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We introduce photons in partially quenched chiral perturbation theory and calculate the resulting
electromagnetic loop-corrections at next-to-leading-order (NLO) for the charged meson masses and decay
constants. We also present a numerical analysis to indicate the size of the different corrections. We show
that several phenomenologically relevant quantities can be calculated consistently with photons which
couple only to the valence quarks, allowing the use of gluon configurations produced without dynamical
photons.
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I. INTRODUCTION

This is the sixth paper in a series of studies of partial
quenching (PQ) in chiral perturbation theory (�PT) [1–3],
where we now investigate the effects of including electro-
magnetic loop corrections in the theory. The motivation for
using partial quenching in �PT (and indeed for studying
�PT itself ) comes from the fact that even though quantum
chromodynamics (QCD) over time has become the gener-
ally accepted theory of the strong interaction, it has still
proven difficult to use this theory to derive low-energy
hadronic observables such as masses and decay constants.

An alternative approach is to use Lattice QCD simula-
tions to this end. Computational limitations have however
hindered such simulations for light particles since they can
propagate over large distances, requiring very large lattice
sizes. Because of this, most simulations have so far been
performed with heavier quark masses than those of the
physical world.

On the other hand, chiral perturbation theory provides a
theoretically correct description of the low-energy proper-
ties of QCD, and can be used to extrapolate the results of
lattice simulations down to the masses of the physical
regime of QCD. In particular, one can use lattice simula-
tions to determine the low-energy constants of �PT by
fitting �PT calculations to corresponding lattice simula-
tions, thereby getting estimates of hadronic low-energy
observables.

One problem with this approach is that reliable predic-
tions from �PT require that one keeps the quark masses
fairly small, and so far it has proven difficult to reach the
chiral regime in the lattice simulations. However, progress
is being made on this front. A complementary approach is
therefore to use partial quenching where one introduces a
separate quark mass for the calculations of closed quark
loops, referred to as sea quarks, compared to the quark
lines which are connected to external sources, referred to
as valence quarks. This has the advantage over full QCD
calculations that results with more values of the valence
quark masses can be obtained with a smaller number of

values of sea quark masses, which is useful since varying
the latter is computationally more expensive.

Unquenched QCD may be recovered from partially
quenched QCD (PQQCD) by taking the limit of equal
sea and valence quark masses, and therefore it follows
that QCD and PQQCD are continuously connected by
the variation of sea-quark masses. This means that, in
contrast to a fully quenched theory where the effects of
the closed quark loops are neglected altogether, one can
relate partially quenched QCD simulations to the un-
quenched physical observables of the real world.

Chiral perturbation theory has also been extended to
include both quenching and partial quenching [4–7]. The
formulation of partially quenched �PT (PQ�PT) is such
that the dependence on the quark masses is explicit, and
thus the limit of equal sea and valence quark masses can
also be considered for PQ�PT. This allows for determina-
tion of the physically relevant LECs of �PT by fits of
partially quenched �PT (PQ�PT) to partially quenched
lattice simulations (PQQCD), see e.g. the discussion in
[8]. In particular, the LECs of �PT, which are of physical
significance, can be obtained directly from those of
PQ�PT. More detailed discussions of this and references
to earlier work can be found in the papers of Sharpe and
Shoresh [8,9]. The calculations in this paper have been
performed in three-flavor PQ�PT without the �0 [9] de-
gree of freedom. In our earlier work with Timo Lähde [10–
14] we have calculated masses and decay constants for the
charged, or off-diagonal, mesons to next-to-next-to-lead-
ing-order in PQ�PT. However, in order to compare with
the experimental values at high precision one needs to take
electromagnetic effects into account as well.

Electromagnetic corrections in �PT have a long history.
The lowest order (LO) was done by Dashen [15]. The first
corrections to this were worked out in Ref. [16]. That
large corrections might appear was pointed out in
Refs. [17–19], where these corrections appear both from
chiral logarithms and effects persisting at large Nc. The
work in pure �PT was started by Urech [20] and by
Neufeld and Rupertsberger [21]. The next-to-leading-order
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(NLO) expressions for the masses were calculated in both
papers and the decay constants in the second. More recent
work on estimating the relevant LECs can be found in
Refs. [22–27]. Note that there are several subtleties in-
volved in defining electromagnetic corrections at low en-
ergies as discussed in Refs. [22,23,28] with increasing
levels of detail. There are also first exploratory lattice
QCD calculations [29–32].

In this paper we present the extension of PQ�PT to
include dynamical photons to NLO. In addition we calcu-
late the NLO expressions for the masses of the charged, or
off diagonal, mesons with virtual photon-loop corrections
for all possible degrees of degeneracy in the valence- and
sea-quark masses. We do the same for the decay constants,
i.e. we determine the O�e2� and O�e2p2� corrections in
PQ�PT to all these quantities.

We point out that the two phenomenologically relevant
quantities �M2 and �F for differences of masses and
decay constants, can be determined from partially
quenched lattice calculations where the photons are only
coupled to the valence quarks. This has the important
consequence that these quantities can be calculated in
lattice QCD with gluon configurations generated without
dynamical photons.

The paper is organized as follows. First we present the
technical background and notation already present in the
earlier work [10–14] in Sec. II. We also present the results
for the needed loop integrals there. The extension to dy-
namical photons is discussed in Sec. III. Here we give the
Lagrangians needed, as well as the subtractions needed to
obtain finite results. The analytical expressions for the
masses and decay constants are given in Sec. IV and
discussed in Sec. V. Some illustrative numerical results
are give in Sec. VI and we recapitulate the main conclu-
sions in Sec. VII.

II. PQ�PT, TECHNICAL OVERVIEW

Here we give a short overview of the technical aspects of
PQ�PT. A more thorough discussion of the technical
aspects of PQ�PT calculations to NLO (without photons)
can be found in Refs. [8,9]. Our earlier papers, in particu-
lar, Ref. [13], also contain overviews of the NLO technical
and notational details, but the focus there is mainly on the
NNLO aspects relevant for those papers. Lectures on stan-
dard �PT can be found in Ref. [33].

The mechanism which gives different masses to sea
quarks and valence quarks in PQ�PT is introduced by
adding explicit sea quarks, as well as unphysical bosonic
ghost quarks. The bosonic quarks are needed to cancel all
effects of closed loop contributions from valence quarks.
This cancellation happens if the masses of the bosonic
quarks are set equal to the masses of the valence quarks.
The symmetry group of PQ�PT is essentially given by the
graded group

 G � SU�nval � nseajnval�L � SU�nval � nseajnval�R: (1)

where nval denotes the number of valence quarks and nsea

the number of sea quarks in the theory. The number of
bosonic quarks is by necessity equal to the number of
valence quarks. The PQ analog to the field matrix U in
ordinary �PT is given by

 U � exp�i
���
2
p

�=F0�: (2)

The matrix � is now a graded matrix, which in terms of a
submatrix notation for the flavor structure can be written as

 � �
�qV �qV� �qV �qS� �qV �qB�
�qS �qV� �qS �qS� �qS �qB�
�qB �qV� �qB �qS� �qB �qB�

0
@

1
A: (3)

The brackets denote matrices of the form

 qa �qb �
ua �ub ua �db ua �sb
da �ub da �db da �sb
sa �ub sa �db sa �sb

0
B@

1
CA; (4)

where we have used three quark flavors u, d, and s and the
labels V, S and B in the submatrices stand for valence, sea
and bosonic quarks, respectively. In general, the size of
each submatrix depends on the exact number of quark
flavors used, but for this paper all blocks in Eq. (3) are
3� 3 blocks

The quarks qV , qS and their respective antiquarks are
fermions, while the quarks qB and their antiquarks are
bosons. Each submatrix in Eq. (3) therefore consists of
either fermionic or bosonic fields only. This construction
means that � satisfies the usual rules for cyclicity under
trace and determinant products, provided that we perform
the corresponding sypersymmetric operations instead. For
the trace, we must instead take the supertrace, defined by

 Str
A B
C D

� �
� TrA	 TrD; (5)

where A, D, denote block matrices with commuting ele-
ments and B, C denote block matrices with anticommuting
(fermionic) elements.

This also has the very useful consequence that the
Lagrangian structure of PQ�PT is the same as for
n-flavor �PT, provided that the traces of matrix products
in those Lagrangians are replaced by supertraces. A de-
tailed discussion about the Lagrangians and LECs for the
different versions of �PT and PQ�PT without the �0 can
be found in [13]. This correspondence between n-flavor
�PT and PQ�PT also holds for the divergence structure
when replacing n with the number of sea-quarks. The same
also holds for the extension to electromagnetism in the next
section.

In the following, the different quark masses are identi-
fied by the flavor indices i � 1; . . . ; 9, rather than by the
indices u, d, s and V, S, B of Eqs. (3) and (4). The results
are expressed in terms of the quark masses mq via the
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quantities �i � 2B0mqi, where B0 is related to the quark-
anti-quark vacuum expectation value in the chiral limit.
Thus �1, �2, �3, belong to the valence sector, �4, �5, �6 to
the sea sector, and �7, �8, �9 to the ghost sector. Since we
set the quark masses of the ghost sector equal to the quark
masses of the valence sector, the masses �7, �8, �9 do not
appear in the final analytical results.

A. Loop integrals and notation

The expressions for the NLO masses and decay con-
stants of the charged pseudoscalar mesons depend on
several loop integrals. The renormalized contributions
from these integrals are written in terms of the functions
 

�A��� � 	�16� log��=�2�;

�B��;�; 0� � 	�16�1� log��=�2��;

�B���; �;�� � �16�1	 log��=�2�� �O����;

�B0���; �;�� �
�16

�

�
1�

1

2
log��=���

�
�O����;

�B1���; �;�� � 	
�16

2
log��=�2� �O����;

�B01���; �;�� � �16=�2�� �O����;

(6)

where � denotes the renormalization scale and �16 �
1=�16�2�. The argument �� is a small photon mass intro-
duced to regulate infrared divergences. The prime indicates
a derivative with respect to the momentum squared in the
loop integral.

The quantities dval and dsea are used to indicate the
number of nondegenerate quark masses in the valence
sector and the sea sector, respectively. For dval � 1, one
has �1 � �2 � �3, while dval � 2 means �1 � �2 � �3.
dval � 3 is not needed for this paper. Similarly, dsea � 1
means �4 � �5 � �6, dsea � 2 means �4 � �5 � �6 and
for dsea � 3 all the sea quark masses are nondegenerate,
such that �4 � �5 � �6.

The lowest order neutral pion and eta meson masses in
the sea quark sector show up at several places in the
analytical results. They are denoted by �� and �� and
are given by the relations
 

�� � �� �
2
3��4 � �5 � �6�;

���� �
1
3��4�5 � �5�6 � �4�6�;

(7)

which have no polynomial solution for dsea � 3, but for
dsea � 2 one has �� � �4 and �� � ��4 � 2�6�=3. For
dsea � 1 this simplifies further into �� � �� � �4. The
neutral meson propagators in PQ�PT generate certain
reoccuring combinations of the sea and valence quark
masses. An overview of this can be found in Ref. [13].
The relevant quark-mass combinations for this paper can
be expressed in terms of the general quantities Rza...b de-
fined by

 

Rzab � �a 	 �b;

Rzabc �
�a 	 �b
�a 	 �c

;

Rzabcd �
��a 	 �b���a 	 �c�

�a 	 �d
;

Rzabcdefg �
��a 	 �b���a 	 �c���a 	 �d�
��a 	 �e���a 	 �f���a 	 �g�

;

(8)

and so on. For the case of dsea � 3, the needed combina-
tions are
 

Rijkl � Rzi456jkl;

Rdi � Rzi456��;

Rci � Ri4�� � R
i
5�� � R

i
6�� 	 R

i
��� 	 Ri���

Rvijkl � Rijkk � R
i
jll 	 2Rijkl:

(9)

For the case of dsea � 2, corresponding combinations are

 Rijk � Rzi46jk; Rdi � Rzi46�;

Rci � Ri4� � R
i
6� 	 R

i
��;

(10)

and for dsea � 1, one has

 Rij � Rzi4j; Rdi � Rzi4; Rci � 1: (11)

For certain sums and differences of quark-masses, or
electric quark charges, we introduce shorthand notation
given by

 �� 1 �
1

3

X
i�4;5;6

�i; qij � qi 	 qj;

�Q2 �
1

3

X
i�4;5;6

q2
i :

(12)

The quark charges are expressed in terms of the unit charge
e. qij is the charge of a meson with flavor quantum num-
bers of quarks qi �qj.

The summation conventions from Ref. [13] have as well
been implemented where possible. In short, they are as
follows:

(i) If the index s is present, the entire term is to be
summed over all sea-quark indices.

(ii) If the index q is present in a term, there will always
be an index p and the resulting sum is over the pairs
of valence indices. If only p is present, the sum is
just over the valence indices. If we choose valence
quarks of type 1 and 3, this becomes summing over
�p; q� � �1; 3� and �p; q� � �3; 1� or if only p is
present, the sum is over p � 1 and p � 3.

(iii) If the index m is present, there will always be an
index n and the corresponding sum is over the pairs
�m; n� � ��;�� and �m; n� � ��;��. If only the
index n is present, then the term is to be summed
over the �� and �� masses.
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III. VIRTUAL PHOTONS

In �PT, photons are included as external vector fields
through a charge matrix Q for the three light quarks and
through the covariant derivative D� [20]. Introducing pho-
tons in PQ�PT is completely analogous, provided that
traces are replaced by supertraces, in the following denoted
by h
 
 
i, and that we use the n-flavor expressions for the
Lagrangians. The covariant derivative includes the photon
field through

 D�U � @�U	 ir�U� iUl�; (13)

with

 r� � v� � eQRA� � a� l� � v� � eQLA� 	 a�:

(14)

For the meson masses, we set v� � a� � 0 and for the
decay constants v� � 0. The charge matrix QL;R is the
natural generalization of the SU�3� charge matrix in
Ref. [20]. e is the absolute value of the electron charge
for physical quantities but is a free parameter in the lattice
calculations. The L=R notation refers to the symmetry
properties assigned to the Q’s during the construction of
the allowed Lagrangian terms [20], but in the usual physi-
cal picture the charge matrix is a constant matrix, and one
has QL � QR � Q, where Q is a diagonal matrix given by

 Q � diag�q1; . . . ; q9�: (15)

However, for the notation used below, the distinction be-
tween the two types is still needed. Furthermore, one
would normally set q1 � 2=3 and q2 � q3 � 	1=3 to
agree with ordinary photon-included �PT for the real
world, but for greater generality we have kept the qi’s
free in the analytical results in this paper. In ordinary
�PT one requires the charge matrix to be traceless. For
PQ�PT, Q is a graded matrix where we set q7 � q1, q8 �
q2, and q9 � q3. This, together with the earlier require-
ment on the masses insures that the closed valence quark
loops with photons coupled to them also cancel against the
corresponding ghost quark loops. Therefore the PQ�PT
requirement hQi � 0 becomes

 q4 � q5 � q6 � 0: (16)

Finally, the quark masses are present through the matrix

 � � diag��1; . . . ; �9�; �i � 2B0mqi: (17)

For convenience, the Lagrangians below will be written in
terms of the field matrix

 u � exp�i�=�
���
2
p
F0��; (18)

which is related to U through u �
����
U
p

. We also introduce

the quantities

 

u� � ifuy�@� 	 ir��u	 u�@� 	 il��u
yg;

�� � uy�uy � u�yu;

f��� � uF��L uy � uyF��R u

QL � uQLu
y

QR � uyQRu

r̂�QL � uD�QLuy

r̂�QR � uyD�QRu;

(19)

where FL and FR denote the field strengths of the external
fields l and r, such that

 F��L � @�l� 	 @�l� 	 i�l�; l��;

F��R � @�r� 	 @�r� 	 i�r�; r��:
(20)

and the covariant derivatives of QL, QR are defined by

 D�QL � @�QL 	 i�l�; QL�;

D�QR � @�QR 	 i�r
�;QR�:

(21)

The quantities in Eq. (19) have a well-defined and simpler
(as elaborated in Refs. [13,34]) behavior under the sym-
metry transformations needed for the construction of the
Lagrangians. In this notation, the lowest order Lagrangian
has the form

 

L2 � 	
1

4
F��F

�� 	
1

2
��@�A

��2 �
F2

0

4
hu�u� � ��i

� e2ChQLQRi; (22)

where F�� is the field strength tensor of the photon field
A�, with F�� � @�A� 	 @�A�. Furthermore, � is the
gauge fixing parameter, here set to � � 1, and e is the
electric unit charge. We will also use the notation ZE �
C=F4

0. The lowest order Lagrangian contains terms of
O�p2� and O�e2�.

For L4, the result is as well analogous to Ref. [20],
except that the terms presented there are for SU�3�. For
the n-flavor case needed in PQ�PT, one has two additional
LECs due to the fact that the Cayley-Hamilton relations
needed for the derivation of L�Q�4 only are true for the
SU�3� case. We split the NLO Lagrangian into the purely
strong part of O�p4� and the part including electromagnetic
interactions up to O�e2p2�, and thus write

 L 4 � LS4 �LS2E2: (23)

The strong part is given by
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LS4 �
X12

i�0

LiXi � contact terms

� L0hu�u�u�u�i � L1hu�u�i2 � L2hu�u�ihu�u�i

� L3h�u�u��2i � L4hu�u�ih��i � L5hu�u���i

� L6h��i
2 � L7h�	i

2 �
L8

2
h�2
� � �

2
	i

	 iL9hf
��
� u�u�i �

L10

4
hf2
� 	 f

2
	i

�H1hF
2
L � F

2
Ri �H2h��

yi; (24)

where the Li and Hi are the partially quenched LECs for
the case with three sea-quark flavors.

The electromagnetic part to O�e2p2� is

 L S2E2 � e2F2
0

�X14

i�1

KE
i Q

s
i � K

E
18Q

s
18 � K

E
19Q

s
19

�
:

with

 

Qs
1 �

1
2hQ

2
L �Q2

Rihu�u
�i

Qs
2 � hQLQRihu�u

�i

Qs
3 � 	hQLu�ihQLu�i 	 hQRu�ihQRu�i

Qs
4 � hQLu�ihQRu�i

Qs
5 � h�Q

2
L �Q2

R�u�u
�i

Qs
6 � h�QLQR �QRQL�u�u�i

Qs
7 �

1
2hQ

2
L �Q2

Rih��i

Qs
8 � hQLQRih��i

Qs
9 � h�Q

2
L �Q2

R���i

Qs
10 � h�QLQR �QRQL���i

Qs
11 � h�QRQL 	QLQR��	i

Qs
12 � ih�r̂�QR;QR�u

� 	 �r̂�QL;QL�u
�i

Qs
13 � hr̂�QLr̂

�QRi

Qs
14 � hr̂�QLr̂

�QL � r̂�QRr̂
�QRi

Qs
18 � hQLu�QLu� �QRu�QRu�i

Qs
19 � hQLu�QRu�i:

(25)

For the KE
i and Qs

i , we follow the numbering convention
introduced by Urech [20], but KE

15, KE
16, KE

17 are of O�e4�
and are not needed here. The new terms, needed for the
partially quenched case are thus named KE

18 and KE
19.

The relation with constants Ki of Urech when setting
valence and sea-quark masses equal is

 

K1 � KE
1 � K

E
18;

K2 � KE
2 �

1
2K

E
19;

K3 � KE
1 	 K

E
18;

K4 � KE
4 � K

E
19;

K5 � KE
5 	 2KE

18;

K6 � KE
6 	 K

E
19;

Ki � KE
i ; i � 7; . . . ; 14:

(26)

The extra subtractions needed can be derived from the
divergences of the n-flavour case. We write

 KE
i � �e

c��	2�
�
KEr
i � ki

1

16�2�

�
; (27)

with the dimension of space-time d � 4	 2� and

 c � 	1
2�ln�4�� � �0�1� � 1�: (28)

The equivalent subtractions needed for the Li can be found
in Ref. [3,35]. We have derived the values of the ki from the
n-flavor results given in the appendix of Ref. [36] after
correcting an obvious misprint and rewriting the terms in
our minimal basis. The ki are given in Table I.

A. Propagators and LO masses

The propagators for the supersymmetric formulation of
PQ�PT can be found in Ref. [9]. For calculational reasons,
they have here been translated from the Euclidean formal-
ism into Minkowski space. The charged propagators are
given by [9]

 	 iGcij�k� �
�j

k2 	M2
0;ij � i"

�i � j�: (29)

whereM2
0;ij denotes the lowest order mass of the meson �ij

for i � j and the signature vector �j due to the graded
structure is defined as

 �j �
�
�1 for j � 1; . . . ; 6
	1 for j � 7; 8; 9:

(30)

TABLE I. The values of the subtraction constants ki of
PQ�PT.

i ki i ki

1 0 9 1
8

2 	 1
2Z 10 	 1

8	
3
4Z

3 0 11 	 1
16

4 	Z 12 	 1
8

5 3
8 13 0

6 	 3
4Z 14 0

7 0 18 	 3
8

8 	 1
2Z 19 0
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For PQ�PT without electromagnetic interactions, the LO
mass M2

0;ij is simply �ij � ��i � �j�=2. Electromagnetic
interactions modify the lowest order mass, and the new LO
mass, which in the analytical results below is denoted as
�e;ij, can be read off from the O��2� terms of the lowest
order Lagrangian. It is given by

 �e;ij � �ij �
2Ce2

F2
0

�qi 	 qj�2: (31)

This is the mass that appears in the charged propagator.
The neutral propagators can have a double-pole struc-

ture and are more complicated. However, since they are
charge-neutral, the lowest order propagator is unaffected
by the inclusion of electromagnetic corrections in the
theory. Explicit expressions for the lowest order neutral
propagators can be found in Ref. [13]. See also Ref. [8].

IV. ANALYTICAL RESULTS AT NLO

The analytical expressions for the masses and decay
constants are fairly short, and very similar in form.
Therefore it suffices to give the results for the cases with
dsea � 3 only. They can also be downloaded from
Ref. [37]. Expressions for the cases with dsea � 2 and
dsea � 1 can easily be derived by taking the appropriate
limits, i.e. �5 ! �4 for dsea � 2 and �5, �6 ! �4 for
dsea � 1. It should be noted, however, that for the degen-
erate cases, all sums are still over the full set of indices, and
furthermore, since we only take limits of the masses, the
charges qi are never affected by such limits.

A. Masses

The corrections to the lowest order mass of a charged
pseudoscalar meson is obtained by calculating the self-
energy corrections to the propagator in the interacting
theory, usually written in terms of the Fourier transform
of the two-point function

 i��p� �
Z
d4xeip
xh�jT���x�ji��0�ij�j�i; (32)

where �ij � qi �qj denotes any of the off-diagonal mesons
in the valence sector of PQ�PT, and � denotes the vacuum
of the interacting theory. The propagator resums as a
geometric series [38], giving

 i��p� �
i

p2 	M2
0 	 ��p2; �i�

; (33)

where M2
0 denotes the lowest order mass of the meson

which is being considered, and �i in � denotes the depen-
dence of the self-energy on all the lowest order meson
masses. The quantity ��p2; �i� receives contributions from
the one-particle-irreducible (1PI) diagrams. The physical
masses, are defined by the position of the pole in Eq. (33),

 M2
phys � M2

0 � ��M2
phys; �i�; (34)

where the expression for the self-energy � is written as a
string of terms denoting the 1PI diagrams of progressively
higher order. The contributions start at NLO, and thus

 ��M2
phys; �i� � �4�M

2
0; �i� �O�p6; e2p4�; (35)

Note that we have used the lowest order massM2
0 instead of

M2
phys in �4 since the diagrams in that term are already of

O�p4; e2p2�. The Feynman diagrams that contribute to
�4�M

2
0; �i� with electromagnetic corrections included are

shown in Fig. 1.
We present the physical mass in the form

 M2
phys � �e;ij �

	�4�vs

F2
0

�O�p6; e2p4�; (36)

where �e;ij � M2
0 is the lowest order mass, defined in

Eq. (31). The superscripts (v) and (s) indicate the values
of dval and dsea, respectively. It should also be noted that
the results are given in terms of the lowest order decay
constant F0 and the lowest order masses, since these are the
fundamental inputs in PQ�PT. To the accuracy we are
working with here they can be replaced by the physical
masses in the NLO correction.

The NLO contribution to the charged pseudoscalar me-
son mass with electromagnetic corrections is for dval � 1
and dsea � 3 found to be

 

FIG. 1. The Feynman diagrams that contribute to �4�M2
0; �i�

with electromagnetic corrections included. A filled circle de-
notes a vertex from the L2 Lagrangian and an open square
denotes a vertex from the L4 Lagrangian. A straight line is a
pseudoscalar meson and a wiggly line is a photon.
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	�4�13 � �48Lr6 	 24Lr4��1 ��1 � �16Lr8 	 8Lr5��
2
1 	 48e2F2

0ZEL
r
4q

2
12 ��1 	 16e2F2

0ZEL
r
5q

2
12�1

	 e2F2
0�12KEr

1 � 12KEr
2 	 12KEr

7 	 12KEr
8 �

�Q2�1 	 e
2F2

0�4K
Er
5 � 4KEr

6 	 4KEr
9 	 4KEr

10 �q
2
p�1

� 12e2F2
0K

Er
8 q

2
12 ��1 � 8e2F2

0�K
Er
10 � K

Er
11 �q

2
12�1 	 e

2F2
0�8K

Er
18 � 4KEr

19 �q1q2�1 	 1=3 �A��m�R
m
n11�1

	 1=3 �A��1�R
c
1�1 � e

2F2
0

�A��1�q
2
12 � 2e2F2

0ZE �A��1s�q
2
12 	 1=3 �B��1; �1; 0�R

d
1�1 � 4e2F2

0
�B���; �1; �1�q

2
12�1

	 4e2F2
0

�B1���; �1; �1�q
2
12�1: (37)

For dval � 2 and dsea � 3 one has

 

	�4�23 � �48Lr6 	 24Lr4� ��1�13 � �16Lr8 	 8Lr5��
2
13 	 48e2ZEF

2
0L

r
4q

2
13 ��1 	 16e2ZEF

2
0L

r
5q

2
13�13

	 e2F2
0�12KEr

1 � 12KEr
2 	 12KEr

7 	 12KEr
8 �

�Q2�13 	 e2F2
0�4K

Er
5 � 4KEr

6 �q
2
p�13 � e2F2

0�4K
Er
9 � 4KEr

10 �q
2
p�p

� 12e2F2
0K

Er
8 q

2
13 ��1 � 8e2F2

0�K
Er
10 � K

Er
11 �q

2
13�13 	 e2F2

0�8K
Er
18 � 4KEr

19 �q1q3�13 	 1=3 �A��m�Rmn13�13

	 1=3 �A��p�R
p
q���13 � e2F2

0
�A��13�q2

13 � 2e2ZEF2
0

�A��1s�q1sq13 	 2e2ZEF2
0

�A��3s�q3sq13

� 4e2F2
0

�B���; �13; �13�q2
13�13 	 4e2F2

0
�B1���; �13; �13�q2

13�13: (38)

B. Decay constants

The decay constants Fa of the pseudoscalar mesons are
defined through

 h0jA�a �0�j
a�p�i � i
���
2
p
p�Fa; (39)

in terms of the axial current operator A�a �0�. In the follow-
ing the flavor index a has been suppressed for simplicity.
The Feynman diagrams that contribute to the axial current
operator at NLO, are shown in Fig. 2.

Diagrams of O�p4; e2p2� also contribute to Eq. (39)
through the wave function renormalization factor

����
Z
p

,
since the expression for the decay constant of a meson is

 

Fphys����
Z
p � F0 � F4�M2

phys; �i� �O�p6; e2p4�: (40)

In Eq. (40), the subscripts of the matrix elements F indicate
the chiral order and the lowest order contribution F2 has
been identified with F0. The wave function renormaliza-

tion is given in terms of the self-energy diagrams by

 Z	1 � 1	
@��p2; �i�

@p2

��������M2
phys

(41)

which becomes, when expanded such that all contributions
up to O�p4; e2p2� are taken into account,

 

����
Z
p
� 1�

�0

2
� 
 
 
 ; (42)

 �0 �
@�4�p2; �i�

@p2

��������M2
phys

: (43)

The quantity �4 denotes the one-particle-irreducible dia-
grams to O�p4; e2p2�. Combining these expressions, the
decay constant at NLO is then

 Fphys � F0 � F4��i� � F0
@�4�p

2; �i�

2@p2

��������M2
0

�O�p6; e2p4�:

(44)

Again it is sufficient to use the lowest order massM2
0 in �4

since the diagrams in that term are already of O�p4; e2p2�.
The analytical results for the decay constant are below
given in the form

 Fphys � F0

�
1�

f�4�vs

F2
0

�O�p6; e2p4�

�
: (45)

As for the meson masses, the superscripts (v) and (s)
indicate the values of dval and dsea, respectively.

The NLO contribution to the decay constant for a
charged pseudoscalar meson with electromagnetic correc-
tions is for dval � 1 and dsea � 3 found to be

 

FIG. 2. The Feynman diagrams that contribute to the axial
current operator at NLO. A filled circle denotes a vertex from
the L2 Lagrangian and an open square denotes a vertex from the
L4 Lagrangian. A straight line is a pseudoscalar meson, a wiggly
line is a photon and a dashed line is an axial current.
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f�4�13 � �12Lr4 ��1 � 4Lr5�1 � 6e2F2
0�K

Er
1 � K

Er
2 �

�Q2 � 2e2F2
0�K

Er
5 � K

Er
6 �q

2
p � 2e2F2

0K
Er
12q

2
12

� e2F2
0�4K

Er
18 � 2KEr

19 �q1q2 � 1=4 �A��e;ps� � 2e2F2
0

�B0���; �1; �1�q
2
12�1 	 e

2F2
0

�B1���; �1; �1�q
2
12

	 2e2F2
0

�B01���; �1; �1�q
2
12�1: (46)

For dval � 2 and dsea � 3 the result is

 

f�4�23 � �12Lr4 ��1 � 4Lr5�13 � 6e2F2
0�K

Er
1 � K

Er
2 �

�Q2 � 2e2F2
0�K

Er
5 � K

Er
6 �q

2
p � 2e2F2

0K
Er
12q

2
13

� e2F2
0�4K

Er
18 � 2KEr

19 �q1q3 	 1=12 �A��m�R
v
mn13 �

�A��p��1=6Rpq�� 	 1=12Rcp� � 1=4 �A��e;ps�

	 1=12 �B��p; �p; 0�Rdp � 2e2F2
0

�B0���; �13; �13�q2
13�13 	 e2F2

0
�B1���; �13; �13�q2

13

	 2e2F2
0

�B01���; �13; �13�q2
13�13: (47)

The term containing Rvmn13 is somewhat tricky to take the
limit to the simpler mass cases. The form needed for the
simpler cases can be found in Ref. [11] or in Ref. [37].

V. DISCUSSION OF THE ANALYTICAL RESULTS

Our analytical results are finite. The renormalization
obtained from the n-flavour divergences using the argu-
ments presented above and in our earlier work, did cancel
those from the loop diagrams. In addition, they agree with
earlier PQ�PT results when the electromagnetic parts are
removed as well as with the known results for electromag-
netic corrections when removing the partial quenching. We
have used the definition of the decay constant with the
axial current. This definition has an infrared divergence as
can be seen also in our result. We have regulated that
divergence with a photon mass ��. This is the definition
which was used in Ref. [21] as well. How to relate this to
measurable quantities can be found in Ref. [39].

Which combinations of the new LECs can now be
determined from lattice calculations? In the masses 5
independent combinations appear:
 

Y1 � KEr
1 � K

Er
2 	 K

Er
7 	 K

Er
8 ;

Y2 � KEr
9 � K

Er
10 ;

Y3 � 	KEr
5 	 K

Er
6 � 2KEr

10 � 2KEr
11 ;

Y4 � 2KEr
5 � 2KEr

6 � 2KEr
18 � K

Er
19 ;

Y5 � KEr
8

(48)

These can be determined by varying the charges and quark
masses separately. It should be noted that the sea-quark
charges only have a dependence via Y1

�Q2�13 with unde-
termined LECs.

The decay constants depend on the combinations

 Y6 � KEr
1 � K

Er
2 ; Y7 � KEr

5 � K
Er
6 � K

Er
12 ; (49)

as well as on Y4. It should be noted that the sea-quark
charges only have a dependence via Y6

�Q2 with undeter-
mined LECs.

There is in addition dependence on the sea-quark
charges in the chiral logarithms, but this dependence is
predicted at NLO.

The individual masses and decay constants depend on
the sea-quark charges. But since the overall dependence on
the sea-quark charges appearing with unknown LECs is
simple we can easily make combinations where this dis-
appears. We use here the notation

 M2��1; �3; q1; q3� (50)

to denote the mass of the meson with valence masses �1

and �2 and valence charges q1 and q3. The quantity

 �M2 � M2��1; �3; q1; q3� 	M2��1; �3; q3; q3�

	M2��1; �1; q1; q3� �M
2��1; �1; q3; q3� (51)

is especially useful. Only the electromagnetic corrections
survive and the only dependence on the sea-quark charges
is in some of the chiral logarithms. Since these contribu-
tions are independent of the LECs, they can be subtracted
before making fits with lattice simulations, and hence do
not present any problem in this respect. The quantity in
Eq. (51) is also directly relevant for the violation of
Dashen’s theorem [15,18],

 �M2
D � �m

2
K� 	m

2
K0� 	 �m2

�� 	m
2
�0�: (52)

Dashen’s theorem states that the electromagnetic part of
�M2

D vanishes. �M2 becomes the electromagnetic part of
�M2

D up to some very small electromagnetic corrrections
to the �0 mass in the isospin limit.

Similarly, differences of decay constants of particles
containg valence quarks with the same charges have no
dependence on the sea-quark charges with unknown LECs.
In particular this true for the difference of the pion and
kaon decay constant. We define

 F��1; �3; q1; q3; fqseag� (53)

to be the decay constant of a meson with valence masses
and charges as for M2 above and sea-quark charges fqseag.
The quantity
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�F � �F��1; �3; q1; q3; fqseag� 	 F��1; �3; 0; 0; f0g�

	 F��1; �1; q1; q3; fqseag� � F��1; �1; 0; 0; f0g��=F0;

(54)

is an example of this. It gives the relative electromagnetic
corrections to the difference of kaon and pion decay con-
stants. In fact, �F is independent of all the KEr

i .

VI. NUMERICAL RESULTS

The whole purpose of this work is that our formulas can
be used by the lattice QCD community to perform their fits.
We therefore only present some representative numerical
results. For the Lri we use the values determined in the
NNLO order fit of Ref. [40], called fit 10. For the extra
electromagnetic parameters we use the estimates of
Ref. [22]. There are four combinations of the KEr

i esti-
mated there. We simply choose a series of KEr

i values that
reproduces the combinations estimated there and set all
others to zero. The nonzero values we have chosen for
illustration are

 KEr
5 � 2:85 
 10	3; KEr

9 � 1:3 
 10	3;

KEr
10 � 4:0 
 10	3; KEr

11 � 	1:25 
 10	3;

C � ZEF4
0 � 4:2 
 10	5 GeV5;

(55)

at a subtraction scale � � 770 MeV. Earlier estimates of
C are in Refs. [41,42].

The numerics we present here uses q1 � q4 � 2=3 and
q2 � q3 � q5 � q6 � 	1=3 and a value of e determined
from the measured fine structure constant �. We also only
quote the electromagnetic part by subtracting the same
result with e � 0.

The lowest order correction to the meson masses van-
ishes for those with zero total charge. For charged mesons
it is equal to

 M2
LO � 1:00 
 10	3 GeV2: (56)

This should be compared to the physical mass difference

 m2
�� 	m

2
�0 � 1:3 
 10	3 GeV2: (57)

There is no electromagnetic correction to the decay con-
stants at lowest order.

Below we use for convenience the terminology � for a
meson with both valence masses equal to �1 and K for a
meson with valence masses equal to �1 and �3 respec-
tively. The charge label is� for valence quark charges 2=3
and 	1=3 and 0 for valence quark charges 	1=3 and
	1=3, i.e. electrically neutral.

We first quote the electromagnetic corrections for �1 �
�4 � �5 and �3 � �6 with

������
�1
p

� 135 MeV and
��������
�13
p

�

495 MeV.

 

M2
��NLO � 0:45 
 10	3 GeV2;

M2
K�NLO

� 1:52 
 10	3 GeV2;

M2
�0NLO

� 	2 
 10	7 GeV2;

M2
K0NLO

� 	3 
 10	6 GeV2:

(58)

This leads to a value of

 �M2 � 1:07 
 10	3 GeV2: (59)
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FIG. 3 (color online). The quantity �M2 of Eq. (51), the
difference of electromagnetic contributions to meson masses
between kaons and pions as a function of the input lowest order
masses �1 and �4. The scale is logarithmic and contour lines are
drawn at �M2 � 0:00005, 0.0001, 0.0002, 0.0005, 0.001.
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FIG. 4 (color online). The quantity �F of Eq. (54), the relative
difference of electromagnetic contributions to meson decay
constants between kaons and pions as a function of the input
lowest order masses �1 and �4. The scale is logarithmic and
contour lines are drawn at �F � 0:00005, 0.0001, 0.0002,
0.0005, 0.001, 0.002.
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In agreement with the large violation of Dashen’s theorem
seen in Ref. [22] since we used their estimate for the
constants and similar values for the other inputs. The
electromagnetic corrections for the decay constants with
a photon mass �� � �10 MeV�2 are

 F��NLO=F0 � 0:0039; FK�NLO=F0 � 0:0056; (60)

leading to

 �F � 0:0017: (61)

The above results are for the unquenched case. To show
the effects of partial quenching we plot the quantities �M2

and �F with input values as above and �4 � �5 and �3 �
�6 � 0:5 GeV2 as a function of �1 and �4 in Figs. 3 and 4.

VII. CONCLUSIONS

In this paper we have shown how to include electromag-
netic corrections in partially quenched chiral perturbation
theory. We have then used this formalism to compute the
electromagnetic corrections to masses and decay constants
of the charged or off-diagonal mesons to NLO in PQ�PT.
We also presented some illustrative numerical results.

We have shown that for several phenomenologically
interesting quantities the relevant LECs can be computed
using quenched photons, i.e. they can be computed with the
photons only coupling to the valence quarks.

The dependence on the sea quark mass is rather small in
these differences. It cancels to a large extent. In Fig. 5 we
show the electromagnetic contribution to the squared mass
of the pion and kaon as a function of �4 � �5 with �1 �
0:1 GeV2 and the other inputs as above.
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