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The gravitational wave signals from coalescing Supermassive Black Hole Binaries are prime targets for
the Laser Interferometer Space Antenna (LISA). With optimal data processing techniques, the LISA
observatory should be able to detect black hole mergers anywhere in the Universe. The challenge is to find
ways to dig the signals out of a combination of instrument noise and the large foreground from stellar
mass binaries in our own galaxy. The standard procedure of matched filtering against a grid of templates
can be computationally prohibitive, especially when the black holes are spinning or the mass ratio is large.
Here we develop an alternative approach based on Metropolis-Hastings sampling and simulated annealing
that is orders of magnitude cheaper than a grid search. For the first time, we show that it is possible to
detect and characterize the signals from binary systems of Schwarzschild Black Holes that are embedded
in instrument noise and a foreground containing millions of galactic binaries. Our technique is computa-
tionally efficient, robust, and applicable to both high and low signal-to-noise ratio systems.
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Supermassive Black Hole Binaries (SMBHBs) and
Extreme Mass Ratio Inspirals (EMRIs) of a compact object
into a supermassive black hole are two of the most exciting
targets for the LISA observatory [1]. Studies of these
objects will yield insights into the role played by black
holes in structure formation and galactic dynamics. The
signals will also encode information about strong field,
dynamical gravity that can be used to perform precision
tests of general relativity [2–4].

The SMBHB and EMRI signals contain a wealth of
information that is encoded in a highly modulated time
series composed of multiple harmonics of several distinct,
evolving periods. The complexity of the signal is good
news in terms of the science yield, but it poses a significant
challenge to the data analyst. The signal from a binary
system of structureless spinning objects, as described by
general relativity and detected by LISA, is controlled by 17
parameters. In the case of SMBHBs the systems are ex-
pected to have circularized before entering the LISA band,
thereby reducing the search to 15 parameters. In the case of
EMRIs the orbits are expected to maintain significant
eccentricity in the LISA band, but the spin of the smaller
body can be neglected, thereby reducing the search to 14
parameters.

The large dimension of the search spaces and the high
computational cost of generating the search templates
make SMBHBs and EMRIs challenging targets for data
analysis [5]. The problem only gets worse when one con-
siders that we need to extract these signals from a times-
eries that also contains the signals from millions of galactic
binaries, and in the case of EMRIs, a possible self-
confusion from hundreds of other EMRI systems [6].

It has been estimated that it would take 1040 templates to
perform an optimal grid search for EMRI signals [5]. The
numbers are less for SMBHBs, but still out of reach
computationally. Several alternative approaches have
been discussed, including nontemplate based strategies

that look for tracks in spectrograms [7], and hierarchical,
semicoherent grid based searches [5]. Here we consider an
alternative approach that uses Metropolis-Hastings sam-
pling and simulated annealing to search through the space
of templates. Our search method is closely related to the
Markov Chain Monte Carlo (MCMC) [8] method that is
used to explore the posterior distribution of the model
parameters once the source has been located. In previous
work the MCMC approach was used to test the Fisher
matrix predictions for SMBHB parameter uncertainties
by starting the chains off very close to true source parame-
ters [9,10]. However, existing MCMC approaches, includ-
ing sophisticated adaptive Reverse Jump implementations,
perform poorly when searching large regions of parameter
space. Here we demonstrate for the first time a robust and
efficient detection algorithm that is many orders of magni-
tude faster than the MCMC search algorithms that have
been investigated to-date. Advanced MCMC techniques
that employ importance resampling and well designed
priors have been used to study 5-parameter binary inspiral
signals in the context of ground based gravitational wave
detectors [11]. It would be very interesting to see how this
algorithm performs in the LISA context. We apply our
search algorithm to simulated LISA data streams that in-
clude the signals from a pair of nonrotating black holes and
a foreground produced by galactic white dwarf binaries.
While the SMBHB system we consider is simpler than the
general case (the model is described by 9 parameters rather
than 15), it serves to illustrate the relative economy of the
gridless approach.

The gravitational waveform for a supermassive black
hole system consisting of two Schwarzschild black holes is
described by 9 parameters: the redshifted chirp mass, Mc;
the redshifted reduced-mass, �; the sky location, ��;��;
the time-to-coalescence, tc; the inclination of the orbit of
the binary, �; the phase of the wave at coalescence, ’c; the
luminosity distance,DL; and the polarization angle,  . The
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parameters Mc, � are intrinsic to the system, while DL, �,
’c,  are extrinsic as they depend on the perspective of the
observer. The other three parameters, ��;�� and tc, would
be extrinsic if the LISA observatory were static, but the
motion of the detector couples these parameters to the
intrinsic evolution. The extrinsic parameters DL, �, ’c,  
can be analytically solved for using a generalized
F-statistic [12], leaving a 5 dimensional search space.

We illustrate the performance of the search algorithm by
considering two representative LISA sources—a 106 �
105M� binary system at z � 1 and a 105 � 5� 104M�
binary system at z � 5:5. In each case the time of obser-
vation is 6 months, and the observations end �1 week
prior to merger. The early termination of the signal is
designed to demonstrate LISA’s ability to give early warn-
ing to other telescope facilities. The z � 1 example has
parameters �Mc=M�; �=M�; DL=Gpc; tc=months; �; �;
�; ’c;  � � �4:93� 105; 1:82� 105; 6:6; 6:23; 1:325; 2:04;
1:02; 0:95; 0:66� and the z � 5:5 example has parameters
�Mc=M�; �=M�; DL=Gpc; tc=months; �; �; �; ’c;  � �
�3:95 � 105; 2:17 � 105; 53; 6:25; 1:927; 0:351; 1:318;
2:0; 0:23�. To make the searches more realistic, we add in a
galactic foreground consisting of approximately 26� 106

galactic sources. The galactic binary foreground is gener-
ated using a Nelemans, Yungelson and Zwart galaxy model
[13,14]. The signal-to-noise ratio (SNR) for the sources is
estimated using the combined instrument and galactic
confusion noise quoted in Ref. [14]. The z � 1 example
has SNR � 118:0 and the z � 5:5 example has SNR �
9:87. These SNR ratios are on the low side for typical LISA
observations of SMBHBs as we terminate the observations
a week before merger. The full inspiral signals would give
SNRs of�387 and�182 for the two cases, and the merger
and ringdown signals would further boost the SNRs by a
factor of �2 or more. In Fig. 1 we plot the detector
response to the galactic foreground and instrument noise,
along with the noise-free response to the SMBHB signals.
We use restricted post-Newtonian waveforms with 2-PN
evolution of the phase and we employ the two independent
Michelson-like interferometry channels that are available
at low frequencies [15]. At low frequencies these
Micheleson-like channels are equivalent to the generation
1.5 A and E time delay interferometry channels [16]. As
the equations that describe the phase evolution break down
before we reach the last stable circular orbit at R � 6M, we
terminate the search templates at a maximum value of R �
7M. For the sources in question, the observation period
terminates a week from coalescence, so the maximum
gravitational wave frequency reached is 0.28 mHz for the
z � 1 example and 0.32 mHz for the z � 5:5 example.
With this frequency range, the SMBHBs overlap with over
22:5� 106 galactic binaries. To minimize the computa-
tional cost, the search templates were generated at a sample
cadence of 4.2 mHz.

Our search algorithm uses Metropolis-Hastings rejec-
tion sampling, simulated annealing and algebraic extrem-

ization over extrinsic and quasiextrinsic parameters. The
sampling proceeds as follows: Choose a random starting
point ~x in parameter space. Using a proposal distribution
q��j ~x�, draw a new point ~y. Evaluate the Hastings ratio

 H �
�� ~y�p�sj ~y�q� ~xj ~y�
�� ~x�p�sj ~x�q� ~yj ~x�

: (1)

Accept the candidate point ~y with probability � �
min�1; H�, otherwise remain at the current state ~x. Here
�� ~x� are the priors on the parameters,

 p�sj ~x� � const:e�hs�h� ~x�js�h� ~x�i=2; (2)

is the likelihood and q� ~xj ~y� is the proposal distribution. The
angular brackets hs� h� ~x�js� h� ~x�i denote the standard
noise weighted inner product of the signal s minus the
template h� ~x�. We used the combined instrument and ga-
lactic confusion noise model of Timpano et al. [14]. We
employ three different proposal distributions that are de-
signed to give small, medium and large jumps. This mix-
ture of jump sizes gives the search the flexibility to fully
explore the parameter space and the ability to quickly hone
in on promising regions. The small jumps are drawn from a
multivariate Normal distribution, the medium sized jumps
are given by a uniform draw of 	10� in each parameter
and the large jumps come from a full range, uniform draw
on all the parameters. We used a mixture of 20 small jump
proposals for every medium or large jump proposal.
Correlations between the parameters can seriously hurt
the acceptance rate, so we use a multivariate Normal
distribution that is the product of Normal distributions in
each eigendirection of the Fisher information matrix,

 

FIG. 1. The strain spectral density in a single LISA channel.
The gray line is the LISA response to a galactic background of
26� 106 sources plus simulated instrumental noise. The solid
black lines show the LISA response to the SMBHB signals
alone. The dashed black line indicates the RMS instrument
plus galactic confusion noise level.
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�ij� ~x�. The standard deviation in each eigendirection is set
equal to �i � 1=

���������
DEi
p

, where D � 9 and Ei is the corre-
sponding eigenvalue of the Fisher matrix [17]. The Fisher
matrix is also used to scale the medium size jumps.

The simulated annealing is done by multiplying the
noise weighted inner product hsjhi by an inverse tempera-
ture �. We used a standard power-law cooling schedule:

 � �
�

10B�1�i=Nc� 0 
 i 
 Nc
1 i > Nc

; (3)

where i is the number of steps in the chain and Nc is the
number of steps the chain takes to reach the normal tem-
perature. We found that an initial heat factor of between 10
to 100 and a cooling schedule that lasted for �104 steps
worked well, but the performance was not particularly
sensitive to these choices. For low SNR sources smaller
initial heat factors and slightly longer cooling schedules
yielded better results.

The F-statistic is used to automatically extremize over
the four parameters �DL; �;  ; ’c�, but the motion of the
LISA detector sets a time reference, so the usual trick of
using a fast Fourier transform to extremize over the time to
coalescence, tc, is not strictly permitted. However, the
waveforms are much less sensitive to the sky location

than they are to tc, so we employed tc maximization during
the annealing phase for the large and medium jump pro-
posals. This procedure biases the solution, but the bias is
erased by subsequent jumps.

In dozens of tests applied to many different examples,
our search algorithm never failed to detect the SMBHB
signals. On occasions the chain would lock onto a second-
ary maxima of the likelihood function, but this behavior
can be heavily suppressed by using longer cooling sched-
ules. Once the annealing phase is complete the tc max-
imization is turned off and our search algorithm becomes a
standard Markov Chain Monte Carlo (MCMC) algorithm
for exploring the posterior distribution function. The
MCMC method can be used to perform model compari-
sons, estimate instrument noise, and provide error esti-
mates for the recovered parameters [8]. The method is
now in widespread use in many fields, and is starting to
be used by astronomers and cosmologists. MCMC tech-
niques have been applied to ground based gravitational
wave data analysis [18]; a toy LISA problem [19]; and
the extraction of multiple overlapping galactic binaries
from simulated LISA data [17].

For the example at z� 1 we use the following uniform
priors in our search: we choose the mass ratio to lie be-
tween 5 and 15, the redshifted total mass between 5�105
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FIG. 2 (color online). A plot of the search chains for the five intrinsic parameters and the SNR. In all cases, the straight solid line
represents the true values of the SMBHB parameters. After N � Nc � 10000 steps the search becomes a standard MCMC exploration
of the posterior distribution function.
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and 5� 106 solar masses, tc is chosen to lie within 3 and 9
months, and � and � are drawn from a uniform sky
distribution. The initial heat was set at 100 (B � �2)
and the annealing lasted for Nc � 10 000 steps. The search
took three hours to run on a single 2 GHz processor. In
Fig. 2 we plot a representative search chain. Because the
search algorithm locks onto the source in N � 1000 steps,
we use a logarithmic scale for the number of iterations, N.
The tc maximization allows the search to hone in on Mc
and tc very quickly. The reduced-mass � is less well con-
strained and takes a little longer to lock in, and the sky
location gets fixed last of all. The extrinsic parameters DL,
� are recovered once the sky location is determined, while
 and ’c continue to explore their full range throughout
the evolution. The failure to fix  and ’c is consistent with
the Fisher matrix predictions for the uncertainties in these
parameters. The errors in the recovered search parameters
were: �Mc��42M� ��0:154�; ��� 729M� �
0:147�; �tc� 76s��0:171�; �� � 0:82� � 1:06�;
and ��� 0:65� ��1:28�. The mean values for the re-
covered parameters and their standard deviations were
determined from the post-annealing, MCMC portion of
the chains.

We found that our gridless search algorithm is able to
reliably identify the SMBHB signal within �1000 steps.
We have calculated that it would take 9:3� 1012 templates
to cover the same search range with an F-statistic based
grid search at a minimal match level of 0.9 [20]. The
comparison is not entirely fair since we also used an illegal
maximization over tc during the annealing phase, but we
have verified that the annealed chains are able to find the
SMBHB signal without this trick, it just takes 10 to 100
times longer. Either way, our search algorithm is signifi-
cantly more economical than a naive grid based search.

For the example at z � 5:5 we use the following uniform
priors in our search: we choose the mass ratio to lie
between 1 and 5, the redshifted total mass between 2�
105 and 2� 106 solar masses, tc is chosen to lie within 5
and 7 months and � and � are drawn from a uniform sky
distribution. The initial heat was set at 10 (B � �1) and
the annealing phase lasted for Nc � 20 000 steps. In Fig. 3
we plot the SNR evolution for three runs. Two of these runs
happened to lock onto an alternative solution for the sky
location that exist because of the approximate symmetry
�! �� � and �! �� � that holds for the low fre-
quency LISA response function. Since the two solutions
for the sky position have almost equal likelihood, the
bimodality of the solution is a feature, rather than a flaw,

of the search algorithm. As might be expected, the search
algorithm takes longer to lock onto weak sources than
strong sources, but the run times are still measured in
hours, not days.

Here we have shown that it is possible to dig a SMBHB
signal out from under instrument noise and the signals
from foreground sources. The errors in the recovered pa-
rameters are consistent with a Fisher matrix prediction that
treats the galactic foreground as an addition source of
Gaussian noise. We will present a detailed study of detec-
tion threshold and the posterior distributions in the pres-
ence of galactic foregrounds in a future publication. The
next step is to apply the same techniques to the more
complicated signals from spinning SMBHB’s and
EMRIs. The larger parameter spaces are not expected to
pose a problem as the search cost is expected to scale
linearly with the search dimension. Indeed, it should be
possible to simultaneously search for multiple, overlapping
EMRI signals. We consider our current work as a proof-of-
principle that the LISA data analysis challenge can be
addressed with modest computational resources.
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