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We apply the soft-collinear effective theory to deep inelastic scattering near the endpoint region. The
forward scattering amplitude and the structure functions are shown to factorize as a convolution of the
Wilson coefficients, the jet functions, and the parton distribution functions. The behavior of the parton
distribution functions near the endpoint region is considered. It turns out that it evolves with the Altarelli-
Parisi kernel even in the endpoint region, and the parton distribution function can be factorized further into
a collinear part and the soft Wilson line. The factorized form for the structure functions is obtained by the
two-step matching, and the radiative corrections or the evolution for each factorized part can be computed
in perturbation theory. We present the radiative corrections of each factorized part to leading order in �s,
including the zero-bin subtraction for the collinear part.
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I. INTRODUCTION

The soft-collinear effective theory (SCET)[1–3] is a
useful theoretical tool to treat physical processes with
energetic light particles in a systematic way. For an ener-
getic particle moving in the n� direction, the momentum
can be decomposed into

 p� �
�n � p

2
n� � p�? �

n � p
2

�n� �O�Q� �O���

�O��2=Q�; (1)

where Q is a large scale, and n�, �n� are lightlike vectors
satisfying n2 � �n2 � 0, n � �n � 2. Each component has a
distinct scale in powers of � which is a typical hadronic
scale, and SCET describes the interactions of the collinear
particles and the ultrasoft (usoft) particles with momentum
p�us � ��;�;��. Since there are three distinct scales for the
momentum of a collinear particle, SCET employs a two-
step matching process by integrating out large energy
scales successively [3]. In the first stage, the degrees of
freedom of order Q from the full theory are integrated out
to produce SCETI. In SCETI, collinear particles are al-
lowed to interact with usoft particles and the typical vir-
tuality of the collinear particles is p2

hc �Q�. In the second
stage, the degrees of freedom with p2 �Q� are integrated
out, and the remaining effective theory in which all the
particles have p2 ��2 is called SCETII. Here the collinear
particles are decoupled from the soft particles. The Wilson
coefficients of operators and the renormalization behavior
of them can be computed perturbatively by matching the
effective theories at each boundary.

SCET has been successfully applied to various B meson
decays [1,4–11]. It is especially convenient for studying
the factorization properties of B decays including spectator
interactions since SCET is formulated such that soft and

collinear particles are decoupled. On the other hand, SCET
can be applied to other high-energy processes which in-
clude energetic light particles [12–16]. It has been applied
to deep inelastic scattering (DIS) near the endpoint region
[14,17], and also in an effective theory scheme [18].

In this paper we analyze the endpoint region in DIS more
carefully using the two-step matching to show the explicit
factorization of the structure functions in terms of the hard
part, the jet function, the soft gluon emissions, and the
collinear matrix elements. We also discuss and compare
delicate physical meanings and implications of the parton
distribution functions in the endpoint region, defined both
in the full theory and in SCET. In addition to showing the
factorization, we go one step further to consider another
aspect of DIS, namely, the behavior of the longitudinal
structure function near the endpoint region. The longitudi-
nal structure function vanishes at leading order in �s due to
the fact that the parton (quark) in the proton has spin 1=2.
However, this is broken at order �s and the longitudinal
structure function is further suppressed by �=Q, which we
explicitly present here.

In Sec. II we explain the kinematics of DIS. We choose
the Breit frame and present how the momenta scale in
powers of �, which is useful in constructing and matching
effective theories. The forward scattering amplitude and
the structure functions are defined in SCET, and compared
with those in the full theory. In Sec. III the method to
compute the forward scattering amplitudes in DIS using
SCET is described. The leading and the subleading cur-
rents are introduced and the prescription for the usoft
factorization is explained. In Sec. IV, we compute the
structure function F1�x;Q�, and show that it factorizes. In
Sec. V, we consider the parton distribution near the end-
point region, and express the forward scattering amplitude
in terms of the parton distribution function. In Sec. VI, we
present the moments of the structure functions as a product
of the moments for each factorized term. In Sec. VII, we
compute the radiative corrections of each factorized term
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to order �s, and express the moments of the structure
functions to leading logarithmic accuracy. In Sec. VIII,
we compute the longitudinal structure function FL�x;Q� in
SCET and show that it also factorizes. In the final section,
we give a conclusion. In Appendix A, the zero-bin sub-
traction method [19] in SCETI before the usoft factoriza-
tion of the collinear fields is discussed. In Appendix B, the
procedure for taking the imaginary part in SCETI and
SCETII is explained. In Appendix C, the anomalous di-
mension of the operator J�1b�� is computed to order �s.

II. KINEMATICS

Let us consider the electroproduction in DIS ep! eX
near the endpoint region. The hadronic process consists of
��p! X, and we choose the Breit frame in which the
incoming proton is in the �n� direction, and the outgoing
hadrons are mainly in the n� direction. The momentum
transfer q� from the leptonic system is given by

 q� � � �n � q; q�?; n � q� � �Q; 0;�Q� �
Q
2
�n� � �n��;

(2)

where q2 � �Q2 is the large scale. The Bjorken variable x
is defined as

 x �
Q2

2P � q
�

Q
n � P

; (3)

where P� is the proton momentum in the �n� direction. The
momenta of the proton P� and the final-state particles
pX � P� q are given by

 P� � � �n � P;P�?; n � P� �
�
x�2

Q
;P�?;

Q
x

�
;

p�X � � �n � pX; p
�
X?; n � pX� �

�
Q;p�X?;

1� x
x

Q
�
;

(4)

with P2 ��2, p2
X � Q2�1� x�=x, where � is a typical

hadronic scale of order 1 GeV. Near the endpoint where x
approaches 1�1� x��=Q�,1 the invariant mass squared
of the final-state particles becomes p2

X �Q
2�1� x� �

Q�. Then the final-state particles can be regarded as col-
linear particles in SCETI, which are integrated out to
obtain SCETII through the two-step matching procedure.

At the parton level, let p� be the momentum of the
incoming parton inside the proton, and let y be the longi-
tudinal momentum fraction (n � p � yn � P). Then the par-
tonic Bjorken variable w is given as

 w �
Q2

2p � q
��

n � q
n � p

�
x
y
: (5)

The momentum of the outgoing parton p0� can be written
as

 p0� � p� � q�

� � �n � p0; p0�? ; n � p
0� � �Q;p0�? ; �1� w�n � p�; (6)

and the endpoint region corresponds to 1� w��=Q such
that p02 �Q�.

The spin-averaged cross section for DIS can be written
as

 d� �
d3k0

2jk0j�2��3
�e4

sQ4 L
���k; k0�W���p; q�; (7)

where k and k0 are the incoming and outgoing lepton
momenta with q � k0 � k, L�� is the lepton tensor, and
s � �p� k�2. The hadronic tensor W�� is related to the
imaginary part of the forward scattering amplitude T��.
The forward scattering amplitude is the spin-averaged
matrix element of the time-ordered product of the electro-
magnetic currents, written as

 T���x;Q� � hPjT̂��jPispin av:;

T̂���x;Q� � i
Z
d4zeiq�zT	Jy��z�J��0�
;

(8)

where J� is the electromagnetic current. The relation
between the hadronic tensor W�� and the forward scatter-
ing amplitude T�� is given by

 W���x;Q� �
1

�
ImT���x;Q�: (9)

In electroproduction, considering all the possible
Lorentz structures, T�� can be generally written as
 

T���x;Q� � �g?��T1 � � �n�n� � �n�n��T2

� � �n�n� � �n�n��T3 � �n� �n�T4 � n�n�T5;

(10)

where g?�� � g�� � �n� �n� � �n�n��=2. Because of the
current conservation �q�T�� � 0� and the parity conser-
vation, we have T4 � T5 � T2 and T3 � 0. Therefore the
forward scattering amplitude has two independent quanti-
ties, and is given by
 

T���x;Q� ��g?��T1�x;Q�� �n�� �n���n�� �n��T2�x;Q�:

(11)

This can be cast into different forms using the fact that any
terms proportional to q� � Q�n� � �n��=2 can be dis-
carded since they vanish when they are contracted with
the lepton tensor. We can write n� � �n� � � �n� � n�� �
2n� � �n� � �n�� � 2 �n� and drop the terms proportional
to n� � �n�. Then Eq. (11) can be equivalently written as

 T���x;Q� � �g
?
��T1�x;Q� � 4n�n�T2�x;Q�

� �g?��T1�x;Q� � 4 �n� �n�T2�x;Q�: (12)

1In fact, 1� x does not have to be of order �=Q. Instead, we
can introduce a small parameter � � 1� x such that p2

X �
Q�� �2. But, for simplicity, we consider the case with 1�
x��=Q.
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The structure functions are defined from the hadronic
tensor W�� as

 W���x;Q� � �g��F1�x;Q� �
P�P�
P � q

F2�x;Q�; (13)

where the terms proportional to q� or q� are dropped.
Using P� � n � P �n�=2, 2P � q � n � P �n � q � Q2=x, we
can write Eq. (13) as
 

W���x;Q� � �g��F1�x;Q� �
�n� �n�
2x

F2�x;Q�

� �g?��F1�x;Q� �
1

2
�n� �n� � �n�n��F1�x;Q�

�
�n� �n�
2x

F2�x;Q� ! �g
?
��F1�x;Q�

�
�n� �n�

2

�
1

x
F2�x;Q� � 2F1�x;Q�

�

� �g?��F1�x;Q� �
�n� �n�

2
FL�x;Q�; (14)

where we extract n� � �n� and discard it to obtain the third
relation, and the longitudinal structure function FL�x;Q� is
defined as

 FL�x;Q� �
1

x
F2�x;Q� � 2F1�x;Q�: (15)

The Lorentz structure �n� �n� in the final expression of
Eq. (14) can be replaced by n�n�. Comparing Eqs. (11)
and (14), we obtain the relations

 F1�x;Q� �
1

�
ImT1�x;Q�; FL�x;Q� �

8

�
ImT2�x;Q�:

(16)

As we will show explicitly, T1�x;Q� receives the con-
tribution at leading order, and T2�x;Q� is suppressed by
�=Q and �s compared to T1�x;Q�. Therefore the Callan-
Gross relation FL � 0 holds to leading order, but is vio-
lated at subleading order. Here we also present FL com-
puted using SCET. In fact, the equivalence between
Eqs. (11) and (12) turns out to imply nontrivial relations
because the subleading contributions proportional to n�n�

and �n� �n� come from different subleading current opera-
tors in SCET. The statement that all the expressions are
equivalent means that the longitudinal structure functions
can be obtained using any subleading current operators and
it holds to all orders in �s. The nontrivial relation will be
verified in this paper at order �s.

III. OPERATORS IN SCET NEAR THE ENDPOINT
REGION

In computing the forward scattering amplitude, we first
express the electromagnetic current J� in terms of the
effective fields in SCETI. The electromagnetic current
operator at leading order in SCET is given by

 �q��q! C�Q;���J�0�� � J
�0�y
� �

� C�Q;��	 ��nWn�
?
�W

y
n �n �

�� �nW �n�
?
�W

y
n �n
;

(17)

where �n (� �n) is the n ( �n) collinear fermion field in SCET.
Here Wn and W �n are the collinear Wilson lines,

 Wn�x� �
� X

perms

exp
�
�g

1

n � P
�n � An�x�

��
;

W �n�x� �
� X

perms

exp
�
�g

1

n � P
n � A �n�x�

��
:

(18)

Here A�n (A��n ) is the collinear gluon in the n� ( �n�) direction
and the summation over the label momenta is suppressed.
The Wilson coefficient C�Q;�� is actually an operator and
Eq. (17) is written as
 

��nWn�?�C� �n � P y; n � P �W
y
�n �n � H:c:

�
Z
d!d �!C�!; �!� ��nWn�� �!� �n � P y�

� �?���!� n � P �W
y
�n � �n � H:c:; (19)

where n � P ( �n � P y) is the operator extracting the label
momentum in the �n (n) direction. The operator form in
Eq. (19) is useful in deriving the Feynman rules to compute
radiative corrections. The hard coefficient C�Q;�� can be
obtained from matching the full theory onto SCETI; it is
given to order �s as [14]

 C�Q;�� � 1�
�sCF

4�

�
�ln2 Q

2

�2 � 3 ln
Q2

�2 � 8�
�2

6

�
:

(20)

The hard coefficient C�Q;�� satisfies the renormalization
group equation
 

�
dC�Q;��
d�

� �H���C�Q;��;

�H��� �
�s���CF

2�

�
4 ln

�
Q
� 3

�
:

(21)

We can obtain subleading current operators at order�����������
�=Q

p
, which contain either iD?n or iD?�n . There are two

independent operators involving iD?n , one of which arises
from the subleading correction to the fermion field � �n,
 

�q��q! ��nWn

�
1�
6 �n
2
Wyn i 6D

 
?
n Wn

1

n � P y
� � � �

�
��W

y
�n � �n:

(22)

The second term in Eq. (22) yields the subleading current
at tree level,
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 J�1a�� � ��n
6 �n
2
i 6D
 
?
n Wn

1

n � P y
��W

y
�n � �n

� � �n� ��ni 6D
 
?
n Wn

1

�n � P y
Wy�n � �n: (23)

The second type arises from integrating out the off-shell
modes when the collinear quark � �n emits a collinear gluon
A�n , and it is given at tree level as

 J�1b�� � ��n��i 6D?n Wn
n
2

1

n � P
Wy�n � �n

� �n� ��ni 6D?n Wn
1

n � P
Wy�n � �n: (24)

This can be derived by computing the Feynman diagram
for the process and by integrating out the intermediate state
with virtuality p2 �Q2, and the result can be made gauge
invariant by inserting the appropriate collinear Wilson
lines. A novel method to derive the operator is the auxiliary
field method [3,7,12].

There are other subleading current operators involving
iD?�n , which can be obtained by expanding � �n to subleading
order and by considering the process in which �n emits A��n .
However, these subleading operators do not contribute to
the jet function which is obtained by integrating out the
degrees of freedom of order p2 �Q� in going down to
SCETII because these subleading operators describe the
interaction of the �n-collinear particles in the proton. These
operators contribute to the subleading corrections for the
parton distribution functions which are given by the matrix
elements of the collinear operators in the �n� direction, and
we will not consider them here.

Before going down to SCETII, it is convenient to factor
out the usoft interactions by redefining the collinear fields,
for example, as
 

�n ! Yn�n; A�n ! YnA
�
n Y
y
n ;

� �n ! Y �n� �n; A��n ! Y �nA
�
�n Y
y
�n ;

(25)

for the collinear fields moving from �1 to x. Once the
usoft interactions are factored out, collinear particles do
not interact with usoft particles anymore. The prescription
of the usoft Wilson lines depends on the propagation of the
collinear particles or antiparticles to which the soft gluons

are attached, and it is described in detail in Ref. [16]. The
possible usoft Wilson lines are given by
 

Yn �
X
perm

exp
�

1

n �R� i	
��gn � Aus�

�
;

Yn�x� � P exp
�
ig
Z x

�1
d sn � Aus

�
;

~Yn �
X
perm

exp
�

1

n �R� i	
��gn � Aus�

�
;

~Yn�x� � �P exp
�
ig
Z 1
x
ds n � Aus

�
;

(26)

where R is the momentum operator for the usoft fields and
the path ordering P means that the fields are ordered such
that the gauge fields closer to (farther from) the point x are
moved to the left, while �P denotes the antipath ordering. As
explained in Ref. [16], Yn (Yyn ) is the usoft Wilson line
attached to the collinear particle (antiparticle) from �1,
while ~Yn ( ~Yyn ) is the usoft line attached to the collinear
antiparticle (particle) moving to1. This delicate procedure
of choosing the appropriate usoft Wilson lines is related to
the i	 prescription, which specifies the location of the
poles. Physically, this is related to choosing the sign of �n �
p since the denominator in Eq. (26) is actually n �R�
isgn� �n � p�	, and the sign of �n � p depends on whether the
collinear field is a particle or an antiparticle.

Now that the current operators at leading and subleading
order in SCET are known, we can compute the forward
scattering amplitude T�� or the hadronic tensor W�� and
factorize the usoft interactions using the appropriate pre-
scription for the usoft Wilson lines. Then we integrate out
the degrees of freedom of order p2 �Q� to obtain the
result in SCETII. In SCETII the soft interactions are de-
coupled from the collinear particles with p2 ��2, and the
decoupled soft particles contribute to the soft Wilson lines
which are responsible for the emission of soft gluons.

IV. FACTORIZATION OF F1�x;Q�

In SCETI after the usoft factorization, the time-ordered
product T̂�0��� at leading order is written as

 T̂ �0��� � iC2�Q�
Z
d4zei�q�~p�~p0��zT	J�0�y� �z�J�0�� �0�


� iC2�Q�
Z
d4zei�q�~p�~p0��zT	 �� �nW �n

~Yy�n��YnW
y
n �n�z� ��nWnY

y
n ��Y �nW

y
�n � �n�0�
; (27)

where ~p� and ~p0� are the label momenta. Note that �n � q �
�n � ~p0 which ensures the conservation of the label momenta
in the n� direction, while there is a slight mismatch in the
�n� direction near the endpoint w� 1 such that n � q� n �
~p � �1� w�n � p, which survives in the exponent. The
Feynman diagram of the forward scattering amplitude for
T̂�0��� is sketched in Fig. 1(a).

The prescription for the usoft Wilson lines in DIS is
described in Fig. 1(b). It is determined by the external
states, which consist of an incoming particle � �n from
�1 to 0, and an outgoing particle �� �n from z to 1. The
intermediate states can move either from 0 to�1 and then
from�1 to z, or from 0 to1 and then from1 to z. In both
cases, the usoft Wilson line survives between 0 and z, and
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the remaining part cancels. Either choice of the intermedi-
ate states is appropriate for describing DIS and here we
choose the usoft Wilson lines for each current as

 

�� nWn��W
y
�n � �n: ��n ! ��nY

y
n ; A�n ! YnA

�
n Y
y
n ;

� �n ! Y �n� �n; A��n ! Y �nA
�
�n Y
y
�n ;

�� �nW �n��W
y
n �n: �� �n ! �� �n

~Yy�n ; A��n ! ~Y �nA
�
�n

~Yy�n ;

�n ! Yn�; A�n ! YnA
�
n Y
y
n ;

(28)

where the intermediate state is going from 0 to �1, then
moving from�1 to z. This prescription is used in Eq. (27).

Since there are no collinear particles in the �n� direction
in the final state, we obtain the jet function defined by

 h0jT	Wyn �n�z� ��nWn�0�
j0i � i
n
2

Z d4k

�2��4
e�ik�zJP�k�;

(29)

where P is the label momentum and JP�k� depends only on
n � k. We can simplify T̂�0��� using the fact that

 

Z
d4z

Z d4k

�2��4
e�ik?�z?�i �n�kn�z=2

�
Z
d4z

1

4�

Z
dn � k�2�z?��

�
n � z

2

�

�
1

4�

Z
dn � kd �n � z; (30)

and plugging the jet function into Eq. (27), we have

 

T̂�0��� � �C
2�Q�

Z
d!

Z d �n � zdn � k
4�

ei	!=2�n�q�n�k
 �n�z=2JP�n � k�T
�

�� �nW �n
~Yy�nYn

�
�n � z
2

�
��!� P����

n6
2
��Y

y
n Y �nW

y
�n � �n�0�

�

� �C2�Q�
Z
d!

Z d �n � zdn � k
4�

Z
d
ei	!=2�n�q�n�k�

 �n�z=2JP�n � k�

� T
�

�� �nW �n��!� P���
� n6

2
�� ~Yy�nYn��
� n � i@�Y

y
n Y �nW

y
�n � �n�0�

�

! �C2�Q�
Z
d!

Z
dn � k

Z
d
�

�
!
2
� n � q� n � k� 


�
JP�n � k�

1

N
h0jtr	~Sy�nSn��
� n � i@�S

y
nS �n
j0i

� �� �nW �n��!� P����
n6
2
��W

y
�n � �n�0�

� �C2�Q�
Z
d!

Z
d
JP

�
!
2
� n � q� 


�
S�
� �� �nW �n��!� P����

n6
2
��W

y
�n � �n; (31)

where the usoft Wilson line Yn (Y �n) in SCETI is replaced
by the soft Wilson line Sn (S �n) in SCETII. Here the operator
P� � n � P � n � P y is the sum of the label momenta.
Since the soft interaction is decoupled from the collinear
sector, the soft Wilson lines are pulled out, and are de-
scribed by the vacuum expectation of the soft Wilson line
S�
�, which is given by

 S�
� �
1

N
h0jtr	~Sy�nSn��
� n � i@�S

y
nS �n
j0i: (32)

The delta function in Eq. (31) states that the momentum
conservation in the n direction includes the soft momentum
from soft gluons. Equation (31) is the factorized form for
the leading forward scattering amplitude. It consists of the
hard part C2�Q�, obtained from matching the current be-

tween the full theory and SCETI, the jet function JP�n � k�,
obtained from matching between SCETI and SCETII, and
the remaining collinear and soft operators in SCETII,
whose matrix elements are given by nonperturbative pa-
rameters. The radiative corrections or the renormalization
group evolution of each term can be computed in pertur-
bation theory.

Note that the final operators in SCETII show a peculiar
structure. In inclusive B decays, the final operator after the
two-step matching is a heavy quark bilinear operator with
the soft Wilson lines. The matrix element of this operator is
parametrized by the shape function of the B meson [20].
This is because the final operator is made of soft particles.
But, in DIS, the final operators are made of the collinear
operators and the soft Wilson line. The soft Wilson line is
responsible for the soft gluon emission and the parton

 

FIG. 1. (a) Feynman diagram for the forward scattering am-
plitude in DIS in SCETI and (b) the prescription of the (u)soft
Wilson lines.
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distribution function near the endpoint is affected by this
when a collinear particle participates in the hard scattering.
It is a general feature for physical processes with collinear
external particles that the soft Wilson line does not com-
pletely cancel near the endpoint, and it describes the soft
gluon emission in the process.

V. PARTON DISTRIBUTION FUNCTION

We can extract T�0�1 , proportional to �g?�� in T̂�0��� from
Eq. (31), and it is given by

 T�0�1 � �C
2�Q�

Z
d!

Z dzdn � k
2�

�
Z
d
ei	!=2�n�q�n�k�

zJP�n � k�S�
�

� hPj �� �nW �n��!� P��
n
2
Wy�n � �n�0�jPispin av:; (33)

where z � �n � z=2. We want to express Eq. (33) in terms of
the parton distribution functions. Here we consider only the
flavor nonsinglet contribution. The standard coordinate
space definitions [21] for the proton parton distribution
functions fqP�y� for quarks of flavor q moving in the �n
direction in full QCD are given as

 fqP�y� �
Z dz

2�
e�iyzn�PhP�P�j �q�z�Y�z; 0�

�
n6
2
q�0�jP�P�ispin av:; (34)

where Y�y; 0� is the path-ordered Wilson line and jP�P�i is
the proton state with momentum P�. Here y is defined as
the ratio of the longitudinal momentum of the parton
before the hard scattering to that of the proton, n � p �
yn � P.

The definition of the parton distribution function in
Eq. (34) is appropriate away from the endpoint region.
But, near the endpoint region, we have to extend the
definition of the parton distribution to include the effect
of the soft gluon emission, satisfying the requirement that
it approaches Eq. (34) away from the endpoint region. At
first sight, the soft momentum does not affect the parton
distribution function since it describes the large energy
component of the parton. In order to see why this is not
so, let us consider a parton near the endpoint region under-
going a hard collision, as depicted in Fig. 2. First, a parton
with the longitudinal momentum fraction y comes out of
the proton. It emits soft gluons with total momentum ��
�QCD before it undergoes a hard collision with a photon.
The parton distribution function fqP�n � p=n � P� describes
the probability of a parton entering the hard collision with
the longitudinal momentum n � p � yn � P� �. When
yn � P� �QCD including the endpoint region, the inclu-

sion of � seems to give a negligible effect. When we take a
time-ordered product of this current as in Fig. 1(a), all the
soft gluons are attached to the n-collinear outgoing fer-
mion due to the property of the soft interactions, which
means that all the soft gluons are real gluons when we take
the discontinuity. Away from the endpoint region, n � p0

and �n � p0 of the n-collinear quark are of order Q, and are
not affected by the interaction of the soft gluons, that is,
n � p0 does not change to leading order in �. Therefore, the
interaction of the soft gluons can be neglected and we can
safely put � � 0.

Near the endpoint region, however, n � p0 is of order �
and the interaction with the soft gluons can significantly
affect n � p0. If a physical quantity depends on the term
proportional to 1=n � p0, like the jet function, we have to
keep the momentum � of the soft gluons. From the above
argument, the parton distribution function in Eq. (34) can
be extended in the endpoint region as

 fqP�y; �� �
Z dz

2�
e�iz�yn�P���hP�P�j �q�z�Y�z; 0�

�
n6
2
q�0�jP�P�ispin av:; (35)

where the naive yn � P is replaced by yn � P� �, that is,
the parton distribution function is a function of the large
longitudinal momentum fraction y, and the momentum of
the soft gluons �. The Wilson line Y�z; 0� in Eq. (34) is the
Wilson line with the gauge field in full QCD. However, by
looking at the kinematics near the endpoint, the Wilson
line can be decomposed into the collinear and the soft
Wilson lines [22]. This procedure is similar to the approach
in SCET, and SCET makes this procedure manifest.

 

P

yn • P

n • p = yn • P −

n • p

FIG. 2. An energetic parton comes out of the proton with the
momentum yn � P. It emits soft gluons with momentum �, and
the momentum of the hard parton before the hard scattering
becomes yn � P� �.
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The parton distribution function in SCETII can be writ-
ten as

 fqP�y; �� �
Z
d!

Z dz
2�

ei�!=2�yn�P���zhP �nj	 �� �nW �n
~S
y
�nSn�z�

�
n6
2
��!� P��S

y
nS �n	W

y
�n � �n
�0�jP �ni

�
Z
d!

Z dz
2�

ei�!=2�yn�P�z
Z
d
ei���
�zS�
�

� hP �nj	 �� �nW �n

n
2
��!� P��	W

y
�n � �n
jP �ni;

(36)

where the spin average is implied. The additional expo-
nential factor ei!z=2 comes from the label momentum of
�� �n. The usoft Wilson lines are prescribed according to
Eq. (28), and the proton state jPi is replaced by jP �ni, in
which the valence quarks are collinear in the �n direction.

Let us define a new parameter gqP�u�, given by the spin-
averaged matrix element of the collinear operator, as

 hP �nj �� �nW �n��!� P��
n6
2
Wy�n � �njP �ni

� n � P
Z
du��!� 2un � P�gqP�u�; (37)

where the contribution from the antiquark is discarded for
simplicity. Physically, gqP�u� corresponds to the probability
for the proton to emit a parton with the longitudinal mo-
mentum fraction u before the parton emits soft gluons. Of
course, gqP is not physical since we cannot separate a col-
linear parton from a cloud of soft gluons. Only after gqP�u�
is combined with the effect of the soft gluon emission is the
parton distribution fqP physically meaningful.

The relation between fqP and gqP is given by
 

fqP�y; �� �
Z
d!

Z dz
2�

ei�!=2�yn�P�z
Z
d
ei���
�z�n � P�

� S�
�
Z
du��!� 2un � P�gqP�u�: (38)

Note that ! and yn � P are the label momenta, and �, 
 are
the residual momenta. Therefore, using the fact that

 

Z
dzei�!=2�yn�P�zei���
�z � �!;yn�P

Z
dzei���
�z; (39)

and integrating the delta function with respect to ! yields

 fqP�y; �� � �n � P�S���g
q
P�y�: (40)

In terms of the parton distribution function fqP�y; ��, T
�0�
1

is written as

 T�0�1 � �C
2�Q�

Z
d!

Z
dn � k

Z dz
2�

Z
d
ei�!=2�n�q�n�k�
�zJP�n � k��n � P�S�
�

Z
du��!� 2un � P�gqP�u�

� �C2�Q�
Z
dn � k

Z
d


Z
duJP�n � k��n � P�S�
���un � P� n � q� n � k� 
�g

q
P�u�

� �C2�Q�
Z
d


Z
duJP�un � P� n � q� 
��n � P�S�
�g

q
P�u�

� �C2�Q�
Z
d


Z
duJP�un � P� n � q� 
�f

q
P�u; 
�: (41)

In deriving this result, note that un � P is the label momen-
tum of the parton, that is, n � p, and the exponent indicates
the momentum conservation since a slight mismatch be-
tween 2un � P and the photon momentum n � q gives n �
k� 
. The forward scattering amplitude is given by a
double convolution of the jet function with the collinear
matrix element and the soft Wilson line. Because the jet
function is affected by both the collinear momentum and
the soft momentum, it is impossible to write T�0�1 as a single
convolution with the conventional parton distribution func-
tion fqP�y� without the effect of the soft gluon emission.
However, as will be shown below, the moment of fqP is
given by the product of the moment of the soft Wilson line
and gqP.

Away from the endpoint region, we can neglect the soft
momentum 
, and in this limit the soft Wilson line cancels
to give fqP�y; 0� � gqP�y� as the conventional parton distri-
bution function. And we recover the result away from the
endpoint region,

 T�0�1 � �
Z
dyH�Q; y�fqP�y�; (42)

where H�Q; y� is the hard function, which can be split into
C2�Q� and the jet function near the endpoint region. The
main difference is that the effect of the soft gluon emission
cancels away from the endpoint region, whereas incom-
plete cancellation occurs near the endpoint region. This
incomplete cancellation results in the presence of the soft
Wilson line, which represents the real soft gluon emission
in the process.

VI. MOMENT ANALYSIS

In order to consider T�0�1 in moment space, let us intro-
duce 
 � �1� v�n � p. The jet function JP�n � k� has sup-
port only for a positive argument, and, from Eq. (41), n � k
is given in terms of the partonic variable n � p as
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 n � k � un � P� n � q� 


� n � p� wn � p� �1� v�n � p � �v� w�n � p:

(43)

Therefore v should be w 
 v 
 1, and T�0�1 is written in
terms of the partonic variables as
 

T�0�1 �x;Q� � �C
2�Q�

Z 1

x
dy
gqP�y�
y

Z 1

w
dv�n � p�2

� S��1� v�n � p�JP��v� w�n � p�: (44)

We take the discontinuity of T�0�1 �x;Q� to obtain the struc-
ture function F1�x;Q�. The hard coefficient C�Q� and
gqP�y� are real; therefore, the imaginary part arises from
the product of S��1� v�n � p�JP��v� w�n � p�. The pro-
cedure of taking the discontinuity can be performed either
in SCETI or in SCETII. Since Eq. (44) is the result obtained
in SCETII, we describe how the imaginary part can be
taken in SCETII. The discontinuity of T�0�1 comes from
the jet function JP only, since the soft Wilson line is real
due to the fact that it is Hermitian; hence, its vacuum
expectation value is real. The detailed discussion of taking
the imaginary part in SCETI and SCETII, and the proof that
the imaginary parts in both theories are the same are
presented in Appendix B.

In SCETII, we obtain the flavor nonsinglet structure
function as
 

F1�x;Q� � C2�Q�
X
q

e2
q

Z 1

x

dy
y
gqP�y�

Z 1

w
dv�n � p�2

� S��1� v�n � p�
�1

�
ImJP��v� w�n � p�;

(45)

where eq is the electric charge of the parton q. For sim-
plicity, we omit the summation over the quark flavors q
from now on. Note that JP�n � k� is actually the propagator
of the n-collinear fermion, so it is of the form 1=�n � k�
i0�� modulo logarithms of n � k with radiative corrections.
Let us define the dimensionless function ~JP near the end-
point as

 n � p
�1

�
ImJP�v� w� �

1

v
~JP

�
w
v

�
; (46)

and let us also define the dimensionless soft Wilson lines as

 

~S�v� � n � pS��1� v�n � p�

�
1

N
h0jtr~Sy�nSn�

�
1� v�

n � i@
n � p

�
SynS �nj0i: (47)

Then F1�x;Q�, with the explicit renormalization scales,
can be written as

 F1�x;Q� � C2�Q;�0�
Z 1

x

dy
y
gqP�y;��

�
Z 1

w

dv
v

~S�v;��~JP

�
w
v
;�0; �

�
; (48)

where �0 �Q
������������
1� x
p

is the scale between SCETI and
SCETII, and � is the renormalization scale in SCETII

with Q� �0 �Q
������������
1� x
p

� �. According to the two-
step matching, the Wilson coefficient obtained from the
matching at Q evolves down to the scale �0. The jet
function is computed from the matching between SCETI

and SCETII at �0, and it evolves to the scale �. The soft
Wilson line and the collinear matrix element are evaluated
at the final scale �. This is the result in SCET in compari-
son to the result obtained in the full QCD factorization
approach [23].

If we write

 B�w� �
Z 1

w

dv
v

~S�v�~JP

�
w
v

�
; (49)

with w � x=y, the moment of F1�x;Q� can be written as
 

F1;n�C2�Q�
Z 1

0
dxxn�1

Z 1

x

dy
y
gqP�y�B

�
x
y

�

�C2�Q�
Z 1

0
dxxn�1

Z 1

0
dy
Z 1

0
dw��x�wy�gqP�y�B�w�

�C2�Q�
Z 1

0
dyyn�1gqP�y�

Z 1

0
dwwn�1B�w�

�C2�Q�gqP;n �Bn: (50)

The nth moment of B�w� can be written as
 

Bn �
Z 1

0
dwwn�1B�w� �

Z 1

0
dwwn�1

Z 1

w

dv
v

~S�v�~JP

�
w
v

�

�
Z 1

0
dwwn�1

Z 1

0
dz
Z 1

0
du��w� uz�~S�z�~JP

�
w
v

�

�
Z 1

0
dzzn�1 ~S�z�

Z 1

0
duun�1 ~JP�u� � ~Sn � ~JP;n: (51)

Finally, the moment of the structure function is given as

 F1;n�Q� � C2�Q;�0�~JP;n��0; �� � g
q
P;n��� � ~Sn���: (52)

The parton distribution function fqP�y; 
� in Eq. (40) can be
written in terms of y and v as

 fqP�y; v� � �n � p�S��1� v�n � p�
gqP�y�
y
� ~S�v�

gqP�y�
y

;

(53)

and, if we take the double moment of fqP�y; v�, it becomes

 fqP;m;n �
Z
dvvm�1

Z
dyyn�1 ~S�v�

gqP�y�
y
� ~Smg

q
P;n�1:

(54)

In terms of the moment fqP;m;n, the moment of the structure

JUNEGONE CHAY AND CHUL KIM PHYSICAL REVIEW D 75, 016003 (2007)

016003-8



function is given by

 F1;n�Q� � C2�Q;�0�~JP;n��0; �� � f
q
P;n;n�1���: (55)

The advantage of SCET in obtaining Eq. (52) is that each
component can be computed independently using pertur-
bation theory, and we can clearly understand how these
terms arise in SCET.

VII. RADIATIVE CORRECTIONS

We can compute the radiative corrections for each term
in the factorized expression for F1;n in Eq. (52). Let us
begin with the radiative correction for the collinear part gqP.
There is a delicate point in computing the radiative cor-
rection of the collinear part. In any collinear loop integral,
we integrate over all the possible momenta. And they can
reach the region in which collinear particles become soft.
Since the collinear and the soft fields are regarded as
distinct in SCET, we have to remove the soft contribution
from the collinear part to avoid double counting. For this
purpose, the zero-bin subtraction method is suggested [19].
Whenever there is a collinear loop diagram, the loop
integration is performed by counting the loop momentum
as collinear. Then the integrand is rewritten by counting
the loop momentum as soft, and the integral should be
subtracted to include only the collinear contribution.
Otherwise, when the soft contribution is included, it is
counted twice. This had been missing in SCET and was
first pointed out by Ref. [19]. Some previous calculations
are not affected by the zero-bin subtraction, but, concep-
tually, the zero-bin subtraction is the correct step to avoid
double counting. DIS is one of the examples in which the
zero-bin subtraction should be performed carefully.

Let us define the collinear operator Oq
c , the matrix

element of which yields gqP�y�, as

 Oc
q � �� �nW �n

n6
2
��!� P��W

y
�n � �n: (56)

The Feynman rules for Oq
c including a single gluon are

shown in Fig. 3, and the Feynman diagrams for the radia-
tive corrections of Oq

c at one loop are shown in Fig. 4. The
naive radiative corrections without the zero-bin subtrac-
tion, using the dimensional regularization with D � 4�
2	, are given as

 Ma � Mb � �2ig2CF
n6
2

Z dDl
�2��D

n � �l� p�

l2�l� p�2n � l
	��!�!0� � ��!�!0 � 2n � l�


�
�sCF

4�
n6
2

2

	

�
��!�!0� �

!
!0

�
��!���!0 �!�
�!0 �!��

�
���!���!�!0�
�!�!0��

��
;

Mc � �ig
2CF

n6
2

Z dDl

�2��D
�D� 2�l2?
l2	�l� p�2
2

��!�!0 � 2n � l�

�
�sCF

4�
n6
2

1

	
2�!0 �!�

�!0�2
	��!���!0 �!� � ���!���!�!0�
;

(57)

where !0 � n � �p� p0�. Note that the terms proportional to ��!� (!> 0) in Eq. (57) contribute to the quark distribution
function, while those with !< 0 contribute to the antiquark distribution function. Therefore the sum of all the corrections
contributing to the quark distribution function is given by

 	Ma �Mb �Mc
q �
�sCF

2�
n6
2

1

	

�
2��!�!0� �

1� �!=!0�2

�!0 �!��
��!0 �!���!�

�
; (58)

while the contribution to the antiquark distribution function is obtained by replacing ! and !0 by �! and �!0,
respectively, in Eq. (58).

The zero-bin contribution in each diagram is obtained by the loop integral in Eq. (57), where the collinear loop
momentum covers the soft region in which n � l�� and �n � l��2,

 

FIG. 3. Feynman rules for the collinear operator Oq
c . (a) the

tree-level operator and (b) the operator with a collinear gluon
with incoming momentum q�.

 

FIG. 4. Radiative corrections for the collinear operator at one
loop.

DEEP INELASTIC SCATTERING NEAR THE ENDPOINT . . . PHYSICAL REVIEW D 75, 016003 (2007)

016003-9



 M0
a � M0

b � �2ig2CF
n6
2

Z dDl
�2��D

1

l2� �n � l� p2=n � p�n � l
	��!�!0� � ��!�!0 � 2n � l�
;

M0
c � �ig2CF

n6
2

1

�n � p�2
Z dDl
�2��D

�D� 2�l2?
l2	 �n � l� p2=n � p
2

��!�!0 � 2n � l�:

(59)

Here M0
c is suppressed by �2=Q2 and it becomes zero when performing the loop integration. The total zero-bin

contribution becomes

 M0
a �M

0
b �M

0
c � �

n6
2

�sCF
�

��
1

	UV
�

1

	IR

��
1

	UV
� ln

�p2

�n � p

�
��!�!0� �

1

	UV

�
�p2

�n � p

�
�	
�
!0 �!

2

�
�1�	

��!0 �!�
�
:

(60)

Since

 

Z 1
�1

d

�1�	��
� �
Z 1

0
d

�1�	 �

1

	UV
�

1

	IR
;

(61)

we can write

 
�1�	��
� �
�

1

	UV
�

1

	IR

�
��
� �

��
�

�

; (62)

where the subscript means the ‘‘�’’ distribution. Using this
relation, the terms proportional to ��!�!0� cancel, and
the divergent part of the zero-bin contribution is written as

 

n6
2

�sCF
�

1

	UV

��!0 �!�
�!0 �!��

: (63)

As will be shown below, this is exactly the same as the soft
contribution from the radiative corrections for S�
�, and it
should be subtracted from Eq. (58).

The relation between the bare operator OcB
q and the

renormalized operator OcR
q can be written as

 OcB
q �!� �

Z
d!0Z�!;!0�OcR

q �!0�; (64)

where the counterterm Z�!;!0� is given by

 Z�!;!0� � ��!�!0� �
�sCF
2�	

�
3

2
��!�!0�

�
�1� �!=!0�2

�!0 �!��
��!0 �!���!�

�
: (65)

The renormalization group equation for OcR
q is given by

 �
d
d�

OcR
q �!� � �

Z
d!0��!;!0�OcR

q �!
0�; (66)

where the anomalous dimension ��!;!0� is given by
 

��!;!0� � �
�sCF
�

�
3

2
��!�!0�

�
�1� �!=!0�2

�!0 �!��
��!0 �!���!�

�
: (67)

In order to express Eq. (66) in terms of dimensionless
variables, let us write ! � 2Ey, !0 � 2Ez, where E is the
energy of the quark and 0< y, z < 1. The renormalization
group equation (66) is written as

 �
d
d�

OcR
q �!� �

�sCF
�

Z dz
z

�
3

2
�
�
1�

y
z

�

�
�1� �y=z�2

�1� y=z��

�
OcR
q �z�

�
�s
�

Z 1

y

dx
x

�
Pqq�x� �

2CF
�1� x��

�
OcR
q

�
y
x

�
;

(68)

where Pqq�x� is the quark splitting function,

 Pqq�x� � CF

�
3

2
��1� x� �

1� x2

�1� x��

�
: (69)

Note that, in Eq. (68), there is an additional term
�2CF=�1� x�� due to the zero-bin subtraction.
Therefore the matrix element gqP of Oc

q scales differently
from the conventional parton distribution function fqP�y�
away from the endpoint region. However, when we include
the effects of the soft Wilson line, we obtain the same result
as the conventional approach (see below). The moment
gqP;n satisfies the renormalization group equation

 �
d
d�

gqP;n � ��C � g
q
P;n; (70)

where the anomalous dimension �C is given as

 �C � �
�s
�

Z 1

0
dxxn�1

�
Pqq�x� �

2CF
�1� x��

�

!
�sCF

2�
	�4 ln �N � 3� � 4 ln �N
 � �3

�sCF
2�

: (71)

The last expression is the large n limit with �N � ne�E . The
first parenthesis comes from the splitting function Pqq�x�
and the second parenthesis comes from the zero-bin sub-
traction �2CF=�1� x��.

We now turn to the radiative correction for the soft
Wilson line S�
�. The radiative correction for the soft
Wilson line was computed in Ref. [16], and we quote the
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result. The relation between the bare operator SB�
� and
the renormalized operator SR�
� is given by

 SB�
� �
Z
d
0ZSDIS�
;


0�SR�

0�; (72)

where

 ZSDIS�
;

0� � ��
� 
0� �

�sCF
�

1

	
��
� 
0�
�
� 
0��

: (73)

The renormalization group equation for the dimensionless
~S�v� is obtained by putting 
 � �1� v�n � p, 
0 � �1�
v0�n � p, and it is given as

 �
d
d�

~S�v� �
2�sCF
�

Z 1

v

dv0

v0
~S�v0�

�1� v=v0��

�
2�sCF
�

Z 1

v

dv0

v0
~S�v=v0�
�1� v0��

: (74)

The nth moment of the soft Wilson line ~S�v� satisfies the
renormalization group equation

 �
d
d�

~Sn � ��S � ~Sn; (75)

and the anomalous dimension �S is given as

 �S �
2�sCF
�

Hn�1 !
�sCF

2�
4 ln �N; (76)

where Hn �
Pn
j�1 1=j, and the large n limit is taken in the

final expression.
Note that �S is exactly the zero-bin contribution, as can

be seen in Eq. (71). Then the double moment fqP;n;n�1 �
~Sng

q
P;n satisfies the renormalization equation

 �
d
d�

fqP;n;n�1 � ��nf
q
P;n;n�1; (77)

where the anomalous dimension

 �n � �C � �S �
�sCF

2�

�
1�

2

n�n� 1�
� 4

Xn
j�2

1

j

�

!
�sCF

2�
�4 ln �N � 3� (78)

is the one obtained from the Altarelli-Parisi kernel.
Therefore, in moment space, the (double) moment of the
parton distribution function even in the endpoint region
satisfies the same renormalization group equation away
from the endpoint region.

Finally, let us consider the radiative corrections to the jet
function. To order �s, the jet function JP�n � k� is given as
 

JP�n � k� �
1

n � k� i	

�
1�

�sCF
4�

�
2ln2�Pn � k� i	

�2

� 3 ln
�Pn � k� i	

�2 � 7�
�2

3

��
; (79)

where P is the label momentum P � �n � p0 � Q.
Therefore JQ��v� w�n � p� is written as

 

JQ��v� w�n � p� �
1

�v� w�n � p� i	

�
1�

�sCF
4�

�
2ln2��v� w�Qn � p� i	

�2 � 3 ln
��v� w�Qn � p� i	

�2 � 7�
�2

3

��
:

(80)

The imaginary part of JQ��v� w�n � p� is given by

 

�n � p
�

ImJQ��v� w�n � p� � ��v� w�
�

1�
�sCF

4�

�
2ln2 Qn � p

�2 � 3 ln
Qn � p

�2 � 7� �2

��

�
�sCF

4�

�
1

�v� w��

�
4 ln

Qn � p

�2 � 3
�
�

4 ln�v� w�
�v� w��

�
: (81)

The dimensionless jet function ~JQ�w=v�, defined in Eq. (46), with n � p � Q=w can be written as

 

~J Q

�
w
v

�
� �

�
1�

w
v

��
1�

�sCF
4�

�
2ln2 Q

2

�2 � 3 ln
Q2

�2 � 7� �2

��
�
�sCF

4�
1

�1� w=v��

�
4 ln

Q2

�2 � 3� 4 ln�1� w=v�
�
;

(82)

where we neglect the lnv term as v! 1. The moment of ~JQ is given as
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~J Q;n �
Z 1

0
duun�1 ~JQ�u� � 1�

�sCF
4�

�
2ln2 Q

2

�2 � 3 ln
Q2

�2 � 7� �2 �

�
4 ln

Q2

�2 � 3
�
Hn�1 �

Xn�1

k�1

4Hk

k

�

! 1�
�sCF

4�

�
2ln2 Q2

�N�2 � 3 ln
Q2

�N�2 � 7�
2�2

3

�
; (83)

where the last expression is obtained in the large n limit, which is consistent with the result in Ref. [14].
We can present the moment of F1�x;Q� to order �s. It is the product of the square of the hard coefficient C�Q�, twice the

running of the hard coefficient from Q to Q=
����
�N

p
using Eq. (21), the jet function at Q=

����
�N

p
, and the running from Q=

����
�N

p
to

� using Eqs. (71) and (76):
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p
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����
�N

p
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p
�=Q
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p
�e��C��S� ln�=�Q=

���
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p
� ~Sn���g

q
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�
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�sCF
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3
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��2ln2 �N� 6 ln �N��
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~Sn���g

q
P;n���

�

�
1�

�sCF
4�

�
2ln2 �N� 3 ln �N�

�2

3
� 9

�
���C��S� ln

�
Q

�
~Sn���g

q
P;n���: (84)

This result can be compared to the DIS structure function
to one loop in Ref. [24], where the moments of the non-
singlet structure function F2=�2x� � F1 are given as

 MN �

�
1�

�s
4�

BNS
2;N � �q ln

�
Q

�
AN���: (85)

Here AN��� are the matrix elements of the twist-two
operators renormalized at�, and �q is equal to �n � �C �
�S, given in Eq. (78). In the large N limit, BNS

2;N is given by

 BNS
2;N ! CF

�
2ln2 �N � 3 ln �N �

�2

3
� 9

�
: (86)

Equations (84) and (85) are the same, which means that the
result for the moment of the structure function in the full
theory away from the endpoint region can be extended to
the endpoint region. However, our result is obtained near
the endpoint region where the effect of the soft gluon
emission from the soft Wilson line is present. The fact
that the full-theory result can be extended to the endpoint
region results from the relation fqP;n;n�1 �

~Sng
q
P;n in mo-

ment space. Here the soft gluon emission plays an impor-
tant role, and the effect shows up not only in DIS, but also
in other high-energy processes such as Drell-Yan processes
and jet production in e�e� collisions. It was considered in
Ref. [25] in the full theory.

Equation (84) is the result at order �s. We can use the
renormalization group equation to sum up all the large
logarithms. The moments of the structure function in
SCET to leading logarithmic accuracy is given by
 

F1;n�Q� � C2�Q�e�2I1�Q;Q=
���
�N

p
� ~JP;n

�
Q����

�N
p

�
e�I2�Q=

���
�N

p
;��

� ~Sn���g
q
P;n���; (87)

where
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�
Q;

Q����
�N

p

�
�
Z Q
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���
�N

p

d�0

�0
�H��0�;

I2

�
Q����

�N
p ; �

�
�
Z Q=

���
�N

p

�

d�0

�0
��C � �S���0�:

(88)

When we resum the large logarithms in Eq. (88), it is
written as

 

C2�Q�e�2I1 � C2�Q�� �N��4CF=
0

�

�
�s�Q=

����
�N

p
�

�s�Q�

�
2CF�3�8�=�
0�s�Q���=
0

;

~JP;n�Q=
����
�N

p
�e�I2 � ~JP;n�Q=

����
�N

p
�

�

�
�s�Q=

����
�N

p
�

�s���

�
�CF�8 ln �N�3�=
0

; (89)

with 
0 � 11� 2nf=3. Equation (84) is obtained by ex-
panding Eq. (87) to first order in �s.

VIII. FACTORIZATION OF FL�x;Q�

The longitudinal structure function FL�x;Q� is propor-
tional to the imaginary part of T2�x;Q�, as in Eq. (16). If we
consider the tensor structure of the time-ordered products
of the currents in SCET, T2�x;Q� is obtained by the prod-
ucts of the subleading currents J�1a�� and J�1b�� . Since the
tree-level amplitudes vanish, we consider the operators
with n-collinear gluons from Eqs. (23) and (24),
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 J�1a�� ! � �n�
Z
d!Ba�!�	 ��nWn��!� �n � P y�
	Wyn i 6D

 
?
n Wn


1

�n � P y
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J�1b�� ! �n�
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d!Bb�!�	 ��nWn��!� �n � P y�
	Wyn i 6D?n Wn


1

n � P
Wy�n � �n � �n�j

�1b�:

(90)

Here the delta functions are included for convenience, and Ba, Bb are the Wilson coefficients for the subleading current
operators. As explained in Sec. II, the four possible types of time-ordered products with J�1a�� and J�1b�� should contribute in
the same way due to current conservation. Here we choose the two possible time-ordered products T	J�1a�� �z�J

�1a�
� �0�
 and

T	J�1b�� �z�J
�1b�
� �0�
 and verify that both contributions are the same by explicit calculation. And we show that the expression

for the longitudinal structure function also factorizes.
From the time-ordered product with J�1a�� �z� and J�1a�� �0�, T̂2�x;Q� is written as

 

T̂aa2 �x;Q� � i
Z
d4zei�q�~p0�~p��z
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Y
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n

1
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Y �n�� �!� P��W

y
�n � �n�0�

�
; (91)

where the last expression is obtained by factorizing the usoft interactions after redefining the collinear fields. The Feynman
diagram for T2�x;Q� is schematically shown in Fig. 5.

Since there are no collinear particles in the �n� direction in the final state, we can define the jet function JaP�!; n � k� as

 h0jT
�

1

�n � P
	Wyn i 6D?n Wn
	��!� �n � P �Wyn �n
�z� � 	 ��nWn
	W

y
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?
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1

n � P y
�0�
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j0i � i

n6
2

Z d4k

�2��4
e�ik�zJaP�!; n � k�;

(92)

and T̂aa2 can be written, with z � �n � z=2, as
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2
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�
: (93)

By putting 
 � �1� v�n � p (w< v< 1), the spin-averaged matrix element Taa2 between the proton state is given as

 Taa2 �x;Q� � �n � P
Z
d!d �!B2

a�!; �!�
Z
d
S�
�JaP

�
!; �1� w�

�!
2
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�Z 1

0
dy�� �!� 2yn � P�gqP�y�
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Z 1

x
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y
gqP�y�

Z 1

w
dv~S�v�

Z
d!B2

a�Q;!�n � pJaP�!; �v� w�n � p�: (94)

We can also compute the contribution to T2�x;Q� using J�1b�� , which comes from the part proportional to n�n� in T̂��. It
is written as

 

T̂bb2 �x;Q� � i
Z
d4zei�q�~p0�~p��z

Z
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�
: (95)

By defining the jet function JbP�!; n � k� as

 h0jT		Wyn i 6D
 
?
n Wn
	��!� �n � P �Wyn �n
�z� � 	 ��nWn
	W

y
n i 6D?n Wn
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�2��4
e�ik�zJbP�!; n � k�; (96)
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T̂bb2 , after factorizing the usoft interactions, is given as
 

T̂bb2 �x;Q� � �
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and the spin-averaged matrix element between the proton state, Tbb2 , is given as

 Tbb2 �x;Q� � �n � P
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We can clearly see that both Taa2 and Tbb2 factorize. By taking the imaginary part of Taa2 or Tbb2 , the longitudinal structure
function FL�x;Q� can be written as
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(99)

where the first (second) expression is obtained using Taa2 (Tbb2 ).
The jet function JbP�!; n � k� at order �s can be computed from Eq. (96). The Feynman rules for j�1b� with one or two

collinear gluons in the n� direction are shown in Fig. 6, and the matrix element Mb from Fig. 5 with J�1b�� , after extracting
the overall factor 1=�n � p�2, is given as

 Mb � g2CF
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�
; (100)

where we collect the finite terms only in the last expression. Here �n � p0 is the total collinear momentum of the intermediate
states, and can be replaced by �n � q � Q. Therefore the jet function JbP�!; n � k� is given by

 

FIG. 5. The Feynman diagram describing the forward scatter-
ing amplitude T2�x;Q�.

 

FIG. 6. Feynman rules of the current j�1b��!� with one or two
n-collinear gluons.
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JbP�!; n � k� �
�sCF

2�
!
Q
��!���Q�!�
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�
1� ln

!�Q�!���n � k� i	�
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�
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Comparing the definitions of JaP and JbP in Eqs. (92) and
(96), JaP�!; n � k� is given by

 JaP�!; n � k� �
1

Q2 J
b
P�!; n � k�: (102)

It is easy to see this relation by looking at the Feynman
rules for j�1a�, which are presented in Fig. 7. Note that there
is an additional factor of 1=� �n � p0�2 in the definition of JaP,
and the nonzero contribution comes from the part propor-
tional to �?�, of which the radiative corrections are the
same using either j�1a� or j�1b�.

Let us simplify the expression for FL�x;Q� in Eq. (99).
At order �s, since the jet functions are already at order �s,
the Wilson coefficients C�Q� and Ba;b�!� take their tree-
level values, that is, 1. Introducing the dimensionless vari-
able r � !=Q, the jet function JbP is written as
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Therefore the imaginary part is given by
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At order �s, the longitudinal structure function FL�x;Q�
becomes

 FL�x;Q� � 8
�sCF
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where the first (second) expression comes from Taa2 (Tbb2 ).
The two expressions differ by a factor of w2, which gives a
subleading correction since 1� w��=Q. Therefore the
contributions from Taa2 and Tbb2 to FL�x;Q� are the same
near the endpoint region at leading order in �=Q. In fact,
the electromagnetic current conservation goes further than
the fact that T2 can be obtained using either J�1a�� and J�1b�� .
It should hold to all orders in �s, and the scaling behavior
of the two currents should also be the same. We present the
anomalous dimensions for J�1b�� at one loop in Appendix C.

The moment of FL�x;Q� using the first expression in
Eq. (99) is written as
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where the last expression is obtained in the large n limit.
Compared to the moment F1;n, FL;n is suppressed by n,
which confirms that the longitudinal structure function
FL�x;Q� is suppressed by �=Q compared to F1�x;Q�. In
order to obtain the exponentiated form, we should compute
the radiative corrections to next-to-leading order accuracy.
This has not been done here, but all the logarithmic terms
such as �kslnln=n can be resummed from the factorization

property in SCET, as suggested in the approach using the
full theory [26].

IX. CONCLUSION

DIS near the endpoint region can be described in SCET.
The factorization of the structure functions is explicitly
shown to order �s, and the moments of the structure

 

FIG. 7. Feynman rules of the current j�1a��!� with a single
n-collinear gluon.
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functions are expressed as a product of the Wilson coef-
ficients, the moments of the jet functions, the collinear
matrix elements, and the soft Wilson lines. The radiative
corrections for each component can be separately com-
puted using perturbation theory. The structure function
F1�x;Q� starts at leading order in �, while the longitudinal
structure function FL�x;Q� starts from order � and �s.
Therefore the Callan-Gross sum rule holds at leading order
in �, and the corrections can be systematically computed
in SCET.

High-energy processes, such as DIS, Drell-Yan pro-
cesses, hadron collisions, and e�e� ! jets, can be de-
scribed by SCET, and all these processes possess
common features though the detailed dynamics are differ-
ent. First, the scattering cross sections are factorized, and
the short-distance physics and the long-distance physics
are separated. There is a universal soft Wilson line describ-
ing soft gluon emissions near the endpoint region with the
appropriate prescription for the soft Wilson lines depend-
ing on the external collinear particles, and there is a con-
tribution from the parton distribution functions if the initial
particles are hadrons.

Compared to the approach in full QCD [27], there is an
advantage in employing SCET in DIS near the endpoint
region. First, the factorization property becomes transpar-
ent since SCET is formulated from the beginning to de-
couple the collinear and the soft degrees of freedom, and
the power counting in powers of � can be systematically
performed. Second, once the factorized form is given, each
factor has a different physical origin and its radiative
corrections and evolutions can be computed in perturbation
theory. The hard coefficient C�Q;�0� comes from the hard
physics of order Q and can be computed in matching the
full theory and SCETI. The jet function JP arises from the
hard-collinear physics of order

��������
Q�

p
, and can be computed

by matching SCETI and SCETII. The soft Wilson lines and
the collinear matrix elements are combined to give the
parton distribution functions. Since the collinear particles
and the soft particles are decoupled, the radiative correc-
tions for the soft Wilson line are governed only by the soft
interactions in SCETII, while those for the collinear matrix
elements are governed only by the collinear interactions.
To guarantee this, and to avoid double counting, the zero-
bin subtraction should be performed. Each contribution is
clearly separated and SCET specifies the prescription for
computing radiative corrections.

In this paper we have considered the flavor nonsinglet
structure functions. To be complete, the flavor singlet
structure functions should be included. In this case we
have to consider the collinear operators with gluons, which
contribute to the gluon distribution function in the proton.
Though it will be more involved because of the operator
mixing, the procedure for showing the factorization is
straightforward. The complete treatment of DIS near the
endpoint region including the flavor singlet structure func-

tion will be considered elsewhere. It will be interesting to
see if other various high-energy processes near the end-
point region can have similar features as those in DIS.
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Note added in proof.—The original preprint version of
this paper did not include the zero-bin contribution [19],
and the parton distribution function in SCET was not
properly defined excluding the soft part. In this paper, the
zero-bin subtraction is correctly performed to solve the
double counting problem, and the parton distribution func-
tion is carefully defined in the endpoint region. Therefore,
the results of the calculations and the conclusion of the
paper have changed. However, in the meantime, several
authors [17,18] criticized this paper based on the original
preprint version. We would like to comment on the criti-
cism which appeared in the literature.

In Ref. [17], the authors argue that there should be no
extra soft contributions outside the parton distribution
function, which is correct based on the original preprint.
However, in this paper, we include the soft contributions as
part of the parton distribution function, which also affects
the jet function in the endpoint region, contrary to the case
away from the endpoint. They also claim that the
�n-collinear gluon exchange shown in Figs. 8(b) and 8(c)
is not kinematically allowed. But all the �n-collinear con-
tributions in Fig. 8 should be included because the inter-
action of the collinear gluon with the quark happens inside
the proton. The resulting momentum of the quark under-
going the hard collision should be regarded as n collinear,
and it is not the momentum of the quark before the quark
interacts with a collinear gluon. The details are explained
in Appendix A.

The main criticism of Ref. [18] is that the double count-
ing problem is not performed properly, and that the parton
distribution function is not correctly identified if only the
matrix elements of the collinear operators are included. In
the current paper, the double counting is treated using the
zero-bin subtraction method. For the parton distribution
function, we include the effect of the soft gluons in the
parton distribution function. And we agree with their claim

 

p

p

q

(a) (b) (c)

l

l + p

l + p

FIG. 8. Feynman diagrams of the contribution from collinear
gluons to the forward scattering amplitude in SCETI. The mirror
images of (a) and (b) are omitted.
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that the structure function depends only on Q2 and �1�
x�Q2, not on �1� x�2Q2, which is illustrated clearly in
Eq. (48), where the structure function depends only on Q2

and �2
0 � �1� x�Q

2, and the dependence on � cancels.

APPENDIX A: ZERO-BIN SUBTRACTION BEFORE
THE USOFT FACTORIZATION

For the purpose of illustrating the zero-bin subtraction
method in SCETI, we consider the radiative corrections to
the forward scattering amplitude before the usoft factori-
zation. The starting point is that T̂�0��� from Eq. (27) is given
by
 

T̂�0��� � iC2�Q�
Z
d4zei�q�~p�~p0��zT	J�0�y� �z�J�0�� �0�


� iC2�Q�
Z
d4zei�q�~p�~p0��zT	 �� �nW �n��W

y
n �n�z�

� ��nWn��W
y
�n � �n�0�
; (A1)

where the collinear field is not redefined by Eq. (25), and
can interact with usoft gluons.

We consider the radiative corrections with the
�n-collinear gluons, which contribute to the renormalization
of the quark distribution functions. The Feynman diagrams
are shown in Fig. 8. We consider the amplitudes only at the
parton level, and the convolution with the parton distribu-
tion function is straightforward. The naive contributions
proportional to �g?�� from Figs. 8(a) and 8(b) with their
mirror images and Fig. 8(c) are given as
 

Ma � 4ig2CF
n6
2

1

n � p0
Z dDl
�2��D

n � �l� p�

l2�l� p�2n � l
;

Mb � �4ig2CF
n6
2

Z dDl
�2��D

n � �l� p�

l2�l� p�2n � �l� p0�n � l
;

Mc � ig2CF
n6
2

Z dDl
�2��D

1

l2	�l� p�2
2n � �l� p0�

� �?�l6 ?l6 ?�
�
?; (A2)

where p0� � p� � q� is the n-collinear momentum, and
we put p? � 0 for simplicity.

Note that, in Mb, the propagators are written in such a
way that l� p0 is collinear in the n direction. This should
be included in the collinear contribution, contrary to the
claim in Ref. [17], in which the authors claim that
Figs. 8(b) and 8(c) should not be included since they are
kinematically forbidden. However, by looking into the
kinematics carefully, there are collinear contributions
from Figs. 8(b) and 8(c). The point is that a quark inside
the proton can interact with �n-collinear gluons before the
hard collision. Therefore the �n-collinear gluon is regarded
as part of the proton, and forms an �n-collinear jet. The
parton distribution function describes the partons which
undergo a hard collision after all the interactions with the
collinear jet.

The situation is schematically shown in Fig. 9, which is
Fig. 8(c). The collinear quark interacts with a collinear
gluon before it collides with a hard photon. Therefore the
longitudinal momentum of the collinear quark for the hard
collision is n � �l� p�, not n � p, where n � p is the longi-
tudinal momentum fraction before it interacts with a col-
linear gluon. In order to see if the �n-collinear gluon is
allowed by kinematics, let us introduce the partonic vari-
able w0, to avoid confusion, which is given by

 w0 � �
n � q

n � �l� p�
; (A3)

and n � �l� p� and n � �l� p0� are given by
 

n � �l� p� � Q=w0;

n � �l� p0� � n � �l� p� q� � �1� w0�n � �l� p�

�
1� w0

w0
Q: (A4)

In the endpoint region where w0 ! 1, l� p can be �n
collinear, l� p0 can be n collinear, while l is �n collinear.
Therefore the contribution from �n-collinear gluons should
be included.

The reason why Eq. (A2) is naive is because the loop
momentum can be soft, which should be avoided in the
collinear sector. Therefore we subtract the contribution
where the loop momentum becomes soft, and we call this
the zero-bin contribution. It can be obtained from Eq. (A2)
by power counting, where all the components of the loop
momentum l� scale as �. The zero-bin amplitudes are
given as
 

M0
a � 4ig2CF

n6
2

1

n � p0
Z dDl
�2��D

n � p

l2�n � p �n � l� p2�n � l
;

M0
b � �4ig2CF

n6
2

Z dDl

�2��D

�
n � p

l2�n � p �n � l� p2�n � �l� p0�n � l
; (A5)

where we put p2 to regulate the infrared divergence, and

 

P

l

l + p

l + p

l + p

P

q
q

p

FIG. 9. When an �n gluon is exchanged, there is a kinematical
region where the initial state with l� p is �n collinear, and the
intermediate state with l� p0 is n collinear, while the loop
momentum l is �n collinear.
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the zero-bin contribution from Fig. 8(c) is suppressed, and
we neglect it here. The total zero-bin contribution is given
as
 

M0
a �M

0
b � 4ig2CF

n6
2

Z dDl
�2��D

n � p

l2�n � p �n � l� p2�n � l

�

�
1

n � p0
�

1

n � �l� p0�

�

� 4ig2CF
n6
2

1

n � p0
Z dDl
�2��D

�
n � p

l2�n � p �n � l� p2�n � �l� p0�
: (A6)

The usoft contributions from Fig. 10 are given by

 Mus � 4ig2CF
n6
2

1

n � p0
Z dDl
�2��D

�
n � p

l2�n � p �n � l� p2�n � �l� p0�
; (A7)

which is exactly equal to the zero-bin contribution.
Therefore the correct computation including the zero-bin
subtraction becomes

 Ma �Mb �Mc � �M
0
a �M

0
b� �Mus � Ma �Mb �Mc;

(A8)

which states that the naive collinear contribution without
the zero-bin subtraction gives the correct result. It is also
true in SCETII after the soft factorization. The zero-bin
contribution to the collinear operator is the same as the
radiative correction to the soft Wilson line.

In calculating Ma �Mb, note that we can write Mb as
 

Mb � �4ig2CF
n6
2

Z dDl
�2��D

n � �l� p�

l2�l� p�2n � �l� p0�n � l

� �4ig2CF
n6
2

1

n � p0
Z dDl
�2��D

�
n � �l� p�

l2�l� p�2n � l

�
n � �l� p�

l2�l� p�2n � �l� p0�

�
; (A9)

where the first term is equal to �Ma. Therefore Ma �Mb

is given as

 Ma �Mb � 4ig2CF
n6
2

1

n � p0
Z dDl

�2��D

�
n � �l� p�

l2�l� p�2n � �l� p0�
: (A10)

Evaluating the �n � l integral by contours, doing the l?
integral, and using the substitution n � l � �zn � p gives
the infinite part
 

Ma �Mb � �
�sCF
�

1

	
n6
2

1

n � p

Z 1

0
dz

�
1� z

�1� w� i0���1� z� w� i0��

� �
�sCF
�

1

	
n6
2

1

n � p
1

1� w� i0�

�

�
1� w ln

1� w� i0�

�w� i0�

�
; (A11)

where n � p0 � �1� w�n � p. Similarly, Mc is given as

 Mc � �
�sCF

2�
1

	
n6
2

1

n � p

Z 1

0
dz

z
1� w� z� i0�

� �
�sCF

2�
1

	
n6
2

1

n � p

�
1� �1� w� ln

1� w� i0�

�w� i0�

�
;

(A12)

and the wave function renormalization for the external
quarks is given as

 Mw:f: �
�sCF

4�
1

	
1

n � p
n6
2

1

1� w� i0�
: (A13)

Noting that
 

Im
w

1� w� i0�
ln�w� 1� i0�� � ��

w
�1� w��

;

Im
1

1� w� i0�
� ����1� w�; (A14)

we obtain

 

1

�
Im�Ma �Mb �Mc �Mw:f:�

�
�sCF

2�
1

	
1

n � p
n6
2

�
3

2
��1� w� �

1� w2

�1� w��

�
: (A15)

The tree-level amplitude is given by

 Mtree � �
1

n � p
n6
2

1

1� w� i0�
; (A16)

the imaginary part of which is

 

1

�
ImMtree �

1

n � p
n6
2
��1� w�: (A17)

Adding Eqs. (A15) and (A17), we have

 

FIG. 10. Feynman diagram of the contribution from usoft
gluons to the forward scattering amplitude in SCETI; the mirror
image is omitted.
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1

n � p
n6
2

�
��1� w� �

�sCF
2�

1

	

�
3

2
��1� w� �

1� w2

�1� w��

��
;

(A18)

from which the anomalous dimension is given as

 � � �
�sCF
�

�
3

2
��1� w� �

1� w2

�1� w��

�
; (A19)

which is exactly the Altarelli-Parisi kernel. Note that this is
the result including the zero-bin subtraction, and it corre-
sponds to the radiative corrections for the sum of the col-
linear matrix element and the soft part.

APPENDIX B: DISCONTINUITY IN SCETI AND
SCETII

It is possible to take the imaginary part of the forward
scattering amplitude to obtain the structure function in
SCETI as well as in SCETII. If we only consider the col-
linear interactions with the intermediate state, the compu-
tation produces the jet function and the discontinuity due to
the collinear interactions is the same both in SCETI and

SCETII. Therefore the issue here is how to take the dis-
continuity related to the (u)soft interactions. We consider
the (u)soft interactions with the intermediate state in both
effective theories and show that the discontinuity is the
same. Since we are interested in computing the anomalous
dimension of the soft Wilson line, we focus on the ultra-
violet divergent part.

Let us consider the usoft interactions in SCETI and take
the discontinuity. The relevant Feynman diagrams are
shown in Fig. 11(a), where the curly lines are soft gluons.
Using the dimensional regularization, the Feynman dia-
grams in Fig. 11(a) are given as

 Ma � �4ig2CFO �n

Z dDl
�2��D

1

�l2 � i0��� �n � �l� p� � i0���n � �l� p0� � i0���n � p0 � i0��
; (B1)

where O �n is the operator,

 O �n � �� �nW �n��
n6
2
��W

y
�n � �n: (B2)

Evaluating the �n � l integral by contours, doing the l?
integral, gives the infinite part

 Ma �
�sCF
�	

O �n

n � p0 � i0�
Z 0

�1
dn � l

1

n � �l� p0 � i0��
:

(B3)

By putting n � p0 � n � �p� q� � �1� w�n � p and n �
l � �zn � p, we obtain
 

Ma �
�sCF
�	

O �n

n � p
1

1� w� i0�
Z 1

0
dz

1

1� w� z� i0�

�
�sCF
�	

O �n

n � p
ln�w� 1� i0��

1� w� i0�
; (B4)

where we neglect the lnw term asw! 1. The discontinuity
in SCETI from the usoft interactions is given by

 

1

�
ImMa � �

�sCF
�	

1

�1� w��

O �n

n � p
: (B5)

This analysis is similar to the analysis in Ref. [14], in
which a single-step matching was performed.

In SCETII, the Feynman diagram is shown in Fig. 11(b).
It gives

 Mb �
Z
d


1

�1� w�n � p� 
� i0�
�sCF
�	

��
�

�

O �n;

(B6)

where the first term in the denominator is the coefficient
(jet function at tree level) with the energy transfer 
 to the
soft gluon. The remaining part is the result of the soft loop
calculation [16]. Taking the imaginary part ofMb, we have

 

1

�
ImMb � �

�sCF
�	

1

�1� w��

O �n

n � p
; (B7)

which is the same result as Eq. (B5) obtained in SCETI.

APPENDIX C: ANOMALOUS DIMENSION OF J�1b��

We present the calculation of the anomalous dimension
for J�1b�� at one loop, and explain why it is the same for
J�1a�� . The current J�1b�� from Eq. (90) is given as

 J�1b�� � �n�
Z
d!Bb�!�	 ��nWn��!� �n � P y�


� 	Wyn i 6D?n Wn

1

n � P
Wy�n � �n

� �n�j�1b�; (C1)

where Bb�!� is the Wilson coefficient, which is 1 at tree
level. The Feynman rules for j�1b� are given in Fig. 6, and
the Feynman diagrams for the radiative corrections are
given in Fig. 12. In Fig. 12, diagrams (a) to (e) are the

 

FIG. 11. Feynman diagrams for computing the radiative cor-
rections of the (u)soft Wilson line in (a) SCETI and (b) SCETII.
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radiative corrections from the n-collinear loop diagrams.
Diagram (f) is from the �n-collinear loop diagram, and
diagrams (g), (h) are the contributions from the soft loops.
We employ the background gauge field method for the
triple-gluon vertex, and use the dimensional regularization
with D � 4� 2	. The external momenta p2, p02, and q2

are kept to give infrared cutoff, and the poles in 1=	 are of
ultraviolet origin.

Considering the flow of momenta, p0 � q is the total
outgoing collinear momentum in the n� direction, and �n �
�p0 � q� � Q is the large scale in DIS. We use the varia-
bles

 �n � �p0 � q� � Q; �n � p0 � !0 � Qv;

�n � q � !0 �Q � �1� v�Q; ! � uQ;
(C2)

and the allowed kinematic region in DIS isQ � !> 0. We
extract the terms proportional to �?�, and the divergent
terms from each category (n collinear, �n collinear, and soft)
using the dimensionless variables are given as

 

iMn � i�Ma �Mb �Mc �Md �Me�

� ��

�
��u� v�

�
2CF

�
1

	2 �
1

	

�
�
N
	

�
ln
�q2

�2 � lnu�1� u�
�
�

1

N	
ln
�p02

�2

�

�
N
	

��
1� u� v

1� v
� u

�
��u� v� �

�
u�1� u� v�
�1� u�v

� u
�
��v� u� �

��u� v�
�u� v��

�
u
v
��v� u�
�v� u��

�

�
1

N	

��
u�1� u� v�
�1� u��1� v�

� x
�
��1� u� v� �

�1� u��1� v�
v

��u� v� 1�
��
;

iM �n � iMf � ��CF��u� v�
�

2

	2 �
2

	
ln
�p2

�2 �
2

	

�
;

iMs � i�Mg �Mh� � ����u� v�
�
�2CF
	2 �

N
	

ln
��p2���q2�

n � p �n � q�2 �
1

N	
ln
��p2���p02�

n � p �n � p0�2

�
; (C3)

where �� is the common factor, given as

 �� �
�s
4�

gTaQ
�?�
n � p

: (C4)

We can compute the above matrix elements using the zero-
bin subtraction. The infrared poles in 1=	IR cancel when
we add the soft contributions and the zero-bin subtractions,
and all the remaining poles turn into the ultraviolet poles.
This procedure is similar to the pull-up mechanism in
nonrelativistic QCD [28].

The relation between the bare operator j�1b�B and the
renormalized operator j�1b�R is

 j�1b�R �u� �
Z 1

0
dvZB�u; v�j

�1b�
B �v�; (C5)

where the operators are dimensionless operators expressed
in terms of u and v instead of ! and !0. The counterterm
ZB including the wave function renormalization is given by

 

ZB�u; v� �
�

1�
�sCF

4�

�
2

	2 �
3

	
�

2

	
ln
uQ2

�2

�
�
�s
4�

2

N	
ln�1� u�

�
��u� v�

�
�s
4�

N
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1

�u� v��
� 1� u�
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1� v

�
��u� v� �

�
u
v

1

�v� u��
�
u
v
�

u
1� u

� u
�
��v� u�

�

�
�s
4�

1

N	

�
u
�

1� u� v�
�1� u��1� v�

� 1
�
��1� u� v� �

�1� u��1� v�
v

��u� v� 1�
�
: (C6)

 

FIG. 12. Feynman diagrams for the radiative corrections of
j�1b��!� in SCETI at one loop. p is in the �n� direction, and p0,
q are in the n� direction (q incoming). Diagrams (a) to (e)
include the n-collinear loop, (f) includes the �n-collinear loop,
and (g), (h) are the soft corrections.
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Note that the mixture of the ultraviolet and infrared divergences such as 	ln��q2=�2�
=	 in Eq. (C3) cancels when all the
contributions are summed. The renormalization group equation for the current operator j�1b� is written as

 �
d
d�

j�1b��u� � �
Z
dv�B�u; v�j�1b��v�; (C7)

where the anomalous dimension �B�u; v� is given as
 

�B�u; v� � Z�1
B

�
�

@
@�
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@
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�
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� �

�
�sCF
�

�
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2
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uQ2
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�
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1

N
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��u� v�
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� 1� u�
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1� v

�
��u� v� �
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u
v

1

�v� u��
�
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�
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1� u

� u
�
��v� u�

�

�
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�

1

2N

�
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�

1� u� v
�1� u��1� v�

� 1
�
��1� u� v� �

�1� u��1� v�
v

��u� v� 1�
�
: (C8)

Those terms in Eq. (C8) proportional to ��u� v� come
from all the contributions, but the remaining terms propor-
tional to the theta functions originate from the n-collinear
radiative corrections. Compared to the renormalization of
the subleading heavy-collinear currents in Ref. [29], the
contributions of the n-collinear radiative corrections are
the same because the contributing Feynman diagrams are

the same. But the soft and the �n contributions should be
different due to the difference between the back-to-back
collinear current and the heavy-to-collinear current.
Specifically, the contributions not proportional to ��u�
v� in our computation and in Eq. (C8) are the same. For
J�1a�� , the radiative corrections can be obtained in the same
way as in the case of J�1b�� , and it satisfies Eq. (103).
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