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How well can (renormalized) perturbation theory predict dark matter clustering properties?
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There has been some recent activity in trying to understand the dark matter clustering properties in the
quasilinear regime, through resummation of perturbative terms, otherwise known as the renormalized
perturbation theory [M. Crocce and R. Scoccimarro, Phys. Rev. D 73, 063519 (2006).], or the renormal-
ization group method [P. McDonald, astro-ph/0606028.]. While it is not always clear why such methods
should work so well, there is no reason for them to capture nonperturbative events such as shell-crossing.
In order to estimate the magnitude of nonperturbative effects, we introduce a (hypothetical) model of
sticky dark matter, which only differs from collisionless dark matter in the shell-crossing regime. This
enables us to show that the level of nonperturbative effects in the dark matter power spectrum at k ~
0.1 Mpc™!, which is relevant for baryonic acoustic oscillations, is about a percent, but rises to order unity

at k~ 1 Mpc~ 1.
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In the era of precision cosmology, an accurate under-
standing of dark matter clustering properties is an essential
ingredient of relating observations of clustering in galaxy
or weak lensing maps to the fundamental properties of our
Universe, such as its geometry or linear growth history.
This need is underlined by the recent discovery of baryonic
acoustic oscillations in the power spectrum of galaxies
[1,2], and the prospects of its application as a cosmic
standard ruler (e.g. [3]). While semianalytic methods,
most famously within the context of the halo model [4—
6], have been successfully used to model both galaxy and
dark matter clustering properties, they suffer from their
phenomenological nature, which inevitably leads to a
plethora of parameters that need to be calibrated using
numerical simulations or observations. Moreover, the num-
ber of these parameters is expected to increase through
more in-depth studies, which will certainly lead to the
surfacing of more subtle effects (e.g. [7,8]). Thus, the
ultimate dilemma in the era of precision cosmology will
become if we are probing the fundamental properties of our
universe, or rather further constraining the intricate phe-
nomenology of nonlinear gravitational gastrophysics.

Numerical simulations go a long way in elucidating the
complicated process of gravitational collapse of dark mat-
ter and baryonic gas. However, they still suffer from our
poor understanding of star and galaxy formation, and its
feedback on the surrounding intergalactic medium.
Moreover, they may also suffer from finite resolution and
box size effects, as well as potential ill-understood numeri-
cal artifacts that can limit the accuracy of numerical
studies.

The latter has motivated analytic studies, which are most
systematically done in the context of perturbation theory
(see [9] for a review). However, consecutive terms in a
perturbative series become comparable in the quasilinear
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regime, when overdensities become of order unity, signal-
ing the breakdown of the perturbative expansion. Inspired
by the use of renormalization methods in quantum field
theory, some studies [10,11] have introduced renormaliza-
tion or resummation technics that, in principle, capture the
dominant terms in the perturbative series, and can yield an
accurate result, even when the perturbation theory breaks
down.

While the theoretical validity of the technics advocated
in these studies is not transparent to this author, it is
possible to put a limit on the degree of accuracy that any
method, based on perturbation theory, can achieve. This
limit comes from the nonperturbative effects involved in
the gravitational collapse process, and is the subject of this
note.

The cosmological perturbation theory for cold dark
matter [9] is based on the pressureless Euler equation,
where the fluid starts from a nearly homogenous expanding
initial conditions, and then evolves under its own gravity.
The equations break down at shell crossing, which is when
perturbations grow to the limit that multiple streams cross
each other, and thus the assumption of zero pressure fails.

As long as different streams of dark matter do not cross
each other, the cross-section for their collision does not
enter the equations. Therefore the perturbative framework,
which is the basis for the recently suggested renormaliza-
tion methods, is insensitive to dark matter collisional prop-
erties. Even though in the minimal dark matter model, the
particles have a negligible self-interaction cross-section,
one may also envisage an opposite regime, where the
collisions have a huge cross-section, and are maximally
inelastic. We dub this particular model for dark matter as
sticky dark matter.

Of course, sticky dark matter is a terrible candidate for
the cosmological dark matter. This is because, as a result of
frequent and inelastic collisions, all the dark matter parti-
cles would sink into the center of a halo, probably forming
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a black hole, or a small compact disk (if prevented by the
initial angular momentum of the halo). However, it pro-
vides an interesting theoretical test study to examine the
nonperturbative effect of shell-crossing, as sticky and col-
lisionless dark matter obey the exact same equations within
the (single-stream) perturbation theory.

In order to make this comparison, we resort to the
simplest version of the halo model [5], where dark matter
haloes cluster according to the linear matter power spec-
trum with a constant bias, which only depends on their
mass. The structure within a halo of collisionless dark
matter is well approximated by an NFW form [12]:

_ Ps
PO = T+ rjre

(D

which extends out to r,;; = cr,, where the concentration
parameter, c, as a function of the total enclosed mass is also
constrained from simulations.

It is known that a combination of halo-halo correlations,
plus single halo autocorrelation terms gives a reasonable
approximation to the dark matter nonlinear power spec-
trum in numerical simulations (e.g. [13]). With this quali-
tative picture at hand, we can thus examine the case of
sticky dark matter, by collapsing each NFW halo into a
point.

Figure 1 compares the dimensionless power spectra,

A2(k) = k;";(zk), for collisionless and sticky dark matter

models, in the context of the halo model. Here, we assume
the WMAP Ist year best fit concordance cosmological
parameters [14]. We see that the difference between the
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FIG. 2. The level of nonperturbative effects in the nonlinear
power spectrum (see Fig. 1), as a function of nonlinear power.

two models, which characterizes the level of nonperturba-
tive effects in the dark matter power spectrum is ~1% at
k~ 0.1 Mpc~!, which is the region relevant for probing
baryonic acoustic oscillations. This level rises to order
unity at k ~ 1 Mpc ™!, indicating the complete breakdown
of (renormalized) perturbation theory, or any single-stream
renormalization group method.

Figure 2 shows the same difference between the sticky
and collisionless power spectra, as a function of the non-
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Left: Halo model dark matter power spectrum for collisionless (solid) and sticky (dotted) dark matter. Right: Relative

difference between power spectra of collisionless and sticky dark matter models. This shows the level of nonperturbative effects in the

dark matter power spectrum.
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linear power. It is interesting to notice that nonperturbative
effects do not dominate the power until AZ(k) ~ 100,
which is far into the nonlinear regime. This may explain
why renormalization methods based on the perturbation
theory, such as [10,11], can do so well in the quasilinear
regime.

A question that may arise is if we are stretching the halo
model beyond its level of applicability. It is true that the
halo model has had significant phenomenological success
in fitting simulations and observations (e.g. [13,15]).
However, it suffers from unphysical features, such as spu-
rious power on very large scales, which is caused by the
presence of the 1-halo term [5,16]. However, the difference
shown in Figs. 1 and 2 is dominated by the 2-halo term for
k= 0.3 Mpc™! (at least down to near-horizon scales).
Even without any reference to the halo model, it is clear
that the large scale correlation function is, to some extent,
affected by the change in the profile of the virialized
regions, say from an NFW (for collisionless dark matter)
to a pointlike profile (for sticky dark matter). The differ-
ence in the 2-halo term, in the context of the halo model,
gives an approximation for the magnitude of this effect.

As vorticity cannot be locally generated in the single
stream regime of dark matter collapse, a different test for
the breakdown of the single-stream perturbation theory is
when the vorticity and the divergence of the velocity field
become comparable [17]. This happens at k ~2 Mpc™!,
which is consistent with our results. However, in contrast to
our approach, it is not clear how the vorticity to divergence
ratio is related to the level of nonperturbative effects in the
power spectrum within the quasilinear regime.

What if a single-stream perturbative method agrees with
numerical N-body simulations at a better level than pre-
dicted by our simple exercise? Then I would argue that this
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level of accuracy is not warranted for any single-stream
calculation, and thus any such agreement is accidental,
unless it is justified based on a nonperturbative method.

Finally, we should point out that sticky dark matter is
very similar to the so-called adhesion model [18,19], that
has been introduced in the context of Zel’dovich approxi-
mation [20]. Adhesion model, which is realized as the zero/
small viscosity limit of a (single stream) fluid, has been
introduced to enable the use of analytic Zel’dovich ap-
proximation beyond shell crossing (or pancake formation).
However, direct comparison of the adhesion model to the
sticky dark matter might be misleading, as it mixes the
perturbative terms, missing in the Zel’dovich approxima-
tion, with the nonperturbative adhesive feature.

In conclusion, in this note, we have pointed out that any
renormalized perturbation theory method is ultimately
limited to the context of single stream fluid equations,
and thus does not capture the nonperturbative shell-
crossing events. To estimate the level of nonperturbative
effects, we introduced a toy model of sticky dark matter,
which only differs from collisionless dark matter in the
shell-crossing regime. This provides us with a framework
to estimate the level of accuracy expected from renormal-
ized perturbation theory, showing that nonperturbative ef-
fects could be ~1% at scale of baryonic acoustic
oscillations, but do not dominate until deep in the nonlinear
regime.
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