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The deconfinement transition is studied close to the continuum limit of SO�3� lattice gauge theory. High
barriers for tunneling among different twist sectors causing loss of ergodicity for local update algorithms
are circumvented by means of parallel tempering. We compute monopole and center vortex free energies
both within the confining phase and through the deconfinement transition. We discuss in detail the general
problem of defining order parameters for adjoint actions.
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I. INTRODUCTION

Understanding confinement in SU�N� Yang-Mills theo-
ries remains one of the major challenges of contemporary
particle physics. Lattice simulations have offered unique
insight into the nonperturbative regularization of pure
gauge actions transforming under the fundamental repre-
sentation of SU�N� [1,2], equivalent to the quenched limit
of full QCD: at nonzero temperature they have been shown
to possess a phase transition linked to the spontaneous
breaking of center symmetry [3,4]. For N � 2 it is of
second order, therefore lying in the universality class of
the 3D Ising model. However, the question whether and in
what sense this also holds for discretizations transforming
under the natural continuum pure Yang-Mills gauge sym-
metry group SU�N�=ZN, for N � 2 equivalent to SO�3�,
still needs to be appropriately answered [5]. According to
universality [6], i.e. expecting the different formulations to
be equivalent in the continuum limit, they should lead to
the same nonperturbative physics. A discretization which
does not break the SU�N�=ZN invariance has moreover the
appeal to preserve the topological properties related to
�1�SU�N�=ZN� � ZN discussed e.g. in [7–9].

Since the lattice link variables gauge transform at differ-
ent points U��x� ! gy�x�U��x�g�x� �̂�, SU�N�=ZN in-
variance cannot be recovered from the local cancellation of
the ZN dependence in g�x� as in the continuum and must be
imposed directly on U��x�. As a consequence in adjoint
theories regularized on the lattice it is by construction
impossible to define observables transforming under the
fundamental representation, i.e. sensitive to the ZN center
of the gauge group: their expectation value will vanish
identically irrespective of the dynamics of the theory.
Therefore the symmetry breaking arguments for the de-
confinement transition mentioned above cannot apply. It
remains an open question whether a nonperturbative regu-
larization of Yang-Mills theories allowing both SU�N�=ZN

invariance and nonvanishing fundamental observables can
be defined.

In spite of all these interesting problems, adjoint actions
have not been intensively studied in the literature. For N �
2 difficulties in their analysis have been well known for a
long time [10–13]: the theory exhibits a bulk transition
related to the condensation of Z2 monopole charges �c �
�1 which hinders the study of its finite temperature prop-
erties. First, concrete efforts to study the theory at finite
temperature by implementing a Z2 monopole suppressing
chemical potential, as suggested in [12,13], were made ten
years ago [14,15] reviving the interest in the subject.
However, given the absence of a natural order parameter,
attempts to locate a transition within phase II (the phase
characterized by strong Z2 monopole suppression, see
Fig. 1) through thermodynamic observables were only
conclusive in the strong coupling region [16,17]. In these
works, it was also first observed how in some regions of
phase II close to the bulk transition the theory possesses
new states where the adjoint Polyakov loop LA ! �1=3,
additionally to the expected states where LA ! 1. In
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FIG. 1 (color online). Paths chosen for main simulations in the
�� �A plane.
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Ref. [9], a dynamical observable measuring the twist ex-
pectation value z, i.e. the topological index linked to
�1�SU�N�=ZN�, was introduced noting that the ���c �
1� constraint effectively implemented by a Z2 monopole
suppression should allow the SO�3� partition function to be
rewritten as the sum of SU�2� partition functions with all
possible twisted boundary conditions (t.b.c.) Zjz�i, [i �
0; . . . ; 3 for SU�2� on a 3� 1 dimensional torus] [18–21].
The LA ! �1=3 state was thus linked directly to a non-
trivial twist expectation value, equivalent to the creation of
a vortex. Creating such ’t Hooft loop amounts to changing
the signs of some fundamental plaquettes, which however
leaves the adjoint action unmodified. This implies that
�U � 0 in the free energy change �F � �U� T�S,
which will then only receive an entropy contribution.
Defining thus the ’t Hooft vortex free energy F=T �
� log�Zjz�1=Zjz�0� simply by the ratio of the partition
function in the nontrivial twist sector to that in the trivial
one, their relative weight being measured through an ergo-
dic simulation, the SO�3� theory was proposed as the ideal
test case to check whether the ’t Hooft vortex confinement
criterion [7,8] could compensate for the absence of an
explicit order parameter linked to center symmetry break-
ing: in the thermodynamic limit (V � N3

s ! 1) F should
vanish in the confined phase while diverging with an area
law F� ~�N2

s above the deconfinement transition.
Working without the monopole suppression term proved
however to be a hurdle, since the ‘‘freezing’’ of twist
sectors above the bulk transition creates high potential
barriers hard to overcome even with a multicanonical
algorithm [9], making ergodic simulations on top of the
bulk transition unviable already for volumes larger than
83 � 4. Furthermore, since one would eventually need to
go well beyond the bulk transition deeply into phase II with
the simulations, the suitability of multihistogram [22] or
multicanonical methods [23] remains dubious. Ergodicity
problems and nontrivial twist sectors were not considered
in Refs. [16,17].

A particular observation has proven crucial in our tam-
ing of the tunneling problem: the bulk transition weakens
with increasing Z2 monopole suppression, eventually be-
coming 2nd order at some intermediate point [16].
Through the twist susceptibility the 2nd order branch of
the bulk transition was shown to be consistent with the 4D
Ising model universality class [16,24–26], as expected by
theoretical arguments [12,13]. To actually pin down the
point where the transition changes from weak first to
second order is a difficult numerical task. This however
has no practical consequences, since for the following it is
immaterial whether one deals with a second or a very weak
first order bulk.

Although tunneling among topological sectors is still
suppressed with a local update algorithm, twists were
shown to be well defined throughout phase II. LA on the
other hand approximately satisfies [5,27] a Haar-measure

distribution for low �A, departing from it above some �cA.
The critical value �cA was seen to scale properly with the
lattice extent in the Euclidean time direction N� [26,28].
This hints at a transition line (the dashed horizontal line in
Fig. 1) separating a confining from a deconfining phase in
each fixed twist sector [26,28–30] collapsing on the bulk
transition for the N� commonly used in simulations. It is
therefore sound to conjecture that the whole physically
relevant SO�3� dynamics lies in phase II, the finite tem-
perature transition eventually decoupling from the bulk
transition for high enough N� even without a monopole
suppression term. Unfortunately, according to estimates in
Ref. [9] this should not happen for lattice sizes smaller than
�8003 � 400. A nonvanishing Z2 monopole chemical po-
tential together with an ergodic algorithm suitable for
simulations throughout phase II seems therefore the only
feasible way to gain access to the properties of the con-
tinuum limit of SO�3�.

Given the failure of center symmetry breaking criteria to
identify the deconfinement transition in the adjoint theory,
in [26,31] the use of the Pisa disorder parameter for mono-
pole condensation was proposed. Lines of second order
transition properly scaling with N� and ending on the bulk
transition line where actually found at fixed twist, with
critical exponents consistent with the 3D Ising model.
Whether this is the case also for the ergodic theory, i.e.
summed over all twist sectors, is the subject of the present
paper. We will employ parallel tempering and utilize the
mentioned weakening of the bulk transition to overcome
the high potential barriers that prevent tunneling with local
update algorithms. Moreover, ergodicity being an essential
prerequisite for an unbiased measure of the vortex free
energy, it is an interesting question in its own right whether
such an observable could indeed also play the role of an
order parameter for the deconfinement transition in SO�3�
[9,32]. We will extend here the discussion of the vortex free
energy we have recently published in Ref. [33]. Some
preliminary results of the present project were also pre-
sented in [34].

II. THE SETUP AND THE OBSERVABLES

As anticipated, we will concentrate on the adjoint SU�2�
Wilson action modified by a Z2 monopole suppression
term

 S � �A
X
P

�
1�

1

3
TrAUP

�
� �

X
c

�1� �c�; (1)

where UP denotes the standard plaquette variable and
TrAO � �TrFO�2 � 1 � TrF�O2� � 1 the adjoint trace.
The center blind product �c �

Q
P2@csign�TrFUP� taken

around elementary 3-cubes c defines the Z2 magnetic
charge. Its density M � 1� h 1

Nc

P
c�ci tends to unity in

the strong coupling region (phase I) and to zero in the weak
coupling limit (phase II), Nc denoting the total number of
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elementary 3-cubes. The corresponding path-integral
quantized lattice theory with the action (1) is center-blind
in the entire �A � � plane [28].

The Pisa disorder parameter � [35–38] has been intro-
duced for action (1) in Ref. [31]. Its expectation value is
given by h�i � he��Si, where �S � SM � S is the differ-
ence of the standard plaquette action S and an action SM

modified by the introduction of an adjoint bosonic field
transforming at the space boundary under G�
SU�2�=U�1� [35,39]. Its evaluation does not require any
gauge fixing, a point of view we adopt in what follows [39].
We want to stress here that the introduction of C� boundary
conditions in the temporal direction, necessary to conserve
magnetic charge when defining SM at finite temperature,
poses no conceptual problem in the adjoint theory, being
equivalent up to a gauge rotation to a partial twist, i.e. only
in the time direction [31]. Since our adjoint action with
periodic boundary conditions (p.b.c.) allows all twist ma-
trices to be generated dynamically in any direction [9], C�

boundary conditions will just amount to a relabeling of the
twist sectors. We will come back to this point later on.

Appropriate twist variables are introduced by [9]

 z�� 	
1

N	N�

X
	�

Y
P2plane ��

sign TrFUP; �
	��� � 1�:

(2)

Since the temporal twists in the various spatial directions
zi;4, i � 1, 2, 3 are well identified (either �1 or �1) for
each configuration in phase II, the partition functions
restricted to a fixed twist sector are easy to define as
expectation values of suitable projectors [8]. Explicitly
we have
 

Zjz�0

Z
� h�0i; �0 �

1

8

Y3

i�1


1� sign�zi;4��

Zjz�1

Z
� h�1i; �1 �

1

8

X3

j�1

Y3

i�1


1� �1� 2�i;j�sign�zi;4��

Zjz�2

Z
� h�2i; �2 �

1

8

X3

j�1

Y3

i�1


1� �1� 2�i;j�sign�zi;4��

Zjz�3

Z
� h�3i; �3 �

1

8

Y3

i�1


1� sign�zi;4��; (3)

�k being equal to unity if the configuration belongs to the
kth sector and vanishing otherwise.

From Eq. (3) it follows that

 F � �T log
Z1

3Z0
� �

1

aN�
log
h�1i

3h�0i
: (4)

The factor in the denominator is due to the three equivalent
ways to measure zi;4 � �1 on T3 � S, rather than one as
on S3 � S; in this way F will be normalized to zero if 0-
and 1-twists are equally probable. This occurs on top of the

bulk transition and in some sense everywhere in phase I,
where twist sectors are however badly defined, because of
the twist variables (2) fluctuating around zero.

We will employ parallel tempering to achieve ergodicity
over different twist sectors when evaluating the expecta-
tion values of physical observables, e.g. the Pisa disorder
parameter and the ’t Hooft vortex free energy. Simulations
have been carried out along the paths shown in Fig. 1. The
motivation for these choices will become clear in the
following. Our spatial lattice sizes will vary between Ns �
12 and Ns � 24. The timelike extension will remain fixed
(N� � 4).

III. PARALLEL TEMPERING

A. General description

In tempering methods some parameters of the action are
made dynamical variables in the simulations, updating the
system in an enlarged configuration space. This allows a
detour in parameter space if a high tunneling barrier is
present at some parameter value, resulting in an improved
algorithm.

In the method of simulated tempering first proposed in
[40], the inverse temperature is made a dynamical variable.
With such algorithms considerable improvements have
been obtained when rendering dynamical, e.g. the number
of degrees of freedom in the Potts-Model [41], the inverse
temperature for spin glass [42], and the monopole coupling
in U(1) lattice theory [43,44]. With dynamical mass of
staggered fermions in full QCD [45] a better sampling of
the configuration space has been reported. However, simu-
lated tempering requires the determination of a weight
function in the generalized action, and an efficient method
of estimating it [42– 44] is crucial for successfully accel-
erating the simulation.

A major progress was the proposal of the parallel tem-
pering method (PT) [46,47], in which no weight function
needs to be determined. This method has allowed great
improvements for spin glasses [46]. In QCD with dynami-
cal quark mass better sampling has been reported for
staggered fermions [48]. In simulations of QCD with
O�a�-improved Wilson fermions [49] no computational
advantage has been found when making only two (rela-
tively small) hopping parameter values dynamical. In sub-
sequent works [50,51] with more ensembles and standard
Wilson fermions, a considerable increase of the transitions
between topological sectors has been observed. In
Ref. [52] these investigations have been extended to a
detailed comparison with conventional simulations.
Unfortunately no gain could be confirmed in that case
due to the region of parameter space used in which the
mechanism of an easier detour was not available.

In the present application the fact that above the bulk
phase transition the barriers between the twist sectors
cannot be overcome at all by conventional algorithm
makes PT in any case superior. With a chain of parameter
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points crossing the transition line along the softer branch of
the bulk transition the idea of an easier detour by tempering
is ideally realized. This is also reflected by the remarkably
good efficiency of PT observed.

B. Parallel tempering algorithm

In standard Monte Carlo simulations, one deals with one
parameter set p and generates a sequence of field configu-
rations F �s�, where s denotes the Monte Carlo time. In our
case p will include the coupling �A and the chemical
potential �. In parallel tempering (PT) [46,47], one updates
K field configurations F n with n � 1; . . . ; K in the same
run. The characteristic feature is that the assignment of the
parameter sets pj with j � 1; . . . ; K to the field configura-
tions F n changes in the course of a tempered simulation.
The global configuration at time s will be denoted by
B�s�;F 1�s�;F 2�s�; . . . ;F K�s� where the permutation

 B�s� �
n1�s� n2�s� . . . nj�s� . . . nK�s�

1 2 . . . j . . . K

� �
(5)

describes the assignment of the field configurations
F nj�s��s� to the parameter sets pj. In short, this approach
is called PT with K ensembles.

The update of the F n is implemented through a standard
Metropolis procedure using the parameter sets pj as as-
signed at a given time. The update of B is achieved by
swapping pairs according to a further Metropolis accep-
tance condition with probability

 Pswap�i; j� � min�1; e��S�; (6)

where the variation

 �S � �S�pi;F ni� � S�pj;F nj� � S�pi;F nj�

� S�pj;F ni� (7)

refers to the action S for the parameter set pj and the field
configurations F nj . The total update of the Monte Carlo
algorithm, after which its time s increases by one, then
consists of the updates of all Fm followed by the full
update of B with a sequence of attempts to swap pairs.

Detailed balance for the swapping follows from Eq. (7).
Ergodicity is obtained by updating all F n and by swapping
pairs in such a way that all permutations of Eq. (5) can be
reached. There remains still the freedom of choosing the
succession of the individual steps. Our choice is such that
the updates of all F n and that of B alternate. Our criterion
for choosing the succession of swapping pairs in the update
of B has been to minimize the average time it takes for the
assignment of a field configuration to the parameters to
travel from the first to the last pair of parameter values.
This has led us to swap neighboring pairs and to proceed
with this along the respective path in Fig. 1.

Observables of interest, associated to a specific set pj,
will be denoted as

 O j�s� 	 O�F nj�s��s��; j � 1; . . . ; K: (8)

As anticipated above, for the success of the method the
softening of the bulk transition is crucial, since we need to
‘‘transport’’ the tunneling that occurs in phase I and on top
of the bulk transition into phase II, where twist sectors are
well defined but frozen. To work at low �, i.e. on top of a
strong 1st order bulk, would select too high barriers and
kill any hope of ergodicity at large volume, as experienced
in Refs. [9,32]. Moreover, in that parameter range for
lattice sizes reasonably available to the simulations (i.e.
� 8003 � 400), finite volume effects would still cover the
physical transition [9].

Some care is of course necessary also with our method.
In particular, to maintain a sufficient swapping acceptance
rate !, i.e. to avoid the freezing of twist sectors, the
distance between neighboring couplings must diminish
with the volume. On the other hand to keep cross correla-
tions under control one does not wish the acceptance rate to
be too high. We have chosen to tune the parameters for
each path and volume at hand so to keep the acceptance
rate roughly fixed at around ! � 12%, a value for which
we empirically find a good balance between autocorrela-
tions and cross correlations. We also find that performing
some standard Metropolis overupdate hits on the F n be-
fore the actual PT update (7) is proposed helps in diminish-
ing correlations.

The relatively low value of ! has an intuitive explana-
tion: for each parameter set pj one wishes to ‘‘explore’’ the
various twist sectors for a sufficiently long MC time before
tunneling. It causes however also a technical problem: if
the starting configurations are all in the same twist sector
the ensemble needs a very long time before the ‘‘disorder’’
below the bulk spreads to the configurations further above
it. An efficient way out is to randomly choose the twist
sectors of the elements in the start ensemble.

Details for the investigated lattice sizes, the chosen
parameter sets ��;�A�j, j � 1; 2; . . . ; K and the statistics
for each ensemble for the paths drawn in Fig. 1 are listed in
the columns of Tables I, II, III, IV, V, and VI. Remember
that the path along which we are passing through the finite
temperature transition at fixed � � 0:8 starts with a hori-
zontal piece at fixed �A � 0:95. The factor 2 for N in
Tables I and II refers to the runs with and without modified
action SM, respectively. In order to remain on the safe side
in some results we have omitted the first and last elements
of the ensembles, since the latter have no further configu-
ration to swap with. The respective errors of these points
might not be of a comparable quality. In the literature one
can find that by adjusting the parameter spacing such that
the endpoints get visited with the same probability as the
neighboring points the errors tend to become comparable.

For the fixed � path of Fig. 1, along which the main
simulations have been performed, we can fit very well the
step ��A needed to keep ! fixed with a scaling law of the
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TABLE II. Parameter sets for PT runs in Fig. 8, left branch.

Ns � 12 Ns � 16 Ns � 20
2� 40 000 2� 40 000 2� 40 000

� �A � �A � �A

0.80 0.860 0.80 0.860 0.80 0.860
0.80 0.870 0.80 0.870 0.80 0.870
0.80 0.875 0.80 0.880 0.80 0.875
0.80 0.880 0.80 0.890 0.80 0.880
0.80 0.885 0.80 0.895 0.80 0.885
0.80 0.890 0.80 0.900 0.80 0.890
0.80 0.900 0.80 0.908 0.80 0.895
0.80 0.905 0.80 0.920 0.80 0.908
0.80 0.908 0.80 0.925 0.80 0.925
0.80 0.910
0.80 0.920
0.80 0.925

TABLE VI. Parameter sets for two of the parallel tempering
runs in Fig. 10.

Ns � 16 Ns � 16
30 000 30 000

� �A � �A

0.870 0.40 0.830 0.65
0.883 0.40 0.850 0.65
0.888 0.40 0.865 0.65
0.895 0.40 0.888 0.65
0.905 0.40 0.895 0.65
0.915 0.40 0.910 0.65
0.925 0.40 0.925 0.65

TABLE IV. Parameters sets for PT runs in Fig. 9, right branch.

Ns � 12 Ns � 16 Ns � 20 Ns � 24
100 000 100 000 100 000 100 000

� �A � �A � �A � �A

0.78 0.95 0.78 0.95 0.785 0.95 0.785 0.95
0.79 0.95 0.79 0.95 0.795 0.95 0.795 0.95
0.795 0.95 0.795 0.95 0.7975 0.95 0.7975 0.95
0.80 0.95 0.80 0.95 0.80 0.95 0.80 0.955
0.80 0.96 0.80 0.96 0.80 0.96 0.80 0.960
0.80 0.97 0.80 0.97 0.80 0.967 0.80 0.966
0.80 0.98 0.80 0.98 0.80 0.974 0.80 0.972
0.80 0.99 0.80 0.99 0.80 0.981 0.80 0.978
0.80 1.00 0.80 1.00 0.80 0.988 0.80 0.984
0.80 1.01 0.80 1.01 0.80 0.995 0.80 0.991
0.80 1.02 0.80 1.02 0.80 1.002
0.80 1.03 0.80 1.03 0.80 1.009
0.80 1.04 0.80 1.04 0.80 1.016
0.80 1.05 0.80 1.05 0.80 1.023

TABLE I. Lattice sizes, statistics, and couplings for PT simu-
lations in Figs. 7 and 8, right branch.

Ns � 12 Ns � 16 Ns � 20 (a) Ns � 20 (b)
2� 40 000 2� 40 000 2� 40 000 2� 40 000

� �A � �A � �A � �A

0.78 0.960 0.78 0.960 0.77 0.960 0.77 0.960
0.79 0.960 0.79 0.960 0.78 0.960 0.78 0.960
0.80 0.960 0.80 0.960 0.79 0.960 0.79 0.960
0.80 0.975 0.80 0.970 0.80 0.960 0.80 0.960
0.80 0.990 0.80 0.981 0.80 0.970 0.80 0.970
0.80 1.005 0.80 0.993 0.80 0.980 0.80 0.980
0.80 1.020 0.80 1.006 0.80 0.990 0.80 0.990
0.80 1.035 0.80 1.019 0.80 1.000 0.80 1.005
0.80 1.050 0.80 1.032 0.80 1.010 0.80 1.015
0.80 1.065 0.80 1.045 0.80 1.025 0.80 1.035
0.80 1.080 0.80 1.058 0.80 1.040 0.80 1.045
0.80 1.090 0.80 1.070 0.80 1.050 0.80 1.055

TABLE III. Parameters sets for PT runs in Fig. 9, left branch.

Ns � 12 Ns � 16 Ns � 20
30 000 30 000 30 000

� �A � �A � �A

0.80 0.865 0.80 0.865 0.80 0.8605
0.80 0.870 0.80 0.870 0.80 0.870
0.80 0.875 0.80 0.875 0.80 0.875
0.80 0.880 0.80 0.880 0.80 0.880
0.80 0.890 0.80 0.890 0.80 0.890
0.80 0.900 0.80 0.900 0.80 0.900
0.80 0.910 0.80 0.910 0.80 0.910
0.80 0.920 0.80 0.920 0.80 0.920
0.80 0.930 0.80 0.930 0.80 0.930
0.80 0.935 0.80 0.935 0.80 0.935

TABLE V. Parameter sets for PT runs in Figs. 6 and 11.

Ns � 12 Ns � 16 Ns � 20
100 000 100 000 100 000

� �A � �A � �A

0.80 0.92 0.80 0.92 0.80 0.932
0.80 0.93 0.80 0.93 0.80 0.939
0.80 0.94 0.80 0.94 0.80 0.946
0.80 0.95 0.80 0.95 0.80 0.953
0.80 0.96 0.80 0.96 0.80 0.960
0.80 0.97 0.80 0.97 0.80 0.967
0.80 0.98 0.80 0.98 0.80 0.974
0.80 0.99 0.80 0.99 0.80 0.981
0.80 1.00 0.80 1.00 0.80 0.988
0.80 1.01 0.80 1.01 0.80 0.995
0.80 1.02 0.80 1.02 0.80 1.002
0.80 1.03 0.80 1.03 0.80 1.009
0.80 1.04 0.80 1.04 0.80 1.016
0.80 1.05 0.80 1.05 0.80 1.023
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form

 ��A�!;Ns� ’
��!�

N2
s
; (9)

where we find ��12%� � 2:15�3� in the �A � 0:95–1:09
range considered, although we expect it to change with the
width and location of the ��;�A�window. Being! nothing
but the tunneling probability among twist sectors, it should
be proportional to the probability to create a vortex. Since
the cost to generate the latter should scale with an area law
[8], the N2

s dependence of the former is easily understood.
Equation (9) implies that to explore a fixed region ��A of
parameter space the number of ensembles will scale like

 K ’
��A
�

N2
s : (10)

As an illustration of the ergodicity of the algorithm, we
show in Fig. 2 the MC time histories of the twist observ-
ables zi;4 and of the adjoint Polyakov loop for two ensem-
bles belonging to the same test PT simulation with K � 10
and Ns � 16, one below (phase I) and one above the bulk
transition (phase II). We have first let the single ensembles
evolve separately with standard Metropolis updates, i.e.
not updating the permutation table B. The barriers among
sectors are huge [9] and practically impossible to overcome
without PT within phase II: the system is simply stuck in a
fixed topological sector. Indeed, as Fig. 2 shows the twist
variables remained stable over 6000 sweeps until we have
turned on the full PT updates. The system started then
frequently to tunnel among all sectors. Actually below
the bulk transition there is no substantial difference be-
tween the two algorithms, since the disorder induced by the
Z2 monopoles lets any algorithm be ergodic for the simple
reason that topological sectors are ill defined, all twist
values fluctuating around zero. The difference is however
dramatic above the bulk transition in phase II, where
tunneling among well-defined topological sectors is en-
abled by the PT algorithm.

C. Cross and autocorrelations

In PT theK ensembles are generated in a correlated way.
Therefore, the full nondiagonal covariance matrix for the
observables has to be taken into account. The latter is
obtained from the general correlation functions which,
for an observable O and a numberN of updates, are defined
as
 

Rjk�t� �
1

N

XN
s�1

Oj�s�Ok�s� t�

�

�
1

N

XN
s0�1

Oj�s
0�

��
1

N

XN
s00�1

Ok�s
00�

�
: (11)

For j � k they are the usual autocorrelation functions,
while for j � k they describe cross correlations between
different ensembles.

The covariance matrix is obtained [52] by using the
general correlation function of Eq. (11) and generalizing
the derivation in Ref. [53] for the case j � k, which gives

 Cjk �
1

N
Rjk�0� �

1

N

XN�1

t�1

�
1�

t
N

�
�Rjk�t� � Rkj�t��: (12)

The diagonal elements of Eq. (12) are the variances of Oj

usually written as

 var �Oj� �
Rjj�0�

N
2�j; (13)

with the integrated autocorrelation times �j:

 �j �
1

2
�

XN�1

t�1

	j�t�; 	j�t� � Rjj�t�=Rjj�0�: (14)

When evaluating �j according to Eq. (14) in practical
simulations the summation up to N � 1 makes no sense
since 	j�t� is buried in the Monte Carlo noise already for
relatively small t. Therefore, it has been proposed [53,54]
to sum up only to some smaller value M of t. However, in
practice such a procedure is not stable against the choice of
M and neglecting the rest is a bad approximation. The
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FIG. 2. MC histories of twist variables zi;4, i � 1, 2, 3 and of the adjoint Polyakov loop LA for two PT ensembles. The lattice size is
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proposal to estimate the remainder by an extrapolation
based on the t-values M and M� 1 [55] is still inaccurate
in general. A more satisfying procedure is to describe the
rest by a fit function based on the (reliable) terms of
Eq. (12) for t  M and on the general knowledge about
the Markov spectrum. This procedure has led to very good
results in other applications [56].

In order to apply the latter strategy to determine the off-
diagonal entries in Eq. (12) one has to study how spectral
properties enter the problem. This is possible introducing
an appropriate Hilbert space [54,57]. Working this out, in
Ref. [52] the general representation

 Rjk�t� �
X
r>1

ajkr�tr with j�rj< 1 (15)

has been obtained, where only the coefficients ajkr depend
on the particular pair of observables while the eigenvalues
�r are universal and characteristic for the simulation algo-
rithm. To explain the behavior of the off-diagonal ele-
ments, the approximate functional form

 Rjk�t� �

8><
>:
P
r>1

~ajkr�tr for jj� kj  t

0 for 0  t < jj� kj
g (16)

has been derived [52] for j � k, which indicates a maxi-
mum at t � jj� kj.

For the numerical evaluation of Eq. (12) the method
mentioned above is to be used, generalizing it to the off-
diagonal elements. The fits in the noisy region can exploit
the universality of the Markov spectrum and the fact that
after some time only the slowest mode survives. Of course,
such an evaluation is limited by the available statistics. To
calculate errors, one has to account for the cross correla-
tions between the ensembles. To be able to do this, one has
to rely on fits to the data. The respective fit method is well
known from the treatment of indirect measurements (see
e.g. Ref. [58]). For the application to PT the details have
been worked out in Ref. [52]. To obtain errors for the
covariances one can generalize the derivations given in
Ref. [53] for the diagonal case to calculate covariances
of covariances from the Rjk�t� data only. However, in
practice one can hardly get enough statistics for this.

D. Correlation results

Typical examples of correlation functions Rjk�t� [nor-
malized to Rjj�0�] are shown in Figs. 3–5 for the twist
variable z1;4 as introduced in Sec. II. Along with all zi;4 we
have also used the autocorrelations for the Polyakov loop
as an additional source to determine the eigenvalues �r in
our analysis. For the off-diagonal elements Rjk�t� which
show a clear signal above the noise, we generally observe a
maximum at roughly t � jj� kj, thus seeing indeed the
behavior predicted by Eq. (16) (within errors) in our data. It
is usually difficult to identify more than two or three off-

diagonals above the noise. The correlations tend moreover
to decrease with increasing volume. From our data we can
clearly conclude that the off-diagonal elements of the
general correlation functions are decreasing with the dis-
tance from the diagonal, their contributions being reason-
ably smaller than the diagonal one, indicating that cross
correlations do not play an essential role.

Figure 6 shows the integrated autocorrelation times for
all twist variables zi;4 obtained at different volumes for
each parallel configuration along the paths at � � 0:8 in
Fig. 1. Autocorrelations clearly decrease with the volume,
as expected. As we shall see, the two peaks correspond to
the bulk transition and the finite-temperature transition.
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FIG. 3 (color online). Example of a normalized diagonal cor-
relation function for z1;4 at �A � 0:98 and � � 0:8 on a 163 � 4
lattice.
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FIG. 4 (color online). Example of a first off-diagonal normal-
ized correlation function for z1;4 between ensembles taken at
�A � 0:98 and 0.99 for � � 0:8 and lattice size 163 � 4.
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The observables that will suffer most from correlations
in PT are obviously those whose expectation value depends
significantly on twist sectors. In our practical case only the
twists themselves and the vortex free energy are sensitive
to the ergodicity properties of the algorithm. For such
observables, errors will be given by a combination of
statistical errors, estimated by bootstrapped sampling,
and auto/cross-correlation errors given by error propaga-
tion of the errors on �i. Other observables, like the
Polyakov loop and the Pisa disorder parameter, are roughly
twist independent away from the deep deconfined phase,
which we anyway do not reach in our simulations [26,31].
For them only the statistical errors will be relevant.

IV. RESULTS

A. Monopole condensation

The computation of the Pisa order parameter � can be
extended to the parallel tempering approach in a straight-
forward way. Figure 7 shows 	 � d

d�A
logh�i for fixed � �

0:8. As discussed in Ref. [31], to prove confinement
through monopole condensation 	 should be small and
bounded from below in the confined phase, display a dip
at the deconfinement transition, and reach a negative pla-
teau whose value should scale like �O�Ns logNs� in the
deep deconfined phase.

The dip in Fig. 7 shows the position of the finite tem-
perature transition. The region left of it, where 	 should
roughly vanish, is too close to the bulk transition to ap-
proach its �A ! 0 value. 	 indeed has a dip at the bulk
transition, as shown in Fig. 8 [26,31], where Z2 monopoles
disappear. Both phases left and right of the bulk transition
are however still confining as long as 	 remains bounded
from below on both sides [26]. Figure 8 compares the
occurrence of the second 	-dip around �A ’ 0:9 with the
existence of a corresponding peak in the susceptibility of
the average twist as defined in [28]. While the location of
the latter peak is temperature independent, its height can-
not be used to get the scaling with the 4D volume since this
should be calculated at T � 0. For the susceptibility the
latter can be done, obtaining critical exponents in accor-
dance with Ising 4D, as in [28]. On the other hand, the Pisa
disorder operator definition we use makes only sense at
T � 0 (for a definition at T � 0 see [35]). Some caution is
necessary in interpreting the results of Fig. 7. The region
we investigate is, by the above exposed limitations of the
algorithm, very close to both the bulk transition and the
physical phase transition, so that two competing effects are
superimposing. A thorough analysis of the whole phase
space would be very expensive in terms of computer time

 

0 5 10 15
0

200

400

600

800

1000

1200

1400

1600

1800

2000

 

 

123x4

163x4

203x4

FIG. 6 (color online). Integrated autocorrelation times for the
twist variable zi4 at different volumes. The numbers at the
horizontal axis enumerate the parameter points ��;�A� for the
PT ensembles corresponding to Table IV.
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malized correlation function for z1;4 between ensembles taken at
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and could anyway hardly be extended to very high �A.
Nevertheless, as argued in Ref. [26], from the fixed twist
dynamics of our model [26,31], one can conclude that for
the ergodic theory the Pisa disorder parameter indicates
condensation of monopoles in the low �A region and
deconfinement at high �A, provided that a diverging dip
at some �cA exists, as Fig. 7 clearly shows.

Indeed, given that the ergodic expectation value of� can
be written as

 h�ierg �

P
i
�jz�iZSO�3�jz�i
P
i
ZSO�3�jz�i

; (17)

at large �A, taking into account the observed
O��Ns logNs� plateaus of 	 for trivial twist and its vanish-
ing at nontrivial twist [26,31], we have h�ierg ’

h�ijz�0�1� e��F=T��. The latter equation clearly implies
an exponential vanishing of h�ierg in the thermodynamic
limit at high �A.

At low�A one actually needs a bit more care. In all twist
sectors 	 assumes a small constant, bounded from below
negative value 	! � ’ �10 [26,31], therefore indicat-
ing h�i � 0 also for the full ergodic theory, i.e. condensa-
tion of monopoles and confinement below �cA [31]. For
every fixed N� h�ierg can be rescaled post hoc to one
through exp��cA�N���. This rescaling factor will neces-
sarily diverge for SU�N�, up to logarithmic corrections,
like N


� with 
 � 2�0�N2 � 1�=N, �0 � 11N=�48�2�
being the first coefficient of the �-function. For SU�2�

 ’ 1:4. This is of course not an obstacle in normalizing
h�ierg � 1 in the limit N� ! 1, although it remains a
somewhat inelegant feature of the Pisa disorder operator
in the adjoint formulation. There is however a physical

motivation for the nonvanishing of 	, as we will see in the
following.

B. Vortex free energy

Having established the physical properties of phase II at
finite temperature, we will now turn to the ’t Hooft vortex
free energy. As stated above, this observable can only be
calculated through a fully ergodic simulation.

In Fig. 9 the free energy of a vortex in lattice units is
shown as a function of �A along the � � 0:8 paths of
Fig. 1. The data points start right on top of the bulk
transition and go on up to slightly above the finite tem-
perature deconfinement transition. The behavior up to the
bulk transition is in agreement with the ’t Hooft vortex
argument for confinement: if vortices behave ‘‘chaoti-
cally’’ (F � 0) then the theory confines (phase I), while
as deconfinement occurs F� ~�N2

s . As explained above,
we cannot actually go too deeply into the deconfined
phase, so we cannot check if for �A � �cA the data are
consistent with O�N2

s � plateaus or if they saturate at some
value in the thermodynamic limit, i.e. if a dual string
tension ~� can indeed be measured. To this purpose, assum-
ing that the estimate in Eq. (10) still works at higher �A,
even taking into account that for higher volumes the
asymptotic behavior should kick in earlier, we would
need to simulate around 50 parallel ensembles for each
volume, again for a statistics of at least O�105� per con-
figuration in each ensemble. For volumes with Ns � 20,
for which finite size effects start to be reasonably small,
this goes beyond the computational power at our disposal,
although it should be manageable with a medium sized PC
cluster. A reliable estimate of ~� would be of extreme
interest in light of the behavior we find for F in the
confined phase of phase II, already reported in Ref. [33].
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Vortex production is there clearly enhanced compared to
phase I and the free energy stays negative up to the decon-
finement transition, where it rises to positive values.

Figure 10 shows the free energy in a low �A confining
region well below the finite temperature transition. The
negative plateau values away from the bulk transition at
�c��A� are consistent with what is observed in Fig. 9 and
with a vanishing free energy in the limit T ! 0 [59], since
its value rises again for decreasing �A after reaching a
minimum around �A � 0:65. Larger volumes and a better
extrapolation would be of course needed to confirm this
result.

As for the higher twists, although being proper only to
the toroidal topology they also show a surprising and
interesting behavior. Namely, we do not observe a free
energy proportional to the difference in topological index
as one would have expected if the twist observables zi;4
were independent. We indeed observe a strong correlation
among the twists in the different planes, indicating a non-
trivial interaction among vortices; as a result in the con-
fined phase, although the population of the �1 sectors for
the single zi;4 are comparable, the distribution of the �k is
such to follow the hierarchy �2=3 * �3 * �1=3� �0.
That is, for Ns � 24, � � 0:8, and �A � 0:96, we find
�0 � 0:020�1�, �1 � 0:35�5�, �2 � 0:48�4�, and �3 �
0:15�2�. Such hierarchy is quite stable with the volume
for Ns � 16. Taking into account that when calculating F
�1 and �2 need to be rescaled by a factor 3 to be compared
with sectors �0 and �3, errors are still too high within the
statistics at our disposal to allow a reliable measure of the
free energy for the tunneling other than from/to the 0
sector. Approaching and crossing the deconfinement tran-
sition the situation changes. The trivial sector starts to
dominate the partition function and the free energy to
tunnel from one sector to another becomes indeed propor-

tional to the difference in their topological index. Being the
higher sectors however exponentially suppressed in the
deconfined phase their sampling requires longer and longer
runs as �A increases; the sampling of sectors with topo-
logical index higher than one will become in practice
eventually unfeasible.

C. C� boundary conditions, monopoles, and F

An interesting alternative check of our surprising nega-
tive value for F is the evaluation of the vortex free energy
for the modified action SM needed to define the Pisa dis-
order parameter in Sec. IVA. As already discussed in
Sec. II, C� boundary conditions in the Euclidean time
direction U�x� aN�t̂� � U��x� pose no conceptual prob-
lem in our adjoint formulation. Any set of twist matrices
f�g in the fundamental representation once projected onto
the adjoint representation becomes gauge equivalent to
periodic boundary conditions [9]. Given that any set f�g
is gauge equivalent to the quaternion basis fI2; i ~�g and
since C� boundary conditions can be represented through
the action of �2 � i�2, U��x� � �2U�x��

y
2 , imposing

them makes no difference in the dynamics of twist sectors:
the configurations that can be assigned to a given twist will
simply be relabeled with respect to standard boundary
conditions. In other words the corresponding combination
of adjoint twist matrices, which would satisfy a given twist
algebra when lifted to SU�2�, gets reshuffled by the pres-
ence of i�2. A simple listing of combinations shows how-
ever that the number of states leading to the assignment of
topological sectors z � 0; . . . ; 3 remains the same.
C� boundary conditions alone therefore should not

affect the value of F for SM. There is however the bosonic
field giving rise to the Abelian monopole through its
nontrivial transformation property at the boundary
�2�SU�2�=U�1�� � �1�U�1�� � Z [35,39]; its role is far
deeper and more interesting. For a Lie gauge group G with
center K and a maximal Cartan subalgebra C, it is well
known that the Abelian monopoles classified by
�2�G=C� � �1�C� will carry center magnetic charges
classified by �1�G=K� [60]; only the ones belonging to
the kernel of �1�C� ! �1�G=K� will be nonsingular
[60,61]. For SU�N� this simply means that the N � 1
Abelian monopoles classified by ZN�1 will also corre-
spond to N � 1 ZN monopoles; their corresponding
Dirac strings (sheets in a 3� 1 Euclidean formulation)
will be in general open ZN vortices.

In the simple case of SU�2� the assignment is quite easy:
to an Abelian charge n 2 Zwill correspond a Z2 monopole
of charge mod2�n� 2 Z2. Only monopoles of charge n �
2k carry no singularity along their world line; odd charged
monopoles are singular in every gauge. The world line of
the latter saturates an open Z2 vortex, while only the
former are compatible with closed (or no) vortex sheets
[39]. Our situation is however slightly different: C� bound-
ary conditions take care of magnetic charge conservation
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by making the unit charge Abelian monopole being put by
hand into the system his own antimonopole; the Dirac
sheet of the Z2 vortex starting on the monopole ends on
itself. Such a vortex is therefore spatially closed but cut
through by a singularity along the world line of the Abelian
monopole. Moreover, such a ‘‘cut’’ cannot be gauged
around; the vortex is ‘‘pinned’’ down along one line by
the singularity. This should however not be detectable by
F: the creation of a further vortex will bring the system in a
state which for our purpose can always be assimilated to
either a 2- or 0-twist sector. This will make no difference
below the bulk transition, where the partition function is
dominated by open vortices anyway and all twist sectors
are equivalent: F should still vanish there. In the decon-
fined phase T > Tc the cost to create a further vortex
should still scale like N2

s , no matter what the background
is, so that F should become again large and positive. Only
in the confined phase of phase II, if the system prefers the
vortex background, there should be a difference between S
and SM: if in the former F is negative it should become
positive in the latter. Figure 11 shows this to be the case: in
the (singular) vortex background of the SM the system
prefers to make the creation of one further vortex more
expensive. Notice that the position of the bulk is slightly
different for S and SM, e.g. at � � 0:8 it shifts from �A ’
0:89–0:90 to �A ’ 0:92–0:93; starting our PT ensemble
right on top of it we are able to span the range of couplings
in one single run, reaching however the limits of our
acceptance rate criterion for Ns � 20. Why F turns out
roughly to be minus the half of what it was for S is not
obvious. It might be related to the nonstandard character of
the SM vortex background or to the effective superposition
of 0- and 2-twist sectors. In light of a recent proposal [62]
such an observable could also be linked to the direct
evaluation of the monopole mass.

The previous discussion offers also an elegant explana-
tion both to the sensitivity of 	 to the bulk transition and to
its nonvanishing in the low�A limit of phase II observed in
[26,31] and already discussed in Sec. IVA. Action S,
consistently with what is expected in the continuum limit,
completely suppresses the presence of Z2 monopoles, al-
lowing only topological, i.e. closed, vortices. The construc-
tion of 	 we have adopted, following [31,35], uses a unit
charged Abelian monopole, which as discussed above in-
troduces a singularity exactly through the presence of a Z2

monopole. The physical states described by S can therefore
never be equivalent to those of SM and hence the discrep-
ancy. This was already ‘‘predicted’’ in Ref. [39], where an
alternative construction using even charged monopoles
was proposed as the only one fully consistent with the
continuum pure Yang-Mills action. Singular gauge con-
figurations will not be allowed there and only genuinely
closed vortices will exist. Such modified construction
should therefore be the obvious choice for adjoint actions
and its feasibility might be worthwhile to explore. The
discrepancy in 	 observed here cannot be detected through
actions transforming with the fundamental representation:
although they should disappear in the continuum limit, Z2

monopoles are still present both with and without mono-
pole background in the range of parameters commonly
used in simulations, while the topological structure of
vortices is anyway blurred by the fixed boundary
conditions.

V. ELECTRIC FLUX AND VANISHING OF F

A few comments are in order to clarify some properties
of F discussed in the literature which could seem to be in
conflict with our result. In Ref. [8] an exact duality relation
between electric and magnetic fluxes implying the vanish-
ing of F was proved under two main assumptions: first one
must be able to define a set of regularized operators in the
fundamental representation; second the limit T ! 0 has to
be taken after the finite temperature compactification of the
time direction. As for the latter, we actually agree with F �
�T�S! 0 as T ! 0, which is almost obvious in our
formulation. The former condition has more far reaching
consequences. It was extended to finite temperature and is
indeed the key point of the derivations of many interesting
dynamical relations in Yang-Mills theories, mostly using
reflection positivity for the fundamental Wilson action on
the lattice [63]. In an adjoint discretization however ob-
servables like the fundamental Polyakov loop, the funda-
mental trace of the electric flux free energy, etc. needed to
prove such relations are all undefined. Formally their ex-
pectation values and all their correlators vanish identically.

This can be better understood within the Hamiltonian
formulation of lattice Yang-Mills theories, adapting the
exact construction of the SU�2� Hilbert space given in
Ref. [64]. Since the irreducible representations of SO�3�
are simply the integer representations of SU�2�, the Hilbert
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space of SO�3�-invariant states in each twist sector is given
by the subset of the SU�2� states described in Ref. [64]
(with corresponding t.b.c.) with all links and intertwiners
labeled by integer spins only. Since topological sectors are
automatically accounted for in SO�3� with p.b.c. we have
H SO�3� �

L
iH

i
SO�3�, i being the winding number corre-

sponding to the twist sectors, with H i
SO�3� �H i

SU�2� the
fixed twist spaces mentioned above. It is now straightfor-
ward to see how fundamental operators annihilate the
Hilbert space of SO�3�-invariant states. Let us illustrate
this by an example. Take a fundamental Wilson loop,
winding or not around the boundaries: on the SU�2�
Hilbert space such operator can be represented as a closed
string of spin 1=2 located on the corresponding links; as
proven in Ref. [64] its action on a generic SU�2� state will
generate states where the representations labeling the links
and intertwiners of interest are simply composed with the
1=2 representation via the common spin composition rules.
Since a state in the SO�3�-invariant subspace defined above
will only carry integer spins, its composition with our
operator will generate states which will necessarily carry
semi-integer representations on the links of interest, i.e. it
will not belong to H SO�3� anymore. Generalizing, the
action of a fundamental operator F on a state  �P
i�i i,  i 2H i

SO�3� will generate states living in the

orthogonal complements of H i
SO�3� in H i

SU�2�, F i 2

H i;?
SO�3� with

 H i
SU�2� �H i

SO�3�

M
H i;?

SO�3�: (18)

When the dynamics can be described by a Hamiltonian
H � Ec � V transforming under the adjoint representa-
tion,1 as it is the case for Eq. (1), it is legitimate to restrict
the whole dynamics to H SO�3�. Then obviously
FH SO�3� 	 0, which is by definition the only state in
the intersection H i

SO�3�

T
H i;?

SO�3�.
A trivial consequence of the above arguments is that

with an adjoint action reflection positivity constraints can
only be invoked for adjoint observables, ensuring e.g. that
adjoint Polyakov loop correlators will be positive definite;
constraints derived from fundamental operators will be
invalid. This concerns e.g. the reflection positivity con-
straints among fundamental Wilson loops, static quark
potential, electric flux free energy, and vortex free energy
(see e.g. Appendix I in Ref. [63]). In particular, this latter
constraint is interesting since it could seem to contradict
our result for F. Such a relation between the Fourier trans-
form of the vortex free energy and the electric flux free
energy, essential to derive the vanishing of F in the con-
fined phase, is ill defined in an adjoint theory, since it needs
the action of a fundamental maximal Wilson loop winding

around the space boundary to be established, as in Eq. (4.6)
of [8]. With an adjoint weight in the partition function
Eqs. (4.9) and (4.10) of the above reference become iden-
tically zero. Therefore the operator there given in Eq. (5.2),
although still well defined, cannot be related to the projec-
tor onto a state of fixed electric flux. Also the alternative
definition given in Ref. [32] through fundamental
Polyakov loops LF modified via a twist eater at the time
boundary is only valid in a fundamental theory (with
twisted boundary conditions). In an adjoint theory the first
line of their Eq. (15) cannot be inverted. Alternatively,
correlators of LF will in general vanish identically giving
no useful bound on their sign via reflection positivity for
the only potentially nonvanishing case of maximal dis-
placement. There is therefore no guarantee that the right-
hand side of their Eq. (16) will be positive, i.e. that it can
indeed be interpreted as the exponential of a free energy.

An electric flux operator can of course be defined also in
our adjoint model: it will simply be given by an adjoint
maximal Wilson loop winding around the space boundary.
Such an operator cannot however be related to the vortex
free energy as defined in Eq. (4).

VI. CONCLUSIONS

In this paper we have studied on the lattice at finite
temperature a pure SO�3� gauge theory, which transforms
under the actual gauge symmetry group of pure SU�2�
Yang-Mills in the continuum. Extending the analysis in
Ref. [33], we have employed the Pisa disorder operator for
monopole condensation to establish the properties of the
theory within the weak coupling phase II, which allows a
well-defined continuum limit, finding confined and decon-
fined phases separated by a transition of presumably sec-
ond order consistent with the universality class of Ising 3D.

The vortex free energy F is however found not to vanish
at T � 0 in the confined phase of SO�3�. As discussed
above, arguments for its vanishing up to Tc cannot be
applied when working with an adjoint action, so that our
result is in itself not contradictory. Moreover, the vanishing
of F in the confined phase is in general just a sufficient
condition for confinement. The full adjoint theory dis-
cussed here possesses neither center symmetry nor well-
defined fundamental observables. Only adjoint observables
make any sense, a fundamental string tension being im-
possible to calculate. There seems therefore no compelling
physical reason for the ’t Hooft vortex free energy to vanish
for T � 0, since this would be linked to an area law
behavior of fundamental Wilson loops, i.e. to the existence
of a fundamental string tension, which however loses its
meaning as soon as the specific properties of semi-integer
discretizations are lifted. Indeed, it would be surprising to
establish the existence of an order parameter for the break-
ing of a symmetry the theory does not possess [65]. This
however does not in our opinion violate universality, since
such properties are not essential to describe the dynamics

1Only the transformation properties of V need to be specified;
Ec is always diagonal with our choice of basis [64].
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of continuum pure Yang-Mills theories. Only physical
properties like deconfinement temperature and universality
class or the glueball spectrum are preserved independently
of the discretization used. Only those should therefore be
addressed in trying to establish a topological mechanism of
confinement valid both in pure Yang-Mills theories and in
full QCD. If no symmetry breaking and therefore no order
parameter is available, the properties of the phase transi-
tion can still be established through the specific heat or
other thermodynamic observables [16,17].

The nonvanishing of F implies that the dual string
tension cannot serve as an order parameter for the adjoint
theory. For this purpose it would need to vanish exponen-
tially in the thermodynamic limit in the confined phase,
while our simulations indicate that it will vanish at most as
O�N�2

s �. Our results show therefore that between the
monopole condensation parameter and the ’t Hooft vortex
free energy (i.e. a dual string tension) only the former
seems to retain all its order-parameter character indepen-
dently of the discretization used, at least once rescaled to
assume a constant value in the confined phase. This is a
simple consequence of its property to vanish exponentially
above the critical temperature, as e.g. the magnetization for
a ferromagnet. The rescaling should anyway become un-

necessary if one adopts the alternative prescriptions given
in [39]. Monopole condensation can therefore play the role
of an order parameter both for the SU�2� invariant
quenched theory, possessing center symmetry but no vor-
tex topological sectors, and for the SO�3� invariant pure
Yang-Mills theory, where center symmetry is absent.
Vortex topology does not provide there a suitable order
parameter.

Why the 0-twist sector gets strongly suppressed in the
confined phase causing vortex free energy to take a nega-
tive value, i.e. why the Yang-Mills action finds it energeti-
cally favorable to create at least one vortex, and why twist
observables in different directions hint at a nontrivial in-
teraction pattern among vortices are questions which need
to be answered and that we will try to address in the near
future.
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