UL, 27)

The channels I} are statistically independent and the
spectral density matrix
S =U'S;U = diag(¢}y(w), ..., ¢y(w))  (28)
is diagonal, the eigenvalues i; of S} being the noise
spectral density of each independent channel.
We notice that, after performing the diagonalization in

Eq. (28), the total optimal SNR can be written as the sum of
the SNR in each statistically independent output channel,

oo Iu%lgzd
Z4f ! 2 (29)
27

i

From Egs. (25) and (26) the SNR becomes

) _ myxRw} |h(w)|?
0 2 2

X |:4/+< I’:{,Gzig I(W)Sl_l(w)Gsig,I(w)Tvdw}
0 g
(30)

The performance of resonant detectors is often charac-
terized by their sensitivity to impulsive burst signals which
vary little over the detection bandwidth. For impulsive
signals, the SNR is proportional to the deposited energy
E in the antenna initially at rest given by [24]

w

|
E=S

c T psUy )
G Tom HlA(w)l?, 31

4 fo

wflh(wy)*S =

where 3 = % hH is the integrated cross section of a

()
spherical detector [9] and II is the reduced energy cross

section equal to 0.215 for a CuAl sphere [12]. G and c are
Newton’s gravitational constant and the speed of light,
respectively, while pg and vg are the antenna material
density and sound velocity.

The pulse detection noise temperature 7'y is then defined
as

(32)

This is a convenient quantity to compare spherical de-
tectors with bar detectors: while E for a bar antenna
depends on source direction and polarization, Ty does
not. Using Eqgs. (30) and (31) we can write T as follows
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T, = 477'( T >2p5v§

- E mgxR 3

@y
+o00 " " - -1
x[4 L TGy 1 (0)S] (w)Gsig,I(w)Tvdw} .
(33)

We remark here that, due to the dependency of the
matrix Ty from the wave direction and polarization, the
sensitivity of a spherical detector will be isotropic over the
sky only if a sufficient number of transducers is used
(N >5). For N < 5, one can define the detector sensitivity
by averaging over the direction and polarization as de-
scribed in [30].

ITI. NOISE CONTRIBUTIONS

A. Mechanical resonators

Thermal noise is the main contribution of the mechani-
cal resonators to the total detector noise. The spectral
density of the thermally activated forces acting on the
mechanical modes can be estimated from the fluctuation-
dissipation theorem [31], and described as follows

S g (@) = 4kBTRe<,ﬂ, ) (34)
Ja)

where jﬂw is the system mechanical impedance matrix

derived in Eq. (18), kg is the Boltzmann constant, and T
is the thermodynamic temperature. With this formalism we
take into account the stochastic cross coupling among the
various degrees of freedom of a macroscopic mechanical
body [32].

The thermal noise contribution of other modes of the
spherical detector has never been considered as a possible
source of noise because they lay generally far away from
the detector bandwidth. In a real detector, the first toroidal
modes are only a few tens of Hz lower than the spheroidal
modes due to the spread of the resonances caused by the
detector asymmetry [33]. Moreover, in a spherical detector
with large bandwidth, the toroidal modes shall fall into the
sensitive bandwidth. However they are not sensitive to GW
and they couple very weakly to a resonator with radial
sensitivity. The toroidal modes usually have larger quality
factors than the spheroidal modes and their thermal noise
contribution is generally negligible.

Furthermore, higher frequency modes could also con-
tribute to the total noise in the detector bandwidth due to
down-conversions phenomena related to the physical ge-
ometry and dimension of the readout transducer [34]. To
evaluate the contribution of the higher frequency mode one
can proceed as in [35], and calculate the total mechanical
impedance using finite element or numerical techniques.
Here we consider only the thermal noise of the spheroidal
modes and the main radial resonance of the transducers,
the latter being usually the dominant source of noise. The
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contribution from other modes will be studied in a follow-
ing paper.

B. Electrical resonators

The LC resonator which derives from transducer capaci-
tance and the primary coil of the matching transformer
contributes to the total noise with a thermal voltage noise
source associated with the resonator losses, with single-
sided spectral density Sy = 4kzT Re(Z; c(w)). The dissi-
pating term r = Re(Z; o(w)) is linked to the intrinsic elec-
trical quality factor of the LC resonator by the well-known
relation Q¢ = L, /Re(Z; ). The dissipation resistance
r includes the contributions from dielectric losses in the
transducer and decoupling capacitor, in the coil parasitic
capacitance, and in the coil insulating layers and holder
[36], magnetic losses due to flux motion in the supercon-
ducting shields, ‘““magneto-resistive” losses due to dissi-
pative components in the SQUID amplifier [37].

The thermal noise contribution from the LC resonator
adds to the SQUID backaction noise and may become
significant when SQUID amplifiers with € <2007 are
employed.

C. SQUID amplifier noise theory

A coupled dc-SQUID amplifier can be modeled as an
ideal current amplifier with a current noise source [, in
parallel and a voltage noise source V,, in series with the
input coil. The two of them are responsible, respectively,
for additive and backaction noise. To fully characterize the
SQUID it is necessary to estimate both the noise contribu-
tions. A useful parameter to characterize an amplifier is its
noise temperature T, defined by

VS, Sii —Im(S;,)? 5
= = e — €2 35
4kB kB ell EUU € ( )

T, o
in the classical limit when kzTy > hw. T, is the tempera-
ture at which the optimal input impedance gives the ther-
mal noise power equal to the amplifier noise. Its minimum
value for a linear amplifier is imposed by the uncertainty
principle and is given by Ty ~ hw/kg [38]. S, and S;; are
the spectral densities, referred to the SQUID input coil, of
the two noise generators, while S,; is the cross correlation
between the two. According to the Clarke-Tesche-Giffard
(CTG) theory the single-sided spectra are equal to

Rs Mi,SQ
kgT
II; w(M;sq)% (36)
kgT
Ry

S, =11

Sjv ~12 ijSQr

where R;, Lsq, M sq are, respectively, shunt resistors, self
inductance, and input coil mutual inductance of the
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SQUID. The cross correlation power spectrum is always
purely imaginary due to the time-reversal symmetry of the
SQUID motion equation. Its absolute value is usually small
and we will neglect it in the following calculations. In
Eq. (35) the noise temperature is also defined in terms of
the energy resolutions €;;, €,,,,, and €;, expressed in units of
#i. In the following sections we will not make distinctions
between the voltage and current energy resolution, €;; and
€., and we will generically talk about SQUID energy
resolution assuming that they both have the same value.
The cross correlation energy resolution €, will be
neglected.

IV. NUMERICAL ANALYSIS

Here we numerically calculate the noise temperature,
the bandwidth, and the strain sensitivity of an ultracryo-
genic, large 2 m in diameter, spherical detector as a func-
tion of the transduction chain parameters. We consider a
detector operating according to the state-of-art resonant
antenna technology and when all the parameters are im-
proved to operate the detector nearly at the quantum limit.
Further we calculate the antenna patterns and the sky
coverage of two identical detectors operated in coincidence
and located, respectively, in Leiden (The Netherlands) and
Sao Paulo (Brazil), the location of the two small spherical
antennas MiniGrail [3], and Mario Schenberg [4], cur-
rently under development. Finally the anisotropy in the
sensitivity and bandwidth is studied for a not ideal resona-
tor and a not optimally tuned 2-mode capacitive transducer.

A. Parameters optimization

To optimize a resonant detector one must know the
voltage and current noise of the available SQUID amplifier.
The other parameters can then be adjusted to achieve the
best SNR. The optimal impedance matching between the
mechanical resonators and the SQUID amplifier is
achieved when the transducer electrical mode is tuned to
the mechanical resonances. In the scheme described in
Fig. 2, the electrical mode contributes to the transducer
chain with an equivalent mass m., = CrE*/®}. In a mul-
timode detector the energy transfer between each resonator
is optimized when w = mg/mey = mg/my, where w is
defined as the mass ratio and m.g is the effective mass ratio
of the five spheroidal modes, which is a fraction of the
sphere total mass m, and is equal to m.; = 5/6 ym, [16].
For optimal mass-ratio one gets a shorter energy transfer
time between the modes and a wider system bandwidth. To
fully describe the sensitivity of a resonant detector we
consider the SNR, the pulse detection noise temperature
Ty, and the signal bandwidth, here described by [39]:

_ L ([T 18,7 (0)ldw)?
27 f8°|S;hz(w)|2dw ' 37
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In the analysis below we imposed the following con-
ditions:

Mg\ 1/2 1
where L, = L,(1 — k*L/(L + L)) is the reduced induc-
tance of the primary coil of the matching transformer with
coupling k* = M?/(L,L ). The first condition is obtained
by assuming a constant mass ratio u = m./mg. With the
second condition we impose that the electrical resonances
are tuned to the transducers mechanical resonances. This
condition is fundamental to get optimal matching in a
capacitive transducer. The parameters of the electrical
matching network depend on the value of the SQUID input
inductance and noise, and on the detector mass ratio. It can
be shown that for a large mass ratio, a coupling k£ ~ 1, and
optimal matching, the inductance L of the superconduct-
ing transformer secondary coil should be as large as the
SQUID input inductance L;. However in practice large L,
will guarantee large coupling and finally a better sensitiv-
ity. For low mass ratio, the impedance seen by the trans-
former primary coil is lower than for high mass ratio when
the same capacitance is considered. One can obtain a better
matching by decreasing both the inductances L, and L of
the primary and secondary coil while maintaining valid the
conditions equation (38). The improvement is however
rather limited giving, for example, about 20% better noise
temperature using an inductance L, ~ 0.3L; for a mass
ratio . = 0.001 and a k ~ 1.

We anticipate that for a detector with significant thermal
noise (high 7/Q ratio) operating with a low noise SQUID
amplifier, the optimal sensitivity is obtained for large mass
ratio u and, consequently, high transducer capacitance (see
Eq. (38)). It is however physically impossible to reach
arbitrary resonator high mass and capacitance using the
detector configuration discussed here. The maximum
transducer capacitance Cr and mass mp one can reason-
ably obtain, which however have never been developed so
far, are estimated to be Cr . =30 nF and mpg . =
90 Kg. They correspond to a transducer with an area A =
0.1 m?, a gap d =~ 20 pm, and a mass ratio u =~ 0.01 [40].
We notice that strong physical constrains apply in general
also to the mechanical resonant frequency due to the
limits on the resonator membrane thickness [41,42].
However, a resonator “‘rosette’”” design as developed for
the NAUTILUS and EXPLORER detectors [42], allows a
rather wide freedom in the choice of the resonator mass
and sensitive area for a given resonant frequency.

We report below the calculated detector sensitivity for a
2 m large in diameter, 30 ton, CuAl sphere. The main
parameters of the detector are summarized in Table L.
Such an antenna has a cross section 2 = 9.76 X
1072* m>Hz. The total energy deposited by a GW of
amplitude A(w) is E = 1.0 X 10¥w?|h(w)|* K. A GW
burst signal, lasting for a time 75 = 1 ms, shorter than
the detector integration time and rising quickly to an
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TABLE I. Main parameters used in the numerical analysis of
the sensitivity of a spherical detector equipped with six capaci-
tive transducers. The first column shows the parameters of a 2 m
sphere in CuAl already achieved in separate experiments. In the
second column we give the parameters necessary to operate the
detector at the quantum limit. The CuAl alloys have a sound
velocity of 4700 m/s and a Poisson ration of about 0.3. The
material dependent factor y introduced in Eq. (5) is y = 0.327
for CuAl. The effective mass of the spheroidal modes is then
Megg = 5/6x * my = 8 tons.

Parameters Current technology Quantum limit
Sphere mass, M, [tons] 30 30
Sphere diameter [m] 2 2
Resonator mass, M, [Kg] 10 90
Spheroidal modes, f; [Hz] 987, 1001, 1008, 987, 1001, 1008,

1012, 1017 1012, 1017
0, O, Q4 2 X 100 5% 107
T [mK] 50 20
C, [nF] 10 30
L, [H] 3.6 1.2
bias field, E [Volt/m] 5% 10° 4 x 107
SQUID sensitivity, E.g[7] 50 1

amplitude hy = h(wy)/76 ~ 2 X 1072, deposits an en-
ergy Tgg = 1 uK.

We consider a sphere equipped with six radial capacitive
resonators in the TT configuration. The electrical mode of
the superconducting matching network is tuned to the
mechanical ones. The signal of each transducer is ampli-
fied by a two-stage SQUID amplifier. Two situations have
been considered. In the first one the detector parameters
have values according to the current available technology.
In the second we estimate the ultimate sensitivity of the
detector obtainable with quantum limited amplifiers and
ultra high QO mechanical and electrical resonators. For a
given T/Q ratio and SQUID amplifier energy resolution,
the detector sensitivity depends on the resonators mass
ratio, the electric field bias E, the transducers capacitance,
and the parameters of the matching transformers.

The detector effective noise temperature, the bandwidth,
and the SNR for a GW burst of Tgg = 10 wK are calcu-
lated as a function of the mass ratio for different values of
the T/Q ratio. T/Q refers both to the mechanical and
electrical resonances. The equivalent mass of the electrical
resonator is adjusted according to the mass ratio by chang-
ing the electric field bias E. The optimal electrical field is
calculated as a function of the mass ratio and the transducer
capacitance. The results are shown in Fig. 3. We considered
mechanical and electrical 7/Q of 1 X 1077, 2.5 X 1078,
4 X 1071°, Mechanical T/Q of the order of 10~® has been
reached in a CuAl sphere cooled at 50 mK [43], and in
Al15056 bars cooled at 100 mK. The lowest 7/Q = 3 X
1073 for electrical resonators has been achieved by the
AURIGA group with a large Nb coil resonator cooled
down to 50 mK [20]. The fabrication of electrical resona-
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FIG. 3. Optimal bias electric field for a different value of the
transducer capacitance as a function of the resonators mass ratio

M.

tors with 7/Q =1 X 1077 at acoustic frequencies is
nowadays a well-established technology. A T/Q <1078
has not yet been achieved experimentally either in me-
chanical transducers or in electrical resonators. The results
of the calculations are shown in plots in Fig. 4(a), where
the noise temperature, the SNR, and the bandwidth are
given as functions of the mass and the T/Q ratio. The
SQUID amplifier coupled energy resolution was chosen to
be €couplea = S0N. A coupled energy resolution as low as
27h has been recently obtained with a two-stage SQUID
amplifier coupled with an electrical resonator and cooled
down to 7 =50 mK [20]. The spherical GW antenna
MiniGrail and the AURIGA detector are currently operat-
ing at 5 K with SQUID amplifier energy resolution of the
order of 6007 [1,21]. More than a factor of 10 improvement
is expected when these detectors will operate at T <
100 mK.

From the plots in Fig. 4 we see that, in terms of noise
temperature and bandwidth, a large mass spherical detector
developed using the available technology will not perform
better than an ultracryogenic bar detector operating at the
same frequency. As a matter of fact, the noise temperature
Ty and the bandwidths depend only on the frequency, the
electromechanical impedance matching, and the SQUID
amplifier noise. However, due to the larger cross section of
a spherical detector, with respect to a bar detector at the
same frequency, the spherical detector improves the SNR
by a factor of about 40 [12]. Moreover, omnidirectionality
will of course still be a unique feature of a spherical
detector when at least six resonators are used. With 7/Q =
2.5 X 10~ K and mass ratio u = 0.001, corresponding to
a transducer resonating mass of about 9 Kg, a capacitance
of 10 nF and an optimal electrical field E = 5 X 10° V/m,
the detector has a noise temperature Ty of about 10 uK,
about a factor of 30 better than the present most sensitive
resonant bar detector [1].
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FIG. 4. Noise temperature, SNR, and bandwidth of the spherical detector as a function of the resonator mass ratio u. The detector is
read out by a 507 energy resolution (a) and quantum limited (b) SQUID amplifier. Three different configurations with 7/Q =
1 X1077 K, 25X 1078 K, and 4 X 107!0 K are studied. The SNR is calculated for a Tgg = 10 wK gravitational wave burst.

The SQUID amplifier is considered strongly coupled to
the electrical matching circuit assuming k = 0.8, L, ~
1 H,and L; ~ L; = 1.7 puH. As in bar detectors, the sen-
sitivity will be mainly limited by thermal noise of the
electrical resonator, and, outside the resonances, by the
SQUID amplifier additive noise. The curves in Fig. 4(a)
clearly show that large mass ratio brings benefits only to
the bandwidth and not to the detector noise temperature.
This is due to the fact that a large mass resonator will not
help to decrease the thermal noise contribution. As a matter
of fact, the contribution of the mass at the denominator of
the Langevian forces derived in Eq. (34) is almost can-
celled by the transfer function when transforming the
forces into displacement. On the other end, the bandwidth
will increase for large mass ratio due to a better impedance
matching. The latter will unavoidably enlarge the contri-
bution of the backaction noise coming from the SQUID
amplifier producing the observed saturation in the detector
sensitivity at large mass ratio.

To fully exploit the potentiality of a massive spherical
detector one needs to develop capacitive transducers with

high sensitive area, massive mechanical resonators with
Q-factors larger than 107, high Q electrical transformers,
and large bias electric fields.

In Fig. 4(b) the detector sensitivity is given for the
antenna and transducer chain parameters obtainable by
pushing the current technology to its limits. We consider
a quantum limited SQUID amplifier operating at tempera-
ture 7 < 100 mK. Again we estimate the noise tempera-
ture Ty, the bandwidth, and the SNR for a 10 wK burst for
T/Q=1%X10""K, 25%X10%K, 4x10°'9K. By
comparing those plots with the ones previously discussed,
it becomes clear that without an improvement of the me-
chanical and electrical resonators with respect to available
technology, the use of a quantum limited SQUID amplifier
will not benefit the detector sensitivity. By looking at the
dot-dashed curves of Fig. 4, for example, corresponding to
aT/Q =1 X 1077 K, one shall expect no improvement in
the strain sensitivity, but only a small increase of the
bandwidth due to the lower additive noise of the SQUID.
A spherical detector operating at 7 = 20 mK with me-
chanical and electrical quality factor Q ~ 5 X 107, a quan-
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tum limited SQUID amplifier and large mass mechanical
transducers, u = 0.01 and mp = 90 Kg, can have a noise
temperature of 1.3 X 1077 K, corresponding to a peak
strain sensitivity of 1072 Hz~'/2 at 1 kHz, and a band-
width of about 200 Hz. This would improve by a factor 50
the sensitivity of an existing bar or small sphere antenna
working at the quantum limit. The bandwidth will have
only a moderate increase with respect to the present reso-
nant bar antennae [1], merely due to the spreading of the
spheroidal modes. The minimum achievable antenna noise
temperature is given by the quantum-mechanical limit of a
linear motion detection derived by Giffard [44] and equal
t0 Ty min = 2hw/kplexp(hw/kgTy ) — 1], where Ty, is
the noise temperature of the linear amplifier. When a
quantum limited amplifier is used, Ty, = 9.5 X
1073 K for a kHz resonant sphere considered here.

B. Strain sensitivity

We show here the strain sensitivity calculated using
Eq. (26). The strain curves are derived for each noise
contribution described in Sec. III. The readout circuit
was optimized as discussed above.

In Fig. 5 the strain sensitivity is calculated for a spherical
detector equipped with a single transducer placed in the
position 1. It was calculated for an optimally oriented
source, as will be described in detail below. The detector
parameters used for this simulation have already been
achieved in separate experiments [1-3]. The sensitivity
curves are obtained considering the detector operating at
T =50 mK with a 507 SQUID amplifier and with the
electrical mode coupled to the mechanical ones. The qual-

total noise ]
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current noise

elect. thermal noise

strain sensitivity [Hz
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FIG. 5. Strain sensitivity for a spherical detector with one
single transducer, T/Q ~ 2.5 X 1078, resonators mass ratio p =
0.001, and 507 energy resolution SQUID amplifiers. The trans-
ducer electrical mode is tuned to the mechanical ones. The
parameters used for this simulation have already been achieved
in separate experiments with bar detectors or a lower mass
spherical antenna.

PHYSICAL REVIEW D 75, 022002 (2007)

ity factors are chosentobe Q = 3 X 10°and Q = 2 X 10°
for the mechanical and electrical modes, respectively. The
mass ratio is u = 0.001, corresponding to a mechanical
resonator mass my =~ 9 Kg. The optimal electrical bias
field is about E = 5 X 10° V/m and the transducer capaci-
tance is 10 nF.

The strain sensitivity shown in Fig. 6 was calculated for
a spherical detector with six transducers in the TI arrange-
ment. The detector and transducers parameter are the same
used in the single transducer configuration described
above. Differently from the single transducer configura-
tion, the sensitivity is independent of the wave direction
and polarization. In such a configuration the detector sen-
sitivity will be limited by the thermal noise contribution
from the mechanical and electrical resonators and by the
backaction noise of the SQUID amplifier due to the opti-
mal matching coming from the tuning of the electrical
resonances with the mechanical ones. Outside the reso-
nances, the sensitivity is limited by the additive current
noise of the SQUID amplifier.

In Fig. 7 the strain sensitivity is shown for an optimized
detector equipped with SQUID amplifiers operating at the
quantum limit. The simulation considers a detector oper-
ating at 7 = 20 mK with all resonators having quality
factors O = 5 X 107. We consider six transducers in the
TI arrangement. The mass ratio is 4 = 0.01 and the opti-
mal electrical bias field is E ~ 3 X 107 V/m. We consider
a transducer with a large capacitance of about C = 30 nF.
The sensitivity is mainly limited by additive and back-
action noise of the SQUID linear amplifiers, whose mini-
mum energy resolution is imposed by quantum mechanics.
Despite the low working temperature and the high Q
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FIG. 6. Strain sensitivity for a spherical detector with six
transducers, 7/Q ~ 2.5 X 1078, resonators mass ratio u =
0.001, and 507% energy resolution SQUID amplifiers. The elec-
trical modes are tuned to the mechanical ones. The parameters
used for this simulation have already been achieved in separate

experiments with bar detectors or a lower mass spherical an-
tenna.

022002-11



LUCIANO GOTTARDI

— — —TT — —TT —r —TT —r
9l T T T T T T T ]
10 E
F total noise ]
- mech. thermal noise
----- back action noise
- —-— current noise
elect. thermal noise

—_
S,
[S)
=]
T
|

,_
OI
[
T
I

. e -12
strain sensitivity [Hz

Al

ol BT N
10 850 900 950 1000 1050 1100 1150 1200
frequency [Hz]
FIG. 7. Strain sensitivity for a spherical detector with T/Q =

4 X 10719, resonators mass ratio w = 0.01, and 1% energy
resolution SQUID amplifiers. The electrical modes are tuned
to the mechanical ones.

considered, a small contribution from the thermal noise is
still present.

C. Antenna pattern

We calculate here the SNR of a spherical detector
equipped with one, three, and six resonators as a function
of the direction and polarization of the incident wave. We
consider a detector operating at nearly the quantum limit.
We numerically calculate the SNR as a function of the
three Euler angles (i, 8, ¢) of Eq. (7). All the three angles
are necessary to completely define the GW source. The
first Euler angle ¢ carries information about the wave
polarization [45]. The other two, (0, ¢), give the source
direction. In the sky maps presented in this section, we call
those angles, respectively, declination § = /2 — 6, and
right ascension & = ¢ to match the astronomical notation.
The antenna patterns depend on the longitude and the
latitude of the detector location as well as on the universal
time (UT), 7, due to the earth proper rotational motion. To

-90°
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simplify the discussion we consider here detectors at 7 =
0. We calculate the antenna patterns for two spherical
detectors, 2 m in diameter, located at Leiden (The
Netherlands), lon = 4°30”, lat = 52°7”, and at Sad
Paulo (Brazil), lon = —46°38”, lat = 23°34”, where, re-
spectively, the MiniGrail and the Mario Schenberg, 65 cm
large in diameter, spherical detectors are being developed.
We chose those locations because the general discussion
about direction sensitivity is independent of the detector
size and mass apart from the absolute value of SNR and
bandwidth. The analysis presented here is then useful for
the existing small spherical detectors as well.

In Fig. 8 the sky maps are shown for a spherical detector
with a single transducer on position 1 of the TI arrange-
ment. We consider a linearly polarized wave with k., = hj
and iy = 0 and a random polarization angle ¢ (sky maps
at top). The amplitude A, is related to the deposited energy
E = kpTgp according to Eq. (31). For each simulation we
indicate the GW energy in the figure captions. The SNR for
each wave direction depends on the polarization angle. The
choice of a random polarization for each direction trial
produces the scattered pattern. When a circularly polarized
wave is chosen (sky maps at bottom) the maps become
smoother and the SNR is only dependent on the wave
direction. Here and in the following we consider a one-
cycle, circularly polarized sinusoid: A, = hgy~/2 cos(w?)
and hy = hyv/2 sin(wt), 0 = wr < 277, with the frequency
w laying within the detector bandwidth. Transducers on
other positions will show a similar pattern rotated on
proper angles accordingly to the positions. The sky maps
on the left [Fig. 8(a)] refer to a detector in Leiden with the
lab frame oriented so that the z-axis is pointing to the local
vertical and the x-axis to the local south. The sky maps on
the right [Fig. 8(b)] refer to the detector in Sad Paulo. As
expected, in a spherical detector operating with only one
transducer the sensitivity is direction and polarization de-
pendent and changes according to the transducer location.
A source emitting a linearly or circularly polarized wave is
more likely to be detected when laying on the plane
perpendicular to the transducer axis and passing through
the sphere center.

20

10

b) —90°

FIG. 8. Antenna pattern for spherical detectors, respectively, located in Leiden (a) and Sad Paulo (b) with a single transducer on
position 1 of the six positions of the TI arrangement. We consider a linearly polarized (top) and a one-cycle, circularly polarized
(bottom) signal as explained in the text, depositing an energy Tgg = 3 1K in the detector.
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FIG. 9. Antenna pattern of spherical detectors, respectively, located in Leiden (a) and Sad Paulo b) with a three transducers set in the
TI configuration at 1y = 37.3773° (sky maps above) and 61 = 78.1876° (sky maps below). We consider a one-cycle, circularly
polarized sinusoidal signal depositing an energy Tgg = 3 wK in the detector.

In Fig. 9, the sky maps are shown for a spherical detector
with three transducers placed at the three positions of the
TI arrangement, respectively, at 61y = 37.3773° and 61 =
78.1876°. The signal used for the simulation is a one-cycle
circularly polarized sinusoid with energy Tgg = 3 uK.
The higher maximum SNR with respect to the single trans-
ducer configuration is mainly due to the large detector
bandwidth. When six identical resonators are used, the
detector becomes independent from the wave incoming
direction and polarization [45]. This result is also shown
in Fig. 10. For a real detector with identical transducers, not
optimally tuned to the 5 spheroidal modes, a small residual
anisotropy in the SNR and bandwidth is still present. This
is however less than 10% over the whole sky. The signal
bandwidth anisotropy is shown in Fig. 11. Both the figures
will be further discussed in the following section.

Figure 12 presents the detection efficiency of a spherical
detector equipped with only one transducer as a function of
the GW incoming direction for different GW energies,

90
30

-180 -120 -60 0 6 120 180 20

FIG. 10. SNR of a quantum limited spherical detector with six
transducers in the TI configuration. In (a) identical transducers
are considered. In (b) we arbitrary modified the parameters of
each transducer of a maximum of 15% from their optimal value.
We consider a one-cycle, circularly polarized wave with energy
TGB =3 ILLK

Tgg = 1, 1.5, 3 uK equal to a maximum SNR, respec-
tively, of pn.x ~ 10, 15, 30. In analogy with [46], the
detection efficiency is defined as jerfc[(n — po)/ V2],
where 7 is a threshold chosen equal to 5 and erfc is the
complementary error function. The detection of a one-
cycle circularly polarized wave of energy Tgg = 3 uK s
almost always succesful independently of the incoming
direction. In Fig. 13 similar sky maps are shown for a
Tgg = 0.6 uK when a spherical detector with 3 and 6
transducers is considered. The results of the sky maps in
Fig. 12 are summarized in Fig. 14 where the fraction of sky
is plotted as a function of the detection efficiency for a
single transducer configuration and different signal ampli-
tudes. One notes that the fraction of sky covered decreases
when the detection probability level increases: the curves
evolution for each SNR can be understood from the pat-
terns of the sky maps in Fig. 12. The detection probability
is higher than 30% in 40% of the sky for a p,.x = 10,
corresponding to a 1 ms GW burst of amplitude
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FIG. 11. Signal bandwidth of a quantum limited spherical
detector with six transducers in the TI configuration. In
(a) identical transducers are considered. In (b) we arbitrarily
modified the parameters of each transducer of a maximum of
15% from their optimal value. We consider a one-cycle, circu-
larly polarized sinusoidal signal with energy Tgg = 3 uK.
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FIG. 12. Comparison of detection efficiency sky maps for a
spherical detector with one transducer and for different deposited

energy Tgg = 1, 1.5, 3 uwK(from top to bottom). We consider a
circularly polarized wave as described in the text.

ho = 2 X 10721} it is 50% for almost a 70% fraction of the

sky when p.x« = 15. For p,,.x = 30 the detection is likely
almost in any direction.

Figure 15 presents the fraction of sky as a function of the
detection efficiency of a GW burst of deposited energy
Tgg = 0.6 uK for different transducer configurations.
Plot (i) refers to a single spherical antenna, while plot (ii)
shows the detection efficiency of two optimally oriented
spherical detectors located at Leiden and Sad Paulo. This
was obtained by maximizing the portion of sky simulta-
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FIG. 14. Fraction of sky as a function of detection efficiency
for a detector with a single transducer. We consider a circularly
polarized wave with Tgg = 0.6, 0.75, 1, 1.5, 3 K, and p. ~
6, 7.5, 10, 15, 30, respectively, denoted by a, b, ¢, d, and e.

neously seen by both detectors as a function of the orien-
tation of the single detector reference system with respect
to the local south. This corresponds to a rotation of the
Brazilian detector lab frame (x, y, z) (see Fig. 1) around the
local z-axis of about ¢y = —135°.

A detector with a single transducer is unable to detect
any signal from the sky when the SNR is as low as p., =
6. For the same SNR, the sky coverage of a single detector
with three and six transducers is, respectively, more than
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Comparison of detection efficiency sky maps for a
spherical detector with three transducers in the TI positions,
respectively, at 61 = 37.3773° and 01 = 73.1876°, and for a
complete detector with 6 transducers (from top to bottom). We
consider a GW burst deposited energy of 0.6 ©K and a circularly
polarized wave. Note the difference in the color code on the

graphs and that the signal amplitude is smaller than the ones in
Fig. 12.

FIG. 15. Fraction of the sky as a function of the detection
efficiency for a GW burst of deposited energy Tgg = 0.6 uK
and p.« = 6 for a single spherical antenna (i) and two optimally
oriented spherical detectors (ii) located at Leiden and Sad Paulo.
Curve a corresponds to a readout configuration with a single
transducer located in position 1 of each detector, curves b and ¢
to a three transducers configuration with Oy = 37.3773° and

611 = 73.1876°, and curve d to a complete spherical detector
with 6 transducers.
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40% and 100% with 50% detection efficiency. This is
mainly due to the increase of detector bandwidth when
more than one transducers are used. Figure 15(b) shows
that for a detector with one or three transducers, the two-
fold coincidence probability remains lower than the detec-
tion efficiency of a single sphere. Two spherical antennas
with six transducers can equally detect any sources in the
sky even when the SNR is as low as p,« = 6.

D. Sensitivity of a sphere with not ideal transducers

It has been shown that for a perfect sphere the resonators
mistuning and misplacing has little effect on the isotropy
when the deviation from the ideal TI configuration is less
than 1% [13,45]. We study here two other possible degra-
dation effects which may arise in a real spherical detector.
The first is related to the broken spheroidal mode degen-
eracy and the second to the fact that a real transducer is not
a pointlike mass as generally considered. In a real detector
the spheroidal mode degeneracy is broken due to the
suspension and the holes made on its surface to house the
transducers. The modes spreading can be as large as 5% of
the main resonance. It becomes natural to ask to which
modes each transducer should be tuned and how good the
tuning should be to avoid a sensitivity degradation. We
consider here a numerical analysis of the transducer me-
chanical and electrical mistuning for a sphere with six
resonators with a mass ratio w = 0.01 and operating at
nearly the quantum limit.

In Fig. 16(a), we see the effect on the SNR for a Tgg =
3 wK circularly polarized GW burst when the natural
resonances of each resonator are modified from the initial
values wy = 279871001 1001 1008 1012 1017], arbi-
trarily chosen equal to each of the spheroidal mode reso-
nances. One finds a maximum change of 10% in the SNR
for a resonator mistuning of about 10%. It is possible to
optimize the tuning by shifting the resonator resonance
frequency as much as indicated by the maximum of the
SNR in Fig. 16(a). This procedure can be repeated
several times. The result is shown in Fig. 16(b), where
the SNR is maximum for each resonator around the
new set of the resonators natural frequencies w; =
271[1047971980970960 1027]. Such an optimal fre-
quency set derives from a combination of multiple cou-
pling, modes splitting, and transducers position. Once the
bare sphere spheroidal modes and the resonator masses and
positions are known, one can always find an optimal natu-
ral resonance for each resonator.

We remark here that, due to the presence of so many
modes and the related multiple splitting, it could be diffi-
cult in practice to determine the resonators frequency with
an accuracy better than 10% and one has probably to
accept a not optimized detector. The loss in sensitivity is
in any case less than 10% for a 100 Hz mistuning of the
mechanical modes of a detector resonating at 1 kHz and
with a tuned matching network.
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FIG. 16. Resonators mistuning. The graph shows the detector
SNR for a Tgg = 3 uK one-cycle, circularly polarized GW
burst as a function of the mistuning parameter w/w, for each
resonator in the case of (a) a starting arbitrary set of natural
resonances w, = 277[987 1001 1001 1008 1012 1017] and (b) an
optimized set w; = 27[1047971980970960 1027] obtained
after few tuning iterations.

So far we consider the transducers operating on the
sphere all identical except for their main resonance fre-
quency. Here we evaluate the effect on the detector anisot-
ropy in the sensitivity and bandwidth, which derives from
using six not identical transducers to read out the five
quadrupolar mode of the sphere. We arbitrarily modified
the parameters of each transducer such as the mass, me-
chanical, and electrical quality factor, transducer capaci-
tance, electrical coupling factor, and SQUID noise of a
maximum of 15% from their optimal value. As shown in
Fig. 10(b), the detector SNR, for a circularly polarized GW
burst with Tgg = 3 uK, is reduced about 30%. This is
mainly due to a decrease in signal bandwidth as one can see
from Fig. 11(b).

In the following we study how the detector sensitivity
decreases when the transducer electrical resonator is not
perfectly matched to the mechanical resonator. Such a
situation could arise in practice when the electrical mode
cannot be arbitrarily adjusted to the optimum value define
by Eq. (38) as a consequence, for example, of a voltage
leakage in the bias lines. One finds that, when the electrical
mode of only one transducer is not tuned, even up to about
30% of the optimal frequency, very little effect is observed
in the SNR and bandwidth. This is evident from the full
circle data of Fig. 17, where the detector SNR and band-
width for a Tgg = 3 K circularly polarized GW burst is
given as a function of the mistuning parameter w/w,,
being w. equal to the optimized mechanical resonator
frequency set derived above. When all the electrical modes
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center. For “mushroom,” rosette, and ‘“‘membrane’ reso-
nators those intersection are, respectively, the mushroom
leg section, the cylindrical section where the membrane is
attached to the resonator ring support, and the rosette
spring sections at the attachment point with the ring

support.
The form of the radial displacement depends strongly on
the resonator geometry and springs topology, making it
difficult to find an analytical expression like the one for the
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Gaussian laser beam considered in [34,35]. In the case
when only the first spheroidal modes are considered, the
form factor for a membrane and rosette transducer be-

comes
S A12(rr) (40)

fmemb(rt’ rr) B 277—’”16"‘r A12(rs),

where 8r, is the spring thickness and A,(r) is the sphe-
roidal quadrupole radial amplitude function described in
[11]. For a membrane transducer s = 1, while for a rosette
transducer s = S;os/Smemp < 1 is the ratio between the
intersection surfaces defined by the rosette springs and a

FIG. 17. Mistuning of the electrical mode. The graph shows
the detector SNR (a) and bandwidth (b) for a Tgg = 3 wK one-
cycle, circularly polarized GW burst as a function of the mis-
tuning parameter w/w, where w, is equal to the optimized
mechanical resonator frequency set. The data show the effect
when the electrical mode of only one transducer is detuned (full
circles) and when the electrical modes of all the six transducers

are equally mistuned (open squared).
are decoupled from the mechanical modes, the SNR and

bandwidth decrease of a factor proportional to the mistun-
ing factor as shown by the open squared data of Fig. 17.

In the numerical analysis of resonant detectors one al-

membrane of the same thickness.

In the case of a mushroom transducer, we have

1 A12(”r) 41)

7Trz2 Alz(”s)'

mity of the sphere surface the radial amplitude is

mush —

In proxi
slowly changing and the ratio A,(r,)/A;»(r,) can gener-

ally be approximated to 1.
In Fig. 18 the SNR and bandwidth for a circular polar-

ized Tgg = 3 uK GW burst of a nearly quantum limited
sphere with six resonators is shown as a function of the

ways considers the mechanical resonators as pointlike
masses. A real transducer is sampling the sphere surface

radial displacement in many points belonging to the con-
tact surface between the resonator spring and the sphere.

The actual displacement can be seen as the results of an
average of such a sampling. We calculated here the detec-
tor sensitivity when a real resonator is considered. Three
kinds of resonators are generally used in resonant detec-

tors: mushroom, membrane, and rosette resonators. All of
them have in common the fact that the spring is attached to
a support, which is rigidly connected to the antenna’s

surface. The variable readout considered in our calculation,
in analogy with [34], can be written as

x(t) = ff(rt’ rr)y(rt’ ry, t)drtdrr’

where y(r, ) is the radial displacement of the intersection
points between the support and the springs of the mechani-
cal resonator used to amplify the sphere displacement. f(r)
is a form factor and the integral is calculated along the
resonator support-spring intersection. We consider trans-
ducers with cylindrical symmetry where r, is the radius of
the support-spring intersection and r, gives the radial

position of the intersection points referred to the sphere
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FIG. 18. Detector SNR and signal bandwidth as a function of

the resonator radius r, for a membrane resonator with mass ratio
= 0.005 (open squares), u = 0.01 (full circles), and a mush-

room resonator with x = 0.01 (open triangles).
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FIG. 19. Detector SNR (a) and signal bandwidth (b) anisotropy
for a circular polarized GW burst with Tgg = 3 wK when a
rosette resonator with r, = 0.2 m is used to read out the sphere
quadrupolar modes.

resonator radius r,. The improvement in sensitivity, obtain-
able as described above by using massive resonator, with
= 0.01, is slightly reduced by the resonators large radius
r; ~ 0.2 m. The SNR decreases by about 10% in this case.
A mushroom resonator is preferable, as shown in Fig. 18,
but high Q massive resonators are difficult to achieve for
such a geometry. In the sky maps shown in Fig. 19, ob-
tained from 1000 randomly distributed events of circularly
polarized GW bursts, the SNR and bandwidth anisotropy
for a transducer with r, = 0.2 m is shown. One finds up to
15% of asymmetry in the SNR and up to 40% in the
detector bandwidth.

V. CALIBRATION OF A SPHERICAL
GRAVITATIONAL WAVE DETECTOR

To calibrate a gravitational wave detector one needs to
postulate a model of the complete detector whose parame-
ters are experimentally determined. The calibration is per-
formed in two steps. First the effective temperature of the
modes is estimated. This is important in order to under-
stand the detector dynamics and to estimate the noise
contributions. Second, one has to measure the detector
response to an applied force, which is equivalent to eval-
uating the transfer function Gy in Eq. (26). We stress
here that a full antenna characterization implies the esti-
mation of the terms of the matrix Gg;, 1, Which relates the
input signal and noise to each transducer SQUID input
current. It can be achieved by injecting a known signal at
each step of the transducer chain, i.e. radial forces to the
five spheroidal modes of the sphere, radial forces to each
resonator, voltage signal in the superconducting trans-
former, and voltage signal at the SQUID input. In order
to evaluate the sensitivity of the antenna to GW signal,
however, one needs especially to measure the transfer
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function which converts the forces applied to the spheroi-
dal modes to the SQUID input current of each transducer.
By measuring the noise of each transducer during normal
operation, one can finally estimate the strain sensitivity as
in Eq. (26).

We describe below two methods that can be used to
perform a complete calibration of a spherical detector in
analogy with the method used for the bar detector
AURIGA [1,23]

A. Modes equivalent temperature

According to the fluctuation-dissipation theorem, the
voltage and current power spectra observed in an electrical
circuit, when only thermal noise sources are present, are
given by

1

S; =4kT Re(—), (42)

Sy = 4 kKT Re(Z(w)), Z(w)

where Z(w) is the impedance seen at the input of the
amplifier used for the readout and 7 is the thermodynamic
temperature. By measuring the transducer output spectrum
in normal operation and the input impedance of the circuit
one can evaluate the equivalent temperature of the trans-
ducer chain. If only thermal noise is present, the equivalent
temperature of the chain should be equal to the thermody-
namic temperature of the experiment. Because the SQUID
is not an ideal amplifier, its current and voltage noise give a
contribution to the total transducer output noise. This con-
tribution is in general not negligible. The total current
noise measured at the input of each transducer line
SQUID can be written as [1]

_ Qu 1 SUU(T)
Si= AT, Re(zw)) " ZP

where the second term on the right-hand side of the equa-
tion is the backaction noise contribution from the SQUID
amplifier with S, given by Eq. (36). Q, is the apparent
quality factor produced by the damping and Q. is the
intrinsic quality factor of the electrical matching network.
The factor % in the thermal noise appears when the cold-

+ 81(T),  (43)

damping network is active in the readout circuit [1]. It
comes from the fact that the damping is only a lossless
electronic feedback effect and there is no dissipation asso-
ciated to it. From Eq. (43) we see that when the SQUID
noise parameters S,,(T), and S;;(T) are known, and the
impedance Z(w) is measured, from the fit of the SQUID
output current one can estimate as a fitting parameter the
equivalent temperature of each transduction chain. One can
measure the input impedance Z(w) seen by the SQUID by
injecting a sine-wave signal with defined level through a
calibration coil weakly coupled to the SQUID input circuit.

We can simulate numerically the calibration procedure.
Denoting by M, the mutual inductance between the cali-
bration coil and the SQUID input circuit and by R, the
resistance of the calibration line, to estimate the impedance
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Z(w) one has to solve the system of equations in Eq. (10).
All the terms on the right-hand side are zero but the SQUID
input voltage, which is given by V,, = I “I’eﬁ”‘ cal, With Vg
the voltage of the injected calibration signal. By measuring
the output response of the SQUID amplifier we obtain a
direct estimation of each transducer admittance from the

following weighted average:

1 Re{l,Vi} + jIm{1,V;}
z"(w) Val?

where I, is the current at the input of each SQUID and G
was defined in Eq. (21). The weighted average gives a more
precise result than simply measuring 1,/V,. We remark
that both amplitude and phase of the input and output
signal have to be measured to estimate Z(w).

The admittance 1/Z(w) can be approximated by a com-
plex polynomial expansion with N, =35+ 2 X N poles
and N, = 5+ 2 X N — 1 zeros as follows

=Gy, (4

N, 4
1 I (o — g)(o — g;
B k:1(]w q)(jo Qk) (jw)(prNq). (45)

Zw) "1 (jo — pGe — p)

If w; and Q,, are the resonant frequency and the apparent
Q-factor of each measured resonance of the system, we
have p; = jw; — w;/2Q, . The zeros g; can be written in
the same form and have frequency and Q which depends
on the modes coupling. Once the admittance is measured, a
polynomial fit can be performed in order to find its zero and
poles.

We simulated numerically the mode temperature cali-
bration procedure. The current noise at the input of the
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FIG. 20. Mode temperature calibration. The current noise den-
sity at the input of transducer 1 SQUID is estimated by calcu-
lation the admittance matrix 1/Z(w). The contribution from
thermal noise (b), backaction noise (c), and total noise including
the additive SQUID current noise (a) are shown. The gray curves
are obtained from the pole-zero polynomial expansion.
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SQUID amplifier was estimated from Eq. (42) by calculat-
ing the impedance seen by the SQUID in the form of the
admittance 1/Z(w). For simplicity we only consider two
resonators located in position 1 and position 2 of the TI
arrangement. The detector is at 7 = 100 mK with a
T/Q = 25X 1077, a SQUID energy resolution of 2007
and an apparent quality factor Q, = 600. The electrical
modes of each transducer are tuned to the mechanical
modes.

Figure 20 shows the SQUID input current noise contri-
bution from the thermal and backaction noise and SQUID
additive current noise of transducer line 1. The zero-pole
approximation of Eq. (45) is shown with gray curves on top
of the simulated current noise contributions.

B. Force calibration and transfer functions
measurements

To calibrate a spherical detector one should be able to
experimentally evaluate the transfer functions which relate
the output current with the GW force acting on the sphe-
roidal modes. When a force is applied at a point (8, ¢,) on
the surface of the sphere, all the 5 + 2N modes of the
sphere and transducers are excited at an amplitude which
depends on the calibrator position, the resonators positions,
and the coupling between resonators and spheroidal
modes. A calibrator, consisting of a capacitive transducer
with the main resonance frequency ., not tuned with the
fundamental frequencies w( of the detector, can be used to
convert an electrical signal into a constant force acting on
the sphere modes. For w_, > w,, such a force is given by

_ CcalEcal
Fc(w) - | — CcalEﬁ

2
Mea @y

Vcal(w)r (46)

where C,, E., and m, are, respectively, the capacitance,
the dc bias electric field, and the mass of the calibrator.
V.a(w) is the excitation voltage given to the calibrator at
the resonance frequencies of the detector.

A force acting on the sphere surface always excites a
combination of the 5 spheroidal modes. If denoted by F, =
(Fy, ..., Fy.) avector of N, radial forces applied to the N,
points P. = (0., ¢.), with c = 1, ..., N, the correspond-
ing forces F,, acting on the 5 spheroidal modes can be
described by the calibrators pattern matrix B¢:

F, = aB(F.. A7)

From Eq. (9) we find B¢, = Y,,.(0., ¢.). The pattern
matrix B¢ has the same physical meaning as the matrix B,
but is referred to the calibrator positions. From Eq. (47) it is
clear that the gravitational forces acting on each of the five
quadrupole modes, distributed over the entire volume, can
be simulated by a linear combination of radial forces acting
on the N, = 5 calibrators. This conclusion is based on the
assumption that the real spherical antenna dynamics is the
same as that of an ideal sphere that can fully be modeled
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using the spherical harmonics approach described above.
The validity of this assumption could be evaluated through
a finite element analysis (FEA) of the detector structural
model or by experimentally measuring the six transducers
response to several linear combinations of excitations
given through the calibrators.

To operate the sphere as a GW detector, only one force
calibrator, mounted at an arbitrary position on the sphere
surface, is necessary when N = 6 transducers are used in
the TI configuration. This is due to the existing one-to-one
relation between the mode channels and the forces acting
on the spheroidal modes. It is convenient to proceed by
transforming the N measured transducers outputs into the 5
mode channels, which directly describe the GW amplitude
acting on the spheroidal modes [16]. In such a framework
we derive the optimal filter for each mode channel to define
an operative procedure to signal detection with a GW
spherical resonant antenna. In order to do this we define
the 5 X 5 mode channel noise spectral density matrix as

S 1(w) = BSy(»)BT, (48)

and, using the admittance matrix Ggigy introduced in
Eq. (26), the 5 X 1 mode channel signal vector

I = BIl = aBGsig,IBch. (49)

g sig

By applying a known constant force to the calibrator F.,
using Eq. (47) we get the linear combination of spheroidal
modes forces generated by the calibration force. By mea-
suring simultaneously the amplitude and phase of the six
transducer outputs we obtain the mode channel response
from Eq. (49) and, using Eq. (26), estimate the detector
strain sensitivity. The matrix Sy g(w) in Eq. (48) is diago-
nal because the mode channels are statistically indepen-
dent. The only assumption made here is that the pattern
matrix B derived above for an ideal sphere can be used to
describe the dynamics of the real detector with six trans-
ducer in the TI arrangement. This can be experimentally
verified in a separate cryogenic experiment, using, for
example, a set of six calibrators in the TI configuration
with a 60° dephase of the azimuthal angle with respect to
the transducer arrangement. Each spheroidal mode force
can be reproduced by simultaneously applying a linear
combination of constant forces on the six calibrators, as
described by Eq. (47). When N <5 transducers are used
we cannot transform the transducer outputs in mode chan-
nels. A set of at least 5 calibrators is then necessary to
experimentally measure the transducer response to each
mode channel. If only one calibrator is used, the detector
output can only be calibrated for a particular combination
of the five quadrupolar forces F,,.

Each element on the diagonal of S(,f'l’;) = [,,(0)I},(w) can
be written in terms of the polynomial ratio where the poles
are the same as the ones derived in the impedance mea-
surement of each transducer, see Eq. (45), and the zeros
depend on the current function 7,,(w). From the factoriza-
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tion of ,,(w) one finds

(o — qem)o —q;,,)
I (w) =S¥ 5
m(w) 0,m k=1 (Ja) — pk)(-]a) - PZ)

(50)

where S ,, is the wide-band noise of the mth mode chan-
nel, and equals the amplifier additive white noise if all the
transducers SQUIDs are identical. From the definition in
Eq. (50), S (,"}; is real for real w and the number of zeros and
poles is the same as a consequence of assuming Sj' to be
purely white.

The transfer functions for a GW signal, which convert
the quadrupolar modes forces into mode channels currents
according to Eq. (49), contain the same poles {p,} and their
factorization becomes

I (jo = ren)o = r,)

Hm(w) = Hm,cal(w) N -
Hkil(jw - pk)(jw - P;;)

(D

In the equation above N, > N, and H,, (@) is a force
calibration constant which has to be experimentally deter-
mined at each cool down.

From now on we apply to each mode channel the stan-
dard Wiener-Kolmogorov (WK) filtering operation, devel-
oped so far for bar detectors [15]. We follow here the
approach described in [23]. The best linear estimate of
the amplitude A, of a given signal A(r), with max h(r) =
hg at the arrival time ¢ = 0, buried into an additive, zero
mean, stationary Gaussian noise 77 can be obtained by
correlating the mode channel output Y, (w)=
h(w)H,,(w) + p(w) to the matched WK filter [39],

) Hy ()i (o)

W,(w) = o3 ) (52)

where o} = [deHm(w)ﬁ(w)lz/SY'g(w) is the variance
of the noise after the filtering. The WK filter splits as the
product L, (w)M,,(w)h*(w), where L, (w) is a whitening
(m)
LB

filter for the noise S;"; (w) given by

—1/21N, (.]w - pk,m)(jw B pz,m)
o T o = qen) o — g5,
(53)

M,, is a bandpass filter around the frequencies w; =
[Im(gy ,,)| and bandwidths Aw, = 2Re(g;,,). Such a
bandwidth is generally much larger than the intrinsic
bandwidth of each resonance and, in the case of a trans-
ducer with coupled electrical modes, it can reach values as
large as ~200 Hz. One finds

L,(w) =1, (0) =S

L, e+ ) e +7,)
Mm(w) =0y SO,m N, /. . N
Hk:1(]w + Qk,m)(Jw + qk,m)

(54)

The product L,,(w)M,,(w) is the WK filter for a deltalike
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GW pulse. The extra term /(w) should be added when a
general GW signal A(r) is considered. It can be shown that
for a resonant bar detector, N, = 1 and r; = 0. In this case
the WK filtering procedure is then fully defined by the
zeros q; and poles p; of the noise power spectrum S;(w),
the additive amplifier white noise S, and the calibration
constant Hy(w). For a spherical detector this is true only if
the quadrupolar modes degenerate into a single resonant
frequency and all the transducers have the same resonance.
When multiple resonances are present, as is the case for
real spherical detectors, the zeros in Eq. (51) do not cancel
ie, N,>1and r;, # 0. This is due to the fact that when
the quadrupolar modes are nondegenerate, a mixing occurs
between mode channels. A fraction of the signal which
should only go to one mode channel leaks into the others.
The WK filtering procedure should include the extra set of
parameters 7y ,,, whose total number depends on the mode
and transducer considered and must be experimentally
determined.

In Fig. 21 the mode channels response is plotted for a
linearly polarized burst coming along the detector z direc-
tion. For a detector with degenerate modes, Fig. 21(a), only
the second mode gives a larger signal than the noise, as can
be expected for a signal from that particular direction and
polarization. For a realistic detector with nondegenerate
spheroidal modes a mixing between the modes is present
around the resonances making the analysis more complex
[see Fig. 21(b)]. However, the energy stored in the second
mode, which can be derived from the integral of the SNR
density, is larger than in the others and the incoming wave
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FIG. 21. Modes channels response from a simulated linearly

polarized burst coming along the z direction in the detector
frame for a detector with degenerate (a) and nondegenerate (b)
modes. For a detector with degenerate modes (a), only the
second mode gives a larger signal than the noise. For a real
detector with nondegenerate modes (b), a mixing between the
modes is present around the resonances making the analysis
more complex.
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direction can still be reconstructed without any significant
accuracy loss with respect to the degenerate case. To
estimate the incoming wave direction we can use the
approach derived in [12], using standard theory of signal
detection. After being optimally filtered, the 5 mode chan-
nels generate a set of 5 amplitudes, g,,, for an input GW
burst. The likelihood function for a detector with stationary
and Gaussian noise is given by

5

1 (P — g
L )

m=1

(55)

where £, is the expected gravitational wave signal ampli-
tude, g,, is the mode channels amplitude obtained after the
WK filtering procedure described above, and o, is the
variance of g,,. A likelihood map is generated by plotting
this function in the declination-ascension plane, (5, @).
The maximum value of A gives to the estimated wave
direction. In the example below, a realistic detector at the
quantum limit, with optimized parameter is considered. We
applied simulated burst signals, 1 ms long and with ampli-
tude hy = 0.34 X107, 1.1 X 1072, 2X 1072, and
SNR ~ 30, 300, 1000, with linear polarization k. = hy
and hy = 0, coming from a source at declination 6 = 20°
and ascension a = 70°. Figure 22 plots the resulting like-
lihood functions.

The accuracy in the direction and polarization estimates
depends on the SNR and is equal to AQ = 27/SNR
[12,13]; it is direction independent when a sphere with
more than 5 identical, pointlike transducers is considered
[45]. As it comes clear from the plot, a single spherical
detector cannot distinguish between sources laying in the
two opposite hemispheres. In the example described above
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FIG. 22. Signal direction reconstruction. An overall sky search
is performed calculating the likelihood function A. We applied
simulated burst signals with SNR ~ 30, 300, 1000, amplitude
hog=10.34X1072°, 1.1 X 1072, 2 X 1072, and 7gg ~ 1 ms,
linearly polarized and coming from a source at declination 6 =
20° and ascension & = 70°. A single spherical detector cannot
distinguish between sources laying in two opposite hemispheres.
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we assumed for simplicity that the signal polarization was
known. When this is not the case, one should include also
the first Euler angle ¢/ as a variable to estimate the like-
lihood ratio.

As discussed in [13], for a known signal, the optimal
detection strategy for a vector output detector like a sphere
with N transducers is to compute the value of the optimal
linear filter with scalar output v which maximizes the
SNR. This procedure is useful if one wants to monitor
the total energy in the sphere and claim a detection only
on the base of an excess of absorbed energy. No direction
information is possible in this way.

Ifweletl = I, ..., Iy be the transducers output stream,
a linear filtering operation is performed which, in fre-
quency domain, can be described by

v(w) = WHw)(o), (56)

where W is a vector transfer function which maximizes the
SNR and was found [13] to be

W(w) = I}, (0)S7 Y (w). (57)
In the above, I, = Gyig(@)F, is the current generated in
each transducer by a force F3, on the sphere generated by a
GW signal. As shown in [12], the maximum SNR for a
multichannel detector is the sum of the maximum SNR of
each individual channel. The optimal linear filter intro-
duced above for each mode channel is then useful in order
to compute the scalar output » which maximizes the SNR.

VI. CONCLUSIONS

We derived a complete and detailed electromechanical
model for a spherical gravitational wave detector operating
with multiple, two-mode capacitive transducers where the
electrical resonant mode of a superconducting matching
LC resonator can be tuned to the resonant modes. The
signal current form the matching network is read out by
SQUID amplifiers. The model allows to numerically cal-
culate the sensitivity of a realistic detector and to study in
detail the effects of the main mechanical and electrical
parameters of the displacement readout system on the
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strain sensitivity and bandwidth. All the known noise
sources are discussed and considered in the model.

A complete numerical analysis has been performed for a
2 m in diameter, 30 ton in mass, CuAl spherical detector
operating at ultracryogenic temperatures. We derived the
sensitivity for the spherical detector in its initial phase of
development, when a single transducer is used, and when
the detector operates with six transducers and becomes
fully omnidirectional. The sensitivity is evaluated when
the detector operates by making use of available technol-
ogy and when it works at the quantum limit. We have
shown that, in order to improve the strain sensitivity to-
wards the quantum limit one should operate the detector at
a temperature of about 7 = 20 mK with electrical and
mechanical quality factor as high as 5 X 107 and massive
mechanical resonators.

Direction anisotropies in the detector sensitivity and
signal bandwidth are studied for a not ideal detector oper-
ating with not identical, partially tuned, and real-size res-
onators. The models made so far always consider rather
generic, and pointlike transducers, neglecting the fact that
those sensors are in practice rather large and spatially
distributed on a significant fraction of the sphere surface.
We investigated here the validity of such an assumption.

Finally we described and numerically verify a complete
calibration procedure, which makes use of techniques
available for bar detectors. Similar algorithms can be
used on the spherical detector for diagnostic purpose and
to derive the direction and polarization information from
the detected signal.
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