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The contributions of supersymmetric particles in the isospin symmetry violation in B! K�� decay
mode are investigated. The model parameters are adopted from minimal Supergravity with minimal flavor
violation. A complete scan of the mSUGRA parameter space has been performed, using the next to
leading supersymmetric contributions to the relevant Wilson coefficients. The results are compared to
recent experimental data in order to obtain constraints on the parameter space. We point out that isospin
asymmetry can prove to be an interesting observable and imposes severe restrictions on the allowed
parameter space, in particular, for large values of tan�. The constraints obtained with isospin asymmetry
also appear as more restricting than the ones from the branching ratio of B! Xs�.
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I. INTRODUCTION

The standard model (SM) has been very successful to
describe the experimental data from accelerator physics so
far. With new colliders, like the Large Hadron Collider
(LHC) or later on the International Linear Collider (ILC),
becoming operational, the hope is to detect signals which
could reveal physics beyond the SM, that in turn provide
answers to the many theoretical questions left unanswered
by the SM.

One of the most motivated scenarios for new physics is
generally considered to be Supersymmetry (SUSY). In the
minimal supersymmetric extension of the standard model
(MSSM), the large number of free parameters makes the
phenomenological studies rather complicated. Many stud-
ies are therefore based on the constrained minimal super-
symmetric standard model (CMSSM)—often called
mSUGRA—with the number of parameters reduced to
five, corresponding tom0 (common mass of scalar particles
at the supersymmetric grand unification scale), m1=2 (uni-
versal gaugino mass), A0 (universal trilinear SUSY break-
ing parameter), together with the sign of the Higgs mixing
parameter � and the ratio of the two Higgs vacuum ex-
pectation values tan�.

Many studies have been performed to constrain the
supersymmetric parameter space, and, in particular, direct
and indirect searches for new particles have provided lower
bounds on their masses [1]. Other constraints come from
the cosmological observations of the large scale structures
and the cosmic microwave background [2], the measure-
ment of the anomalous magnetic moment of the muon
(g� � 2) [3], and the study of radiative B meson decays.

The precision measurements of the radiative B meson
decays, which have become possible with the operation of

the B factories and other B-dedicated experiments, have
provided exciting opportunities for mapping possible
routes beyond the SM. One such rare decay mode is the
exclusive process B! K�� and its associated inclusive
transition b! s�, which have been extensively used to
constrain new physics [4,5]. Consequently, a thorough
investigation of the branching ratio of these decay modes
has been instrumental in constraining the parameter space
of various models. In this paper, we focus on another
observable, the isospin asymmetry, and we will show that
this observable may even lead to more stringent constraints
than the branching ratios.

The isospin asymmetry for the exclusive process B!
K�� is defined as:

 �0� �
�� �B0 ! �K�0�� � ��B� ! K����

�� �B0 ! �K�0�� � ��B� ! K����
; (1)

with �0� obtained from Eq. (1) by using the charge con-
jugate modes. The most recent data for exclusive decays
from Belle [6] and BABAR [7] point to isospin asymmetries
of at most a few percent, consistent with zero within the
experimental errors:
 

�0� � �0:050� 0:045�stat:� � 0:028�syst:�

� 0:024�R�=0� �BABAR�; (2)

 �0� � �0:012� 0:044�stat:� � 0:026�syst:� �Belle�;

(3)

where the last error in Eq. (2) is due to the uncertainty in
the ratio of the branching fractions of the neutral and
charged B meson production in ��4S� decays. Within the
SM, this asymmetry, which is due to the nonspectator
contributions, has been estimated in the literature, using
the QCD factorization approach in Refs. [8,9], Brodsky-
Lepage formalism [10], and the perturbative QCD method
[11]. On the other hand, Ref. [12] deals with the effects of
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an additional generation of vectorlike quarks on the isospin
symmetry breaking in B! K��.

In the following, we first present the general framework
of our investigation, followed by an analysis of the con-
straints of the isospin asymmetry on the mSUGRA pa-
rameter space in the context of minimal flavor violation. In
order to compare the constraints due to isospin breaking
with those obtained from the branching ratios, the results
for inclusive branching ratio are reproduced as well.

II. GENERAL FRAMEWORK

The effective Hamiltonian for b! s� transitions reads:
 

H eff �
GF���

2
p

X
p�u;c

V�psVpb

�
C1���O

p
1 ��� � C2���O

p
2 ���

�
X8

i�3

Ci���Oi���
�
; (4)

where GF is the Fermi coupling constant, Vij are elements
of the CKM matrix, Oi��� are the operators relevant to
B! K�� and Ci��� are the corresponding Wilson coef-
ficients evaluated at the scale �. Since the combination
V�usVub is an order of magnitude smaller than V�csVcb, we
can safely neglect the u-quark terms. The operators Oi can
be listed as follows:
 

Op
1 � �s��

�PLp� �p���PLb�;

Op
2 � �s��

�PLp� �p���PLb�;

O3 � �s��
�PLb�

X
q

�q���PLq�;

O4 � �s���PLb�
X
q

�q���PLq�;

O5 � �s���PLb�
X
q

�q���PRq�;

O6 � �s��
�PLb�

X
q

�q���PRq�;

O7 �
e

4�2 mb �s��
��PRb�F��;

O8 �
gs

4�2 mb �s��
��PRT

a
��b�G

a
��;

(5)

where PL�PR� �
1�����5

2 are the projection operators. The
electroweak penguin operators are omitted from the above
list as their contributions to the process at hand are negli-
gibly small compared to the others.

The presence of SUSY particles does not introduce new
operators in the list, however, the Wilson coefficients Ci
receive additional contributions from virtual sparticles.

We use the expressions of the Wilson coefficients at the
next to leading order (NLO) in the strong coupling constant
�s. They are first calculated at the scale �W � O�MW�.
The contributions from the W boson (SM), the charged
Higgs (H) and the charginos (�), as well as the leading

tan� corrections to the W boson and the charged Higgs are
considered:

 Ci��W� � CSM
i ��W� � 	CHi ��W� � 	C

�
i ��W�

� 	C�SM;tan��
i ��W� � 	C

�H;tan��
i ��W�: (6)

The contributions from the gluino and neutralino are ne-
glected in our work, as they are known to be negligible in
the minimal flavor violating scenario [13]. The reason is
that within mSUGRA framework, there exists a strong
correlation among various parameters. In particular, the
down squarks, which appear in the gluino and neutralino
loops are much heavier than the stops, the virtual partner in
the chargino loop. In fact, chargino can be relatively light
and since at least one of the stops can also be light, their
loop results in a considerable contribution.

The details of the calculation of the Wilson coefficients
at the scale �W are given in Appendix A. The Wilson
coefficients are then evolved through the renormalization
group equations to the scale �b � O�mb�, at which they
can be used to calculate the isospin asymmetry. Further
details are given in Appendix B.

Following the method of Ref. [8], one can write the
nonspectator isospin symmetry breaking contribution as
Aq � bqAlead, where q is the flavor of the light antiquark
in the B meson and Alead is the leading isospin symmetry
conserving spectator amplitude. To leading order in �s, the
main contribution to B! K�� is from the electromagnetic
penguin operator O7:

 Alead � �i
GF���

2
p VcbV�csac7hK

��jO7jBi: (7)

The factorizable amplitude Alead is proportional to the form
factor TB!K

�

1 which parameterizes the hadronic matrix
element of O7 to the leading order in �QCD=mb. ac7, which
is dominated by C7, is defined in Appendix C. bq depends
on the flavor of the spectator and, in fact, the above
parameterization leads to a simple expression for the iso-
spin asymmetry in terms of this parameter:

 �0� � Re�bd � bu�: (8)

The expression for bq, which is derived in [8] within the
QCD factorization method, can be found in Appendix C.

In order to generate the SUSY mass spectrum, as well as
the couplings and the mixing matrices, we use the
Monte Carlo event generator ISAJET-7.74 [14]. We per-
form scans in the mSUGRA parameter space (m0,m1=2, A0,
sign���, tan�). For any mSUGRA parameter space point,
we then calculate the isospin asymmetry using Eq. (8), and
compare it to the combined experimental limits of Eq. (2)
and (3). After including the theoretical errors due to the
scales and model parameters, we allow mSUGRA parame-
ter space points which stand in the 95% confidence level
range
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 � 0:047< �0� < 0:093: (9)

For comparison, we also perform the calculation of the
inclusive branching ratio of B! Xs� following Ref. [15],
and allow the mSUGRA parameter space points to be in the
95% confidence level range [4]

 2:33� 10�4 <B�B! Xs��< 4:15� 10�4: (10)

The points which result in too small light Higgs masses

(i.e. such as mh0 < 111 GeV) or which do not satisfy the
constraints presented in Table I are also excluded.

Finally, we also examine whether the lightest supersym-
metric particle (LSP) is charged. Indeed, the LSP is stable
when R-parity is conserved, and to be accounted for dark
matter, it has to be neutral. On the other hand, if R-parity is
violated, then the LSP is not stable and as such cannot be a
candidate for the dark matter. In this case, it is possible to
have charged LSP with no constraint from cosmology. In
our results, we have identified the parameter space regions
where the LSP is charged to indicate the cosmologically
disfavored mSUGRA parameters if R-parity is conserved.

Our results for B! Xs� inclusive branching ratio
are consistent with those from Ref. [4] and from the
MicrOMEGAs code [16].

TABLE I. Lower bounds on sparticle masses in GeV, obtained
from [1].

Particle �0
1

~lR ~�e;� ��1 ~t1 ~g ~b1 ~
1 ~qR

Lower bound 46 88 43.7 67.7 92.6 195 89 81.9 250

 

FIG. 1 (color online). Constraints on the mSUGRA parameter plane �m1=2; m0� for A0 � 0 and for different values of tan�. The
‘‘Excluded’’ region in gray corresponds to the sparticle or Higgs search constraints of Table I. The light green ‘‘Charged LSP’’
corresponds to a cosmologically disfavored region. The magenta ‘‘B! Xs�’’ contour delimits the region excluded by the inclusive
branching ratio in accordance with Eq. (10), whereas the yellow ‘‘Isospin’’ region corresponds to the isospin symmetry breaking
constraints from Eq. (9). Note that the color scale is different for the first graph with tan� � 10.
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An analysis of our results is presented in the following
section.

III. CONSTRAINTS FROM ISOSPIN ASYMMETRY

We perform scans of the mSUGRA parameter space
such that m0 2 	0; 1000
, m1=2 2 	0; 1000
, tan� 2
	0; 50
, A0 2 	�1000; 1000
 and for both signs of �. For
�< 0, the supersymmetric contributions to the Wilson
coefficients have the same sign as in SM. In this case, the
latest experimental results are not sufficient to provide
constraints on the mSUGRA parameter space. Moreover,
�< 0 is disfavored by the (g� � 2) measurements. For
�> 0, the supersymmetric contributions to the Wilson
coefficients can have a flipped-sign in comparison to the
SM results, leading to a larger isospin breaking, and con-
sequently, the experimental data can impose stringent con-
straints on the mSUGRA parameter space. Therefore, in
the following we will only present results with �> 0.

An investigation of the �m1=2; m0� plane for A0 � 0 is
presented in Fig. 1. In this figure, the area marked
‘‘Isospin’’ corresponds to the region excluded by the iso-
spin breaking constraints, whereas the area marked
‘‘B! Xs�’’ corresponds to the region excluded by the
inclusive branching ratio constraints. The ‘‘Excluded’’
area corresponds to the case where at least one of the
particle masses does not satisfy the constraints of Table I.
And finally, ‘‘Charged LSP’’ is the cosmologically disfa-
vored region when R-parity is conserved. The various
colors represent the changing magnitude of the isospin
asymmetry.

First, we note that the isospin breaking for a set value of
�m1=2; m0� increases with tan�. Moreover, for a fixed tan�,
the asymmetry decreases with larger m0 and m1=2. Second,
it should be pointed out that the constraints from isospin
asymmetry are more stringent than the ones from inclusive
branching ratio. However, for low tan� (like tan� � 10),

 

FIG. 2 (color online). Constraints on the mSUGRA parameter plane �m1=2; m0� for A0 � �m0. The conventions for the different
regions are the same as in Fig. 1.
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FIG. 3 (color online). Constraints on the mSUGRA parameter plane �tan�;m1=2� for m0 � 500, with A0 � 0 and A0 � �m0. The
definitions of the different regions are in the text.
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FIG. 4 (color online). Isospin asymmetry versus m1=2 and tan� for A0 � 0 and A0 � �m0.
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constraints from both isospin asymmetry and branching
ratio are not as restrictive as they are for larger values of
tan�.

Figure 2 corresponds to the �m1=2; m0� plane for A0 �

�m0. The conventions are the same as in the previous
figure. Again, we note that the isospin asymmetry is
more sensitive to the model parameters than the inclusive
branching ratio. A comparison between Figs. 1 and 2
reveals that the isospin symmetry breaking is enhanced
by a negative value of A0 so that even for tan� as low as 10
it can produce appreciable constraints. Nonetheless, the
global shapes remain similar.

The effect of tan� on the isospin asymmetry is illus-
trated in Fig. 3. Indeed, the supersymmetric loop correc-
tions which are proportional to the gluino mass and tan�
can be quite large at high tan� limit. This arises from the
Hall-Rattazzi-Sarid effect [17], and also from the top-
quark Yukawa coupling [18]. The enhancement of the
isospin breaking by tan�, particularly for smaller values
of m1=2, is clearly depicted in these graphs. These plots
illustrate how stringent the isospin asymmetry bounds are
at high tan�, and also reveal the boost of the isospin
breaking by a negative value of A0. In fact, the same trend
is reported in Bs ! ���� decay mode where the branch-
ing ratio can improve by as much as 2 orders of magnitude
for large values of tan� [19,20].

Figure 4 illustrates the sensitivity of the isospin violation
to tan� (and m1=2) from a different perspective (and some-
what more clear) where the plots are done with two A0

values: 0 and �m0.
To conclude this section, we have shown that the isospin

asymmetry can provide stringent constraints on the
mSUGRA parameter space, and appears to be even more
contraining than the inclusive branching ratio.

IV. SUMMARY

In this article, we investigated the possibility for the
isospin asymmetry in B! K�� decay mode to be an
interesting observable to derive constraints on the super-
symmetric parameter space. To obtain our results, we
calculated the NLO supersymmetric contributions to the
isospin asymmetry, using the effective Hamiltonian ap-
proach within the QCD factorization method and consid-
ering the minimal flavor violation. The mSUGRA
parameter space was scanned, and the resulting isospin
asymmetry for each point was compared to the experimen-
tal data from BABAR and Belle. Our main conclusion of
this comparison is that, provided �> 0, the isospin asym-
metry appears to be a powerful observable to constrain the
mSUGRA parameter space producing even more stringent
restrictions than the inclusive branching ratio. Among the
different parameters, the values ofm1=2 and tan� appear to
be restricted more significantly by the isospin symmetry
breaking constraints.

In this work we considered the mSUGRA model which
has the advantage of having a fewer number of free pa-
rameters. However, mSUGRA’s assumptions are in fact
very strong and therefore extending this study to other
SUSY models can be of interest.

To conclude, with more accurate experimental data, we
can hope the isospin asymmetry could reveal to be a very
valuable observable to explore the supersymmetric pa-
rameter space.

ACKNOWLEDGMENTS

M. A.’s research is partially funded by a discovery grant
from NSERC. This research is partially funded by a dis-
covery grant from NSERC.

APPENDIX A: WILSON COEFFICIENTS AT �W

The Wilson coefficients follow a perturbative expansion:

 Ci��W� � C�0�i ��W� �
�s��W�

4�
C�1�i ��W� � � � � ; (A1)

where the �s evolution was taken from Ref. [1]:

 

�s��� �
4�

�0 ln��2=��nf�2�

�
1�

�1

�2
0

ln	ln��2=��nf�2�


ln��2=��nf�2�

�
�2

1

�4
0ln2��2=��nf�2�

��
ln	ln��2=��nf�2�
 �

1

2

�
2

�
�2�0

2�2
1

�
5

4

��
; (A2)

with

 

�0 � 11�
2

3
nf;

�1 � 102�
38

3
nf and

�2 � 2857�
5033

9
nf �

325

27
n2
f;

(A3)

nf being the number of flavors. ��nf� is a dimensional
parameter depending on the number of flavors. The nu-
merical values of �’s in Table III are based on the input
�s�MZ� � 0:1172.

The main contributions to the Wilson coefficients are
classified into three categories: (i) those from the standard
model, (ii) charged Higgs contributions and (iii) chargino
contributions. The details of each contributing term are
given in the following.

1. Standard model contributions

The standard model contributions to the Wilson coeffi-
cients are adopted from Ref. [21]. At leading order (LO),
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they read:

 CSM�0�
i ��W� � CSM�0�

i ��W�

�

8<:
0 for i � 1; 3; 4; 5; 6
1 for i � 2
F�1�i �xtW� for i � 7; 8;

(A4)

where xtW �
�m2
t ��W �

M2
W

,

 F�1�7 �x� �
x�7� 5x� 8x2�

24�x� 1�3
�
x2�3x� 2�

4�x� 1�4
lnx;

F�1�8 �x� �
x�2� 5x� x2�

8�x� 1�3
�

3x2

4�x� 1�4
lnx:

(A5)

The NLO top-quark running mass at a scale � is given by
[1,22]:

 

�mt��� � �mt�mt�

�
�s���
�s�mt�

�
�m0 =2�0

�
1�

�s�mt�

4�
�m0
2�0

�

�
�m1
�m0
�
�1

�0

��
�s���
�s�mt�

� 1
��
; (A6)

and

 �m t�mt� � mt

�
1�

4

3

�s�mt�

�

�
; (A7)

Here mt is the pole mass of the top quark. �0 and �1 are
defined in Eq. (A3) and:

 �m0 � 8; �m1 �
404

3
�

40

9
nf: (A8)

The NLO corrections can be written as [21]:

 CSM�1�
i ��W� �

8>>>>>>>><>>>>>>>>:

15� 6 ln
�2
W

M2
W

for i � 1

0 for i � 2; 3; 5; 6

E�xtW� �
2

3
�

2

3
ln
�2
W

M2
W

for i � 4

Gi�xtW� ��i�xtW� ln
�2
W

M2
W

for i � 7; 8;

(A9)

where

 E�x� �
x��18� 11x� x2�

12�x� 1�3
�
x2�15� 16x� 4x2�

6�x� 1�4
lnx�

2

3
lnx; (A10)

 G7�x� �
�436� 2509x� 10740x2 � 12205x3 � 1646x4

486�x� 1�4
�
�8x� 80x2 � 122x3 � 16x4

9�x� 1�4
Li2

�
1�

1

x

�

�
208� 1364x� 3244x2 � 2262x3 � 588x4 � 102x5

81�x� 1�5
lnx�

�28x2 � 46x3 � 6x4

3�x� 1�5
ln2x; (A11)

 G8�x� �
�508� 610x� 28209x2 � 14102x3 � 737x4

1296�x� 1�4
�
x� 41x2 � 40x3 � 4x4

6�x� 1�4
Li2

�
1�

1

x

�

�
280� 1994x� 2857x2 � 4893x3 � 1086x4 � 210x5

216�x� 1�5
lnx�

�31x2 � 17x3

2�x� 1�5
ln2x; (A12)

 �7�x� �
208� 1111x� 1086x2 � 383x3 � 82x4

81�x� 1�4
�

2x2�14� 23x� 3x2�

3�x� 1�5
lnx; (A13)

 �8�x� �
140� 902x� 1509x2 � 398x3 � 77x4

108�x� 1�4
�
x2�31� 17x�

2�x� 1�5
lnx; (A14)
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and where Li2 is the usual dilogarithm function Li2�x� �
�
R
x
0 dt

ln�1�t�
t .

2. Charged Higgs contributions

At the LO, the relevant charged Higgs contributions to
the Wilson coefficients are given by [21]:

 	CH�0�7;8 ��W� �
A2
u

3
F�1�7;8�xtH�� � AuAdF

�2�
7;8�xtH��; (A15)

with

 Au � �
1

Ad
�

1

tan�
and xtH� �

�m2
t ��W�

M2
H�

; (A16)

where

 F�2�7 �x� �
x�3� 5x�

12�x� 1�2
�
x�3x� 2�

6�x� 1�3
lnx;

F�2�8 �x� �
x�3� x�

4�x� 1�2
�

x

2�x� 1�3
lnx;

(A17)

and F�1�7;8 are defined in Eq. (A5).
At the NLO, the charged Higgs contributions are:

 	C�1�7 ��W� � GH
7 �xtH�� � �H

7 �xtH�� ln
�2
W

M2
H

�
4

9
EH�xtH��;

(A18)

 	C�1�8 ��W� � GH
8 �xtH�� � �H

8 �xtH�� ln
�2
W

M2
H

�
1

6
EH�xtH��;

(A19)

with

 GH
7 �x� � AdAu

4

3
x
�

4��3� 7x� 2x2�

3�x� 1�3
Li2

�
1�

1

x

�
�

8� 14x� 3x2

3�x� 1�4
ln2x�

2��3� x� 12x2 � 2x3�

3�x� 1�4
lnx

�
7� 13x� 2x2

�x� 1�3

�
� A2

u
2

9
x
�
x�18� 37x� 8x2�

�x� 1�4
Li2

�
1�

1

x

�
�
x��14� 23x� 3x2�

�x� 1�5
ln2x

�
�50� 251x� 174x2 � 192x3 � 21x4

9�x� 1�5
lnx�

797� 5436x� 7569x2 � 1202x3

108�x� 1�4

�
; (A20)

 

�H
7 �x� � AdAu

2

9
x
�

21� 47x� 8x2

�x� 1�3
�

2��8� 14x� 3x2�

�x� 1�4
lnx

�

� A2
u

2

9
x
�
�31� 18x� 135x2 � 14x3

6�x� 1�4
�
x�14� 23x� 3x2�

�x� 1�5
lnx

�
; (A21)

 GH
8 �x� � AdAu

1

3
x
�
�36� 25x� 17x2

2�x� 1�3
Li2

�
1�

1

x

�
�

19� 17x

�x� 1�4
ln2x�

�3� 187x� 12x2 � 14x3

4�x� 1�4
lnx

�
3�143� 44x� 29x2�

8�x� 1�3

�
� A2

u
1

6
x
�
x�30� 17x� 13x2�

�x� 1�4
Li2

�
1�

1

x

�
�
x�31� 17x�

�x� 1�5
ln2x

�
�226� 817x� 1353x2 � 318x3 � 42x4

36�x� 1�5
lnx�

1130� 18153x� 7650x2 � 4451x3

216�x� 1�4

�
; (A22)

 �H
8 �x� � AdAu

1

3
x
�

81� 16x� 7x2

2�x� 1�3
�

19� 17x

�x� 1�4
lnx

�
� A2

u
1

6
x
�
�38� 261x� 18x2 � 7x3

6�x� 1�4
�
x�31� 17x�

�x� 1�5
lnx

�
;

(A23)

 EH�x� � A2
u

�
x�16� 29x� 7x2�

36�x� 1�3
�
x�3x� 2�

6�x� 1�4
lnx

�
: (A24)

3. Chargino contributions

In the following, we use the notation xij �
m2
i

m2
j
. The masses of the sparticles are assumed such that for the squarksm~q1

<

m~q2
, for the charginos m��1

<m��2
, and for the neutralinos m�0

1
<m�0

2
<m�0

3
<m�0

4
. The relevant chargino contributions
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read [23,24]:

 

	C�7;8��s� � �
X2

k�1

X2

i�1

�
2

3
j�kij

2 M
2
W

m2
~tk

F�1�7;8�x~tk��i
� � ��ki�

0
ki

MW

m��i

F�3�7;8�x~tk��i
�

�

�
X2

i�1

�
2

3
j~�1ij

2 M
2
W

m2
~q12

F�1�7;8�x~q12��i
� � ~��1i~�

0
1i
MW

m��i

F�3�7;8�x~q12��i
�

�
; (A25)

where �s is the SUSY scale, and m~q12
is the common mass

of the up and charm squarks, which we consider identical
(m~q12

� m~u � m~c). Moreover, we have

 �ij � D�~t1iV
�
j1 �

�mt��s����
2
p
MW sin�

D�~t2iV
�
j2;

�0ij �
D�~t1iUj2���

2
p

cos��1� ��b tan��
;

(A26)

where U and V are the chargino mixing matrices, follow-
ing the diagonalizing convention:

 U M2 MW

���
2
p

sin�
MW

���
2
p

cos� �

 !
V�1; (A27)

and D~q is the squark ~q mixing matrix such as:

 D~q �
cos�~q � sin�~q

sin�~q cos�~q

� �
; (A28)

and �b, which will be given below, is a two loop SUSY
correction, whose effects are enhanced by factors of tan�.

~�ij and ~�0ij are obtained from �ij and �0ij by replacing the

matrix D~t by the unity matrix. The functions F�3�7;8�x� are
given by [23]:

 F�3�7 �x� �
�5� 7x�

6�x� 1�2
�
x�3x� 2�

3�x� 1�3
lnx;

F�3�8 �x� �
�1� x�

2�x� 1�2
�

x

�x� 1�3
lnx:

(A29)

The value of the chargino contributions at the scale �W is
computed using:
 

	C�7 ��W� � 

��16=3�00�
s 	C�7 ��s�

�
8

3
�

��14=3�00�
s � 


��16=3�00�
s �	C�8 ��s�;

(A30)

 	C�8 ��W� � 

��14=3�00�
s 	C�8 ��s�; (A31)

where 
s 
 �s��s�=�s��W� and �00 � �7, which corre-
sponds to six active flavors.

In the following, we adopt the notations:

 cos�~q � D~q11 
 c~q; sin�~q � D~q21 
 s~q: (A32)

The leading tan� corrections are contained in the follow-
ing formulas for �b, �0b and �0t, which are evaluated at scale
�s [16,23]:

 �b �
2�s��s�

3�
Ab= tan���

m~g
H�x~b1 ~g; x~b2 ~g� �

~y2
t ��s�

16�2

X
i�1;2

Ui2
�= tan�� At

m��i

H�x~t1��i
; x~t2��i

�Vi2 �
��MZ��M2

4sin2�W�

�

� c2
~t

m2
~t1

H
�
M2

2

m2
~t1

;
�2

m2
~t1

�
�
s2

~t

m2
~t2

H
�
M2

2

m2
~t2

;
�2

m2
~t2

�
�

c2
~b

2m2
~b1

H
�
M2

2

m2
~b1

;
�2

m2
~b1

�
�

s2
~b

2m2
~b2

H
�
M2

2

m2
~b2

;
�2

m2
~b2

��
; (A33)

where Aq is the trilinear coupling of the quark q. yq and ~yq are the ordinary and supersymmetric Yukawa couplings of the
quark q respectively. The function H is defined by:

 H�x; y� �
x lnx

�1� x��x� y�
�

y lny
�1� y��y� x�

: (A34)

Please note that we neglect the neutralino mixing matrices and we assume that the chargino masses are given by� andM2.
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�0b�t� �
2�s��s�

3�
Ab= tan���

m~g
	c2

~t c
2
~b
H�x~t1 ~g; x~b2 ~g� � c

2
~t s

2
~b
H�x~t1 ~g; x~b1 ~g� � s

2
~t c

2
~b
H�x~t2 ~g; x~b2 ~g� � s

2
~t s

2
~b
H�x~t2 ~g; x~b1 ~g�


�
y2
t ��s�

16�2

X4

i�1

N�i4
At ��= tan�

m�0
i

	c2
~t c

2
~b
H�x~t2�

0
i
; x~b1�0

i
� � c2

~t s
2
~b
H�x~t2�

0
i
; x~b2�0

i
� � s2

~t c
2
~b
H�x~t1�

0
i
; x~b1�0

i
�

� s2
~t s

2
~b
H�x~t1�

0
i
; x~b2�

0
i
�
Ni3 �

��MZ��M2

4sin2�W�

� c2
~b

m2
~b1

H
�
M2

2

m2
~b1

;
�2

m2
~b1

�
�

s2
~b

m2
~b2

H
�
M2

2

m2
~b2

;
�2

m2
~b2

�
�

c2
~t

2m2
~t1

H
�
M2

2

m2
~t1

;
�2

m2
~t1

�

�
s2

~t

2m2
~t2

H
�
M2

2

m2
~t2

;
�2

m2
~t2

��
: (A35)

N, in the above formula, represents the neutralino mixing matrix. Finally, we have

 

�0t�s� � �
2�s
3�

�� At= tan�
m~g

	c2
~t H�x~t2 ~g; x~s ~g� � s

2
~t H�x~t1 ~g; x~s ~g�


�
y2
b��s�

16�2

X4

i�1

N�i4
�= tan�
m�0

i

	c2
~t c

2
~b
H�x~t1�0

i
; x~b2�

0
i
� � c2

~t s
2
~b
H�x~t1�0

i
; x~b1�

0
i
� � s2

~t c
2
~b
H�x~t2�0

i
; x~b2�

0
i
�

� s2
~t s

2
~b
H�x~t2�

0
i
; x~b1�

0
i
�
Ni3: (A36)

The SM and charged Higgs contributions at the �W scale are affected by �b, �0b and �0t as the following:

 	C�SM;tan��
7;8 ��W� �

	�b � �
0
b�t�
 tan�

1� �b tan�
F�2�7;8�xtW�; (A37)

 	C�H;tan��
7;8 ��W� � �

	�0t�s� � �b
 tan�
1� �b tan�

F�2�7;8�xtH��: (A38)

Finally, the complete Wilson coefficients C�0;1�7;8 are found by adding the different contributions:
 

C�0�7;8��W� � CSM�0�
7;8 ��W� � 	C

H�0�
7;8 ��W� � 	C

�
7;8��W� � 	C

�SM;tan��
7;8 ��W� � 	C

�H;tan��
7;8 ��W�; (A39)

 C�1�7;8��W� � CSM�1�
7;8 ��W� � 	C

H�1�
7;8 ��W�: (A40)

APPENDIX B: WILSON COEFFICIENTS AT �b

The Wilson coefficients at the lower scale �b � O�mb�
can be written as [22,25]:

 Cj��b� � C�0�j ��b� �
�s��b�

4�
C�1�j ��b� � � � � ; (B1)

where, for j � 1 � � � 6:

 C�0�j ��b� �
X8

i�3

kji
ai ;

C�1�j ��b� �
X8

i�3

	eji
E�xtW� � fji � gji



ai ;

(B2)

with

 
 �
�s��W�

�s��b�
; (B3)

 

C�0�7 ��b� � 
16=23C�0�7 ��W� �
8

3
�
14=23 � 
16=23�C�0�8 ��W�

� C�0�2 ��W�
X8

i�1

hi

ai ; (B4)

 C�0�8 ��b� � 
14=23C�0�8 ��W� � C
�0�
2 ��W�

X8

i�1

�hi
ai : (B5)

The next to leading coefficient C�1�7 is given by [22,25]:
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C�1�7 ��b� � 
39=23C�1�7 ��W� �
8

3
�
37=23 � 
39=23�C�1�8 ��W� �

�
297664

14283

16=23 �

7164416

357075

14=23 �

256868

14283

37=23

�
6698884

357075

39=23

�
C�0�8 ��W� �

37208

4761
�
39=23 � 
16=23�C�0�7 ��W� �

X8

i�1

�ei
E�xtW� � fi � gi
�
ai

��C�1�7 ��b�; (B6)

where in the MS scheme �C�1�7 ��b� �
P8
i�1�

2
3 ei �

6li�

ai�1 ln

�2
W

M2
W

. The numbers ai, kij, eij, fij, gij, hi, �hi,
ei, gi and li are gathered in Table II.1

APPENDIX C: ISOSPIN ASYMMETRY

To leading order the isospin asymmetry �0� is given by
[8]:

 �0� � Re�bd � bu�: (C1)

The spectator-dependent coefficients bq can be written as:

 bq �
12�2fBQq

�mbTB!K
�

1 ac7

�
f?K�
�mb
K1 �

fK�mK�

6�BmB
K2q

�
: (C2)

TABLE II. Useful numbers.

i 1 2 3 4 5 6 7 8

ai
14
23

16
23

6
23 � 12

23 0.4086 �0:4230 �0:8994 0.1456

k1i 0 0 1
2 � 1

2 0 0 0 0
e1i 0 0 0 0 0 0 0 0
f1i 0 0 0.8136 0.7142 0 0 0 0
g1i 0 0 1.0197 2.9524 0 0 0 0

k2i 0 0 1
2

1
2 0 0 0 0

e2i 0 0 0 0 0 0 0 0
f2i 0 0 0.8136 �0:7142 0 0 0 0
g2i 0 0 1.0197 �2:9524 0 0 0 0

k3i 0 0 � 1
14

1
6 0.0510 �0:1403 �0:0113 0.0054

e3i 0 0 0 0 0.1494 �0:3726 0.0738 �0:0173
f3i 0 0 �0:0766 �0:1455 �0:8848 0.4137 �0:0114 0.1722
g3i 0 0 �0:1457 �0:9841 0.2303 1.4672 0.0971 �0:0213

k4i 0 0 � 1
14 � 1

6 0.0984 0.1214 0.0156 0.0026
e4i 0 0 0 0 0.2885 0.3224 �0:1025 �0:0084
f4i 0 0 �0:2353 �0:0397 0.4920 �0:2758 0.0019 �0:1449
g4i 0 0 �0:1457 0.9841 0.4447 �1:2696 �0:1349 �0:0104

k5i 0 0 0 0 �0:0397 0.0117 �0:0025 0.0304
e5i 0 0 0 0 �0:1163 0.0310 0.0162 �0:0975
f5i 0 0 0.0397 0.0926 0.7342 �0:1262 �0:1209 �0:1085
g5i 0 0 0 0 �0:1792 �0:1221 0.0213 �0:1197

k6i 0 0 0 0 0.0335 0.0239 �0:0462 �0:0112
e6i 0 0 0 0 0.0982 0.0634 0.3026 0.0358
f6i 0 0 �0:1191 �0:2778 �0:5544 0.1915 �0:2744 0.3568
g6i 0 0 0 0 0.1513 �0:2497 0.3983 0.0440

hi 2.2996 �1:0880 � 3
7 � 1

14 �0:6494 �0:0380 �0:0185 �0:0057
�hi 0.8623 0 0 0 �0:9135 0.0873 �0:0571 0.0209

ei
4661194
816831 � 8516

2217 0 0 �1:9043 �0:1008 0.1216 0.0183
fi �17:3023 8.5027 4.5508 0.7519 2.0040 0.7476 �0:5385 0.0914
gi 14.8088 �10:8090 �0:8740 0.4218 �2:9347 0.3971 0.1600 0.0225
li 0.5784 �0:3921 �0:1429 0.0476 �0:1275 0.0317 0.0078 �0:0031

1As we follow the operator basis from [25], we also use the
numerical values of this article.
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The dimensionless functions K1 and K2q are given by:
 

K1 � �

�
C6��b� �

C5��b�

N

�
F? �

CF
N
�s��b�

4�

��
�mb

mB

�
2
C8��b�X? � C2��b�

��
4

3
ln
mb

�b
�

2

3

�
F? �G?�xcb�

�
� r1

�

K2q �
V�usVub
V�csVcb

�
C2��b� �

C1��b�

N

�
	qu �

�
C4��b� �

C3��b�

N

�
�
CF
N
�s��b�

4�

�
C2��b�

�
4

3
ln
mb

�b
�

2

3
�H?�xcb�

�
� r2

�
(C3)

where N � 3 and CF � 4=3 are color factors, and

 r1 �

�
8

3
C3��b� �

4

3
nf�C4��b� � C6��b�� � 8�NC6��b� � C5��b��

�
F? ln

�b

�0
� . . . ;

r2 �

�
�

44

3
C3��b� �

4

3
nf�C4��b� � C6��b��

�
ln
�b

�0
� . . . ;

(C4)

here nf � 5, and �0 � O�mb� is an arbitrary normalization scale. r1 and r2 are neglected in our calculations. The pole
mass of the quarks can be deduced from the running quark mass at �mq [1]:
 

mq � �mq� �mq�

�
1�

4�s� �mq�

3�
�

�
�1:0414

X
k

�
1�

4

3

�mqk� �mq�

�mq� �mq�

�
� 13:4434

���s� �mq�

�

�
2

� 	0:6527n2
fl
� 26:655nfl � 190:595


��s� �mq�

�

�
3
�
; (C5)

where the sum over k extends over the nfl flavors of the
quarks qk lighter than the quark q. The functions F?,
G?�xcb�, H?�xcb� and X? are convolution integrals of
hard-scattering kernels with the meson distribution ampli-
tudes, their values are given in Table III. The parameter

X � ln�mB=�h��1� %e
i’� in this table parameterizes the

logarithmically divergent integral
R

1
0 dx=�1� x�. We have

evaluated the theoretical uncertainty by allowing % � 1
and the phase ’ to be arbitrary. �h � 0:5 GeV is a typical
hadronic scale.

TABLE III. The numerical values of the used parameters.

CKM and coupling constant parameters

Vus Vcb jVub=Vcbj Re�V�usVub=V
�
csVcb� ��4� ��5� ��6�

0.22 0:041� 0:02 0:085� 0:025 0:011� 0:005 0.277 GeV 0.200 GeV 0.085 GeV

Parameters related to the B mesons

mB fB �B H2�xcb� H8

5.28 GeV 200� 20 MeV �350� 150� MeV ��0:27� 0:06� � ��0:35� 0:10�i 0:70� 0:07

Parameters related to the K� meson

mK� fK� f?K� TB!K
�

1

892 MeV 226� 28 MeV 175� 9 MeV 0:30� 0:05

Parameters related to the convolution integrals

F? G?�xcb� H?�xcb� X?
1:21� 0:06 �2:82� 0:20� � �0:81� 0:23�i �2:32� 0:16� � �0:50� 0:18�i �3:44� 0:47�X� �3:91� 1:08�

Quark and W-boson masses

�mb� �mb� �mc� �mc� mt MW

4:20� 0:07 GeV 1:25� 0:09 GeV 174:2� 3:3 GeV 80.4 GeV
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The coefficient ac7 is given by [9]2:
 

ac7�K
��� � C7��b� �

�s��b�CF
4�

�C2��b�G2�xcb� � C8��b�G8� �
�s��h�CF

4�
�C2��h�H2�xcb� � C8��h�H8�; (C6)

in which �h �
�������������
�h�b

p
, and

 G2�xcb� � �
104

27
ln
�b

mb
� g2�xcb�; G8 �

8

3
ln
�b

mb
� g8; (C7)

with
 

g2�x� �
2

9
�48� 30i�� 5�2 � 2i�3 � 36�3 � �36� 6i�� 9�2� lnx� �3� 6i��ln2x� ln3x�x

�
2

9
�18� 2�2 � 2i�3 � �12� 6�2� lnx� 6i�ln2x� ln3x�x2 �

1

27
��9� 112i�� 14�2

� �182� 48i�� lnx� 126ln2x�x3 �
833

162
�

20i�
27
�

8�2

9
x3=2; (C8)

 g8 �
11

3
�

2�2

9
�

2i�
3
; (C9)

where �3 � 1:2020569 and xcb �
�m2
c

�m2
b

. We have also:
 

H2�x� � �
2�2

3N

fBf?K�

TB!K
�

1 m2
B

Z 1

0
d�

�B1���
�

�
Z 1

0
dvh�1� v; x��?�v�; (C10)

where h�u; s� is the hard-scattering function given by:

 h�u; x� �
4x

u2

�
Li2

�
2

1�

��������������������������
u� 4x� i"

u

r �

� Li2

�
2

1�

��������������������������
u� 4x� i"

u

r ��
�

2

u
: (C11)

�? is the light-cone wave function with transverse polar-
ization and �B1 is a distribution amplitude of the B meson
involved in the leading-twist projection. In a first approxi-
mation, �? can be reduced to its asymptotic limit
�?�x� � 6x�1� x� [27]. Finally, we can write:

 H8 �
4�2

3N

fBf
?
K�

TB!K
�

1 m2
B

Z 1

0
d�

�B1���
�

Z 1

0
dv

�?�v�
v

:

(C12)

The first negative moment of �B1 is parameterized by the
quantity �B such as

R
1
0 d�

�B1���
� � mB

�B
. The values of the

different parameters can be found in Table III.
Using these relations altogether, it is then possible to

calculate the isospin asymmetry from Eq. (C1).
For the computation of the inclusive branching ratios,

we also used the relations contained in the appendixes,
together with those of Ref. [15].
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