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We present a numerical method to compute path integrals in effective SU(2) Yang-Mills theories. The
basic idea is to approximate the Yang-Mills path integral by summing over all gauge field configurations,
which can be represented as a linear superposition of a small number of localized building blocks. With a
suitable choice of building blocks many essential features of SU(2) Yang-Mills theory can be reproduced,
particularly confinement. The analysis of our results leads to the conclusion that topological charge as well
as extended structures are essential elements of confining gauge field configurations.
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I. INTRODUCTION

A common approach to get some insight regarding the
mechanism of confinement is to approximate the Yang-
Mills path integral by restricting the integration to certain
subsets of gauge field configurations. By considering such
effective theories one might find out which gauge field
configurations are responsible for confinement and which
are not. Examples are ensembles of singular gauge instan-
tons (cf. e.g. [1]), ensembles of calorons (cf. e.g. [2,3]),
ensembles of regular gauge instantons and ensembles of
merons [4,5] or the removal of center vortices in lattice
calculations (cf. e.g. [6]). Some of these approaches have
analytical aspects but most of them extensively resort to
numerical methods.

In this work we generalize the ideas and techniques
presented in [4,5]. We study different classes of gauge field
configurations, especially their importance with regard to
confinement, by applying a numerical method called the
pseudoparticle approach [7–9]. We demonstrate that with a
suitable choice of building blocks many essential features
of SU(2) Yang-Mills theory can be reproduced, particu-
larly confinement.

This paper is organized as follows. In Sec. II we explain
the basic principle of the pseudoparticle approach. We also
discuss numerical issues and compare the method to lattice
gauge theory. In Sec. III we show how to calculate certain
observables in the pseudoparticle approach: the static
quark antiquark potential at zero and at finite temperature,
the topological susceptibility, and the critical temperature
of the confinement deconfinement phase transition. We
present numerical results, which are in qualitative agree-
ment with lattice results. In Sec. IV we apply the pseudo-
particle approach with different types of building blocks, to
study different classes of gauge field configurations and
their effect on confinement. By doing that we try to deter-
mine properties of confining gauge field configurations.
Our findings indicate that topological charge as well as
extended structures are necessary to obtain confinement. In
Sec. V we summarize our results and give a brief outlook
regarding future research.

II. THE PSEUDOPARTICLE APPROACH

A. SU(2) Yang-Mills theory

In this work we consider Euclidean SU(2) Yang-Mills
theory. The action is given by

 S �
Z
d4xs (1)

with action density

 s �
1

4g2 F
a
��Fa�� (2)

(g is the dimensionless coupling constant) and field
strength

 Fa�� � @�Aa� � @�Aa� � �abcAb�Ac� (3)

(�123 � 1). The topological charge is defined by

 Q �
Z
d4xq (4)

with topological charge density

 q �
1

32�2 F
a
��

~Fa�� (5)

and dual field strength

 

~F a
�� �

1
2�����F

a
�� (6)

(�0123 � �1).

B. The basic principle of the pseudoparticle approach

The basic idea of the pseudoparticle approach is to
restrict the Yang-Mills path integral to those gauge field
configurations, which can be represented as a linear super-
position of a small number of building blocks, typically
around 400. The building blocks are gauge field configu-
rations, which are localized in Euclidean spacetime. We
refer to these building blocks as pseudoparticles, where the
term pseudoparticle refers to the fact that the correspond-
ing gauge field configurations are also localized in time in
contrast to ordinary particles, which are only localized in
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space. In our context a pseudoparticle is not necessarily a
solution of the classical Yang-Mills equations of motion.

Every pseudoparticle or building block has certain pa-
rameters, a position, an amplitude, and a color orientation,
which uniquely define the resulting gauge field configura-
tion. It is important to stress that in general a sum of such
pseudoparticles is not even close to a classical solution, as
it is the case e.g. in instanton gas models (cf. e.g. [1]). The
pseudoparticle approach is supposed to describe full quan-
tum physics and not only certain semiclassical corrections.

The integration over all gauge field configurations in the
path integral is replaced by an integration over the ampli-
tudes and color orientations of the pseudoparticles. When
considering a spacetime region containing a finite number
of pseudoparticles, this is an ordinary multidimensional
integral, which can be computed by Monte Carlo methods.

The starting point of this work has been [4,5]. However,
there are two important generalizations:

(i) We do not restrict our approach to regular gauge
instantons and merons. A pseudoparticle can be
any localized gauge field configuration. For example
we also employ pseudoparticles with a limited range
of interaction or without topological charge.

(ii) In addition to a color orientation matrix we assign to
each pseudoparticle a variable amplitude. In this
way pseudoparticles are also able to model small
quantum fluctuations.

Note that the pseudoparticle approach is a general tech-
nique, which is in no way restricted to SU(2) Yang-Mills
theory. With minor modifications it can also be applied to
other quantum field theories, e.g. quantum mechanics
(cf. [8]).

C. The standard choice of pseudoparticles:
‘‘instantons,’’ ‘‘anti-instantons,’’ and akyrons

For the major part of this work we consider the follow-
ing pseudoparticles:
 

Aa��x� �A�i�Cab�i�ab�;instanton�x� z�i��;

ab�;instanton�x� � �b��
x�

x2 � �2 ;
(7)

 

Aa��x� �A�i�Cab�i�ab�;anti-instanton�x� z�i��;

ab�;anti-instanton�x� � ��b��
x�

x2 � �2 ;
(8)

 

Aa��x� �A�i�Cab�i�ab�;akyron�x� z�i��;

ab�;akyron�x� � 	b1
x�

x2 � �2 ;
(9)

where �b�� � �b�� � 	b�	0� � 	b�	0� and ��b�� �
�b�� � 	b�	0� � 	b�	0�. Each pseudoparticle has an in-
dex i, an amplitude A�i� 2 R, a color orientation matrix
Cab�i� 2 SO�3�, a position z�i� 2 R4, and a size � 2 R�.
When considering a single pseudoparticle, a color orienta-

tion matrix is equivalent to a global gauge transformation.
Since such a global gauge transformation can be specified
by an element of SU(2), for which S3 is a suitable
parameter space, it can be expressed in terms of
�c0�i�; . . . ; c3�i�� 2 S3, i.e. c0�i�2 � c�i�2 � 1:

 C ab�i� � 	ab�c0�i�
2 � c�i�2� � 2ca�i�cb�i�

� 2�abcc0�i�cc�i� (10)

(cf. Appendix A). Note that Euclidean Lorentz transforma-
tions are equivalent to color rotations, when considering a
single instanton or anti-instanton [10], while a single
akyron is form invariant under such Lorentz transforma-
tions. Therefore, Euclidean Lorentz transformations have
been included by considering arbitrary color orientations.

Setting A�i� � 2 in (7) yields an instanton in regular
gauge [11]. Although for A�i� � 2 such pseudoparticles
are not actually instantons, we nevertheless refer to them
by that term. For A�i� � 2 the action of an instanton is
S � 8�2=g2, otherwise it is S � 1. The topological
charge is given by

 Q � 1
4A�i�

2�3�A�i��: (11)

With exception of a sign reversal in (11) the same applies
for anti-instantons (8).

A single akyron [12] is a pure gauge, i.e. S � 0 andQ �
0. Note that for linear superpositions of akyrons S � 0 in
general, due to the non-Abelian nature of SU(2). However,
any such superposition has vanishing topological charge
density (cf. Appendix B).

A common and essential property of instantons, anti-
instantons, and akyrons is their long range nature. For large
jxj the corresponding gauge fields decrease like 1=jxj. As a
consequence these pseudoparticles have the ability to in-
teract over large distances.

Why this particular choice of pseudoparticles?

An important reason for considering pseudoparticles (7)
and (8) is their similarity to regular gauge instantons and
merons, which are known to exhibit confinement [4,5].

We additionally include akyrons (9) so that the gauge
field has both a transverse part and a longitudinal part
(superpositions of instantons and anti-instantons form
transverse gauge fields, whereas superpositions of akyrons
form longitudinal gauge fields; cf. Appendix C). Fur-
thermore, one can show that in the continuum limit, i.e.
in the limit of infinitely many pseudoparticles, instantons
(or anti-instantons), and akyrons form a basis of all gauge
field configurations (cf. Appendix D).

Finally, numerical studies with different types of pseu-
doparticles have shown that observables are not very sen-
sitive to moderate changes in the definition of the
pseudoparticles. For example replacing 1=�x2 � �2� by
�1=�2� exp��x2=2�2� in (7)–(9) hardly affects numerical
results, if � is sufficiently large (cf. Sec. IVA 2). It seems
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that results in the pseudoparticle approach mainly depend
on certain ‘‘global pseudoparticle properties,’’ like their
ability to interact over sufficiently large distances or
whether they carry topological charge or not.

D. Pseudoparticle ensembles

We put N pseudoparticles with randomly and uniformly
chosen positions inside a hyperspherical spacetime volume
(cf. Fig. 1). In the following we denote the radius of this
spacetime hypersphere by rspacetime and its volume by
Vspacetime. These quantities are related according to
Vspacetime � ��

2=2�r4
spacetime. The pseudoparticle density is

given by n � N=Vspacetime. For most calculations we con-
sider N � 400 pseudoparticles (7)–(9) with size � � 0:5
and pseudoparticle density n � 1:0. This amounts to
rspacetime � 3:0.

The gauge field is a linear superposition of instantons,
anti-instantons, and akyrons:

 Aa��x� �
X
i

A�i�Cab�i�ab�;instanton�x� z�i��

�
X
j

A�j�Cab�j�ab�;anti-instanton�x� z�j��

�
X
k

A�k�Cab�k�ab�;akyron�x� z�k�� (12)

(the indices i, j, and k assume values from different
ranges). In accordance with the ratio of transverse and
longitudinal gauge field components, which is 3:1, we
choose Ninstanton:Nantiinstanton:Nakyron � 3:3:2 (Ninstanton,
Nanti-instanton, and Nakyron are the corresponding pseudopar-
ticle numbers). Although in the limit of infinitely many
pseudoparticles instantons by themselves form a basis of
all transverse gauge fields, i.e. applying instantons and
anti-instantons would yield an overcomplete basis, we

consider an equal number of instantons and anti-instantons,
when using a finite number of pseudoparticles. Our ensem-
bles are then symmetric with respect to topological charge
(cf. (11)).

We define the ensemble average of a quantity O by
 

hOi �
1

Z

Z �Y
i

dA�i�dC�i�
�
O�A�A�i�; C�i���

� e�S�A�A�i�;C�i���;

Z �
Z �Y

i

dA�i�dC�i�
�
e�S�A�A�i�;C�i���;

(13)

 S�A�A�i�; C�i��� �
Z
Vspacetime

d4xs�A�A�i�; C�i��� (14)

(dC�i� is the invariant integration measure on S3), i.e. the
integration over all gauge field configurations in the path
integral is replaced by an integration over the amplitudes
and color orientations of the pseudoparticles. The quantity
O, the action S, and the action density s can be expressed in
terms of A�i� and C�i� via (12). Only the action inside the
spacetime hypersphere is considered for such a ‘‘path
integral.’’

To eliminate the dependence of the ensemble average
hOi on the randomly chosen pseudoparticle positions z�i�,
we independently calculate hOi for many different sets of
positions and take the average.

Instead of integrating over amplitudes and color orien-
tations as in (13) one could also integrate over positions or
only over amplitudes. However, we have found that nu-
merical results of such computations are very similar
(cf. [4,5,8]).

Note that our pseudoparticle ensembles are Lorentz
invariant with respect to the center of the spacetime hyper-
sphere as well as globally gauge invariant.

Numerical realization of pseudoparticle ensembles

Ensemble averages hOi in the pseudoparticle approach
are given by multidimensional integrals (cf. (13)), which
can be computed by Monte Carlo methods. We have ap-
plied the Metropolis algorithm (cf. e.g. [13]). In a single
Metropolis step the pseudoparticles are updated one by one
in fixed order. When updating a pseudoparticle, its ampli-
tude and color orientation are randomly changed. These
changes are always accepted if they reduce the action.
Otherwise they may be rejected depending on the outcome
of a stochastic experiment. The action inside the spacetime
hypersphere (14) is approximated by standard Monte Carlo
sampling.

To get rid of unwanted boundary effects, samples of
physically meaningful quantities are always taken inside
a hyperspherical spacetime region of radius rboundary <
rspacetime (cf. Fig. 1). We determine rboundary by considering
plots of the average action density hsi against the distance

 

region of strong
boundary effects

region of
negligible

boundary effects
x

x 0

boundary of spacetime

rboundary

rspacetime

FIG. 1 (color online). A 4-dimensional spacetime hypersphere
of radius rspacetime with N � 20 pseudoparticles (pseudoparticles
are symbolized by dark gray circles).
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to the center of the spacetime hypersphere: rboundary is
assigned that distance, where hsi starts to deviate signifi-
cantly from its constant value near the center of the space-
time hypersphere. In the example shown in Fig. 2 we have
chosen rboundary � 1:8.

Numerical calculations have shown that pseudoparticle
results are pretty stable, when applying between 100 and
800 pseudoparticles (cf. [8]). Using significantly less than
100 pseudoparticles is usually not possible, because to
extract physically meaningful results one requires a suffi-
ciently large spacetime region, where boundary effects are
negligible.

E. The pseudoparticle approach compared to lattice
gauge theory

In many aspects the pseudoparticle approach is similar
to lattice gauge theory. Both approaches approximate path
integrals by integrating over a finite number of degrees of
freedom. In lattice gauge theory the integration is per-
formed over a fixed number of link variables, while in
the pseudoparticle approach there is a fixed number of
pseudoparticles with amplitudes and color orientations as
degrees of freedom.

In both cases the scale can be set by identifying the
numerical value of any dimensionful quantity with its
physical/experimental value. When using the string tension

, any quantity O with dimension �length�L is given in
physical units by

 O physical �

�




physical

�
L=2

O; (15)

where O and 
 are the numerical dimensionless values of
O and 
 at coupling constant g and 
physical is the value of
the string tension in physical units (throughout this work

physical � 4:2=fm2). A crucial property of any trustworthy
numerical method is that dimensionless ratios of dimen-

sionful quantities, e.g. �1=4=
1=2 or Tcritical=
1=2, do not
depend on the coupling constant, i.e. that dimensionful
quantities scale consistently. This has been observed both
in lattice calculations and in the pseudoparticle approach
(cf. Sec. III).

In lattice gauge theory the ultraviolet regulator is the
lattice spacing a. Since different values for g yield differ-
ent values for 
, the lattice spacing in physical units
aphysical can be adjusted by choosing appropriate values
for the coupling constant (replace Ophysical by aphysical and
set L � 1 and a � 1 in (15)). In the pseudoparticle ap-
proach the minimum size of ultraviolet fluctuations is
determined by the average pseudoparticle distance �d �
1=n1=4 and the pseudoparticle size �, i.e. there are two
ultraviolet regulators. A variation of the coupling constant
g has a similar effect on these regulators as it has in lattice
calculations on the lattice spacing, that is �dphysical and
�physical are increasing functions of g (cf. Fig. 3; the scale
has been set by the string tension, which we have obtained
via generalized Creutz ratios (cf. Sec. III A 1)).

In contrast to lattice calculations we additionally have to
specify the ratio �= �d. For our standard choice of parame-
ters, �d � 1:0 and � � 0:5, the ultraviolet regulators are of
the same order of magnitude. Numerical calculations have
shown that physical quantities are pretty stable with respect
to a variation of �= �d in the range 0:2 . . . 1:1 and that there is
qualitative agreement with lattice results for suitably
chosen pseudoparticles (cf. Sec. IVA 1).

When considering the limit of infinitely many pseudo-
particles, any gauge field configuration can be represented
by a suitable superposition of instantons and akyrons
(cf. Sec. IV), i.e. in this limit our pseudoparticle ensembles
are gauge invariant. However, unlike in lattice gauge the-
ory we only have approximate gauge invariance when
working with a finite number of degrees of freedom.
Whether this approximate gauge invariance is a problem
can be tested by numerical calculations. A suitable way of
doing that is to fix the gauge and to perform computations
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FIG. 2 (color online). N � 400, n � 1:0, � � 0:5, g � 4:0. hsi
plotted against the distance to the center of the spacetime hyper-
sphere.
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similar to those without gauge fixing. In the pseudoparticle
approach a particularly convenient gauge is the Lorentz
gauge, i.e. @�Aa� � 0, which amounts to considering only
instantons and anti-instantons but no akyrons. The quali-
tative agreement between these results and results without
gauge fixing (cf. Sec. IV B) indicates that in the pseudo-
particle approach the lack of exact gauge invariance is not a
problem.

In contrast to lattice gauge theory we always work in the
continuum, i.e. we do not discretize spacetime. This might
be an advantage when calculating glueball masses from
correlation functions, because due to exact rotational sym-
metry it is possible to project out states with a well-defined
angular momentum. Furthermore, the pseudoparticle ap-
proach has a high potential when dealing with fermionic
problems, because there is no fermion doubling in such a
continuum formulation.

Another difference lies in the number of degrees of
freedom, which is significantly smaller in the pseudopar-
ticle approach than it is in typical lattice calculations
(1 600 degrees of freedom, when using 400 pseudopar-
ticles, compared to e.g. 786 432 degrees of freedom on a
‘‘small’’ 164-lattice). Therefore, when pseudoparticle re-
sults are in agreement with results from lattice calcula-
tions, the pseudoparticles are chosen such that they
represent essential degrees of freedom of SU(2) Yang-
Mills theory. To put it another way, by applying different
types of pseudoparticles one can determine the effect of
certain classes of gauge field configurations on certain
observables, and by doing that try to find out essential
properties of confining gauge field configurations
(cf. Sec. IV). Lattice calculations, on the other hand, are
much faster, i.e. they can cope with a significantly larger
number of degrees of freedom in comparable computation
time. Therefore, lattice calculations are certainly better
suited for producing high quality numerical results.

III. CALCULATING OBSERVABLES

A. The static quark antiquark potential
at zero temperature

The common tool for studying the potential of a pair of
infinitely heavy quarks at zero temperature are Wilson
loops. A Wilson loop Wz is defined by

 Wz�A� �
1

2
Tr
�
P
�
exp

�
i
I
dz�A��z�

���
; (16)

where z is a closed spacetime curve and P denotes path
ordering. Rectangular Wilson loops with spatial extension
R and temporal extension T are denoted by W�R;T�.

It is well known that the potential of a static quark
antiquark pair Vq�q with separation R can be related to
ensemble averages of rectangular Wilson loops according
to

 Vq�q�R� � � lim
T!1

1

T
lnhW�R;T�i (17)

(cf. e.g. [13]).
In the following we assume that for large separations the

static quark antiquark potential can be parametrized by

 Vq�q�R� � V0 �
�
R
� 
R: (18)

This ansatz is based on the bosonic string picture [14,15]
and on various numerical results from lattice calculations
(cf. e.g. [16–18]). There are three parameters:

(i) V0 is a constant shift of the potential without physi-
cal relevance.

(ii) � is the coefficient in front of the attractive
1=R-correction of the potential for large separa-
tions. The bosonic string picture predicts �string �

�=12 	 0:26 [14,15]. In lattice calculations
�lattice � 0:22 . . . 0:32 has been observed [17,18].
We refer to � as Coulomb coefficient.

(iii) The string tension 
 characterizes the force be-
tween a static quark and a static antiquark at large
separations. Lattice calculations yield a positive
value of the string tension, which implies the
presence of confinement (cf. e.g. [16,17,19,20]).
Furthermore, 
 is a monotonically increasing func-
tion of the coupling constant g, i.e. when the scale
is set by the string tension, the extension of the
lattice in physical units can be adjusted by choosing
appropriate values for g.

1. Calculating 
 and � via generalized Creutz ratios

We determine the string tension 
 and the Coulomb
coefficient � by generalizing the well-known method of
Creutz ratios [20].

Generalized Creutz ratios are based on guessing the
functional dependence of ensemble averages of rectangu-
lar Wilson loops. A possible candidate is given by

 � lnhW�R;T�i � V0�R� T� � �
�
R
T
�
T
R

�
� �� 
RT

(19)

[17]. It is a simple and plausible choice, which is consistent
with numerical results from lattice calculations. It also
fulfills the following necessary requirements:

(i) hW�R;T�i � hW�T;R�i (in Euclidean spacetime there is
no difference between space and time).

(ii) limT!1�� lnhW�R;T�i� � Vq�q�R�T (cf. (17) and
(18)).

Note that (19) is only valid for R, T * �d, �. Wilson loops,
which are significantly smaller than the two ultraviolet
regulators �d and �, are subject to strong cutoff effects.

When applying generalized Creutz ratios, the starting
point is a set of ensemble averages of rectangular Wilson
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loops,

 fhW�R1;T1�
i; hW�R2;T2�

i; . . . ; hW�Rn;Tn�ig; (20)

with at least a couple of different ratios Ri=Ti.
A generalized Creutz ratio �X is defined by

 �X�Ri1 ; Ti1 ; . . . ; Ri4 ; Ti4� � hW�Ri1 ;Ti1 �i
c1;X hW�Ri2 ;Ti2 �i

c2;X

�hW�Ri3 ;Ti3 �i
c3;X hW�Ri4 ;Ti4 �i

c4;X

(21)

with weights c1;X � c1;X�Ri1 ; Ti1 ; . . . ; Ri4 ; Ti4�; . . . ; c4;X �

c4;X�Ri1 ; Ti1 ; . . . ; Ri4 ; Ti4�, which will be specified below (X
denotes any of the constants V0, �, �, or 
). Inserting the
Wilson loop ansatz (19) yields
 

� ln��X�Ri1 ; Ti1 ; . . . ; Ri4 ; Ti4��

� V0�c1;X�Ri1 � Ti1� � . . .� c4;X�Ri4 � Ti4��

� �
�
c1;X

�
�
Ri1
Ti1
�
Ti1
Ri1

�
� . . .� c4;X

�
�
Ri4
Ti4
�
Ti4
Ri4

��

� ��c1;X � . . .� c4;X�

� 
�c1;X�Ri1Ti1� � . . .� c4;X�Ri4Ti4��: (22)

By solving a linear system the weights c1;X; . . . ; c4;X are
chosen such that (22) reduces to

 � ln��X�Ri1 ; Ti1 ; . . . ; Ri4 ; Ti4�� � X: (23)

To determine V0, �, �, and 
, we consider all four
element subsets of (20). For every subset we calculate
V0, �, �, and 
 via (23). Although there will be certain
fluctuations due to systematical and statistical errors, most
of these estimates should be pretty similar.

We have found that estimates for V0, �, �, and 
 with
large c2

1;X � . . .� c2
4;X exhibit significantly stronger fluc-

tuations than estimates with small c2
1;X � . . .� c2

4;X

(cf. Fig. 4). Therefore, we sort the estimates according to
c2

1;X � . . .� c2
4;X and only keep the ‘‘smaller half.’’ The

average of these estimates is the final result for V0, �, �, or

.

Results: N � 400, n � 1:0, � � 0:5

We have computed ensemble averages of rectangular
Wilson loops hW�R;T�i for R; T 2 f7a; 8a; . . . ; 12ag, a �
0:21, rboundary � 1:8, and have determined all possible
generalized Creutz ratios. There are around 6 000 gener-
alized Creutz ratios for each of the quantities V0, �, �,
and 
.

In Fig. 4 the corresponding estimates for the string
tension 
 and the Coulomb coefficient � are plotted for
g � 5:0, sorted according to c2

1;X � . . .� c2
4;X in increasing

order from left to right (for the sake of clarity only every
tenth estimate is shown). Both plots demonstrate that esti-
mates on the left exhibit a smaller variance than estimates
on the right. This indicates that estimates with small c2

1;X �

. . .� c2
4;X are more reliable than estimates with large

c2
1;X � . . .� c2

4;X. To extract numerical values for 
 and
�, we have calculated the average and the standard devia-
tion from the ‘‘smaller half.’’ The results are 
 � 0:342

0:016 and � � 0:232
 0:022.

By proceeding in the same way we have obtained nu-
merical values for 
 and � for different coupling constants
g 2 f2:0; 2:5; . . . ; 5:5g.

In Fig. 5(a) the string tension 
 is plotted against the
coupling constant g. It is positive and an increasing func-
tion of g. When the scale is set by the string tension, the
size of the spacetime hypersphere in physical units can be
adjusted by choosing appropriate values for the coupling
constant. For 
physical � 4:2=fm2 its diameter ranges from
approximately 0.81 fm at g � 2:0 to 1.92 fm at g � 5:5.

Figure 5(b) shows the Coulomb coefficient � as a func-
tion of the coupling constant g. It increases from � � 0:04
at g � 2:0 to � � 0:25 at g � 5:5. For large g the value
of � is in qualitative agreement with the prediction from
the bosonic string picture, �string � �=12 	 0:26 [14,15],
and with results from lattice calculations, �lattice �
0:22 . . . 0:32 [17,18].

 

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0  1000  2000  3000  4000  5000

es
tim

at
e 

fo
r 

σ

number of the estimate (estimates are sorted by c2
1,X + ... + c2

4,X)

a)   estimates for σ   −   N = 400, n = 1.0, λ = 0.5, g = 5.0

σ = 0.342 ± 0.016
discard estimates right of this line

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  1000  2000  3000  4000  5000

es
tim

at
e 

fo
r 

α

number of the estimate (estimates are sorted by c2
1,X + ... + c2

4,X)

b)   estimates for α   −   N = 400, n = 1.0, λ = 0.5, g = 5.0

α = 0.232 ± 0.022
discard estimates right of this line

FIG. 4 (color online). N � 400, n � 1:0, � � 0:5, g � 5:0.
(a) Estimates for 
 sorted according to c2

1;X � . . .� c2
4;X.

(b) Estimates for � sorted according to c2
1;X � . . .� c2

4;X.

MARC WAGNER PHYSICAL REVIEW D 75, 016004 (2007)

016004-6



2. Calculating the static quark antiquark potential

The starting point to calculate the static quark antiquark
potential is (17), which we write as

 Vq�q�R�T 	 � lnhW�R;T�i: (24)

We compute ensemble averages of rectangular Wilson
loops hW�R;T�i for fixed R but different T to obtain a curve
� lnhW�R�constant;T�i. Examples are shown in Fig. 6(a).
According to (24) such a curve will exhibit a linear behav-
ior for sufficiently large T. From the slope, which we
obtain by fitting a straight line, we can read off Vq�q�R�.
Iterating this procedure for a number of different R yields
an approximation of the quark antiquark potential.

Results: N � 400, n � 1:0, � � 0:5, g � 5:0

We have computed ensemble averages of rectangular
Wilson loops hW�R;T�i for R; T 2 fa; 2a; . . . ; 12ag, a �
0:21, rboundary � 1:8.

Figure 6(a) shows� lnhW�R�constant;T�i as a function of T
for different R 2 fa; 2a; . . . ; 12ag. To determine the slope
of these curves for large T, we have fitted straight lines to

the data points at T 2 f9a; 10a; 11a; 12ag, as indicated by
the dashed straight lines.

The corresponding potential as a function of the quark
antiquark separation is plotted in Fig. 6(b). For large
separations it clearly exhibits a linear behavior. To obtain
numerical values for the string tension 
 and the Coulomb
coefficient �, we have performed a least squares fit of the
potential parametrization (18) to the data points shown in
Fig. 6(b). Only data points with R � 1:3> �d, � have been
considered, because cutoff effects are expected to render
the potential unphysical for small separations. Within sta-
tistical errors the results, 
 � 0:376
 0:026 and � �
0:283
 0:093, are in agreement with the results obtained
by generalized Creutz ratios (cf. Sec. III A 1). The fit is also
shown in Fig. 6(b).

Note that in contrast to generalized Creutz ratios we
have not made any assumption about the functional depen-
dence of ensemble averages of Wilson loops to calculate
the quark antiquark potential. Therefore, the agreement of
the results for
 and �with results obtained by generalized
Creutz ratios shows again the consistency of the Wilson
loop ansatz (19) and Monte Carlo data for hW�R;T�i.
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B. The topological susceptibility

In order to produce quantitative results involving the
string tension, we need other dimensionful quantities so
that we can consider dimensionless ratios. One such quan-
tity, which has been studied extensively on the lattice (cf.
e.g. [21–24]), is the topological susceptibility �. The
topological susceptibility is closely related to the mass of
the �0 meson [25]. It is defined by

 � � lim
V!1

1

V
hQ2

Vi; (25)

where QV is the topological charge inside the spacetime
volume V.

In our numerical calculations we approximate the limit
V ! 1 by a finite volume, the hyperspherical spacetime
region with radius rboundary (cf. Sec. II D). A number of
computations has shown that � is stable with respect to a
variation of that spacetime volume.

Results: N � 400, n � 1:0, � � 0:5

Figure 7 shows the dimensionless ratio �1=4=
1=2 as a
function of the coupling constant g (rboundary � 1:8, 
 has
been obtained by generalized Creutz ratios [cf. Fig. 5(a)]).
As expected, �1=4=
1=2 is nearly independent of g, i.e. the
string tension and the topological susceptibility exhibit
consistent scaling behaviors with respect to the coupling
constant. This success strongly indicates that the pseudo-
particle approach has the potential to reproduce correct
Yang-Mills physics. The range of values, �1=4=
1=2 �
0:33 . . . 0:35, is of the right order of magnitude compared
to the lattice result ��1=4=
1=2�lattice � 0:486
 0:010 [26].

C. The critical temperature of the confinement
deconfinement phase transition and the finite

temperature quark antiquark potential

1. The pseudoparticle approach in finite temperature
SU(2) Yang-Mills theory

For finite temperature calculations we have to consider
periodic gauge field configurations in x0-direction.
Therefore, we need a method to generate periodic building
blocks. In the case of singular gauge instantons this has
already been done in the form of calorons [2,27], which are
periodic solutions to the classical Yang-Mills equations of
motion. However, there is no straightforward generaliza-
tion to arbitrary pseudoparticles. Therefore, we introduce a
different method, which resorts to a blending technique
from computer aided geometric design [28].

At first, we define blending functions B and �B, which
form smooth,C1-continuous connections between 0 at � �
0 and 1 at � � 1 and vice versa:

 B��� � �2�3 � 3�2; �B��� � 1� B���: (26)

To make a nonperiodic pseudoparticle aa� with its center at
the origin periodic in x0-direction, we multiply ‘‘both
ends’’ with the blending functions and add the results
(cf. Fig. 8):

 aa�;periodic�x� �

8<
: a

a
��x0;x� if � ��b

2 � x0 �
��b

2

B���aa��x0 � �;x� � �B���aa��x0;x� if ��b
2 � x0 �

��b
2

; � �
x0 � ��� b�=2

b
: (27)

To evaluate aa�;periodic at x0 =2 ����� b�=2; ��� b�=2�
one just has to combine (27) and

 aa�;periodic�x0;x� � aa�;periodic�x0 � n�;x� (28)

with a suitably chosen integer n. b is the width of the
blending region. Throughout this work we have chosen
b � 0:3� �.

The spacetime region

At zero temperature we consider a spacetime region,
which is the interior of a 4-dimensional hypersphere

(cf. Fig. 1). At finite temperature that spacetime region
is replaced by a spacetime with a periodic time direction
of extension � and a spatial part, which is the interior of
an ordinary 3-dimensional sphere of radius rspace

(cf. Fig. 9).
As in the zero temperature case we have to assure that

samples of physically meaningful quantities are always
taken inside a spacetime region, where boundary effects
can be neglected. The spatial part of such a region is the
interior of a sphere of radius rboundary, whereas the time
direction is not restricted (the light gray region in Fig. 9).
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The pseudoparticle density

At finite temperature we use the same pseudoparticle
density as for the corresponding zero temperature calcu-
lation (a zero temperature calculation with identical pa-
rameters is necessary to obtain a numerical value for the
string tension, which is used to set the scale). This is a
reasonable choice, because in the limit �! 1, rspace !

1, and rspacetime ! 1 finite temperature ensembles and
zero temperature ensembles become identical.
Furthermore, there is a close analogy to lattice calcula-
tions. To set the scale, a zero temperature calculation with
the same number of lattice sites in all four spacetime
directions is carried out. For finite temperature calculations
the number of lattice sites in the temporal direction is
significantly reduced. However, the density of lattice sites
is still the same, i.e. there is a smaller number of link
variables in a smaller spacetime volume.

The pseudoparticle approach offers two possibilities to
change the temperature:

(i) Varying � while g is kept constant changes the value
of the temperature directly.

(ii) Varying g while � is kept constant changes the
numerical value of the string tension 
. This leads
to a different extension of the periodic time direc-
tion in physical units and, therefore, changes the
value of the temperature.

Both methods yield consistent results (cf. Fig. 10(c)).

2. The critical temperature of the confinement
deconfinement phase transition

Whereas at low temperatures static quarks cannot be
separated from each other, at high temperatures a deconfin-
ing phase is expected. The temperature, at which the
corresponding phase transition takes place, is called criti-
cal temperature and denoted by Tcritical.
Tcritical can be determined from ensemble averages of

Polyakov loops. A Polyakov loop is a Wilson loop around
the periodic time x0:

 Lz�A� �
1

2
Tr
�
P
�
exp

�
i
I
dz0A0�z�

���
: (29)

Because of spatial translational invariance hLzi� is
z-independent. Therefore, from a numerical point of
view it is convenient to consider spatial averages of
Polyakov loops. We define

 hLi� �
�

1

V

Z
V
d3zLz�A�

�
�
: (30)

hLi� can be considered as an order parameter indicating
whether there is confinement or not (cf. e.g. [13,29]):

 hLi� � 0 $ confinement; (31)

 hLi� � 0 $ deconfinement: (32)
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This criterion is closely related to center symmetry, which
is spontaneously broken in the deconfinement phase.

In the center symmetric phase of SU(2) Yang-Mills
theory for every field configuration Aa;�� there is a gauge
equivalent field configuration Aa;�� with Lz�A

�� �

�Lz�A�� (Aa;�� and Aa;�� are related by center symmetry,
i.e. they are connected by a singular gauge transformation).
Since both field configurations have the same action, i.e.
S�A�� � S�A��, hLi� � 0 follows immediately.

The spontaneous breakdown of center symmetry at T �
Tcritical comes along with a splitting of the Hilbert space of
states in two independent spaces: H !H� H�. The
same applies for the set of field configurations considered
in the path integral: A!A� A�. The ensemble
average of the Polyakov loop depends on which Hilbert
space was chosen during the spontaneous breakdown of
center symmetry: hLi�;H� � �l and hLi�;H� � �l.

In the broken phase two field configurations, which are
related by center symmetry, cannot be connected continu-
ously by a set of field configurations of finite action. This
implies that during a Monte Carlo simulation only field
configurations either from A� or from A� are generated,
assuming an infinite system and a local and continuous
update mechanism. In numerical calculations these as-
sumptions are only approximately fulfilled. Nevertheless,
in lattice Monte Carlo simulations (cf. e.g. [29,30]) it has
been observed that there are long sequences of steps, where
only field configurations corresponding to one of the two
Hilbert spaces are generated.

Since our pseudoparticle ensembles are only approxi-
mately center symmetric, there is a smooth transition
between the two phases. hLi� 	 0 can be observed well
below the critical temperature. For � 	 �critical the en-
semble average of the Polyakov loop quickly rises to a
nonzero value. For high temperatures hLi� 	 1
(cf. Fig. 10(a)). Therefore, we define the critical tempera-
ture Tcritical (or equivalently its inverse �critical) to be that
temperature, where the ensemble average of the Polyakov
loop crosses a certain value �, i.e.

 hLi�critical
� �: (33)

hLi� in the pseudoparticle approach versus hLi� in lattice
calculations

The main difference between our results and lattice
results is that even in the deconfinement phase we never
have observed hLi� < 0. We conclude that in the pseudo-
particle approach the low action field configurations cor-
responding to H� are underrepresented, i.e. there are
more low action field configurations corresponding to
H� than to H�. This bias always forces the system to
choose the Hilbert space H�, when center symmetry is
spontaneously broken.

The bias can be explained by the following qualitative
argument: for field configurations close to zero Lz 	 1
(cf. (29)). Therefore, we expect these field configurations
to be elements of A�. Furthermore, all of these field
configurations are low action field configurations, which
contribute significantly to the path integral. The set of these
field configurations is denoted by AA	0. Loosely speak-
ing, all other low action field configurations are large
enough so that Lz can pick up exponents, which are sig-
nificantly different from zero. They are either elements of
A� or of A�. The set of these field configurations is
denoted by AA�0. However, there is numerical evidence
that in the pseudoparticle approach with around 400 pseu-
doparticles most low action field configurations have small
gauge fields, i.e. are elements of AA	0. This is closely
related to the fact that our ensembles are only approxi-
mately gauge invariant: a gauge transformed field configu-
ration from AA	0, which is a field configuration in AA�0,
can only be approximated, when using around 400 pseu-
doparticles; such an approximation usually has a higher
action. Therefore, there are proportionally more field con-
figurations in AA	0 than in AA�0. This is manifested in
form of a bias.

Results: rspace � 3:00, n � 1:0, � � 0:5

In Fig. 10(a) the ensemble average of the Polyakov loop
hLi� is plotted against the temperature T for different
coupling constants (rspace � 3:00, rboundary � 1:8). The
dashed straight lines correspond to a determination of
Tcritical with � � 0:5 (other values for � yield qualitatively
identical results).

Figure 10(b) shows that the dimensionless ratio
Tcritical=
1=2 is nearly independent of the coupling constant
g (
 has been obtained by generalized Creutz ratios
[cf. Fig. 5(a)]), i.e. the string tension and the critical
temperature scale consistently with respect to g. We would
like to stress again that such a scaling behavior, although
mandatory for any trustworthy numerical method, is far
from obvious. The range of values, Tcritical=


1=2 �
0:54 . . . 0:65, is of the right order of magnitude compared
to the lattice result �Tcritical=


1=2�lattice � 0:694
 0:018
[26].

As we have explained in Sec. III C 1, there are two
methods to adjust the temperature, varying � or varying
g. Figure 10(c) shows hLi� as a function of T=
1=2 for
different coupling constants g. The fact that all sample
points scale to a single curve demonstrates that both meth-
ods yield consistent results.

Figure 11 shows the evolution of L~0 during a single
Monte Carlo simulation (1 000 Monte Carlo steps) for g �
5:0 and different T=Tcritical (Tcritical � 0:38). These plots
demonstrate that in the confinement phase (T < Tcritical) Lz
assumes approximately an equal number of positive
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and negative values, whereas in the deconfinement phase
(T > Tcritical) the values of Lz are mainly positive.

3. The static quark antiquark potential at finite
temperature

It is well known that the static quark antiquark potential
at finite temperature can be obtained from Polyakov loop
correlation functions:

 Vq�q�R;�� � �
1

�
lnhL~0L

y
z i�; jzj � R (34)

(cf. e.g. [13,29]).
However, center symmetry is only approximately real-

ized in the pseudoparticle approach, i.e. even in the con-
finement phase hLi� � 0. Consequently, any finite
temperature potential calculated according to (34) ap-
proaches a constant value for large quark antiquark sepa-
rations:

 lim
R!1

Vq�q�R;�� � �
2

�
lnjhLi�j: (35)

Therefore, at finite temperature one can expect to observe
confining potentials only up to intermediate separations.

Results: rspace � 3:00, n � 1:0, � � 0:5, g � 5:0

Figure 12 shows finite temperature quark antiquark po-
tentials for T=Tcritical 2 f0:39; 0:52; . . . ; 2:09g obtained
from Polyakov loop correlation functions (cf. (34); rspace �

3:00, rboundary � 1:27) and the corresponding zero tem-
perature potential obtained from ensemble averages of
Wilson loops (cf. Sec. III A 2). At high temperatures there
is clearly no confinement. However, with the decrease of
the ensemble average of the Polyakov loop towards lower
temperatures finite temperature potentials gradually ap-
proach the zero temperature potential extracted from
Wilson loops.

Because of hLi� � 0 the finite temperature potentials
and the zero temperature potential differ at large separa-
tions even for temperatures significantly smaller than
Tcritical. There are arguments suggesting that these poten-
tials should rather be calculated via
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Vq�q�R;�� � �
1

�
lnh�L~0 � hLi���L

y
z � hLi��i�;

jzj � R
(36)

instead of (34). Indeed, this yields finite temperature po-
tentials, which are identical to the zero temperature poten-
tial within statistical errors, a result, which is in agreement
with results from lattice calculations (cf. e.g. [31]). We
plan to discuss these topics in more detail in an upcoming
paper.

IV. PROPERTIES OF CONFINING GAUGE FIELD
CONFIGURATIONS

The goal of this section is to identify essential properties
of gauge field configurations, which are responsible for
confinement. To this end we compare different pseudopar-
ticle ensembles.

A. Pseudoparticles of different size and profile

1. Pseudoparticles of different size

In the following we explore how pseudoparticle results
are affected by a variation of the pseudoparticle size �,
while the pseudoparticle density n or equivalently the
average pseudoparticle distance �d � 1=n1=4 is kept con-
stant. In other words, we consider different ratios of the
two ultraviolet regulators �d and �. Note that � strongly
affects the shape of a pseudoparticle near its center, while it
has essentially no effect on the long range behavior of a
pseudoparticle, which is proportional to 1=jxj (cf. (7)–(9)).

We consider ensembles with N � 400, n � 1:0, g �
4:0, and � 2 f0:20; 0:35; . . . ; 1:10g.

We have obtained the string tension 
 via generalized
Creutz ratios (cf. Sec. III A 1). Figure 13(a) shows that 
 is
clearly positive for all values of the pseudoparticle size �.
Moreover, there is only a weak �-dependence, i.e. 
 �

0:23 . . . 0:29 for � � 0:20 . . . 1:10. The implication is that
confinement is connected to the 1=jxj long range behavior
of the pseudoparticles, which is the same for all values of
�. The shape of the pseudoparticles near their center,
which is �-dependent, has essentially no effect on the
string tension and, therefore, is of no relevance to
confinement.

The topological susceptibility � is also fairly indepen-
dent of the pseudoparticle size � as is the dimensionless
ratio �1=4=
1=2 (cf. Fig. 13(b)]. The range of values,
�1=4=
1=2 � 0:37 . . . 0:31 between � � 0:20 . . . 1:10, is
in qualitative agreement with the lattice result
��1=4=
1=2�lattice � 0:486
 0:010 [26].

2. Pseudoparticles of Gaussian localized profile and
different size

To learn more about the interrelation between the long
range behavior of pseudoparticles and confinement, we
study pseudoparticles of Gaussian localized profile and
different size. Such Gaussian localized pseudoparticles
are obtained by replacing 1=�x2 � �2� appearing in the
definitions of instantons, anti-instantons, and akyrons
((7)–(9)) by �1=�2�e�x

2=�2�2�. The main difference is the
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5:0. Finite temperature potentials and the corresponding zero
temperature potential plotted against the separation of the
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long range behavior of the resulting building blocks: in
contrast to our standard choice of pseudoparticles, (7)–(9),
Gaussian localized pseudoparticles have a limited range of
interaction, which is proportional to their size �.

We consider ensembles with N � 400, n � 1:0, g �
4:0, and � 2 f0:25; 0:50; . . . ; 1:50g.

We have obtained numerical values for the string tension

 via generalized Creutz ratios (cf. Sec. III A 1). The
results are plotted in Fig. 14(a) against the pseudoparticle
size �.

There is no confinement for � & 0:75 and confinement
for � * 1:00. The onset of confinement takes place some-
where around � 	 0:75. This is precisely the width at
which neighboring pseudoparticles start to overlap signifi-
cantly (this can be seen by assigning each pseudoparticle
an appropriate volume, e.g. the volume of a hypersphere of
radius �, ��2=2��4 	 4:93� �4, and comparing that vol-
ume with the maximum volume nonoverlapping pseudo-
particles can cover, i.e. 1=n � 1:0). The implication is that
pseudoparticle ensembles only exhibit confinement if their
pseudoparticles cover sufficiently large spacetime regions
so that there are significant overlaps between neighboring
pseudoparticles. This is reminiscent of percolation. Note
that percolation phenomena have been related to confine-
ment in a variety of ways, e.g. percolation of center vorti-
ces [32] or monopole loops [33] in lattice gauge theory or
random percolation of bonds or sites on three-dimensional
lattices [34].

The �-dependence of the topological susceptibility � is
much weaker than the �-dependence of the string tension

. Therefore, the dimensionless ratio �1=4=
1=2 is
dominated by 
 (cf. Fig. 14(b)]. The range of values for
� � 1:00, i.e. for significantly overlapping pseudopar-
ticles, �1=4=
1=2 � 0:41 . . . 0:28, is of the right order of
magnitude when compared to the lattice result
��1=4=
1=2�lattice � 0:486
 0:010 [26].

We have also calculated quark antiquark potentials for
different values of � (cf. Sec. III A 2). The results are
shown as functions of the quark antiquark separation in
Fig. 14(c). For � � 1:25 the potential is clearly confining,
whereas for � � 0:50 it is unambiguously not confining, a
result which is in agreement with previous results from this
section.

3. ‘‘Singular gauge pseudoparticles’’ of different size

We have also studied ensembles of singular gauge in-
stantons, anti-instantons, and akyrons. These ‘‘singular
gauge pseudoparticles’’ are obtained by replacing 1=�x2 �
�2� in (7)–(9) by �2=�x2 � �2��x2 � �2�, where � is an
ultraviolet regulator, which has been included due to nu-
merical reasons.

We consider ensembles with N � 400, n � 1:0, � �
0:1, g � 4:0, and � 2 f0:25; 0:60; . . . ; 2:00g.

Numerical results (cf. Fig. 15) and their interpretation
are similar to those obtained with Gaussian localized pseu-

doparticles. Of course, this is what one would expect,
because the gauge fields of singular gauge pseudoparticles
decrease much faster than those of regular gauge pseudo-
particles, i.e. like 1=jxj3 instead of 1=jxj. Therefore, sin-
gular gauge pseudoparticles are quite similar to Gaussian
localized pseudoparticles with respect to long range
interactions.

The result that there is no confinement for ensembles of
singular gauge pseudoparticles of small size (�= �d & 0:6) is
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in agreement with what has been obtained in instanton gas
and instanton liquid models, where typically �= �d 	 1=3
(cf. e.g. [1]). Furthermore, it has been proposed that large
size singular instantons can produce confinement ([35]
quoted in [1]), which is also supported by our findings.

B. Instantons and anti-instantons versus akyrons

In the following we present evidence that confinement
arises due to instantons and anti-instantons, whereas akyr-

ons do not produce confinement. To this end, we consider
ensembles with the same number of pseudoparticles but
different ratios Ninstanton:Nanti-instanton:Nakyron. In detail, we
compare the following ensembles with N � 400, n � 1:0,
� � 0:5, and g � 4:0:

(i) ‘‘Akyron ensemble’’: an ensemble containing 400
akyrons (no instantons or anti-instantons).

(ii) ‘‘Standard ensemble’’: an ensemble containing 150
instantons, 150 anti-instantons, and 100 akyrons.

(iii) ‘‘Instanton ensemble’’: an ensemble containing
200 instantons and 200 anti-instantons (no
akyrons).

Figure 16 shows the quark antiquark potential as a
function of the separation for all three ensembles
(cf. Sec. III A 2). The standard ensemble and the instanton
ensemble exhibit a confining potential, whereas the akyron
curve indicates that there is no confinement.

We have obtained numerical values for the string tension

 via generalized Creutz ratios (cf. Sec. III A 1). The
results are 
akyron � 0:019
 0:08, 
standard � 0:236

0:013, and 
instanton � 0:512
 0:023. The ratio of these
values is given by 
akyron:
standard:
instanton 	 1:12:27.

To compare dimensionless ratios, we have calculated the
topological susceptibility � and the critical temperature
Tcritical in the standard ensemble and in the instanton en-
semble: ��1=4=
1=2�standard � 0:35, ��1=4=
1=2�instanton �

0:26, �Tcritical=

1=2�standard � 0:61, �Tcritical=


1=2�instanton �
0:59. Obviously, akyrons increase the topological suscep-
tibility, while they do not affect the critical temperature.
Since ��1=4=
1=2�standard � 0:35 is closer to the lattice
result ��1=4=
1=2�lattice � 0:486
 0:010 [26] than
��1=4=
1=2�instanton � 0:26, it is beneficial with respect to
quantitative results to consider ensembles containing not
only instantons and anti-instantons but also akyrons.
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The dimensionless ratios �1=4=
1=2 and Tcritical=
1=2 in
the akyron ensemble are not meaningful: the topological
susceptibility � vanishes identically (cf. Appendix B) and
the ensemble average of the Polyakov loop hLi� is close to
1 even for very large values of �, i.e. there is no sign of a
confinement deconfinement phase transition. From that
and the fact that the string tension is more than 10 times
smaller in the akyron ensemble than in the other two
ensembles we conclude that gauge field configurations
made up solely of akyrons are not suited to produce con-
finement. On the other hand, gauge field configurations,
which are responsible for confinement, necessarily contain
instantons and anti-instantons.

It is interesting to note that any linear superposition of
akyrons and, therefore, any field configuration in a pure
akyron ensemble have zero topological charge density
(cf. Appendix B). Since akyron ensembles do not exhibit
confinement, this supports the common expectation that
confinement and topological charge are closely related.

V. SUMMARY AND OUTLOOK

In this work we have presented the pseudoparticle ap-
proach, a numerical method to compute path integrals in
effective SU(2) Yang-Mills theories. We have calculated
the static quark antiquark potential at zero and at finite
temperature, the topological susceptibility, and the critical
temperature of the confinement deconfinement phase tran-
sition in different pseudoparticle ensembles. The pseudo-
particle approach is able to reproduce many essential
features of SU(2) Yang-Mills theory with a comparatively
small number of degrees of freedom.

A. The pseudoparticle approach as a successful
effective theory

When using 400 instantons, anti-instantons, and akyr-
ons, the static quark antiquark potential is linear for large
separations with an attractive 1=R-correction, which is in
qualitative agreement with the bosonic string picture and
with results from lattice calculations. The string tension 

is not only positive but also an increasing function of the
coupling constant g. Therefore, when the scale is set by the
string tension, one can adjust the size of the spacetime
hypersphere in physical units by choosing an appropriate
value for g.

We have also calculated the topological susceptibility �
and the critical temperature Tcritical. The dimensionless
ratios �1=4=
1=2 and Tcritical=


1=2 are constant for a wide
range of coupling constants, i.e. 
, �, and Tcritical exhibit
consistent scaling behaviors with respect to g. This success
strongly indicates that the pseudoparticle approach has the
potential to reproduce correct Yang-Mills physics. The
values of both dimensionless ratios are of the right order
of magnitude compared to lattice results.

B. Properties of confining gauge field configurations

For ensembles made up of instantons, anti-instantons,
and akyrons the string tension shows only a weak depen-
dence on the pseudoparticle size �. It seems that confine-
ment is mainly a consequence of the long range behavior
of the building blocks, which is unaffected by �.
This has been confirmed by considering ensembles of
Gaussian localized pseudoparticles and ensembles of
singular gauge pseudoparticles, for which the size parame-
ter � strongly affects the long range behavior. For small
� there is only little overlap between neighboring
pseudoparticles and there is no sign of confinement.
Increasing � to a value, where pseudoparticles overlap
and interact significantly, restores quark confinement.
The conclusion is that gauge field configurations, which
are responsible for confinement, contain extended struc-
tures. On the other hand, gauge field configurations
with only localized excitations do not produce
confinement.

Comparing our ‘‘standard ensemble’’ with a pure in-
stanton and anti-instanton ensemble and a pure akyron
ensemble has shown that confinement arises due to instan-
tons and anti-instantons and not because of akyrons.
Keeping in mind that gauge field configurations made up
solely of akyrons have vanishing topological charge den-
sity, our findings support the common expectation that
topological charge and confinement are closely related.
For quantitative results akyrons seem to play an important
role. The dimensionless ratio �1=4=
1=2 is significantly
closer to the lattice result, when there are not only instan-
tons and anti-instantons but also akyrons.

C. Outlook

An obvious possibility for future research is to calculate
correlation functions in order to extract glueball masses.
Comparing the resulting masses with results from lattice
calculations would be another check of the pseudoparticle
approach. Furthermore we plan to compute other observ-
ables at finite temperature, e.g. the energy density and the
pressure.

A major new direction is to include fermions in the
pseudoparticle approach. The goal would be to obtain a
model for SU(2) Yang-Mills theory, which exhibits both
chiral symmetry breaking and a confinement deconfine-
ment phase transition.
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APPENDIX A: COLOR ORIENTATION MATRICES

A color orientation is a spacetime independent gauge
transformation. It can be specified by an element of SU(2):
U � c0 � ica


a with c2
0 � c2 � 1. Applying such a gauge

transformation to a gauge field A� yields

 A0� � UA�U�1 (A1)

or expressed in components

 Aa0� � Tr�
aA0��

� �	ab�c2
0 � c2� � 2cacb � �

abc2c0cc�|��������������������������������{z��������������������������������}
�Cab

Ab�: (A2)

We refer to Cab as color orientation matrix. Color orienta-
tion matrices fulfill

 C CT � CTC � 1; (A3)

 det�C� � 1: (A4)

Therefore, they are elements of SO(3).

APPENDIX B: ANY LINEAR SUPERPOSITION OF
AKYRONS HAS VANISHING TOPOLOGICAL

CHARGE DENSITY

The gauge field of a single akyron with index i, ampli-
tude A�i�, color orientation matrix Cab�i�, and position
z�i� is given by

 Aa��i� �A�i�Cab�i�abakyron;��x� z�i��

�A�i�Ca1�i�
x� � z��i�

�x� z�i��2 � �2 (B1)

(cf. (9)). In the corresponding field strength the derivative
terms cancel each other:

 Fa���i� � @�Aa��i� � @�Aa��i�|���������������{z���������������}
�0

� �abcAb��i�Ac��i�: (B2)

For any linear superposition of akyrons

 Aa� �
X
i

Aa��i� (B3)

the same is true:

 Fa�� � @�Aa� � @�Aa�|����������{z����������}
�0

� �abcAb�Ac�: (B4)

For the topological charge density follows

 q �
1

32�2 F
a
��

~Fa�� �
1

64�2 �����F
a
��Fa��

�
1

64�2 ������
abc�adeAb�A

c
�A

d
�A

e
�

�
1

32�2 ������A
b
�A

b
��|���������{z���������}

�0

�Ac�A
c
�� � 0: (B5)

APPENDIX C: INSTANTONS AND
ANTI-INSTANTONS FORM TRANSVERSE GAUGE

FIELDS, AKYRONS FORM LONGITUDINAL
GAUGE FIELDS

Any gauge field Aa� can be written as a sum of plane
waves:

 Aa��x� �
1

�2��4
Z
d4ke�ikx ~Aa��k�; (C1)

where ~Aa�, the Fourier transform of Aa�, is given by

 

~A a
��k� �

Z
d4keikxAa��x�: (C2)

The Fourier transformed gauge field ~Aa� can be decom-
posed in a transverse and a longitudinal part:

 

~A a
��k� � ~Aa�;transverse�k� � ~Aa�;longitudinal�k� (C3)

with

 k� ~Aa�;transverse�k� � 0; (C4)

 

~A a
�;longitudinal�k� / k�: (C5)

Superpositions of instantons (7) and anti-instantons (8)
form transverse gauge fields, whereas superpositions of
akyrons (9) form longitudinal gauge fields. This can be
seen by considering the Fourier transforms of these pseu-
doparticles:

 ~a a�;instanton�k� � �a��k�f�jkj�; (C6)

 ~a a�;anti-instanton�k� � ��a��k�f�jkj�; (C7)

 ~a a�;akyron�k� � 	a1k�f�jkj�; (C8)

where

 f�k� �
8�2i

jkj4

�
jkj�K1�jkj��

2
�
k2�2K01�jkj��

2

�
(C9)

(K1 is a modified Bessel function of imaginary argument).
(C6) and (C7) satisfy (C4) due to the antisymmetry of �a��
and ��a��, while (C8) obviously fulfills (C5).
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APPENDIX D: INSTANTONS AND AKYRONS
FORM A BASIS OF ALL GAUGE FIELD

CONFIGURATIONS

In this appendix we show that ‘‘almost any gauge field
configuration’’ can be represented by a linear superposition
of infinitely many instantons and akyrons.

The starting point is the ‘‘continuum limit’’ of (12)
without anti-instantons:
 

Aa��x� �
Z
d4z

�X9

i�1

A�i; z�Cab�i; z�ab�;instanton�x� z�

�
X12

j�10

A�j; z�Cab�j; z�ab�;akyron�x� z�
�

(D1)

(the sum over all pseudoparticles has been replaced by an
integration over spacetime; furthermore, nine instantons
and three akyrons are allowed to share the same position).

Inserting (7) and (9) in (D1) yields

 Aa��x� �
Z
d4z

�X9

i�1

A�i; z�Cab�i; z��b��
|�������������������{z�������������������}

�Sab�z�

�
X12

j�10

A�j; z�Cab�j; z�	b1	��

|�����������������������{z�����������������������}
�Sa0�z�

�
x� � z�

�x� z�2 � �2 :

(D2)

It can be shown that in general nine color orientation
matrices form a basis of all 3� 3-matrices [8].
Therefore, any Sab and Sa0 can be realized by suitably
chosen amplitudes A�i; z� and A�j; z�. Hence, the prob-
lem has been reduced to the question whether any gauge
filed configuration Aa� can be represented by suitably
chosen Sab and Sa0.

Fourier transforming (D2) turns the convolution into an
ordinary multiplication:

 

~A a
��k� � �~S

ab�k��b�� � ~Sa0�k�	���
Z
d4xeikx

x�
x2 � �2

� �~Sab�k��b�� � ~Sa0�k�	���k�f�k�

(D3)

(f is defined by (C9)).

Without loss of generality we consider a � 1:

 

~A1
0�k�

~A1
1�k�

~A1
2�k�

~A1
3�k�

0
BBB@

1
CCCA � f�k�

k0 �k1 �k2 �k3

k1 k0 �k3 k2

k2 k3 k0 �k1

k3 �k2 k1 k0

0
BBB@

1
CCCA

|�����������������������{z�����������������������}
�K�k�

~S10�k�
~S11�k�
~S12�k�
~S13�k�

0
BBB@

1
CCCA:

(D4)

For k � 0 this equation can be solved for
�~S10; ~S11; ~S12; ~S13�, because f � 0 and det�K� � jkj4 �

0. For k � 0 both f and K are singular. To study this case,
we first deduce

 

Z
d4xAa��x� � 0 (D5)

from (D2) by applying a proper regularization scheme.
(D5) implies ~Aa��k � 0� � 0. Inserting this in (D4) shows
that the value of ~SaB�k � 0� has no effect on the gauge
field Aa�. On the other hand, changing ~SaB�k � 0� amounts
to a constant shift of SaB: SaB ! SaB � SaB0 . That is add-
ing SaB0 changes SaB, whereas the gauge field Aa� remains
unaltered. To get rid of this redundancy, we require

 

Z
d4xSaB�x� � 0: (D6)

To be able to represent any gauge field configuration Aa�,
we have to find a way around (D5). This can easily be
achieved by adding constants Ba� to (D1).

The final result is the following: any gauge field con-
figuration Aa� has a unique expansion

 Aa��x� �
Z
d4z

�X9

i�1

A�i; z�Cab�i; z�ab�;instanton�x� z�

�
X12

j�10

A�j; z�Cab�j; z�ab�;akyron�x� z�
�
� Ba�

(D7)

in terms of A�i; z� and A�j; z� constrained by (D6) and
Ba�, where Cab�i; z�, i � 1; . . . ; 9, as well as Ca1�j; z�, j �
10; . . . ; 12, are linearly independent color orientation
matrices.
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