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Milani et al. recently have published careful and fundamental studies of the accuracy with which both
gravitational physics information and the solar quadrupole moment can be obtained from Earth-Mercury
distance data. To complement these results, a quite different analysis method is used in the present paper.
We calculate the first-order corrections to the Keplerian motion of a single planet around the Sun due to
the parameterized post-Newtonian theory parameters �, �, �1, �2, and �, as well as corrections due to the
solar quadrupole moment J2 and a possible secular change in GM�. The Nordtvedt parameter � that is
used in tests of the strong equivalence principle also is included in this analysis. The expected accuracies
are given for 1 yr, 2 yr, and 8 yr mission durations, assuming that the planet-planet and asteroid-planet
perturbations are accurately known. The ‘‘modified worst-case’’ error analysis method that we use is quite
different from the usual covariance analysis method based on assumed uncorrelated random errors, plus a
bias that is fixed or that changes in a prescribed way. We believe this is appropriate because systematic
measurement errors are likely to be the main limitation on the accuracy of the results. Our final estimated
uncertainties are one-third of the errors that would result if a 4.5-cm rms systematic error had the most
damaging possible variation with time. We discuss the resulting uncertainties for several different subsets
of orbital and relativity parameters.
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I. INTRODUCTION

The most accurate method available for determining
planetary orbits is based on accurate range measurements
from the Earth to a spacecraft orbiting another planet or to
a lander placed on the planet’s surface. The classic results
from range measurements to the Mariner 9 Mars orbiter
and to the Viking orbiters and landers provided much
improved ephemerides for both the Earth and Mars. In
addition, strong tests of the predictions of general relativity
were carried out [1–4].

This paper is the fourth in a series of investigations to
determine how much more accurately one could test the
predictions of present gravitational theory, and also deter-
mine the solar quadrupole moment, if high-accuracy range
measurements were made during a Mercury Orbiter mis-
sion. In the past, range measurement capability frequently
was limited because it had been included on various mis-
sions for navigation purposes rather than for specific sci-
entific measurements. With a combination of Ka-band and
X-band ranging capability, and a system designed specifi-
cally for accurate range measurements, much more favor-
able performance appears feasible.

The situation is more complicated for orbiters than for
landers because of the need to convert from the measured
Earth-spacecraft distance to the desired Earth-planet dis-
tance. This involves determining the orbit of the spacecraft

about the planetary center of mass, which requires solving
from the tracking data for a number of spatial harmonics of
the gravitational field and for radiation pressure and often
other parameters. Nongravitational perturbations of an
irregular nature also frequently are present, such as the
firing of attitude-control jets that give unbalanced forces,
unless care is taken in the mission design to avoid them.
The orbit determination accuracy of Mariner 9 was af-
fected substantially by such problems and by the fact that
the spacecraft was in a 12-hr orbit with low periapsis.

To reduce the orbit determination problem, we concen-
trate here on what could be achieved with a Mercury
Orbiter in a nearly circular orbit and with an altitude
roughly equal to the planetary radius, as is the case for
the LAGEOS satellites in orbit around the Earth. For those
satellites, roughly 1 cm orbit accuracy is achieved rou-
tinely based on laser range measurements from the Earth’s
surface. For ranging from the Earth to a Mercury Orbiter,
the geometry would not be as favorable for observations
over a short period because of only having measurements
from a particular direction. However, over longer times,
it appears that the changes in the Earth-Mercury direction
with respect to the satellite orbit plane plus Mercury’s
rotation would permit accurate determination of
Mercury’s low-degree gravity field, the satellite orbit
around Mercury, and the orbits of Mercury and the Earth
around the Sun.
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In view of being optimistic about the satellite orbit
determination part of the problem for a favorable type of
orbit, we analyzed what could be done with accurate
knowledge of the center-to-center distance between the
Earth and Mercury as a function of time assuming random
uncorrelated errors in the daily normal point range errors.
However, assumptions such as one range measurement per
day, with something like 5 or 10 cm accuracy and random
errors, led to much too optimistic results, since a substan-
tial part of the error is likely to be systematic, as discussed
below. Thus a different type of analysis, based on what is
called a ‘‘modified worst-case analysis,’’ was done instead.
This approach will be described in detail later.

The results from the modified worst-case study were
quite encouraging but were not pursued further, partly
because the prospects for a Mercury Orbiter mission of
any kind seemed very uncertain. The situation now has
changed dramatically. NASA’s MESSENGER mission was
launched to Mercury in August 2004, and will arrive there
in 2011. It will have a 12 hr period orbit with 80 deg
inclination, 200 km periapsis altitude, and 15 000 km
apoapsis altitude. Its X-band Doppler tracking capability
will permit valuable new information to be obtained about
Mercury’s gravity field. But the mission was not planned to
carry out tests of gravitational theory and does not have a
high-accuracy ranging system.

However, the European Space Agency is planning a dual
spacecraft Mercury Orbiter mission called BepiColombo
for launch in 2012. It has sensitive tests of relativity as one
of its major objectives. It will start its 1 yr official science
mission in 2016. Its lower altitude Planetary Orbiter space-
craft will have a polar orbit with 2.3 h period, 400 km
periapsis altitude, and 1500 km apoapsis altitude. Its rang-
ing and Doppler systems are planned to give very high-
accuracy results.

The tracking system [5] will be a five-link X-band plus
Ka-band system of the type needed to correct completely
for the interplanetary electron density along the measure-
ment path. In addition, it is planned to include a 20 MHz
ranging sidetone in order to give considerably higher reso-
lution than usually can be obtained. The accuracy with
which Mercury’s gravity field and rotation can be deter-
mined from the mission has been investigated in detail by
Milani et al. [6]. In addition, in a second paper by Milani
et al., a detailed study has been made of relativity tests and
measurements of related quantities that can be carried out
with the ranging system [7].

In the papers by Milani et al. [6,7], it was found that the
random error in determining the distance from the Earth to
the center of mass of Mercury for a typical observing run of
about 8 hr would be 4.5 cm rms. However, a considerably
larger systematic error due to nonlinear drift in the ranging
system was allowed for. The form of this error was as-
sumed to be 50 sin���=2� � �t=365�� cm, where t is the
time in days from the beginning of the 1 yr orbiting phase

of the mission. Systematic errors in the on-board acceler-
ometer also were considered. Only 1 yr of observations was
assumed. The Nordtvedt effect, involving mainly the effect
of Jupiter on the orbits of Mercury and the Earth around the
Sun, was included in the study by solving numerically for
the orbital perturbations.

After the publication of the careful study by Milani et al.
[7], we decided that it would be worthwhile to extend our
results and to publish them. The reason is that our approach
for considering the possible effect of systematic measure-
ment errors is quite different from that of Milani et al. [7].
Since it is difficult to know ahead of time just how system-
atic errors are going to affect the scientific results, we
believe that the different studies are complementary to
each other. Further studies will be needed in order to
understand and evaluate the differences in the results.

Following the preliminary worst-case earth-mercury
ranging analysis, three studies of the satellite orbit deter-
mination part of the problem for a favorable type of orbit
around Mercury were published. One paper [8] investi-
gated the requirements on the transponder satellite in order
to achieve 3-cm range accuracy and 1� 10�14 Doppler
accuracy for 10-min integration times. It was believed at
the time that this was achievable with a low-power Ka/X-
band dual-frequency sidetone ranging system and a 30 cm
diameter antenna. However, it was pointed out to us later
that a fifth channel was needed to achieve the full accuracy.
This involves converting the X-band uplink signal to Ka-
band before retransmitting it to the ground [5].

The second paper was a covariance study of the orbit
determination problem for a transponder satellite in a polar
orbit at 2439 km altitude [9]. Range and Doppler measure-
ments from a single tracking station on the Earth were
assumed for 8-hr periods every 2 or 3 days. The 3-cm range
uncertainty was considered to be systematic, but the 1�
10�14 Doppler errors were assumed random. A gravity
field for Mercury that is complete through degree and
order 10 was solved for from only 40 carefully chosen
arcs of data. The conclusion was that the center-to-center
Earth-Mercury distance could be determined with 6-cm
accuracy whenever tracking is done. In view of the 88-
day orbit period for Mercury, the accuracy would not
degrade substantially during periods of 2 or 3 days between
measurements. The third study [10] included a consider-
ably more complete radiation pressure model for the space-
craft, and the capability of achieving 6-cm accuracy for the
Earth-Mercury distance was verified.

In the present paper, we assume that a single ‘‘normal
point’’ giving the Earth-Mercury distance is determined
once each day. The uncertainty is taken to be 4.5 cm, based
on the more recent and more complete studies of Milani
et al. [6,7]. The uncertainty in the scientific information
obtained scales directly with the normal point uncertainty
that is assumed, so the results can be adjusted for the case
of different spacecraft orbits around Mercury or different
measurement accuracy.
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It is particularly important to emphasize that the normal
point errors are unlikely to be random from day to day.
Inaccuracies in the orbit determination model are likely to
give errors that vary with the orbital and rotational fre-
quencies of the planet, their harmonics, and differences
from the orbital frequency of the Earth. Range measure-
ment errors may well vary with the range, which depends
on the synodic frequency, with spacecraft temperature, and
with the long-term effects of aging in the spacecraft elec-
tronics. From estimates of the completely random part of
the range error due to signal-to-noise considerations, it
appears that this contribution to the uncertainty will be
considerably below the level due to systematic errors. For
this reason, we believe that a standard covariance analysis
of the expected scientific results could give over-optimistic
conclusions, unless specific systematic error parameters
are introduced that allow for the expected correlations
between the errors at different times.

Instead of the usual covariance analysis assuming un-
correlated errors, we will use what we call a modified
worst-case analysis. The basis for this approach has been
given by Hauser [11] and was used by him in considering
the scientific information expected from the Lunar Laser
Ranging Experiment. A similar modified worst-case analy-
sis was used by Anderson et al. [12] as one of two error
analysis methods in considering Earth-Mars ranging to
test the strong equivalence principle. And a worst-case
analysis was used by Nordtvedt [13] in considering the
proposed Close Solar Probe mission. The worst-case
analysis approach was developed independently a number
of years ago at the Jet Propulsion Laboratory and at other
institutions.

The main part of this paper will be devoted to providing
the necessary framework for studies, using our approach,
of the scientific results achievable for gravitational physics
tests and for the determination of the solar quadrupole
moment from accurate range measurements to another
planet. A major simplifying assumption made throughout
most of the paper is to neglect all asteroid-planet perturba-
tions and all planet-planet perturbations, except for those
due to Jupiter. This means that the effects on the results of
uncertainties in the masses and orbits for the other planets
and in the asteroidal masses are not present in the analysis.
Including such perturbations unfortunately is beyond the
scope of the present paper. However, it is clear how the
analysis can be extended in the future to remove this
limitation.

In Sec. II we derive, for each parameter of interest, the
corrections of lowest order to the unperturbed Newtonian
equations of planetary motion, including those for the
Nordtvedt effect [7,12,14–17]. The systematic error analy-
sis is presented in Sec. III, and the 19 parameters consid-
ered in the analysis are discussed. The manner in which the
partial derivative of the range with respect to how each of
the parameters is calculated is described in Sec. IV. The

application of the analysis to the case of a Mercury Orbiter
mission is discussed in Sec. V, and the results for several
possible mission lengths and for several different parame-
ter sets are given. The interpretation of the results is dis-
cussed and used as a basis for providing rough estimates of
the effects of neglecting the mass and orbit uncertainties
for the other planets and the asteroids. Finally, the overall
results are discussed in Sec. VI.

II. THE PERTURBED EQUATIONS OF MOTION

A. Relativity parameters

Nearly every metric theory of gravity that has been
suggested so far can be fit into the generalized 10-
parameter parameterized post-Newtonian (PPN) frame-
work [18–21], except for possible cosmological effects
on the gravitational constant or for MOND type theories.
In this paper we consider six of these parameters, �, �, �1,
�2, �3, and �, and their effects on the Earth-Mercury
distance. Here � represents the strength of the correction
to the spatial part of the metric and � represents the
strength of the nonlinear terms in the component g00 of
the metric tensor. The parameters �1, �2, and �3 measure
effects due to the velocity of the Sun relative to an assumed
universal rest frame, and � is the coefficient of the
Whitehead term in g00 [21], which represents an interac-
tion between the solar system and the Galaxy’s mass:

 

g00 � �1	 2�
Z ��x0���x00��x� x0�

jx� x0j3




�
x0 � x00

jx� x00j
�

x� x00

jx0 � x00j

�
d3x0d3x00 	 . . . : (2.1)

Any theory of gravity that predicts preferred location
effects has � nonzero [18]. The coefficient of the
Newtonian potential term in g00 is taken to be � � unity
since its deviation from unity has been measured to be
<1:4� 10�4 by Gravity Probe A [22,23], and because the
value � � 1 is required in order that planetary orbits be
described by Newtonian Physical Laws to lowest order
[24]. For theories in which conservation of energy and
momentum hold, �3 � 0. For spatially isotropic theories,
�1 � �2 � �3 � � � 0. In general relativity, � � � � 1
and �1 � �2 � �3 � � � 0.

We have not considered the parameters �1, �2, �3, or �4,
since they entered into the equations either through planet-
planet interactions, most of which are not treated in this
paper, or through the Nordtvedt effect [14–16]. The
Nordtvedt effect gives rise to a term of relatively large
amplitude in the Earth-Mercury range, so we have included
the Nordtvedt parameter � in the analysis. The Nordtvedt
parameter can be checked on by the lunar ranging experi-
ment [25–28]. Also, Sherman [17] (see also [26]) and
Anderson et al. [12] have shown that a good determination
of � can be obtained from accurate range measurements
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between the Earth and Mars if the perturbations due to
Jupiter are considered.

The metric we consider is
 

�ds2 �
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m
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�
�dx2	 dy2	dy2�: (2.2)

Here, w is the velocity of the Sun relative to a preferred
frame, which we shall assume to be the velocity relative to
the thermal background radiation detected by Smoot et al.
[29]: w � 3:71� 1010 � ��0:970; 0:139;�0:197� m=day
in ecliptic coordinates. The other quantities in Eq. (2.2) are
m � GM�=c

2 � 1:477 km for the Sun; MG is the mass of
our Galaxy; RG is the vector from the galactic center to the
Sun, with GMG=c

2RG � 5� 10�7, and RG=RG �
��0:0694;�0:9921;�0:105� in ecliptic coordinates.

With the exception of the � term, the expression given in
(2.2) is the metric for a massless test body in the field of a
fixed point mass M� at the origin. The parameter � mea-
sures possible coupling between the Sun’s mass and the
background Galactic mass.

The geodesic equations of motion for the metric (2.2),
when written using coordinate time t as the independent
variable, take the form

 

d2xk

dt2
� ��k��

dx�

dt
dx�

dt
	 �0

��
dx�

dt
dx�

dt
dxk

dt
1

c
; (2.3)

these equations may then be used to express the accelera-
tion of the test body as

 

d2r
dt2
� �

GM�
r3 r	 �aPPN; (2.4)

where �aPPN is interpreted as a small non-Newtonian
perturbing acceleration modifying the Newtonian accelera-
tion in flat Euclidean space. For the PPN parameters of
interest, and with one additional term involving the rota-
tion of the sun added (see later discussion),
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�
; (2.5)

where 
 is the angular spin velocity of rotation of the Sun
about its rotation axis (j
j � 3� 10�6= sec) and
�=M�c

2 � �3:52� 10�6 is the ratio of the Sun’s self-
gravitational energy to its rest energy. The acceleration
given by Eq. (2.5) will be used below to derive the corre-
sponding PPN perturbations in the planetary orbital
elements.

Note that �aPPN contains a term proportional to the
unperturbed Newtonian acceleration:

 

GM�
r3

r
�
w2

2c2 ��1 � �2 � �3�

�
:

The effect of this term on planetary orbits could be simu-
lated by a change in the Sun’s mass, and therefore we have
dropped this term. The term involving 
 in �aPPN also
deserves some discussion. It has not been derived from
the point mass metric, Eq. (2.2), but from a corresponding
metric appropriate for extended bodies. This term is
due to possible coupling between the Sun’s spin, 
, and
the preferred frame velocity w, and represents a uniform
acceleration A of the Sun through the Universe given
by A� �1=3��3��=M�c2�w��� 2:311� 104�3�0:132;
0:938;0:15� m=day2 in ecliptic coordinates. As a result,

there is some ambiguity in what to take for the origin of
the coordinate system. The results for �aPPN above, and the
perturbations that follow, take r to be the vector between
the accelerated Sun and the planet.

By integrating the Lagrange planetary perturbation
equations [30], we will compute the first-order corrections
to the Keplerian orbital elements arising from �aPPN.
These, in turn, will be used to find the corresponding
effects on the Earth-Mercury distance. The methods used
and the results are given in Sec. IV and in the appendix.

B. Solar quadrupole moment

The value of the dimensionless solar quadrupole mo-
ment J2 from solar oscillation data has been reported as
�1:7� 0:4� � 10�7 by Duvall et al. [31] and as about 10%
less than this value by Brown et al. [32]. These results are
consistent with the value expected for nearly uniform
rotation of the Sun. However, the accuracy achievable
from Earth-Mercury distance measurements appears to
be considerably better. For this reason, and because of
the expected correlation of J2 with � and other parameters,
it is necessary to include J2 in our parameter list. The
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acceleration of a test body in the field of the Sun must then
be modified to read

 a � r
�
GM�
r

�
	 �aPPN �

GM�
2

J2r

�
R2
�

r3 �3sin2’� 1�
�
;

(2.6)

where R� is the radius of the Sun and ’ is the latitude of
the planet with respect to the solar equator.

To simplify the algebra involved in computations of
perturbations arising from the solar quadrupole moment,
it is convenient to choose a reference plane that coincides
with the plane of the solar equator. The inclination and
longitude of node of this plane relative to the ecliptic are
I � 7�150, � � 75�040, respectively. Fitzpatrick [30] has
published integrated expressions for the changes in orbital
elements that have been used in our computations.

C. Evolving gravitational constant

It has been conjectured that the gravitational constant G
may be changing with time [33–37]. We define the pa-
rameter 
G � � _G=G, where we assume that _G � dG=dt
is constant in the first approximation. The effect of 
G on a
test mass acceleration is to introduce an additional pertur-
bation

 �a �
GM�
Gtr

r3 : (2.7)

The perturbing effect of this acceleration on the orbital
elements may easily be integrated using the Lagrange
planetary perturbation equations. The results are given in
the appendix.

D. Strong equivalence principle violation

The effect of strong equivalence principle (SEP) viola-
tion due to the presence of Jupiter can be considered to be a
direct planetary perturbation on the orbits of Earth and
Mercury. The perturbed equations of motion of a planet
orbiting the sun, perturbed by the Nordtvedt effect [14,15],
have been derived by Milani et al. [7] in heliocentric
coordinates and are taken to be

 

d2qi
dt2

� �
G�M� 	Mi�qi

q3
i

	 �
�

M�c
2

GMjqij
q3
ij

; (2.8)

where

 q ij � qi � qj; (2.9)

qi is the heliocentric position vector of planet i, qj is the
position of Jupiter,M� is the Sun’s mass,Mi is the mass of
planet i, Mj is Jupiter’s mass, � is the Nordvedt parameter,
and �=M�c

2 � �3:52� 10�4 is the ratio of the Sun’s
gravitational self-energy to its rest mass energy.

The orbital inclinations and eccentricities of Earth and
Jupiter are all very small. In treating the SEP-violating
orbital perturbations due to Jupiter, we shall therefore treat

the unperturbed orbits as coplanar and circular, with radii
ai and aj, respectively. We denote the orbital angular
velocities by !i and !j, respectively, and the synodic
frequency �i between the planet and Jupiter by Si, where

 Si � �!i �!j�t	�’ � �it	�’; (2.10)

’ is the initial angle between the Earth and Jupiter, sub-
tended by the sun, and �i is the synodic frequency.

The equations of motion for the perturbed orbit can be
separated into a part that is radial (parallel to the helio-
centric radius) and a part that is tangential (perpendicular
to the radius). We denote these perturbations by �rr and
�rt, respectively. Only terms linear in the perturbations are
retained. The reciprocal of the unperturbed distance be-
tween planet i and Jupiter (planet j) is

 

1����������������������������������������������
a2
i 	 a

2
j � 2aiaj cosSi

q �
X1
n�0

ani
an	1
j

Pn�cosSi�; (2.11)

where Pn�x� is the Legendre polynomial of order n. Then
the equations of motion are

 ��rr � 2!i� _rt � 3!2
i �rr � �

GMj��0

a2
j

�
X1

1

n
�
ai
aj

�
n
Pn�cosSi�;

(2.12)

 � �rt 	 2!i� _rr � 	
GMj��0

ai�!i �!j�

d
dt

X1
1

ani
an	1
j

Pn�cosSi�;

(2.13)

where

 !2
i �

G�M� 	Mi�

a3
i

: (2.14)

The Legendre polynomials on the right-hand sides of the
equations of motion can be expanded in power series in the
variables cosSi, and a term such as �cosSi�n can be reduced
to a Fourier series by repeatedly employing trigonometric
identities such as

 �cosS�m � �cosS�m�2�1	 cos�2S��=2; (2.15)

 cos�mS� cos�nS� � �cos�mS	 nS� 	 cos�mS� nS��=2:

(2.16)

Thus the equations of motion can be written in the form

 � �rr � 2!i� _rt � 3!2
i �rr �

X1
1

An cos�nSi�; (2.17)

 ��rt 	 2!i� _rr �
X1

1

Bn sin�nSi�: (2.18)
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Then solutions for the perturbations can be found by
assuming

 �rr �
X
n

�r�n�r cos�nS�; (2.19)

 �rt �
X
n

�r�n�t sin�nS�: (2.20)

The equations for perturbations of a given synodic Fourier
frequency (n�i) are then coupled and the solutions are

 �r�n�r � �
n�iAn � 2!iBn
n�i�n2�2

i �!
2
i �
; (2.21)

 �r�n�t �
2n!i�iAn � �n

2�2
i 	 3!2

i �Bn
n2�2

i �n
2�2

i �!
2
i �

: (2.22)

This method of solution is similar to that employed by
Laplace [38] in computing the Newtonian perturbations of
the inner planets due to Jupiter. The details are straightfor-
ward but lengthy, and we give only the final results here.
For the Earth, the radial and tangential perturbations are (in
meters)
 

�rr � 374:83 cos�Se� � 4:87 cos�2Se� � 0:35 cos�3Se�

� 0:04 cos�4Se�;

�rt � �796:20 sin�Se� 	 6:94 sin�2Se� 	 0:43 sin�3Se�

	 0:04 sin�4Se�: (2.23)

For the planet Mercury, the inclination is not small.
However, changing the assumed value of Mercury’s incli-
nation in the calculations of the modified worst-case errors
has a negligible effect on these errors. Therefore, we have
used the analysis given above for the SEP-violating effect
on Mercury’s orbit and find for Mercury
 

�rr � 81:83 cos�Sm� � 0:09 cos�2Sm�;

�rt � �165:92 sin�Sm� 	 0:12 sin�2Sm�:
(2.24)

The partial derivative of the Earth-Mercury range with
respect to the parameter � is then

 

@�
@�
� N̂em 
 ��re � �rm�; (2.25)

where N̂em is a unit vector from Mercury to Earth.
Since Mercury’s orbit radius is relatively small com-

pared to that of Earth, the unit vector N̂em is primarily in
the direction of Earth’s radius. Therefore, the tangential
perturbation of Earth’s orbit contributes only in a minor
way in the perturbation of the range, and the net SEP-
violating contribution to the range would be only a few
hundred meters (if � � 1).

There are at least two easy ways of incorporating the
SEP-violating range perturbation. One way is to treat � as
an independent parameter. Results for this case are pre-

sented in Table IV. Another way is to make use of the
dependence of � on other parameters: � � 4�� 3�� 1,
and to therefore add to the partial derivatives with respect
to � and � the contributions

 

@�
@�

���������
� 4

@�
@�

;
@�
@�

���������
� �3

@�
@�

: (2.26)

Since � is determined mainly by the time delay, estimates
of uncertainty in � are hardly affected. However, the
uncertainty in � is significantly reduced, as is the uncer-
tainty in J2 due to the high correlation between other
perturbations arising from � and J2. We present here
only the results obtained treating � as an independent
parameter.

The equations of motion could be numerically inte-
grated; however, initial conditions must then be carefully
chosen to eliminate unwanted solutions of the homogene-
ous equations of motion, that is, Eqs. (2.12) and (2.13) with
no perturbing term proportional to the parameter �. There
exist two linearly independent solutions of such equations,
oscillating with frequencies !i, which have nothing to do
with SEP violation and which if included would introduce
spurious time signatures that would tend to reduce the
estimates of uncertainty in �.

E. Time delay

In the above sections we have considered the dynamical
effects on a planet’s orbit. In addition, there is a nondy-
namical effect, the gravitational time delay [39] of the
tracking signal. For the PPN coordinate system used
here, the apparent shift in range is given by

 �� � m�1	 �� ln
�
rE 	 rM 	 �
rE 	 rM � �

�
; (2.27)

where � is the Earth-Mercury range, and rE and rM are the
Sun-Earth and Sun-Mercury distances, respectively. No
other PPN parameters contribute to the time delay to this
order. (See Refs. [1,18] for further discussion.)

III. SYSTEMATIC ERROR ANALYSIS

A. Modified worst-case systematic error analysis

Since the apparent accelerations (2.5)–(2.8) of both the
Earth and Mercury and the time delay (2.27) depend on the
parameters �, �, J2, �i, �, 
G, and �, these parameters can
be estimated from ranging observations between the two
planets. Any realistic estimate for the post fit uncertainties
of given parameters must include the effects of nonrandom,
systematic errors. For this purpose we have employed a
modified worst-case systematic error analysis, which is
similar to that of Hauser (1974) mentioned earlier.

Let � stand for the calculated distance between the Earth
and Mercury. Suppose there are m parameters, dk �k �
1; 2; . . . ; m�, which affect the theoretical calculation of �.
Then we write
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 � � �t; d1; d2; . . . ; dm� � ��t; fdkg� � ��t� (3.1)

for the calculated range at time t. Let R�t� be the range that
is actually observed at time t in the experiment. The data
analysis consists of adjusting the parameters fdkg, so that
the residuals ��t� � R�t� � ��t� are as small as possible in
the least-squares sense. Thus we try to find the corrections
�dk to the initial parameter values d0

k so that the quantity

 

X
i

�R�ti� � ��ti; fd
0
k 	�dkg��

2

is minimized. Here, ti represents the time of the ith obser-
vation. The first-order equations for the corrections �dk
that result from the standard minimization procedure are

 

X
i

@��ti�
@dk

���ti; fd
0
‘g� �

Xm
j�1

X
i

�
@��ti�
@dk

@��ti�
@dj

�
�dj;

(3.2)

where

 ���ti; fd
0
‘g� � R�ti� � ��ti; fd

0
‘g�  ���ti� (3.3)

is the observed range residual. Or, defining the matrix C
with elements

 Ckj �
X
i

�
@��ti�
@dk

@��ti�
@dj

�
; (3.4)

Eq. (3.2) becomes

 

X
i

@��ti�
@dk

���ti� �
Xm
j�1

Ckj�dj: (3.5)

The element Ckj of them�mmatrix C measures the cross
correlation between the time signatures of the parameters
dk and dj over the data set. If the time signatures corre-
sponding to the parameters fdkg, as represented by the
partial derivatives @�=@dk, are all linearly independent,
then the matrix C will be nonsingular. Equation (3.5) can
then be inverted and the solutions for the corrections �d‘
to the initial values, d0

‘, of the parameters are then

 �d‘ �
Xm
j�1

B‘j
X
i

@��ti�
@dj

���ti�; (3.6)

where B is the matrix inverse to C.
Once these corrections, �d‘, have been found, there still

remains the question of their sensitivity to either experi-
mental or modeling errors. Suppose ���ti� is the error in
the residual ���ti�; then because Eq. (3.6) gives a linear
relationship between the residuals and the corrections �d‘
to the parameters, there will result an error �d‘ in the
calculated correction given by

 �d‘ �
Xm
j�1

B‘j
X
i

@��ti�
@dj

���ti�: (3.7)

If the errors in the range residuals ���ti� are random and
uncorrelated, then upon repeating the range measurements
��ti� many times one would expect

 h���ti����tj�i � �ij�
2; (3.8)

where the expectation value represented by the brackets hi
are considered as an average over an ‘‘ensemble’’ of simi-
lar experiments, and �2 is the variance in the residuals. On
forming the average of the quantity �d2

‘ from Eq. (3.7) and
using (3.8), we obtain the usual expression for the rms error
in the correction to the lth parameter [40]:

 �d‘ � �
��������
B‘‘

p
: (3.9)

It can then easily be seen that, as the number of data points
increases, the random error approaches zero. This implies
that for a ranging experiment where there are an enormous
number of data points, it is the time-dependent systematic
errors that are of most importance.

The actual time dependence of the systematic errors is
unknown, of course, but different sorts of estimates can be
made. It is possible, for example, to make reasonable
estimates of the systematic errors that lie at each of the
important frequencies. This estimated error budget could
then be substituted into Eq. (3.7) to give the errors �dl for
each l, as was done in one approach used by Hauser [11]
for the lunar ranging problem. A similar approach is to use
an estimated covariance matrix of the observation errors, as
discussed by Kaula [40]. Despite the subjective nature of
such estimates, we believe that these methods are among
the most reliable for assessing errors in results from data
sets that already exist.

For possible future measurements, we start instead from
the worst-case approach. This approach assumes only that
we know the total rms magnitude of the error. In particular,
for each parameter d‘ we find the time-dependent system-
atic error that causes the maximum uncertainty in that
parameter, subject only to the condition that

 

�
1

N

X
i

���ti�2
�

1=2
� �: (3.10)

Using the standard method of Lagrange multipliers to
maximize the error �d‘ given by Eq. (3.7) subject to the
constraints (3.10), the worst-case error is found to occur
when the residual has the time dependence given by

 ��‘�ti� �
1

S‘
�
X
j

B‘j
@��ti�
@dj

; (3.11)

where

 S‘ � �B‘‘=N�1=2 (3.12)

is a normalization factor needed to satisfy Eq. (3.10).
Substituting Eq. (3.11) back into (3.7) gives the worst-
case estimate for �dl, which works out to be
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 �d‘ � ��NB‘‘�1=2: (3.13)

Hauser (1974) obtained this same result, except with a �
sign instead of an equality.

Thus the worst-case systematic error in the parameter dl
is larger by a factor of N1=2 than for the random error case.
Generally speaking, if changes in a parameter do not
introduce secular effects in the calculated range, the
worst-case error given by Eq. (3.13) approaches a fixed
limit as the number of observations becomes very large. If
secular effects are introduced by changes in a parameter,
then the error given by Eq. (3.13) in the determination of
that parameter may continue to decrease as additional
measurements are made.

Clearly it is unduly pessimistic to expect that every
parameter would have the worst-case error (for that pa-
rameter) associated with its determination. Unless particu-
lar known time dependences seem likely to dominate the
error budget, a substantial part of the systematic error
probably will occur as irregular drifts, terms with frequen-
cies that have little effect on the parameters of interest, or
as a constant offset. Also, the time dependence of the range
error associated with having the worst possible result for
one parameter may not produce the worst errors for other
parameters of interest. For these reasons, we choose to
modify the worst-case results by dividing them by a factor
k. In some cases a value as small as 2 or as large as 10 may
be justified, but for the present problem we have subjec-
tively chosen to use a value of 3. This seems reasonable in
view of the number of parameters involved, the relatively
high frequency of Mercury’s motion, and the absence of a
reason to expect that most of the systematic error will have
the worst possible time dependence. We call this the modi-
fied worst-case analysis.

B. The parameter set

In this paper, we are mainly concerned with placing
limits on the accuracy with which the parameters �, �,
J2, �1, �2, �3, �, 
G, and � can be determined.
Consequently, these parameters must be included in the
parameter set fdkg. The other parameters considered will be
the product GM�, together with the standard, unperturbed
Keplerian elements for each planet.

Because the Earth-Mercury distance is unaffected by
any rotation of the reference coordinate system, three of
the Keplerian elements may be eliminated from considera-
tion; hence only nine independent Keplerian elements,
which are all taken relative to the ecliptic, are used in
this analysis. These parameters are the semimajor axes of
the Earth and of Mercury �a1; a2�; eccentricities of the
Earth and of Mercury �e1; e2�; the differences between
perihelion angle and initial longitude � ~!1 � L10; ~!2 �
L20�; the difference between the position of the line of
nodes and initial longitude of Mercury (�2 � L20); the
orbital inclination of Mercury (I2); and the difference of

initial longitudes of Mercury and of the Earth (L20 � L10).
The total number of parameters is thus 19. We have also
considered three other cases. For the two spatial isotropy
cases, in which the parameters �1, �2, �3, and � may be
assumed to vanish, one with � not included and one
including it, there are 14 or 15 parameters in the set. For
the case where general relativity is assumed to be correct
andG to be constant, so that �,�, 
G, and � are not solved
for either, there are 11 parameters.

IV. CALCULATION OF PARTIAL DERIVATIVES

A. Range derivatives

The error analysis described in the previous section
requires the calculation of partial derivatives of the
Earth-Mercury range with respect to each of the parame-
ters: @��t; fdg�=@dj �j � 1; . . . ; 19�. We first discuss the
calculation of derivatives with respect to the parameters
�, �, J2, �1, �2, �3, �, and 
G. These derivatives are
obtained by integration of the Lagrangian perturbation
equations [30]. For a small perturbation from any one of
the parameters, the corresponding change in range � is
regarded as arising from first-order time-dependent pertur-
bations of the Keplerian elements of the two planets. For
this purpose, the independent Keplerian elements of a
planet are taken to be the semimajor axis a, eccentricity
e, perihelion longitude ~!, position of line of nodes �,
inclination I, and mean anomaly M. First-order perturba-
tions in the semimajor axis arising from the perturbations
in acceleration will be denoted by �a:

 �a � �a�t�  a�t� � a�t0� �
Z t

t0
_adt (4.1)

with similar meanings for �e, � ~!, ��, �I, and �M. The
time derivatives _a, _e, etc., are obtained from the
Lagrangian perturbation equations when the perturbing
acceleration is given by Eqs. (2.5)–(2.7).

Algebraic expressions for the perturbations in the
Keplerian elements have been obtained by expressing the
appropriate time-dependent integrands [such as _a in
Eq. (4.1)] in terms of the true anomaly or the eccentric
anomaly and then integrating. Results are given in the
appendix, except for the case of the perturbation due to
the solar quadrupole moment J2. For the perturbations
from J2 � 0 we use instead the results of Fitzpatrick [30]
with the epoch chosen so that �a�t0� � 0. When consid-
ering the total perturbation, say �a, from the acceleration
(2.5)–(2.7), it is evident that because only first-order cor-
rections are retained �a will be a sum of terms each of
which is linear in one of the parameters �, �, J2, �i, �, 
G,
or �. If these parameters are denoted by d11; d12; . . . ; d19,
respectively, then we have, for example,

 �a �
X19

i�11

@a
@di

di: (4.2)
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This linear dependence of �a, �e, etc. on the parameters
fdig allows us to consider the effects of each parameter
separately on the Earth-Mercury range. (Later in this sec-
tion and in the appendix where it is clear that perturbations
due only to one specific parameter are being considered,
we will also use the symbol �a in place of @a=@di, where
di is tacitly assumed to be unity.)

Suppose, for example, we have found the perturbation in
each Keplerian element from the PPN parameter �. Then,
the total derivative of the range with respect to � is
 

@�
@�
�
@�
@a1

@a1

@�
	
@�
@a2

@a2

@�
	
@�
@e1

@e1

@�
	
@�
@e2

@e2

@�

	
@�
@ ~!1

@ ~!1

@�
	

@�
@ ~!2

@ ~!2

@�
	

@�
@�1

@�1

@�
	

@�
@�2

@�2

@�

	
@�1

@I1

@I1

@�
	
@�
@I2

@I2
@�
	

@�
@M1

@M1

@�
	

@�
@M2

@M2

@�
;

(4.3)

where the subscripts 1 and 2 denote orbital elements for the
Earth and Mercury, respectively. Equation (4.3) can also be
written in a shorter form by replacing @ai=@� by �ai, etc.,
understanding that �ai is the perturbation in ai due only to
� (with � set equal to unity).

Because we shall express the planetary orbital elements
in ecliptic coordinates, in which �1 is ill defined (I1 � 0 in
these coordinates), it is convenient to replace the contribu-
tions to the perturbation arising through �1 by replacing
the term �@�@�1��@�1=@di� by the following limit

 

@�
@�1

@�1

@di
! lim

I1!0

�
1

sinI1

@�
@�1

�
� lim

I1!0

�
sinI1

@�1

@di

�

� lim
I1!0

�
1

sinI1

@�
@�1

�sinI1��1�

�
: (4.4)

Thus we write, for example,
 

@�
@�
�
@�
@a1

�a1 	
@�
@a2

�a2 	
@�
@e1

�e1 	
@�
@e2

�e2

	
@�
@ ~!1

� ~!1 	
@�
@ ~!2

� ~!2

	 lim
I1!0

�
1

sinI1

@�
@�1

�sinI1��1�

�
	

@�
@�2

��2

	
@�
@I1

�I1 	
@�
@I2

�I2 	
@�
@M1

�M1 	
@�
@M2

�M2;

(4.5)

where on the right it is understood that in this example
�a1, �a2, etc., refer only to contributions arising from �.
Similar results hold for @�=@di for di � d11; . . . ; d19.

Equation (4.5) shows that to find the derivative of the
range with respect to d11; . . . ; d19, it is necessary to first
compute the derivatives with respect to the unperturbed
Keplerian elements ai, ei, etc. (The derivative with respect
to any element evident in (4.5) is computed keeping all

other elements fixed.) For this purpose we express the
ecliptic coordinates �x; y; z� of a planet in terms of
Keplerian elements [30]:

 x � r�cos� cos�f	!� � cosI sin� sin�f	!��;

y � r�sin� cos�f	!� 	 cosI cos� sin�f	!��;

z � r sinI sin�f	!�;

(4.6)

where f is the true anomaly, ! � ~!�� is the argument
of perihelion, and r is the radial distance between the
planet and the Sun. For the Earth, I1 � 0 and neither !1

nor �1 is physically well defined. However, we can assign
!1 and �1 temporary values consistent with !1 	�1 �
~!1 (which is well defined), noting that no physically mean-
ingful result can ever depend on these values. The radial
distance r is given by

 r � a�1� e2�=�1	 e cosf�: (4.7)

The true anomaly and eccentric anomaly E may be related
by comparing the above with another equivalent expression
for r:

 r � a�1� e cosE�: (4.8)

The eccentric anomaly E is obtained from the unperturbed
mean anomaly by

 E� e sinE � M � n�t� tp�; (4.9)

where tp is the time of perihelion passage and n �
�GM�=a3�1=2 is the planetary mean motion.

From Eq. (4.6) and (4.7), expressions for the ecliptic
coordinates of the Earth and of Mercury may be obtained,
leading to the following expression for the range �:

 �2 � �r1 � r2�
2 � r2

1 	 r
2
2 � 2r1r2 cos�12; (4.10)

where
 

cos�12 � cos�f1	� ~!1�L10�� ��2�L20�

� �L20�L10��cos�f2	� ~!2�L20�

� ��2�L20��	 cosI2 sin�f1	� ~!1�L10�

� ��2�L20�� �L20�L10�� sin�f2	� ~!2�L20�

� ��2�L20�� (4.11)

is the angle between the radius vectors from the Sun to the
two planets. This result displays explicitly the dependence
of � on the chosen set of nine Keplerian elements. Since
@�=@f does not appear in Eq. (4.5), the true anomaly f is to
be regarded as a function of e and M, consistent with
Eqs. (4.7)–(4.9).

The partial derivatives needed in Eq. (4.5) may now be
evaluated from Eqs. (4.10) and (4.11). In calculating these
derivatives, we are at this stage regarding M as indepen-
dent of ~! and a, although these unperturbed elements are
related by
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 M � nt	 L0 � ~! � �GM�=a3�1=2t	 L0 � ~!: (4.12)

We shall later take this into account when determining
partial derivatives with respect to the unperturbed ele-
ments. For derivatives with respect to a1 and a2, we find

 

@�
@a1

� r1�r1 � r2 cos�12�=�a1��; (4.13)

 

@�
@a2

� r2�r2 � r1 cos�12�=�a2��: (4.14)

Derivatives with respect to the eccentricities are
 

@�
@e1
� ��a1 cosf1�r1 � r2 cos�12� 	 �x1y2 � y1x2�

� sinf1�2	 e1 cosf1�=�1� e
2
1��=�; (4.15)

 

@�
@e2
� ��a2 cosf2�r2 � r1 cos�12� 	 �x1v2x 	 y1v2y�

� sinf2�2	 e2 cosf2�=�1� e
2
2��=�; (4.16)

where
 

v2x � r2�cos�2 sin�f2	!2�	 cosI2 sin�2 cos�f2	!2��;

v2x � r2�sin�2 sin�f2	!2�� cosI2 cos�2 cos�f2	!2��;

(4.17)

and �x1; y1; 0� and �x2; y2; z2� are ecliptic coordinates of the
Earth and Mercury, respectively. For the derivatives with
respect to longitude of perihelion, we have

 

@�
@ ~!1

� �x2y1 � y2x1�=�; (4.18)

 

@�
@ ~!2

� �v2yy1 	 v2xx1�=�: (4.19)

The vanishing of I1 requires that care be taken in order to
avoid ambiguity in the calculation of perturbations arising
through ��1. Thus,

 lim
I1!0

1

sinI1

@�
@�1

� r1 cos�f1 	!1�z2=�; (4.20)

 

@�
@�2

� ��x1�v2x � y2� 	 y1�v2y 	 x2��=�; (4.21)

 

@�
@I1
� �r1 sin�f1 	!1�z2=�; (4.22)

 

@�
@I2
� �r2 sin�f2 	!2� sinI2�x1 sin�2 � y1 cos�2�=�;

(4.23)

 

@�
@M1

� �r1 � r2 cos�12�a1e1 sinf1=���1� e2
1�

1=2�

� �x1y2 � y1x2��1� e
2
1�

1=2a2
1=��r

2
1�; (4.24)

 

@�
@M2

� �r2 � r1 cos�12�a2e2 sinf2=���1� e
2
2�

1=2�

	 �x1v2x 	 y1v2y��1� e
2
2�

1=2a2
2=��r

2
2�: (4.25)

The results, Eqs. (4.12)–(4.23), will be used in equations
analogous to (4.5) to find @�=@di for the parameters di �
�, �, J2, �i, �, 
G, and �. The results for �ai, etc. are
derived in the appendix. These partial derivatives will then
be used in Eq. (3.4) to find the matrix Ckj.

The derivatives given by Eqs. (4.20) and (4.22) appear to
depend on an undefined quantity, !1. However it can be
easily verified that when the contributions to @�=@di from
both ��1 and �I1 are combined using any of the inte-
grated results of the Appendix, the combination is inde-
pendent of !1. This is so for the perturbations due to �1,
�2,�3, and �. For the perturbations due to �,�, 
G, and �,
�� � �I � 0 anyway. For the perturbations due to J2, all
the calculations are done in the solar equatorial coordinate
system (where no ambiguities arise since in this system
I1 � 0).

So far, we have considered the derivatives of the range
with respect to the parameters �, �, �i, J2, �, 
G, and �.
As discussed in Sec. III B, a set of unperturbed orbital
parameters will also be included in the analysis. This
requires that we find @�=@di for the additional 10 parame-
ters: dj � GM�, ai, ei, ~!i � Li0, �2 � L20, I2, L20 � L10

�i � 1; 2�. These partial derivatives will be simple
linear combinations of the derivatives (4.12)–(4.23). We
shall denote partial derivatives with respect to any of the
selected set of unperturbed Keplerian elements
�d1; d2; . . . ; d9� by means of a subscript K.

In evaluating partial derivatives with respect to any of
the chosen Keplerian parameters, particular care must be
exercised to account for the dependence of the unperturbed
mean anomaly on semimajor axis, perihelion position, and
initial longitude, Eq. (4.12). For this portion of the calcu-
lation M is no longer regarded as an independent variable
but as an intermediate variable, which can be affected by
changes in a, ~!i � L0, and GM�. Thus, for example,
changes in values of the semimajor axes will affect the
mean motion, ni, in Eq. (4.24), which must be accounted
for in the total partial derivative with respect to ai. In this
case, the total derivatives are given by

 

�
@�
@a1

�
K
�
@�
@a1
�

3

2

n1t
a1

@�
@M1

; (4.26)

 

�
@�
@a2

�
K
�
@�
@a2
�

3

2

n2t
a2

@�
@M2

; (4.27)
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where @�=@ai and @�=@Mi are given by Eqs. (4.13),
(4.14), (4.24), and (4.25).

Similarly, for the determination of the perihelion posi-
tion variables ~!i � Li0 we have

 

�
@�

@� ~!1 � L10�

�
K
�

@�
@ ~!1

�
@�
@M1

; (4.28)

 

�
@�

@� ~!2 � L20�

�
K
�

@�
@ ~!2

�
@�
@M2

; (4.29)

the minus signs arising from the negative coefficient of ~!
in Eq. (4.17).

No such corrections are necessary to obtain partial de-
rivatives with respect to the eccentricities:

 

�
@�
@e1

�
K
�
@�
@e1

;
�
@�
@e2

�
K
�
@�
@e2

: (4.30)

For the other parameters we have

 

�
@�

@��2 � L20�

�
K
�

@�
@�2

;
�
@�
@I2

�
K
�
@�
@I2

; (4.31)

 

�
@�

@�L20 � L10�

�
K
� �

@�
@ ~!1

: (4.32)

In Eqs. (4.26)–(4.32), the derivatives occurring on the
right-hand sides (without subscriptsK) are those calculated
in Eqs. (4.13)–(4.25).

V. APPLICATION TO A MERCURY ORBITER
MISSION

A. Calculations

Software has been written that calculates all partial
derivatives, computes the matrices Bmn and Cmn, and sol-
ves for the uncertainties �dl, Eq. (3.13). This program has
been used to evaluate specific Earth-Mercury ranging mis-
sions, all with arbitrarily chosen initial epoch t0 � 2012
January 0.5 E.T. (Julian Date 2455928.0). (Other choices
for the initial epoch lead to variations in the estimated
uncertainties of no more than 10% to 15% from the results
quoted here.) We have assumed a range data point once per
day, except that any point arising when the Earth-Mercury
vector is aligned within five degrees of the Sun has been
deleted. This omission originally was intended to allow for
the noise at S-band, which swamps the signal when ranging
too near the Sun. It has been left in, even though current
proposals are to use Ka-band and X-band ranging signals.
The principal important effect of this assumption on our
results is to limit the observable magnitude of the time
delay effect and hence the accuracy of the determination of
�. However, this bound on � is not critically sensitive to
the particular choice of five degrees since the time delay
depends only on the logarithm of the distance of closest
approach of the signal to the Sun.

In calculations as complicated as the ones reported here,
it is realistic to anticipate the possibility of algebraic or
computational errors. The expressions given in the
Appendix for the orbital perturbations due to �, �, �i, �,
and 
G, as well as expressions given by Fitzpatrick [30] for
the solar quadrupole moment perturbations, have been
encoded in FORTRAN and used in calculations of the
matrix Bmn. Independently, and working on a second com-
puter in a different programming language, the Lagrangian
perturbation equations were integrated numerically using a
very accurate scheme based on Bode’s Rule [41]. These
independent calculations of the orbital perturbations were
found to agree to 1 part in 1010. Similarly, independent
calculations of the partial derivatives of the range with
respect to the orbital elements and to the Nordtvedt pa-
rameter were found to be in agreement. Thus we feel
confident that no algebraic or computational errors notably
affect our results.

Values of the orbital elements of the Earth and of
Mercury at the initial epoch are listed in Table I together
with values of some constants used in the calculations. The

TABLE I. Values of the unperturbed Keplerian elements (all
angles are in radians).

Parameter Mercury Earth

a (meters) 5:79� 1010 1:496� 1011

e 0.20563 0.0167
n �rad=day� 0.0714 0.0172
L0 (epoch JD 2455928.0) 1.7521 3.2982
~! 1.3452 1.793
� 0.8433 0.00
I 0.1222 0.00
GM� 9:983� 1029 m3=day2

c (speed of light) 2:592� 1013 m=day

TABLE II. Assumed present uncertainties in the nonorbital
parameters for our Mercury Orbiter–Earth ranging study. For
information on how most of these uncertainties were determined,
see Ref. [42].

Parameter Limit

�� 1 2:3� 10�5

�� 1 3� 10�3

� 4� 10�7

�1 10�4

�2 4� 10�7

�3 2� 10�20

� 4:5� 10�4

1 2� 10�2

2 4� 10�5

3 10�8

4 
 
 

_G=G �yr�1� 0:9� 10�12
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results are shown in Tables II and III, and are discussed in
the next section.

B. Present uncertainties in gravitational
physics parameters

An updated general discussion of the uncertainties in all
of the PPN parameters has been given fairly recently by
Will [42]. He includes the post-Newtonian ‘‘conservation
law’’ parameters 1, 2, 3, and 4, in addition to the ones
we have discussed earlier. We will use the uncertainties
listed in his Table IV, except as discussed below.

For �, Doppler measurements of the time delay during a
passage of the Cassini spacecraft behind the Sun have been
used recently [43] to determine that

 �� 1 � �2:1� 2:3� � 10�5: (5.1)

For �, we have listed the uncertainty as 4� 10�7, since
Nordtvedt [44] notes that the uncertainty for � should be
comparable with that for �2, based on the spin-axis ori-
entation for the Sun. Also, improvements in the analysis of
lunar laser ranging data now give [27,28,45] for the
Nordtvedt parameter � and for �dG=dt�=G:

 � � �4:4� 4:5� � 10�4; (5.2)

 j _Gj=G < 0:9� 10�12=yr: (5.3)

Since the complete PPN expression for � is

 � � 4�� �� 3�
10�

3
� �1 �

2�2

3
�

21

3
�
2

3
; (5.4)

and Will lists the uncertainty in 1 as 2� 10�2, we will
assume that � can be used in determining the other pa-
rameters only if the conservation law parameters are being
assumed to be zero. The corresponding cases will be
referred to as ‘‘metric theory’’ cases, as was done by
Milani et al. [7]. The only conservation law parameter
entering into the perihelion advance expression is 2, and
its listed uncertainty of 4� 10�5 is small enough so that it
will not affect any of our results.

With the above modifications, our assumed present un-
certainties in the parameters are given in Table II.

C. Results

We have considered four main cases. Results for all of
these cases will be given for mission lengths of one, two,
and eight years. They are listed in Tables III and IV. The
one-year results correspond to the approximate length of
the nominal BepiColombo mission. The two-year results
demonstrate the improvement possible with an extended
BepiColombo mission, while the eight-year results indi-
cate what might be achieved with a much longer mission or
with the combination of data from two missions.

The results given in Tables III and IV are the modified
worst-case estimates, which are the worst-case uncertain-
ties reduced by a factor of 3, as discussed in Sec. III A.
These results assume an rms error of � � 4:5 cm [see
Eq. (3.10)]. Since the results are directly proportional to
�, from the quoted values one can derive results corre-
sponding to other assumed values of� by multiplication by
the appropriate factor. The actual worst-case estimates can
be obtained by multiplying by the factor of 3, and the
uncertainties that would arise under the assumption of
random and uncorrelated errors can be derived by multi-
plying by the factor 3=

����
N
p

, where N is the number of data
points. For 1, 2, and 8 yr, respectively, the factor 3=

����
N
p
�

0:164, 0.116, and 0.0584, respectively.
The first case corresponds to assuming general relativity

is valid, but that the gravitational constant may change with
time. There are 12 parameters involved, including the 9
orbit parameters, GM�, J2, and _G=G. The results are given
in Table III. A 4-parameter second case which is useful in
understanding the limits on determining J2 and other pa-
rameters also is included in Table III.

The third and fourth cases assume that general relativity
may be wrong, and that the correct theory may be non-
metric. Thus Eq. (5.4) with 1 and 2 set equal to zero
cannot be used to give a relationship between � and the
metric theory relativity parameters. For the third case,
spatial isotropy is assumed, so that �1 � �2 � �3 �  �
0. For this case there are 15 parameters, includingGM�, �,
�, J2, _G=G, and �. The results for 1 yr, 2 yr and 8 yr of
simulated observations are given in columns 1, 3, and 5 of
Table IV.

TABLE III. Results for the modified worst-case systematic
error limits on the parameters for various mission lengths,
assuming general relativity is correct, but _G=G might not be
zero. The rms error is assumed to be 4.5 cm for ranging between
the Earth and Mercury. The parameter uncertainties given cor-
respond to one-third of the worst-case results. Angles are mea-
sured in radians.

Parameter 1 yr 2 yr 8 yr

12-parameter case
a1 (meters) 0.043 0.020 0.016
a2 (meters) 0.044 0.040 0.028
e1 4:3� 10�13 3:5� 10�13 3:4� 10�13

e2 7:7� 10�13 6:5� 10�13 5:9� 10�13

~!1 � L10 2:6� 10�11 2:2� 10�11 2:6� 10�11

~!2 � L20 6:7� 10�12 4:2� 10�12 4:4� 10�12

�2 � L20 4:8� 10�11 4:6� 10�11 4:7� 10�11

I2 5:6� 10�12 5:5� 10�12 5:1� 10�12

L20 � L10 1:3� 10�12 1:2� 10�12 1:1� 10�12

GM� (fractional) 1:9� 10�12 1:8� 10�12 1:3� 10�12

J2 1:4� 10�9 9:6� 10�10 6:4� 10�10

_G=G �yr�1� 3:0� 10�13 6:3� 10�14 3:7� 10�15

4-parameter case
a1 (meters) 0.017 0.015 0.014
a2 (meters) 0.024 0.024 0.018
GM� (fractional) 1:1� 10�12 1:1� 10�12 8:5� 10�13

J2 6:8� 10�10 6:0� 10�10 4:0� 10�10
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The fourth case does not assume spatial isotropy.
Initially �1, �2, �3, and  were solved for, as well as the
parameters for the third case. However, it was found that
the results for �3 were about 10 orders of magnitude worse
than the a priori uncertainty. Thus �3 was dropped from
the list of parameters, and 18 parameters were solved for.
The results are given in columns 2, 4, and 6 of Table IV.

D. Discussion of results

1. Case with general relativity correct

Assuming that general relativity is correct, the most
important result concerns the accuracy with which J2 can
be determined. From Table III, the expected accuracy
reaches 1:4� 10�9 after 1 yr and 9:6� 10�10 after 2 yr.
Duval et al. [31] quote an uncertainty of 4� 10�8 for J2

from helioseismology. However, it may be difficult for
helioseismic studies to improve considerably on this result.
Brown et al. [32] find that the solar equatorial angular
velocity rises gradually between r � 0:5R� and the sur-
face, with the variation being less than 10%. However, the
solar rotation velocity has not yet been determined for r �
0:2R� at low latitudes and for r � 0:5R� elsewhere. For
this reason, they state that it is difficult to make a realistic
estimate of the uncertainty in J2. They also discuss possible
differences in the rotation rate with latitude below the base
of the convection zone, as suggested by solar dynamo
calculations. A J2 measurement with 2� 10�9 or better
accuracy would provide an important input to solar rotation
theories.

2. Cases with general relativity not assumed

The logarithmic dependence of the time delay,
Eq. (2.27), is unlike any other time signature in the ranging
signal. As a result, the determination of � is due mainly to
the time delay, and the modified worst-case uncertainty in
� even for the general case approaches a lower limit of
2:2� 10�5 after only about six of Mercury’s orbital peri-
ods. After this time, additional ranging does not result in
further appreciable improvement in estimates of �, as
shown in Table IV. If ranging when the sight path comes
within 2� of the Sun is allowed, the uncertainty in � drops
to 1:5� 10�5 after a 1-year mission for the isotropic case.
The present uncertainty for �, as determined from the
Cassini relativistic time delay measurements [43] is 2:3�
10�5. Comparable accuracy is expected from determining
the geodetic precession during the Gravity Probe B
mission.

For _G=G, Table IV gives the accuracy for the general
case as 4:2� 10�13=yr for a 1 yr mission, 7:0� 10�14=yr
for a 2 yr mission, and 3:8� 10�15=yr for an 8 yr mission.
These results for 2 yr or longer are of course much better
than the present uncertainty in _G=G of 1:1� 10�12=yr
from lunar laser ranging [27,28]. The results are not
much worse than those in Table III, where general relativ-
ity was assumed to be correct. Because a secular change in
G results in a perturbation of the mean anomaly which is
quadratic in time, a long-term ranging mission is one of the
best ways to obtain information about this effect. However,
caution is in order, since other effects also can give qua-
dratic variations with time, as discussed later.

TABLE IV. Nonmetric theory results, with the Nordtvedt parameter � treated as an independent parameter. The assumed rms error is
4.5 cm.

Parameter
1-year

spatial isotropy
1-year

general case
2-year

spatial isotropy
2-year

general case
8-year

spatial isotropy
8-year

general case

a1 (meters) 1.4 2.0 0.48 0.67 0.25 0.27
a2 (meters) 0.68 0.95 0.27 0.34 0.18 0.19
e1 9:7� 10�12 1:4� 10�11 3:4� 10�12 4:4� 10�12 1:4� 10�12 1:7� 10�12

e2 7:4� 10�12 9:3� 10�12 2:4� 10�12 3:6� 10�12 1:3� 10�12 1:7� 10�12

~!1 � L10 2:5� 10�10 3:3� 10�10 5:1� 10�11 1:1� 10�10 2:8� 10�11 3:7� 10�11

~!2 � L20 5:5� 10�11 7:9� 10�11 1:8� 10�11 2:6� 10�11 1:0� 10�11 1:2� 10�11

�2 � L20 7:0� 10�11 9:0� 10�11 4:7� 10�11 7:3� 10�11 4:8� 10�11 5:6� 10�11

I2 1:4� 10�11 1:6� 10�11 7:8� 10�12 9:3� 10�12 7:2� 10�12 8:2� 10�12

L20 � L10 1:5� 10�12 4:2� 10�12 1:3� 10�12 1:9� 10�12 1:1� 10�12 1:4� 10�12

GM� (fractional) 1:6� 10�11 2:3� 10�11 5:0� 10�12 7:0� 10�12 1:5� 10�12 2:5� 10�12

� 2:7� 10�5 2:9� 10�5 2:2� 10�5 2:3� 10�5 2:2� 10�5 2:2� 10�5

� 5:7� 10�4 7:2� 10�4 1:8� 10�4 2:2� 10�4 5:7� 10�5 6:0� 10�5

J2 6:8� 10�8 7:8� 10�8 2:1� 10�8 2:3� 10�8 4:6� 10�9 4:9� 10�9

_G=G �yr�1� 3:4� 10�13 4:2� 10�13 6:8� 10�14 7:0� 10�14 3:7� 10�15 3:8� 10�15

� 2:1� 10�3 2:6� 10�3 4:4� 10�4 8:5� 10�4 8:6� 10�5 9:4� 10�5

�1 2:1� 10�5 6:2� 10�6 8:6� 10�7

�2 2:9� 10�6 1:8� 10�6 1:2� 10�6

� 3:9� 10�6 3:9� 10�6 1:0� 10�6
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When both J2 and � are included, as well as � and _G=G,
the results from Table IV show that the uncertainty for J2 is
increased to 7:8� 10�8 after 1 yr, 2:3� 10�8 after 2 yr,
and 4:9� 10�9 after 8 yr, for the general case. This last
uncertainty is about 3% of the rigid rotation value for J2.
However, these uncertainties are much worse than those
from Table III, which were obtained assuming that general
relativity is correct. The reason for this will be discussed
later.

The corresponding uncertainties for � are 7:2� 10�4,
2:2� 10�4, and 6:0� 10�5, respectively. The present un-
certainty in �, not considering the Nordtvedt effect, is 3�
10�3. Thus the improvement in �, assuming nonmetric
theories, would be substantial. The differences between the
results for the isotropic and general cases for _G=G, J2, and
� are fairly small.

For the preferred frame parameters an �1 and �2, and
the Whitehead parameter �, the only potential improve-
ment over the present uncertainties would be for �1. Here
the expected uncertainty after 1 yr is 2:1� 10�5, consid-
erably better than the present uncertainty of roughly 1�
10�4. In addition, the uncertainty would be reduced to
6:2� 10�6 after 2 yr.

The results for the Nordtvedt parameter �, solved for
from the perturbations due to Jupiter, are given in Table IV.
� is just solved for along with the 14 other parameters for
the spatial isotropy case or the 17 other parameters from
the nonisotropic case, and no relationship of � to other
parameters is included. The uncertainties for � for the
isotropic case are 2:1� 10�3 for 1 yr, 4:4� 10�4 for
2 yr, and 8:6� 10�5 for 8 yr. Thus it would take 2 yr for
the uncertainty in � to get down to about the same level as
the present value of 4:5� 10�4. However, it seems likely
that the uncertainty in the results from lunar laser ranging
will be reduced considerably in the next few years if
substantial improvements in the measurement accuracy
are achieved [28].

Our results from Table IV can be compared with those of
Milani et al. [7] for the 1 yr nominal lifetime of the
BepiColombo mission. For their experiment A (nonmetric,
isotropic) both formal rms uncertainties and estimates of
the realistic uncertainties are given in their Table II.
Experiment A involves the same parameters as those in-
cluded in our Table IV, except that � is not considered.
Based on the realistic estimates, their uncertainty for
�dG=dt�=G is about the same as ours. For �, J2, and
GM�, their uncertainties are about a factor 2.5 smaller
than ours for 1 yr of data, but quite similar to what we
find for 2 yr of data. Since their Table III shows high
correlations between these three parameters, as expected,
it is not surprising that the ratios of uncertainties are nearly
the same for all three. The results of Milani et al. [7] for
their experiment C (nonmetric, non isotropic), which has
�1 and �2 added to the parameters for experiment A, are
fairly close to our results, except for �. Unfortunately, the

ratio of uncertainties is large for �. Here, the uncertainty
found by Milani et al. [7] in experiment A is a factor 6
smaller than we found, even for 8 yr of data, and is much
smaller than our result for 1 yr of data.

The difference in the results for all but � is believed to
be due to the difference in the way systematic errors are
handled in the two studies. The question is why does our
modified worst-case error model predict more accuracy
loss for a number of the interesting parameters than does
the larger long-term time delay drift in the ranging trans-
ponders and the accelerometer systematic errors included
by Milani et al. [7]? This is presumably due to the presence
of critical time signatures in the perturbations arising from
some of the interesting parameters, and the relatively small
amplitude of these signatures in the error model of Milani
et al. However, it is quite possible that systematic errors at
some of the characteristic frequencies of concern in our
approach can be shown to be less than we have allowed for.
Thus further studies of the achievable ranging system
accuracy for critical time signatures appear to be needed.

For�, we have looked for a problem with our results, but
have not been able to find one. From Eqs. (2.23), (2.24),
and (2.25), we have estimated the rms value of the signa-
ture for� as being roughly 400 m. Thus the smallest worst-
case uncertainly we could expect for � with 4.5 cm rms
range uncertainty, even for long observation times, is about
1� 10�4. This would give 3� 10�5 for the modified
worst-case uncertainty, which is only a factor 3 better
than what we find for 8 yr of observations. Quite a lot of
the signature has the frequency of the synodic period of the
Earth or Mercury with respect to Jupiter, and it would take
observations lasting roughly Jupiter’s orbital period to
separate these frequencies from the orbital frequencies of
the Earth and Mercury. Thus our uncertainty of 2:1� 10�3

for 1 yr does not seem surprisingly large. If we multiply our
modified worst-case uncertainty by the factor 0.164 given
in Sec. V C to convert it to an rms error, not considering
systematic errors at all, the resulting uncertainly is 3:4�
10�4.

E. Interpretation of the results for J2 and �

It is useful at this point to examine the question of how
J2 and a few of the other parameters that are likely to be
correlated with it are determined by the data. Neglecting �,
dG=dt, �, and the preferred frame parameters, the five
parameters that have secular terms in their partial deriva-
tives are J2, �, GM�, a1, and a2. Two very well-
determined quantities from the Earth-Mercury distance
data are the mean motion of Mercury with respect to its
perihelion, dM2=dt, and the rate of change of the differ-
ence in mean longitudes, d�L2 � L1�=dt. The uncertainties
for these quantities decrease inversely as the observation
time. Thus two linear combinations of the above five
parameters are accurately determined. However, periodic
terms or much smaller secular terms have to be used to
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separate individual parameters if more than two are in-
cluded in a solution.

Both a1 and a2 have strong periodic terms in their
signatures. However, the uncertainties in the five parame-
ters are much larger than would be found if only two
parameters were included in the parameter set. This is
because of the extremely high correlations in the secular
parts of the time signatures arising from these parameters.
If � and GM� were the only parameters solved for, then
after 8 yr the modified worst-case uncertainty in � would
be 2:2� 10�7, 104 times less than the current uncertainty
in �.

We consider now the 4-parameter and 12-parameter
cases in Table III, where � is not included. For the 4-
parameter case, only J2,GM�, a1, and a2 are adjusted. One
feature of the results for J2 for this case, which is somewhat
surprising at first, is that the uncertainty does not decrease
by anywhere near a factor 4 in going from a 2-yr observing
period to 8 yr. For the observation times considered, a1 and
a2 are determined mainly from the periodic terms in their
signatures, and their uncertainties limit the accuracy for
determining J2 and GM�. Thus the uncertainties will not
continue decreasing strongly with time in a modified
worst-case analysis. The results for J2, for the 12-
parameter case, agree within a factor 2 with those for the
4-parameter case, and show similar behavior in going from
a 2-yr observing period to 8 yr.

When � is included instead of J2 in 4-parameter and 12-
parameter solutions like those in Table III, the uncertainties
in the other parameters do not change by more than about
30%. Also a 5-parameter solution with J2,�,GM�, a1, and
a2 has only at most a factor of 2.3 larger errors for the
common parameters than the 4-parameter solution in
Table III. We have not found a third secular term large
enough to explain the uncertainties obtained in the 5-
parameter case. Thus a third fairly large periodic signature
must be responsible for the results.

Unfortunately, when the other seven orbit elements and
_G=G are added to the 5-parameter case to give a 13-

parameter case including both J2 and �, the results for
8 yr are about a factor of 7 worse for J2 than in the 12-
parameter case from Table III. For this 13-parameter case,
the fifth important signature to break the correlations be-
tween J2, �, GM�, a1, and a2 comes mainly from the
motion of the node of Mercury’s orbit on the solar equator
caused by J2. The motion of the node on the solar equator
gives a change in the inclination of Mercury’s orbit with
respect to the ecliptic, which produces a substantial peri-
odic term in the range, with secularly varying amplitude.
However, this term is not large enough to prevent the
factor 7 loss in accuracy when � and J2 have to be
separated and many other parameters are present.

The results for the 13-parameter case are similar to those
of the 15-parameter case in Table IV for J2 and GM�. The
40% difference for � probably is due to the fact that a

linear combination of � and � is determined from the
analysis if the time delay signature is excluded, and that
the uncertainty in � from the time delay is starting to limit
the accuracy with which � itself can be determined from
the linear combination. The results for a1 and a2 for the
8 yr case are worse for the 15-parameter case by factors of
2.5 and 2.7, respectively, and a few of the Newtonian
parameters have larger uncertainties also. Because the
secular signature due to motion of the node is important,
the accuracy increase for both J2 and � is a factor of 2 or 3
in going from 2 yr to 8 yr.

F. Limitations due to asteroidal perturbations

The main limitation on the Viking lander determination
of _G=G at about 1� 10�11=yr was due to uncertainty in
the perturbations of the mean anomaly of Mars by asteroids
with nearly commensurable periods [4,46,47]. By com-
mensurable periods, we mean that the orbital period for
the asteroid is a factor (n=m) times the planetary orbital
period, where n and m are integers. The degree k of the
commensurability is given by k � n�m. Although the
Viking data and other ranging data gave improved masses
for a few of the largest asteroids, and improved density
estimates for additional groups of asteroids, there were too
many smaller asteroids giving significant perturbations to
permit solving for many of their masses. Asteroids with
near commensurabilities of degree 1, 2, and 3 appeared to
be important.

A great deal of progress has been made on determining
solar system ephemerides since the Viking era. A recent
paper by Konopliv et al. [48] describes results for Mars and
the Earth from tracking a number of Mars orbiters and the
Mars Pathfinder landers. From the data, it was possible to
solve for the masses of 63 individual asteroids, as well as
the mean densities for three classes of other asteroids. This
might lead to an order-of-magnitude improvement in the
determination of _G=G. However, _G=G apparently has not
been solved for recently from Mars data, probably because
it is quite well determined from lunar laser ranging data.

For Earth-Mercury distance measurements, the limita-
tion on _G=G is much weaker, particularly because of the
shorter orbital periods compared with Mars, and therefore
the higher degree commensurabilities involved. We have
made a very preliminary estimate of the relative size of
perturbations of the longitudes of the Earth and Mars with
periods of 10 yr or longer due to Ceres, Pallas, and Vesta. A
partial listing of perturbations of the Earth’s longitude
provided by J. G. Williams was compared with results for
Mars from [46]. This comparison indicated that the accu-
racy achievable for _G=G from Earth-Mercury range data
might be as much as 2 orders of magnitude better than from
Earth-Mars range data, or perhaps roughly 3� 10�14=yr.
This is a factor 8 worse than the accuracy of about 4�
10�15=yr shown in Tables III and IV for an 8-yr Mercury
mission.
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The estimate given above is included only because better
information is not available. Our estimate could be off in
either direction. The perturbations of the Earth’s orbit due
to a few of the large asteroids probably can be determined
better from the Earth-Mercury range data. However, the
real limitation is likely to come from smaller asteroids,
which happen to give substantial long-period perturba-
tions. A careful study of the asteroidal perturbations is
needed before anything definite can be said about the
accuracy for determining _G=G from Earth-Mercury range
data.

The main reason for discussing the interpretation of the
results for J2 and � in some detail earlier was to provide a
basis for considering the effects of asteroidal perturbations.
It seems unlikely that uncertainties in the asteroidal per-
turbations would mimic periodic terms such as those in the
signatures for a1 and a2. Thus the main question is how
large the effect on secular terms in the various signatures
may be.

For the 15-parameter case shown in Table IV, where
general relativity is not assumed to be correct, the main
sensitivity to uncertainties in the planetary and asteroidal
perturbations appears to come from a secular term. As
discussed above, the accuracy for separating J2 and �
depends strongly on the motion of the node of Mercury’s
orbit on the solar equator due to J2, which causes a secular
change in Mercury’s inclination with respect to the Earth’s
orbit. However, the asteroids will cause secular changes in
the orbit planes for both planets, and the magnitude of the
resulting secular change in relative inclination will be
uncertain because of the residual uncertainties in the
masses of the asteroids.

We have made a crude estimate of the size of the prob-
lem by using the rate of change of the plane of the Earth’s
orbit due to Ceres, Vesta, and Pallas. The largest effect is
about an order of magnitude larger than the signature used
to separate corrections to J2 and � in the 15-parameter
case. However, as mentioned earlier, the periodic pertur-
bations from some of the most massive asteroids should be
large enough and distinct enough so that their masses can
be determined even better than they are currently known.
We estimate, very roughly, that the effects of the remaining
asteroidal mass uncertainties will not increase the uncer-
tainties in J2 and � by more than a factor of 2 or 3 above
those shown in Table IV. Whether the results for the 18-
parameter anisotropic case will be affected more is not
known. However, from the earlier results, only the extra
parameter �1 probably needs to be included in future
solutions.

Finally, we consider the 12-parameter case shown in
Table III, where general relativity is assumed to be correct.
For this case, the secular effects due to Ceres, Vesta, and
Pallas can be compared with the equivalent effects from J2

for dM2=dt and d�L2 � L1�=dt. Assuming still that the
current accuracy for some asteroidal masses can be im-

proved, we again estimate that the results will not be
degraded by more than a factor of 2 or 3. Thus the expected
accuracy for J2, assuming general relativity is correct,
would be better than 4� 10�9 for a 1 yr mission, or 3�
10�9 for a 2 yr mission.

It is clear from the above discussion of J2, and from the
earlier discussion of _G=G, that a much more complete
study of the achievable accuracy will be needed in the
future. The present theoretical framework can be used in
that study, but partial derivatives with respect to the masses
or densities of many selected asteroids will have to be
included. Such an extension of the calculations was beyond
the scope of the present investigation.

VI. DISCUSSION

The studies described in the present paper were started a
number of years ago to give an initial assessment of the
accuracy with which general relativity can be tested and
the solar quadrupole moment can be determined with a
high-accuracy dual-frequency ranging transponder on a
Mercury orbiter. A circular and nearly polar orbit at an
altitude equal to the planetary radius was chosen in order to
minimize the problem of determining the spacecraft orbit.
But the results of Milani et al. [6] indicate that the orbit
determination problem can be handled adequately even for
the considerably lower periapsis altitude and eccentric
orbit of the BepiColombo Planetary Orbiter.

The results in the main part of the paper are limited in
their applicability to the real planetary system because of
the neglect of the asteroid-planet perturbations. However,
attempts are made to provide crude estimates of limits on
the size of the uncertainties due to such effects.

Despite the limitations introduced by uncertainties in the
asteroidal perturbations and the possibly somewhat pessi-
mistic nature of our modified worst-case analysis, the
present investigation still provides encouraging informa-
tion concerning the scientific results achievable from high-
accuracy tracking of the BepiColombo Planetary Orbiter.
In particular, the estimated accuracy for determining J2 for
the Sun, assuming general relativity is correct, would be
roughly 1:4� 10�9 to 4� 10�9 for the nominal 1 yr mis-
sion and 1� 10�9 to 3� 10�9 for a 2 yr extended mission.
Such results would be an important contribution to under-
standing the internal rotation of the Sun. For �, the uncer-
tainty for isotropic theories could be reduced to between
2� 10�4 and 5� 10�4 if a 2 yr or longer mission is
achieved. For �dG=dt�=G, the asteroidal mass uncertain-
ties are crucial, but the accuracy achievable for a 2 yr
mission still seems likely to be better than 1� 10�13 yr�1.

APPENDIX: INTEGRATION OF LAGRANGIAN
PERTURBATION EQUATIONS

In this appendix we develop the algebraic expressions
for the perturbations of the Keplerian elements a, e, �, I,
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~!, and M arising from the parameters �, �, �1, �2, �3, �,
and 
G. The Lagrangian perturbation equations [30] are
integrated using as independent variables either the time t,
the eccentric anomaly E, or the true anomaly f. These
variables are related by the equations

 E� e sinE � nt	 L0 � ~!; (A1)

 tan
f
2
�

�
1	 e
1� e

�
1=2

tan
E
2
; (A2)

which may be differentiated to yield the following forms
useful for changing variables:

 �1� e cosE�dE � ndt � �1� e2�3=2df=�1	 e cosf�2:

(A3)

We shall first tabulate a number of useful results in terms
of which perturbations of the Keplerian elements can be
compactly expressed. Defining the difference ��F� �
F�t� � F�t � 0� as the total change in some quantity F
between the initial instant at which the perturbation is
applied (taken to be t � 0), and the time of observation t,
we write for example

 ��f� � f� f0; ��sinE� � sinE� sinE0;

and so forth.
The perturbations due to �, �, �1, �2, �3, �, and 
G can

be expressed exactly in terms of the following integrals:

 SIJ�f� �
Z f

f0

�sinf�I�cosf�Jdf; (A4)

 FIJK �
Z f

f0

�sinf�I�cosf�J�1	 e cosf�Kdf; (A5)

 GIJ �
Z f

f0

�sinf�I�cosf�J

1	 e cosf
df; (A6)

 HIJ �
Z f

f0

�sinf�I�cosf�J

�1	 e cosf�2
df; (A7)

 IIJ �
Z f

f0

�sinf�I�cosf�J

�1	 e cosf�3
df: (A8)

In writing out the specific integrals required for these
calculations, it is convenient to introduce the abbreviation

 " � �1� e2�1=2: (A9)

The required integrals can be reduced to well-known in-
tegrals by using trigonometric identities.

1. Perturbations due to �

Integration of the Lagrangian perturbation equations for
the contribution to �aPPN, which is directly proportional to

�, gives the following perturbations in the orbital elements:

 

�a � 2me��3	 e2�S10 	 4eS11�="
4;

�e � m��1	 3e2�S10 	 4eS11�=�a"
2�;

�� � �I � 0;

� ~! � m�4S20 � "
2S01=e�=�a"

2�;

�M � �3m�1	 e2 	 e�3	 e2�

� cosf0 	 2e2cos2f0�n��t�=�a"4� �m�E=a

	m��1	 3e2�S01=e	 2��sinf cosf��=�a"�:

Here, expressions such as �e represent partial deriva-
tives with respect to the parameter; e.g., �e is shorthand
for @e=@�.

2. Perturbations due to �

For the contribution to �aPPN, that is proportional to �,
the perturbations in the orbital elements are

 

�a � 2me�2S10 	 2eS11�="
4;

�e � "2�a=2ea;

�� � �I � 0;

� ~! � m��S00 � 2S01=e���sinf cosf��=�a"2�;

�M � �3m�1	 e cosf0�
2n��t�=�a"4�

	m�2S01=e	��sinf cosf��=�a"�:

3. Perturbations due to �1

These perturbations depend on the velocity, w, of the
solar system with respect to the preferred frame. The
results take their most compact form when this velocity
is expressed in a coordinate system with the Z axis normal
to the plane of the unperturbed planetary orbit, and the X
axis in the plane of the orbit oriented to pass through the
position of perihelion. IfW1,W2,W3 denote the ratio of the
Cartesian coordinates of w in this coordinate system to the
speed of light, then we have

 W1 � fwx�cos! cos�� sin! sin� cosI�

	 wy�cos! sin�	 sin! cos� cosI�

	 wz�sin! sinI�g=c;

W2 � fwx�� sin! cos�� cos! sin� cosI�

	 wy�� sin! sin�	 cos! cos� cosI�

	 wz�cos! sinI�g=c;

W3 � fwx sin� sinI � wy cos� sinI 	 wz cosIg=c:

(A10)
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The perturbations due to �1 can be expressed as follows:
 

�a � 0;

�e � �m=a�1=2"��W1G20 	W2G11�=2;

sinI�� � ��m=a�1=2eW3�cos!G20 	 sin!G11�=2";

�I � �m=a�1=2eW3�sin!G20 	 cos!G11�=2";

� ~! � �1� cosI���	 �m=a�1=2fW1��1	 e2�G11 	 2eG10� �W2��1	 e2�G02 	 2eG01�g=�2e"�;

�M � �m=a�1=2"2��W1G11 	W2G02�=2e:

4. Perturbations due to �2

 

�a � af2e�W2
1S12 	 2W1W2S21 	W

2
2S30� 	 �W

2
1 �W

2
2 �F111 	W1W2�F201 � F021�g="

2;

�e � 3W2
1S12=2	W1W2�5S21 � S03�=2	W2

2

�
S30 	

1

2
S12

�
	

1

2
W1W2�G21 �G03 	 e�G20 �G02��

�
1

2
�W2

2 �W
2
1 ��G12 	 eG11�;

sinI�� � �
1

2
W3�W2 cos!G20 	W1 sin!G02 	 �W1 cos!	W2 sin!�G11�;

�I �
1

2
W3��W1 cos!G02 	W2 sin!G20 	 �W1 sin!�W2 cos!�G11�;

� ~! � �1� cosI����
1

e

�
W2

1S03 	 2W1W2S12 	W2
2S21 	

1

2
�W2

2 �W
2
1 ��G21 	 S21�

�
1

2
W1W2�G30 	 S30 �G12 � S12�

�
;

�M � "
�
1

2
e�W2

1 �W
2
2 ��H03 � cos3f0H00� � 3eW1W2�H30 � sin3f0H00� � 3�W2

2 �W
2
1 ��H02 � cos2f0H00�=4

	 3eW2
2 �H01 � cosf0H00� 	 3W1W2�H11 � sinf0 cosf0H00 	 eH10 � e sinf0H00�=2� 2W2

1 �G02 � S03=2e�

�W2
2 �2G20 � S21=e� �W1W2�4G11 � 2S12=e� �W1W2�G30 	 S30 �G12 � S12�=2e

	 �W2
2 �W

2
1 ��G21 	 S21�=2e

�
:

5. Perturbations due to �3

We denote the components of the acceleration A in the XYZ coordinate system by A1, A2, A3. Then we find

 

�a �
2a3"2

GM�
fA1�eH11 �G10� 	 A2�eH20 	G01�g; �e �

a2"4

GM�
f�A1�eI10 	 I11� 	 A2�H00 	 I02 	 eI01�g;

sinI�� �
A3a

2"4

GM�
fcos!I10 	 sin!I01g; �I �

A3a
2"4

GM�
f� sin!I10 	 cos!I01g;

� ~! � �1� cosI���	
a2"4

GM�e
f�A1�H00 	 I20� 	 A2I11g;

�M �
3a2

GM�

�
A1�I00"5 � n�t"2=�1	 e cosf0��=e

	 �A2"=e�
�

1

2
��E� e sinE�2 	 e��cosE� � �E0 � e sinE0���E� e sinE� � ��E��E� e sinE� 	

1

2
��E2�

��

�
a2"5

GM�
�A1�2I01 � I20=e�H00=e� 	 A2�2I10 	 I11=e��:
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6. Perturbations due to �

We define the dimensionless quantity Z � GMG=c
2RG and let N1, N2, N3 denote the (XYZ) components of the vector

RG=RG. Then we have the following results:
 

�a �
2Za

"2 f2N1N2�F021 � F201� 	 2�N2
2 � N

2
1�F111 � e�N

2
1S12 	 2N1N2S21 	 N

2
2S30�g;

�e � Zf�N2
1S12 � N2

2S30 	 2N1N2�S03 	G03 �G21 	 e�G02 �G20� � 2S21� 	 2�N2
2 � N

2
1��G12 	 eG11 � S12�g;

sinI�� � 2ZN3fN1�cos!G11 	 sin!G02� 	 N2�sin!G11 	 cos!G20�g;

�I � 2ZN3fN1�� sin!G11 	 cos!G02� 	 N2�cos!G11 � sin!G20�g;

� ~! � �1� cosI���	 �Z=e�fN2
1�S03 � 2S21 � 2G21� 	 N2

2�3S21 	 2G21� 	 2N1N2�2S12 � S30 	G12 �G30�g;

�M � Z"fN2
1�2G02 � S03=e� eH03� 	 2N1N2�2G11 � S12=e	 3eH30 � 3H11 � 3eH10�

	 N2
2�2G20 � S21=e	 eH03 � 3eH01� � �2=e��N1N2��G12 �G30 	 S12 � S30�

	 �N2
2 � N

2
1���2G21=e� 2S21=e	 3H02 	 2eH03�g 	

Zn�t

"2 fN
2
1�ecos3f0� 	 N2

2�3e cosf0 � ecos3f0�

	 6N1N2�sinf0 cosf0 	 e sinf0 � esin3f0� � �N
2
2 � N

2
1��3cos2f0 	 2ecos3f0�g:

7. Perturbations due to �G � � _G=G

 �a � �2a��t�1	 e cosf�="2 � ��E=n��; �e � �"2��a=2ae; �� � �I � 0;

� ~! �
1

e
���t sinf� 	 �"=m���cosE��;

�M � ��tE� 	 3E0��t� � 2��E2�=n	 4e��E sinE	 cosE�=n	 "��t sinf�=e	 �"2=ne���cosE�:
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