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We study the phase diagram of quark matter at finite temperature (T) and chemical potential (�) in the
strong coupling limit of lattice QCD for color SU(3). We derive an analytical expression of the effective
free energy as a function of T and�, including baryon effects. The finite temperature effects are evaluated
by integrating over the temporal link variable exactly in the Polyakov gauge with an antiperiodic boundary
condition for fermions. The obtained phase diagram shows the first and the second order phase transition
at low and high temperatures, respectively, and those are separated by the tricritical point in the chiral
limit. Baryon has effects to reduce the effective free energy and to extend the hadron phase to a larger �
direction at low temperatures.
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I. INTRODUCTION

Exploring various phases of quark and nuclear matter
has recently attracted much attention both theoretically and
experimentally. In the Relativistic Heavy-Ion Collider
(RHIC) experiments, it is probable that strongly interacting
quark-gluon plasma (QGP) is created in heavy-ion colli-
sions [1]. The phase transition from hadron phase to QGP
at high temperatures and at zero baryon chemical potential
is predicted from lattice QCD [2,3], and various experi-
mental signals at RHIC suggest the formation of QGP. On
the other hand, compressed baryonic matter is created in
heavy-ion collision experiments at lower energies, and
cold and dense baryonic matter is realized in the core of
the neutron star. For these large baryon density matter,
various interesting matter forms have been proposed so
far. These states include admixture and superfluidity of
hyperons and strange quarks in neutron star core [4], the
3P2 neutron superfluidity [5], pion [5,6] and kaon [7]
condensations, color ferromagnetic state [8], color super-
conductor (CSC) [9], in addition to the formation of baryon
rich QGP [10,11].

The lattice QCD Monte Carlo simulations are possible
for hot baryon-free nuclear matter, and matter at small
baryon density [12,13] can be studied by, for example,
the Taylor expansion method around � � 0 [13,14], ana-
lytic continuation method [15], canonical ensemble
method [16], and the improved reweighting method [17].
However, properties of highly compressed matter are still
under debate [3,14–17]. This is because the fermion deter-
minant, which is used as the weight in the Monte Carlo
simulation, becomes complex at finite chemical potential
[18,19]. Thus, in order to attack the problem of compressed
baryonic matter, it is necessary to invoke some approxi-
mations in QCD or to apply some effective models [20,21].
A possible approach is to study color SU(2) QCD [12,21–
23], where the fermion determinant is still a real number
even at finite baryon chemical potential, but there are
several essential differences between color SU(2) and

SU(3) QCD. For example, the color antisymmetric diquark
pair becomes color singlet, whose nature would be very
different from those discussed in the context of CSC, and
this diquark pair is nothing but a baryon which is a boson in
color SU(2) QCD.

One of the most instructive approximations to investi-
gate the finite temperature T and chemical potential � of
QCD is to consider the strong coupling limit of lattice
QCD [21–39]. In fact, effective free energy at finite T of
strong coupling lattice QCD was analytically derived and
predicted the second order chiral symmetry restoration
temperature [28,29]. The strong coupling limit lattice
QCD effective action for finite � and zero temperature
(T � 0) was also derived with the help of lattice chemical
potential [18] and predicted a phase transition near the
density of baryonic formation [30]. These investigations
triggered many later analytic [21–23,31–37] and semian-
alytic [38] investigations of finite T and � of lattice QCD
in the strong coupling. It is worth mentioning that the
Monte Carlo numerical results of lattice QCD should
reproduce the analytic result of the strong coupling and
the qualitative nature, and even quantitative nature for
some physical values such as meson masses, are quite close
to the reality of finite coupling results [25,39].

Based on these past experiences, there have been re-
cently renewed interests of strong coupling lattice QCD as
an instructive guide to finite T and � QCD. The effective
free energy of the strong coupling limit of lattice QCD
action for SU(2) was analytically derived in [23]. The
effective free energy of finite� and zero temperature (T �
0) for SU(3) was derived by Azcoiti et al. [32], who
developed a method to decompose the coupling term of
the baryon and three quarks into the coupling terms of
diquark auxiliary field (�a) with two quarks and those of
�a with a quark and a baryon. The effective free energy at
finite T and � for SU(3) was obtained in [36], but the
baryon effects are ignored there. Thus there is no work
which takes account of both finite temperature and baryon
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effects in the strong coupling limit of lattice QCD for color
SU(3) yet.

In this paper, we study the phase diagram of quark
matter at finite temperature (T) and finite chemical poten-
tial (�) in the strong coupling limit of lattice QCD for color
SU(3). We derive an analytical expression of the effective
free energy as a function of T and �. We take account of
both the mesonic and baryonic composite terms in the 1=d
expansion of the lattice QCD action, and perform the
temporal link variable (U0) integral exactly in the
Polyakov gauge with an antiperiodic boundary condition
for fermions, while we ignore the effects of finite diquark
condensate. First, our treatment is different from the works
by Nishida [36] and Bilic et al. [34,35], who extensively
studied the phase diagram with the leading term in the 1=d
expansion containing only the mesonic composites.
Second, our formulation is different from the work by
Azcoiti et al. [32], who made the one link integral also
for U0 which is an approximate treatment at finite tem-
peratures. Third, we propose a way to include the diquark
condensate as a color singlet order parameter in
Subsection IV D, although extensive study is not carried
out and will be reported elsewhere.

This paper is organized as follows. In Sec. II, we derive
an analytical expression of the effective free energy in the
strong coupling limit of color SU(3) lattice QCD with finite
temperature and quark chemical potential. In Sec. III, we
study the phase diagram of the strong coupling limit lattice
QCD in the chiral limit. In Sec. IV, we examine the
parameter dependence of the present model and compare
our results with those in other treatments. Also we propose
a formulation to include diquark condensates in a mean
field ansatz. We stress the importance of baryon effects in
the phase diagram. We summarize our results in Sec. V.

II. EFFECTIVE FREE ENERGY IN THE STRONG
COUPLING LIMIT OF LATTICE QCD

In this section, we derive an expression of the effective
free energy in the strong coupling limit lattice QCD with
Nc � 3 with finite temperature and quark chemical poten-
tial in a mean field ansatz including the baryon effects.
Chemical potential is introduced in the same way as in
Ref. [18]. For the finite temperature treatment, we follow
the work by Damgaard, Kawamoto, and Shigemoto
[28,29], in which the antiperiodic boundary condition for
fermions is exactly treated and the integral over the tem-
poral link variable U0 is performed exactly in the Polyakov
gauge. In order to apply this technique, we have to obtain
the effective action in the bilinear form of the quark field.
Such effective actions have been derived [28,29,31,33–36]
only with the leading order mesonic composite term in the
1=d expansion for color SU(3). We utilize the idea pro-
posed by Azcoiti et al. [32] to decompose the baryonic
composite term. Throughout the paper, both of the tempo-
ral and spatial direction points on the lattice, � � 1=T and

L, are assumed to be even integers, and the lattice spacing
is set to be unity. While T � 1=� takes discrete values, the
effective free energy is given as a function of T (and �),
then we consider T as a continuous valued temperature.

A. Strong coupling limit and integral over spatial link
variables

We start from an expression of lattice QCD action with
one species of staggered fermion for color SU�Nc�. In the
strong coupling limit (g! 1), we can ignore the pure
gluonic part of the action, since it is proportional to
1=g2. As a result, the lattice action contains only those
terms including fermions, SF,

 SF�U;�; ��� � S�U0�
F �U0; �; ��� �

Xd
j�1

S
�Uj�
F �Uj; �; ���

� S�m�F ��; ���; (1)

 

S�U0�
F �

1

2

X
x

� ���x�e�U0�x���x� 0̂�

� ���x� 0̂�e��Uy0 �x���x��; (2)

 

S
�Uj�
F �

1

2

X
x

�j�x�� ���x�Uj�x���x� ĵ�

� ���x� ĵ�Uyj �x���x��; (3)

 S�m�F � m0

X
x

��a�x��a�x�; (4)

where we introduce the chemical potential � in the same
way to Ref. [18]. And �j�x� � ��1�x0�x1�����xj�1 , (j � 1,
2, 3) is a Kogut-Susskind factor. The staggered fermion �
represents the quark field, and the SU�Nc� matrix U�

represents the gauge link variable.
In the first step, we perform the group integral for spatial

link variables, Uj�x� (j � 1, 2, 3). The integral of the
leading and next-to-leading order terms in the 1=d expan-
sion leads to the following action,

 

Z
D�Uj�e

�
P

d
j�1

S
�Uj �

F �U;�; ���
’ e�S

�j�
F ; (5)

 S�j�F ��
a; ��a� � �1

2�M;VMM� � �
�B;VBB�; (6)

where the inner product of fields are defined as �A; VB� 	P
x;yA�x�V�x; y�B�y�. The mesonic and baryonic compo-

sites and their propagators are defined [25,26] as

 M�x� � ��a�x��a�x�; (7)

 B�x� �
1

Nc!
"ab���c�

a�x��b�x� � � ��c�x�; (8)
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�B�x� �
1

Nc!
"ab���c ��c�x� � � � ��b�x� ��a�x�; (9)

 VM�x; y� �
1

4Nc

Xd
j�1

��y;x�ĵ � �y;x�ĵ�; (10)

 VB�x; y� � ��1�Nc�Nc�1�=2
Xd
j�1

��j�x�
2

�
Nc
��y;x�ĵ

� ��1�Nc�y;x�ĵ�: (11)

Here we have utilized the SU�Nc� group integral formulae

 

Z
d�U�UabU

y
cd �

1

Nc
�ad�bc; (12)

 

Z
d�U�UabUcd � � �Uef �

1

Nc!
"ac���e"bd���f: (13)

The baryonic composite action � �B;VBB� is often ignored
with Nc 
 3, since it is proportional to 1=

������������
dNc�2
p

in the
1=d expansion [27]. This scaling can be understood as
follows. Mesonic and baryonic propagators contain the
sum over j � 1; 2; . . . d, and they are considered to be
proportional to d. In order to keep the mesonic term
�M;VMM�=2 finite in the large d limit, the mesonic com-
posite should be proportional to d�1=2. Then the quark
field, the baryonic composite, and the baryonic composite
action are proportional to d�1=4, d�Nc=4, and d��Nc�2�=2,
respectively. For the discussion of dense baryonic matter,
however, we expect larger baryon effects. Thus we keep
this baryonic composite action and proceed. In the follow-
ing discussion, we consider the Nc � 3 case.

B. Auxiliary fields

The effective action Eq. (6) contains six fermion terms,
while we have to obtain the effective action in the bilinear
or Pfaffian [40] form in � to perform the quark field
integral at finite temperature. In order to reduce the power
in � and ��, we introduce several auxiliary fields.

The highest power term �BB containing six quarks can be
reduced by introducing the auxiliary baryon field b through
the following identity,

 e� �B;VBB� � detVB
Z

D� �b; b�e�� �b;V
�1
B b��� �b;B��� �B;b�: (14)

Next, we decompose the coupling terms of the baryon
and three quarks by using the technique developed in [32].
We consider the following composite diquark field Da,

 Da �
�
2
"abc�

b�c �
1

3�
��ab;

Dya �
�
2
"abc ��c ��b �

1

3�
�b�a:

(15)

These are the combinations of diquark and baryon-
antiquark (antibaryon-quark) pairs, and have the color
transformation properties of �3 and 3 for Da and Dya ,
respectively. The parameter � is introduced so as to gen-
erate the coupling terms, �Bb� �bB,

 DyaDa � �Bb� �bB� Y; (16)

 Y �
�2

2
M2 �

1

9�2 M
�bb: (17)

The decomposition in Ref. [32] corresponds to � � 2. The
product DyaDa can be generated by the auxiliary field �a,
and we can replace �bB� �Bb terms as follows,

 e �bB� �Bb �
Z
d��a;�

y
a �e��

y
a�a���

y
aDa�D

y
a�a��Y; (18)

where the expectation value of �a is the same as that for
Da, h�ai � hDai.

In terms of the 1=d expansion, the baryonic auxiliary
field b is proportional to d1=4, provided that the exponent in
Eq. (14) is O�d�1=2�. Thus the second term ��b in Da is
O�1�, while the first term "abc�

b�c is proportional to
d�1=2, and we expect the dominance of the second term
for large d. This may be the reason why we need the
baryon-antiquark pair in discussing the diquark pair
condensate.

In the next step, we decompose the coupling term of the
baryon and mesonic composite, M �bb, by introducing the
baryon potential auxiliary field ! though the identity

 eM �bb=9�2
�
Z
d�!�e�!

2=2�!��M�g! �bb���2M2=2; (19)

where g! � 1=9��2 and h!i � �h�M� g! �bbi. Note
that the local four baryon term becomes zero,
�b�x�b�x� �b�x�b�x� � 0, due to the Grassmann variable na-
ture, which is a natural consequence of staggered fermion
formulation for one flavor.

Finally, we introduce the auxiliary field for chiral con-
densate. It is interesting to note that we have additional
‘‘mass’’ terms, ��2 � �2�M2=2 for the mesonic composite
M through the decomposition of baryonic composite action
by introducing the auxiliary diquark and baryon potential
fields. These terms are made of four quarks, and it is not
easy to handle in the quark integral. Therefore, we include
these terms in the hopping term

 

1
2 �M;VMM� �

1
2��

2 � �2�M2 � 1
2�M;

~VMM�; (20)

then it becomes possible to bosonize as

 e�1=2��M; ~VMM� �
Z

D�	�e��1=2��	; ~VM	���	; ~VMM�; (21)

 

~V M�x; y� � VM�x; y� � ��2 � �2��x;y: (22)

The expectation value of 	 is given as h	i � �hMi. The
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mesonic propagator ~VM has negative eigenvalues as well as
positive ones, and thus it is expected that instability is
introduced in the Gaussian integration. However in the
mean field ansatz, the vacuum expectation value of the
meson is introduced so that the next neighboring �x; x�
�̂� dependence is suppressed, which corresponds to the
suppression of �x; y� dependence in ~VM�x; y�. In this way,
we circumvent the instability, which is done in the litera-
ture and we show in the following.

After this sequential introduction of auxiliary fields, we
obtain the action of quarks, baryons, diquarks, baryon
potential, and the chiral condensate as follows,

 SF � S�X�F � S
�q�
F ; (23)

 

S�X�F �b; �b;�;�y; 	;!� � � �b; ~V�1
B b� � ��y; �� � 1

2�!;!�

� 1
2�	;

~VM	�; (24)

 S�q�F �U0; �; ��; b; �b;�;�y; 	;!�

� SU0
F � �mq;M� �

1

3�
�� ��a;�yab� � � �b�a; �

a��

�
�
2
"cab���

y
c ; �a�b� � � ��b ��a;�c��; (25)

 mq � ~VM	� �!�m0; (26)

where S�X�F and S�q�F are the action of pure auxiliary fields
and the action containing quarks, respectively. The inverse
baryonic propagator is modified as

 

~V �1
B �x; y� � V�1

B �x; y� � g!!�x;y; g! �
1

9��2 :

(27)

It is noteworthy that the quark action is decomposed into
that for each spatial point, x. Therefore, it would be good
enough to assume that bosonic auxiliary fields have con-
stant values, i.e. mean field ansatz would be valid. This
simplifies the term containing ~VM	 as follows,

 

~V M	 � a		;
1

2
�	; ~VM	� �

�L3

2
a		2; (28)

 a	 �
d

2Nc
� ��2 � �2�: (29)

C. Quark integral

In order to perform the quark integral, we would like to
separate the action into terms, each of which has as small
number of quark fields as possible. In the quark action
Eq. (25), the time component of the link variable U0

connects the quark field of different (imaginary) time,
and all the quark fields with different times couple.

This coupling is known to be separated by using the
Fourier transformation for the fermion fields [28,29]

  �x� �
1����
�
p

X�
m�1

eikm
 m�x�; (30)

 

� �x� �
1����
�
p

X�
m�1

e�ikm
 � m�x�; (31)

where  stands for � or b, and the Matsubara frequencies,
km � 2��m� 1=2�=�, are selected to satisfy an antiperi-
odic condition of fermions,  ��;x� � � �0;x�, to intro-
duce temperature effects.

We ignore the time dependence of bosonic auxiliary
fields, �, �y, !, 	 (static approximation), and we work
in the Polyakov gauge, where the link variable U0 is
diagonal and independent on time,

 U0�x; 
� � diag�ei�1�x�=�; ei�2�x�=�; ei�3�x�=��; (32)

with the condition �1 � �2 � �3 � 0. The quark action is
found to be represented in the form of Pfaffian,
 

S�q�F �
1

2

X
x;m;n
� ��am; �

a
m�G�1

ab �m; n�
�bn
��bn

 !

�
X
x;m
� �Cam�am � ��amC

a
m�; (33)

 G�1
ab �m; n; �a� �

Ba�km��ab�mn ��"cab�c�0mn
�"cab�

y
c �0mn �Ba�km��ab�mn

� �
;

(34)

 Ba�k� � mq � i sin�k� �a=�� i��; (35)

 Cam �
1

3�
�yabm; �Cam �

1

3�
�bm�a: (36)

In the first line of Eq. (33), we have used the notation
�0mn � �m;��n�1. The second term in Eq. (33) can be
absorbed into the first term by shifting the quark field at
a cost of producing another term S�C�F , which is bilinear in b
and �b,

 S�q�F �
1

2

X
x;m;n
� ��am; �

a
m�G�1

ab �m; n�
�bn
��bn

� �
� S�C�F ; (37)

 S�C�F � �
1

2

X
x;m;n
� �Cam;�Cam�Gab�m; n�

Cbn
� �Cbn

� �
: (38)

The action S�C�F appears from the baryon-quark coupling
generated by the diquark condensate, and it is very difficult
to handle with finite values of �. Another treatment to
replace this coupling by other terms will be discussed in
Subsection IV D, and we temporarily ignore S�C�F here. In
this case, by symmetrizing for m and m0 � ��m� 1 in
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Eq. (33), we obtain the block diagonal form of SqF,

 S�q�F �
X

x;a;b

X�=2

m�1

� ��am; �
a
m0 �gab�km�

�bm
� ��bm0

 !
: (39)

 g ab�k� �
B�k�ab Aab

A�ab B��k�ab

� �
: (40)

Here, �B�k��ab � �abB
a�k�, �A�ab � �"cab�c, and we

have used the relation km0 � 2�� km � �km�mod�2���.
Since ��m, �m0 are independent of each other, Grassmann
integral over �, �� leads to a determinant:

 

Z
D��; ���e�S

�q�
F �

Y
x
G�x�; (41)

 G�x� 	
Y�=2

m�1

det�gab�km�� �
Y�
m�1

det�gab�km��1=2: (42)

The G�x� is evaluated by the direct calculation of det:

 

G�x� �
Y�=2

m�1

��4�B1j�1j
2 � B2j�2j

2 � B3j�3j
2�

� �B01j�1j
2 � B02j�2j

2 � B03j�3j
2�

� �2
X

�a;b;c��cyc

BaB0aj�aj
2�BbB0c � B0bBc�

� B1B2B3B01B
0
2B
0
3�; (43)

where Ba � Ba�km�, B0a � Ba��km�. In a similar way to
that in Ref. [23], we can perform the Matsubara frequency
product

Q
m,

 G�x� �
Y
j

�1� e�i�zj�x��1=2; (44)

where zj�x� is the solution of det�gab�km�� � 0. The ex-
plicit derivation is given in Appendix A.

D. Effective free energy at zero diquark condensate

When the diquark condensate is zero, �a � 0, we know
the solutions of det�gab�km�� � 0. We can take Ba �
Ba�k� � 0 and B0a � Ba��k� � 0, and we get four solu-
tions for each a,

 i�za � �i��a � i���  �Eq�mq��; (45)

where Eq�mq� � arcsinhmq is one-dimensional quark ex-
citation energy. We can then explicitly write the quark
integral results as

 

G�x� �
YNc
a�1

��1� e�i��a�i�����Eq��1� e�i��a�i�����Eq�

� �1� ei��a�i�����Eq��1� ei��a�i�����Eq��1=2

�
YNc
a�1

2�cos��� i��� � coshEq�

�
Y
a

2�C	 � C� cos�a � iS� sin�a�; (46)

 C	 � cosh�Eq; C� � cosh��; S� � sinh��:

(47)

There are three comments on the phase of G�x� in order.
First, the square root in the quark determinant (Eq. (44)) is
the Pfaffian root [40], but it comes from the square root in
Eq. (42), where we extend the range of the Matsubara
product from �=2 to � by using the even function nature
of det�gab�km�� � det�gab��km � km0 ��. Since the phase
of the square root in Eq. (42) is defined to reproduce the
product up to �=2, there is no phase ambiguity. This is
because we can represent the quark action S�q�F in Eq. (39)
in a usual bilinear fermion action by defining a new fer-
mion field as � bm0 ;

� am0 � 	 �� ��bm0 ; �
a
m0 �, then it is not nec-

essary to introduce the Pfaffian root. Second, we may have
a phase coming from a constant in logG�x� as shown in
Appendix A, but this constant does not depend on the gluon
configurations �a�x�. As a result, we have a fixed phase for
a given spatial point x, and we get a well-defined integral
of G�x� over dU0�x�. In this way, we expect that we get
reasonable continuum limit, which we can still consider in
the strong coupling region. Third, in order to take one-
flavor fermion configuration, we have to take one quarter
root of Eq. (46), where the well-known phase ambiguity of
the complex number appears [41]. Here, we simply con-
sider a configuration with one species of staggered fer-
mion, which in general are regarded as four flavor
configurations, and do not take into account the complexity
of the four flavor feature of staggered fermion.

By using the SU(3) Haar measure in the Polyakov
gauge,

 

Z
dU0�x� �

Z d�1d�2d�3

�2��3
���1; �2; �3�; (48)

 � � ���1 � �2 � �3�
Y
i<j

�1� cos��i � �j��; (49)

the integral over U0 can be performed analytically;

 exp���L3F�q�eff � 	
Y

x

Z
dU0�x�G�x�; (50)

 F�q�eff �	� � �T log�43�C
3
	 �

1
2C	 �

1
4CNc���; (51)
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 C	 � cosh
Eq
T
; CNc� � cosh

Nc�
T

; (52)

where T � 1=� is regarded as a temperature. It is interest-
ing to find that G�x� can have a complex phase for a given
gluon configuration, but after integration over the temporal
link variables, we have a positive definite result and we do
not have the sign problem. This is one of the merits in the
strong coupling limit in which the link integral can be
performed in an analytic manner. This result is consistent
with that for SU�Nc� shown in, for example, Ref. [36],

 F�q�eff � �T log
�
sinh��Nc � 1�E=T�

sinh�E=T�
� 2CNc�

�
; (53)

while the CNc� term does not appear in the U�Nc� case
[28,29].

When the diquark condensate is zero, �a � 0, we can
ignore S�C�F , and it becomes possible to perform baryon
integral, too,

 F�b�eff �g!!� �
1

�L3 log det�1� g!!VB�:

As shown in Appendix B, we can evaluate this determinant
by using the Fourier transformation. For large spatial lat-
tice size L, by replacing the sum over k by the integral, we
get the following expression,
 

F�b�eff �g!!� ’
�a�b�0 =2

�4��3=3�

Z �

0
4�k2dk log

�
1�

g2
!!

2k2

16

�

� �a�b�0 f�b�
�
g!!�

4

�
; (54)

where a�b�0 � 1:0055, � � 1:015 02� �=2, and f�b��x� is
given as

 f�b��x� �
1

2
log�1� x2� �

1

x3

�
arctanx� x�

x3

3

�
: (55)

Since this baryon determinant term F�b�eff is independent
from T and �, it would be more convenient for the later
discussion to separate the quadratic term in ! as follows,

 

!2

2
� F�b�eff �g!!� �

1

2
a!!

2 � �F�b�eff �g!!�; (56)

 a! � 1�
3

5
a�b�0

�
g!�

4

�
2
; (57)

where �F�b�eff � O�!4� at small ! values. The second term
in a! comes from the expansion of Eq. (54).

After the quark, gluon, and baryon integral, the total
effective free energy is obtained as

 F eff �
1
2a		

2 � 1
2a!!

2 � F�q�eff �mq� � �F�b�eff �g!!�;

(58)

where mq � a		� �!�m0.

E. Stability and equilibrium condition

We have introduced two parameters, � and �, and two
auxiliary fields, 	 and !, in the derivation of the effective
free energy, Eq. (58). Since we have introduced these
parameters and fields through identities, the final results
should not depend on these parameters if all the integrals
are completed. However, we are working in the mean field
ansatz, so we may have some parameter dependence. In
principle, we should select the parameters so as to keep the
mean field ansatz valid; the effective free energy should be
stable against the variation of the fields, 	 and !, and the
effective free energy (the free-energy density) at equilib-
rium should be stationary against the variation of parame-
ters. We further require that the chiral symmetry is restored
at very high temperatures. The stability of the effective free
energy against the variation of 	 is satisfied when a	 > 0,
and the chiral symmetry restoration at very high tempera-
tures is ensured when a! > 0. The region of� and �which
satisfies both of the conditions are shown in the upper panel
of Fig. 1. The parameter dependence on parameters are
discussed in Sec. IVA.

By using the equilibrium condition, two auxiliary fields
are related to each other, then we can obtain the effective
free energy as a function of one order parameter. At
equilibrium, the effective free energy is stationary with
respect to 	 and !,

 

@F eff

@	
� a		� a	

@F�q�eff

@mq
� 0; (59)

 

@F eff

@!
� a!!� �

@F�q�eff

@mq
�
@�F�b�eff

@!
� 0: (60)

The effects of �F�b�eff is small when the fields are small, then
in this case ! can be represented by the chiral condensate
	 as

 

a!
�
! ’ 	 � �

@F�q�eff

@mq
� �

@F eff

@m0
: (61)

With this approximation for !, the effective free energy is
given as a function of 	 as

 F eff �
b	
2
	2 � F�q�eff �mq� ��F�b�eff �g		�; (62)

 mq � b		�m0; (63)

 b	 � a	 �
�2

a!
; g	 �

�g!
a!

: (64)
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With this form of the effective free energy, the meaning of
parameters are a little more clear. The constituent quark
mass is a linear function of 	, then the coefficient b	
represents the polarizability of the chiral condensate,
which is modified by the baryonic composite effects. The
parameter g	 determines the strength of the coupling of the
chiral condensate and the baryon, and �F�b�eff �g		� repre-
sents the repulsive self-interaction of 	 coming from the
baryon integral.

The parameters b	 and g	 are related to � and �, and
they have the region which satisfies the conditions of
stability and high T chiral symmetry restoration as shown
in the lower panel of Fig. 1. We notice �F�b�eff �g		� has the
positive value for any 	, hence, the smaller g	 leads to
smaller F eff . Thus, we choose those parameters to give a
small coupling g	 for a given polarizability b	. The small-
est g	 at a fixed b	 is obtained in the limit of a	 ! �0, or

�2 � �2 ! 1=2� 0. There is no singular behavior in the
effective free energy in this limit as a function of the chiral
condensate 	 in Eq. (62). For numerical calculations, we
adopt � � 0:2, which gives almost the smallest g	 as
shown by the filled circle in Fig. 1, as a typical value in
the later discussion.

III. PHASE STRUCTURE

In the previous section, we have demonstrated that the
effective action in the strong coupling limit lattice QCD
can be obtained in an almost analytic way with 1=d ex-
pansion and mean field ansatz, when the diquark conden-
sate is zero. Especially, we focus our attention to the chiral
phase transition.

In this section, we discuss the phase diagram based on
the effective free energy as a function of the chiral con-
densate in Eq. (62) in the chiral limit, m0 � 0. Since we
utilize the linear approximation (a!!=� ’ 	, see
Eq. (61)), equilibrium value of 	 slightly differs from
that of �@F eff=@m0 � �h ���i. However the difference
of those is small and only by around 1% as discussed in
Subsection III C. For numerical calculations, we adopt a
parameter choice of � � 0:2 and �2 � �2 ! 1=2, which
gives b	 ’ 0:0465 and g	 ’ 2:527. This value of g	 is
almost the smallest value allowed in this model.

A. Zero temperature

It would be instructive to analyze several limits of the
effective free energy Eq. (62). The effective free energy
from the quark integral F�q�eff depends on the temperature
and chemical potential. At zero temperature, F�q�eff can be
reduced to

 F�q�eff �mq;T ! 0; �� �
�
�NcEq �Eq > ��;
�Nc� �Eq < ��;

(65)

where Eq � arcsinhmq is a quark excitation energy. In

vacuum in the chiral limit, �T;�;m0� � �0; 0; 0�, F
�q�
eff has

a linear term in 	, while other parts of the effective free
energy start with 	2, then we necessarily have a finite
equilibrium value of 	. On the other hand, for a finite
chemical potential, F�q�eff becomes independent from 	 for
small 	, and the effective free energy start with the qua-
dratic term, b		2 in the chiral limit. Then we have a local
minimum at 	 � 0 when� is finite even if it is very small,
as shown in the bottom panel of Fig. 2. As a result, the first
order chiral phase transition occurs at the chemical poten-
tial which satisfies

 � 3��1st�
c �T � 0� � F eff�	0;T � 0; � � 0�; (66)

where 	0 stands for the vacuum equilibrium value of 	.
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FIG. 1 (color online). Parameter range which satisfies the
conditions of stability and high T chiral symmetry restoration.
The solid dot represents the parameter set, � � 0:2, �2 � �2 �
1=2� 0, which we adopt in the later discussion, and the square
shows the parameter set without baryon effects.
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B. Small chemical potentials

At finite temperatures, we can expand F�q�eff in 	2,

 

F�q�eff �b		;T > 0; �� � �T log
�C3� � 2

3

�
�

5b2
		

2

T�C3� � 2�

� �F�q�eff ; (67)

where �F�q�eff � O�	4�. In the chiral limit, the coefficient of
	2 in F eff ,

 c2�T;�� �
1

2
b	 �

5b2
	

T�C3� � 2�
; (68)

controls the second order phase transition. At zero chemi-
cal potential, this coefficient changes sign at

 Tc � T�2nd�
c �� � 0� �

10b	
3

: (69)

For lower temperatures, T < Tc, the coefficient changes
sign at a chemical potential

 ��2nd�
c �T� �

T
3

arccosh
�
3Tc
T
� 2

�
: (70)

For larger chemical potentials, �>��2nd�
c �T�, the effective

free energy has a local minimum at 	 � 0, as already
mentioned in the case of T � 0. The above critical chemi-
cal potential ��2nd�

c is shown by the dashed line in Fig. 3.
In the present model, the chiral phase transition is sec-

ond order at small chemical potentials in the chiral limit.
The coefficient c2 is a decreasing function of T for a fixed
� for�=T & 0:588. In addition, the higher order terms are
positive when the chemical potential is small,

 �F�b�eff � �F�q�eff ’ c4	
4 �O�	6�; (71)

 

c4

b4
	
�

3a�b�0

28

�
g	�

4b	

�
4
�

20T2 � 41� 150=�C3� � 2�

12T3�C3� � 2�
:

(72)

As a result, we do not have any local minimum at finite
values of 	 giving smaller effective free energy than 	 �
0. Therefore, the above Tc is the actual chiral phase tran-
sition temperature, and then the chiral phase transition is
second order at zero and small chemical potentials in the
chiral limit. The behavior of the effective free energy at
� � 0 is shown in the upper panel of Fig. 2.
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FIG. 3 (color online). Phase structure in the strong coupling
limit lattice QCD with Nc � 3. The solid and upper thick dashed
lines show the first and second order phase boundary, respec-
tively. The dashed line shows the boundary on which the
effective free energy curvature becomes zero at 	 � 0. The
dot represents the tricritical point. Chemical potential and tem-
perature are shown in the unit of Tc.
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FIG. 2 (color online). Effective potential as a function of 	.
Upper, middle, and lower panels show the effective free energies
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tively. Dots represent the equilibrium points, and dashed lines
connect these points.
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C. Phase diagram

In previous subsections, we have discussed the proper-
ties of the effective free energy at small 	 in the chiral
limit. In order to discuss the whole phase diagram, we
show the results of numerical calculations in the chiral
limit (m0 � 0) with a parameter value � � 0:2 in this
subsection.

Since the chiral phase transition is second order for
small chemical potentials and is first order for small tem-
peratures, we have to have a tricritical point (TCP) in the
phase boundary. At TCP, the finite equilibrium chiral con-
densate 	, which gives the same effective free energy as
that for 	 � 0, approaches to zero. In Fig. 2, we show the
effective free energy as a function of 	 at zero chemical
potential (upper panel), zero temperature (bottom panel),
and at the TCP temperature. We can find clear character-
istic behavior of the first order phase transition at zero
temperature and the second order phase transition at zero
chemical potential. At T � TTCP, we see a marginal trend.

In Fig. 3, we show the phase diagram. The dashed line
shows the critical chemical potential at which the coeffi-
cient of the quadratic term, 	2, becomes zero. Outside of
this dashed line, we necessarily have a local minimum at
	 � 0. At low temperatures, we have another local mini-
mum at a finite value of 	, giving a lower value of the
effective potential than that of 	 � 0. As a result, we have
three regions in the �T;�� plane: The quark-gluon plasma
phase where the chiral symmetry is restored, the region of
�<��2nd�

c �T� where we have one local minimum at a
finite value of 	, and the region ��2nd�

c �T�<�<��1st�
c

where we have two local minima.
It is interesting to find that, with the current choice of the

parameter,��1st�
c �T� smoothly decreases as the temperature

increases, and it joins with ��2nd�
c at TCP. In the present

model with one order parameter 	, the slope of ��1st�
c �T�

(i.e. d��1st�
c =dT) in Fig. 3 has to be the same as that of

��2nd�
c �T� in the vicinity of TCP. The first order phase

transition condition of equilibrium and balance with
F eff�0� can be solved as 4c2c6 � c2

4 for the effective free
energy F eff�	� � c0 � c2	2 � c4	4 � c6	6. In the vicin-
ity of TCP c2, c4 � O��T;��� are small, then the above
condition requires c2 � O���T;���2� leading to very
small c2 which should be on the second order phase
transition line, provided that c6 is finite at around TCP.
Therefore, negative slope d��1st�

c =dT < 0 around TCP is a
consequence of larger TCP temperature giving a negative
slope of ��2nd�

c , TTCP > Tx ’ 0:599Tc. The TCP tempera-
ture is a solution of a simultaneous equation of c4 � 0 and
� � ��2nd�

c �T�,

 

TTCP

Tc
�

41

25

�
1�

����������������������������������������������������������
1�

164

625
T2
c �5� 9Tcc

�b�
4 =b4

	�

s �
�1
;

(73)
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FIG. 4 (color online). Chiral condensate 	 as a function of
chemical potential and temperature. Thick lines show the phase
boundary, and the dot indicates the tricritical point. Chemical
potential and temperature are shown in the unit of Tc.
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where c�b�4 stands for the first term of c4 in Eq. (72). In the
present parametrization, the condition TTCP > Tx is satis-
fied in a wide range, 0:0864 � � � 0:563. On the other
hand, when we ignore the baryonic action, we get c�b�4 � 0,
Tc � 5=3 [36], then TTCP ’ 0:52Tc < Tx.

In Figs. 4 and 5, we show the approximate chiral con-
densate 	 and the actual chiral condensate h ���i �
@F eff=@m0 as a function of the temperature and chemical
potential in the chiral limit. At zero temperature, the ef-
fective free energy is a common function of 	 in the region
arcsinhb		 >�, and then the equilibrium value of	 stays
constant up to � � ��1st�

c . As a result, the equilibrium free
energy is a constant when �<��1st�

c , and decreases as
F eff � const� Nc�, leading to a sudden jump of the
baryon density from B � �@F eff=@�Nc�� � 0 to B �
1, which is the maximum value on the lattice. This behav-
ior is an artifact of the strong coupling limit, and it is also
found in previous works at zero temperature and finite
chemical potential [34–36,42].

At finite temperatures, 	 smoothly decreases, and sud-
denly vanishes at ��1st�

c when T < TTCP. The chiral con-
densate h ���i is almost the same as 	. This approximate
relation holds very well for small values of 	, and even for
large values of 	 around the vacuum value, the ratio
changes only by around 1%.

IV. EXTENDED EXAMINATIONS

The effective free energy derived and examined in the
previous sections seems to be reasonable, and the calcu-
lated results qualitatively agree with those in other works.
However, there are several unsatisfactory points. First, we
have to introduce two parameters, � and �. Several re-
strictions for these parameters are discussed in the previous
section, and further discussions are presented in
Subsection IVA. Second, we find quantitative differences
in some thermodynamical variables from those in other
works. In Subsection IV B, we compare the present effec-
tive free energy and other strong coupling limit models
proposed so far. Third, while we have shown that the
diquark effect appears in several aspects of the effective
free energy indirectly, it is unsatisfactory that we cannot
treat the diquark condensate directly. In Subsection IV D,
we propose an idea how to include the diquark condensate
directly in the effective free energy.

A. Parameter dependence

In the previous section, we have shown the relation
between the scaled variables such as T=Tc, �=Tc, and
F eff=Tc. This is because we can remove the major parame-
ter dependence with these scaled variables at small 	
values. Here we would like to discuss that this scaling
behavior corresponds to the modification of the lattice
spacing.

When we explicitly put the spatial and temporal lattice
spacings (a and at) in the effective free energy, we find the
following dependence,

 

F eff �
1

a3at

�
1

2
b	�a

3	�2 � �F�b�eff �a
3g		�

�

�
T

a3 logGU�ata3b		; atT; at��; (74)

where GU � exp��F�q�eff=T� �
R
dU0G�x�. The critical

temperature depends on both of at and a as Tc �
10atb	=3a2.

We require that the second order chiral restoration tem-
perature should be described independently from parame-
ter choice, when we choose the temporal and spatial lattice
spacing appropriately. Actually, the effective free energy
up to 	2, which governs the second order chiral restoration
at small �, is found to be independent from the parameter
choice for a given Tc,

 

F eff �
Tc
a3

�
3	2

a

20
� �c�F

�b�
eff

�
T
Tc

logGU

�
3	a
10�c

;
T

�cTc
;
�
�cTc

��

�
Tc
a3

�
3	2

a

20
�
T
Tc

logGU

�
�O�	3�; (75)

where 	a 	 a4	=at stands for the chiral condensate mea-
sured in the unit of at=a4 and �c � 1=atTc denotes the
temporal lattice size at the critical temperature T � Tc.
Since �F�b�eff starts from 	4 and GU is a function of
arcsinh�b		�=T and �=T, the scaled effective free energy
F eff=Tc is a function of scaled variables 	a, T=Tc, and
�=Tc when we ignore O�	3�.

The remaining parameter dependence may come from
the mean field ansatz. Thus the parameter should be chosen
in the range where the mean field ansatz is valid; i.e. the
dependence of obtained quantities is small. In Fig. 6, we
show the parameter dependence of 	 in vacuum, TTCP,
�TCP, and �c�0�, which suffer from higher order contribu-
tions of 	. Most of these quantities have extrema at around
� � 0:2 (� ’ 0:188 for TTCP, �TCP, and muc�0�, and � ’
0:193 for 	 in vacuum). In addition, we find that the
parameter dependence is not strong in the parameter range,
0:1 � � � 0:6. It is worth mentioning here that b	 is small
enough at around � ’ 0:2 and it satisfies the even integer
condition for �c � 1=aTc � 3=10b	 
 2 in a symmetric
lattice.

In Figs. 7 and 8, we show the parameter dependence of
the effective free energy in vacuum and the phase bound-
ary. In these figures, we also plot the results with the
effective free energy F �T�eff ,
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 F �T�
eff �

1

2
b�T�	 	2 � F�q�eff �mq� � Tc

�
3

20
	2 �

T
Tc

logGU

�
;

(76)

 mq � b�T�	 	�m0; b�T�	 �
d

2Nc
;

Tc �
10b�T�	

3
�

5

3
;

(77)

which is obtained by ignoring the baryon effects and
integrating over U0 exactly in a similar way to that in
Ref. [34–36]. It is clearly seen that large energy gain is
obtained with � ’ 0:2, and the phase boundary extends to
the larger � direction. When we ignore baryon effects, the
effective free energy and phase boundary with F �T�eff
roughly corresponds to those with � � 0:6 in the present
model with baryons.

B. Comparison with other treatments

While we have treated the timelike link variable U0

exactly in the previous section, the antiperiodic boundary
condition may not be very important when the temporary
lattice size, � � 1=T, is very large. In this case, it is
possible to perform the one link integral also for S�U0�

F as

other spatial action, S
�Uj�
F (j � 1, 2, 3). After introducing

auxiliary fields, b, �b, and 	, we obtain the action

 

Z
D�U�e�SF�U;�; ��� ’

Z
D�b; �b; 	�e�S

�0�
F �S

�m�
F ; (78)
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FIG. 7 (color online). Parameter dependence of the effective
free energy in vacuum in the chiral limit, �T;�;m0� � �0; 0; 0�.
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effective free energy in the present work, F �Tb�eff , with parameters
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 S�0�F ��; ��; b; �b;	� �
1

2

X
x;y

	�x�VM0�x; y�	�y�

�
X
x;y

� �b�x�V�1
B��x; y�b�y�

� 	�x�VM0�x; y�M�y��

�
X
x

� �b�x�B�x� � �B�x�b�x��; (79)

 VM0�x; y� �
1

4Nc

X3

��0

��y;x��̂ � �y;x��̂�; (80)

 VB��x; y� � VB �
1
8�e

3��y;x�0̂ � e
�3��y;x�0̂�: (81)

In the above action, quark fields completely decouple in
each space-time point, and then it is possible to perform
quark integral. For example, when we ignore the baryon
effects and carry out the quark integral, we obtain the
following effective free energy [25],

 F �0�
eff �

1
2b
�0�
	 	2 � Nc log�b�0�	 	�m0�; (82)

where b�0�	 � �d� 1�=2Nc and mq � b�0�	 	�m0. The di-
verging behavior at 	 � 0 in the chiral limit is suppressed
when we include the baryon effects in a similar way to that
in [30],

 F �0b�
eff �

1
2b
�0�
	 	2 � F�b��eff �4mq

3;T;��: (83)

The expression of the baryon integral F�b��eff is shown in
Appendix B. It is also possible to obtain the effective action
with diquark field as

 F �0bv�
eff � 1

2b
�0�
	 	2 � v2 � log�� F�b��eff �m;T;��; (84)

 � �
1

3

�
1

R2
v
�

mq
2

Rv�
2 �

2

9
v2

�
; (85)

 m �
4mq�3�2=Rv �mq

2�

�
; (86)

where Rv 	 1� v2=3. This effective free energy is essen-
tially the same as that in Ref. [32], while we use a different
notation and introduce a parameter � as in the previous
section.

These effective free energies have a similar asymptotic
behavior for large 	 in vacuum. Knowing the asymptotic
form, F�b��eff �m� ! � log2m at m! 1, we find all the
potential terms in F �0�eff , F

�0b�
eff , and F �0bv�eff , have the form

of �Nc log	� const in the large 	 limit. The effective
free energy at finite T, F �T�eff in Eq. (76), also has the
potential of the above form, since F�q�eff �	� !
� log2	�	! 1�.

In Fig. 9, we compare the effective free energies as a
function of the chiral condensate 	 in vacuum in the chiral
limit. We show the scaled effective free energies F �i�eff=b

�i�
	

instead of F �i�eff=Tc, since the chiral restoration does not
emerge with zero temperature effective free energies, F �0�eff ,
F �0b�eff , F �0bv�eff . In F �0bv�eff , the diquark condensate v is set to
be zero, as the global minimum is already reported to lie at
v � 0 [32], and the results with two parameters are com-
pared; the same parameter set as in the present work, � ����������������

1� �2
p

with � � 0:2, and the value originally adopted in
Ref. [32], � � 2. From a comparison of F �0�eff and F �0b�eff , the
main role of baryons is found to reduce the effective free
energy at small 	 values, in addition to suppressing the
diverging behavior at 	 � 0. On the other hand, in zero
temperature treatments with baryons, F �0b�eff and F �0bv�eff , we
find a bump at a small �, which separates two local
minima. This bump comes from the slow startup of the
baryon contribution proportional to 	6 at small 	 in F �0b�eff ,
and from a cancellation between � log� and F�b��eff �m� in
F �0bv�eff . In a finite temperature treatment, F �T�eff , reduction
effect is smooth, and we find only one local minimum. The
effective free energy in the present work, F �Tb�eff � F eff in
Eq. (62), is smaller than those in other treatments except
for F �0bv�eff with � � 2, with which the effective free energy
becomes unstable in a finite temperature treatment. The
large energy gain in F �Tb�eff may partly come from the
scaling of F eff=b	, since the b	 in this work is the smallest
among the models compared here. In order to compare the
absolute values of the effective free energy more seriously,
it would be necessary to fix the lattice spacing and thus the
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FIG. 9 (color online). Comparison of effective free energies in
different treatments. Thin solid, dotted, long-dashed, and short-
dashed lines show the effective free energies F �0�eff , F

�0b�
eff , F �0bv�eff ,

and F �T�eff , respectively. For F �0bv�eff (long-dashed), we show the

results with two parameters; � �
��������������������
1=2� �2

p
� 0:2 (thick) and

� � 2 (thin). The thick solid line indicates the effective free
energy in a finite temperature treatment with baryon effects
(F �Tb�eff , present work). We show the results in vacuum in the
chiral limit, �T;�;m0� � �0; 0; 0�.
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energy scale and to include the effects of the higher order
contribution in the 1=d expansion.

C. Expected evolution of the phase diagram

One of the common problems in the strong coupling
limit is the too small critical chemical potential �c�T � 0�
relative to Tc � Tc�� � 0�. In Table I, we compare the
ratio of the critical baryon chemical potential at zero
temperature with respect to the critical temperature at
zero chemical potential, R�T 	 3�c�T � 0�=Tc. All the
models based on the strong coupling limit give much
smaller values for this ratio, R�T < 1:5, than the empirical
value R�T � �1–2� GeV=170 MeV ’ �6–12�. In the
Monte Carlo simulations at finite quark chemical potentials
with finite 1=g2, it is not yet possible to obtain �c�T � 0�,
but larger R�T values are suggested. For example, several
Monte Carlo methods are in agreement with each other for
small quark chemical potentials �=T < 1 [13–17], and the
critical temperature for these chemical potentials are large
enough, Tc���=Tc�� � 0� * 0:9, implying that R�T � 3.

Thus for a quantitative discussion, the strong coupling
limit in the chiral limit with one species of staggered
fermion is not enough, and it is necessary to take care of
finite quark mass m0, multistaggered fermions, finite 1=g2,
other order parameters than the chiral condensate, and/or
other mechanisms towards the real world in order to ex-
plain large �c�T � 0� relative to Tc, as illustrated in
Fig. 10. With finite quark mass m0, the effective free
energy F eff always has a minimum at finite 	, then the
second order boundary becomes crossover and the TCP
becomes the critical end point (CEP). In addition, since the
finite quark mass m0 increases the baryon mass which is
closely related to �c�T � 0� [30], finite m0 is believed to
increase �c�T � 0�, as shown, for example, in Ref. [36].
With multistaggered fermions, Tc is suppressed as dis-
cussed in Ref. [34]. It would be natural to expect that Tc
decreases as 1=g2 grows, because hadrons and glueballs
are more bound at larger couplings and thus the hadronic

phase would be the most stable in the strong coupling limit.
We further expect that the finite coupling effects appear
most strongly at� � 0, where the role of gluons relative to
quarks is the largest. Actually in Ref. [35], it is shown that
Tc��� decreases as 1=g2 increases, and this reduction is
more rapid at � � 0 than at finite �.

With other order parameters than the chiral condensate,
the phase diagram will have a richer structure. In
Subsection III C, we have discussed that the slope of
��1st�
c (see Fig. 3) has to be the same as that of ��2nd�

c at
the vicinity of TCP in the chiral limit with one order
parameter. For this point, there is a debate between two
Monte Carlo simulations, one of which suggests the
smooth connection of crossover boundary and the first
order boundary [14–16], and the other suggests a finite
difference in slope [17]. Provided that the nature of TCP
remains in CEP even with finite quark mass, our discussion
in Subsection III C supports the former if there is only one
order parameter. However, both of the above two results
can be consistent if there are other order parameters than
the chiral condensate. A smooth connection is expected for
chiral transition in methods based on the analyticity [14–
16], while we may see other transition in a direct
Monte Carlo method at finite chemical potentials [17].

D. Color angle average in diquark condensate

In deriving the effective free energy in Eq. (62) we have
assumed that the diquark condensate takes zero values,
�a � 0. If we ignore the diquark-gluon-baryon coupling
S�C�F in Eq. (38), it is possible to obtain the solution of
det�gab�km�� � 0 and the integral over U0 numerically.
With S�C�F , however, since U0 depends on x and baryon
fields are spatially connected through ~VB, we have to carry
out the integral of baryon determinants over 2L3 dimen-
sional variables in U0�x�. In this subsection, we would like
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FIG. 10 (color online). Expected phase diagram evolution
from the strong coupling limit in the chiral limit with one species
of staggered fermion towards the real world.

TABLE I. Ratio of the critical chemical potential at zero
temperature �c�T � 0� and the critical temperature Tc �
Tc�� � 0� in strong coupling models. In F �0b�eff , we have as-
sumed Tc � 5=3 to obtain the ratio. For the results in Ref. [34],
values of critical lattice anisotropy a=at and that multiplied by �
are taken for the number of staggered fermions, f � 1, 2, and 3.

Model Tc �c�T � 0� 3�c�0�=Tc

F �0b�eff [30] 0.66 1.19 (Tc � 5=3)

F �T�eff [36] 5=3 0.33 Tc 0.99

F �Tb�eff 10b	=3 0.45 Tc 1.34 (� � 0:2)
Ref. [34] 2.57 0.57 0.67 (f � 1)

2.19 0.57 0.78 (f � 2)
2.07 0.57 0.83 (f � 3)

Empirical 170 MeV �1–2�=3 GeV ��6–12�
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to show an idea to solve this problem in a case with one
species of staggered fermion.

Since the diquark field�a is not color singlet, its average
over the color space should be zero. Thus we cannot treat it
as an order parameter. One of the ways to remedy this

problem is to carry out the integral of the ‘‘color angle’’
variables in �a, then only the color singlet combination
v2 � �ya�a remains. It is possible to carry out this color
angle average in a straightforward way,

 �
exp

�X
a

��yaDa �D
y
a�a�

�	
v
�

�Y
a

�
1��ya�aD

y
aDa �

1

4
��ya�a�

2�DyaDa�
2

�	
v

� 1�
X
a

h�ya�aivD
y
aDa �

1

4

X
a

h��ya�a�
2iv�D

y
aDa�

2

�
X
a<b

h��ya�a���
y
b�b�iv�D

y
aDa��D

y
bDb�

� 1�
v2

3

X
a

DyaDa �
M3 �bb

54

��X
a

�ya�a

�
2
	
v

� exp
�
v2

3

X
a

DyaDa �
v4

162
M3 �bb

�
: (87)

Here we explicitly show the sum or product over color
indices, and h� � �iv means the color angle average. When
we integrate over the phase variable for each �a, we only
have those terms having the same power of �a and �ya as
shown in the second line. The power of the diquark com-
posite Da and Dya is limited to four as shown in the third
line by the Grassmann nature. For example, the power four
terms such as

 

1
2 �D

y
1D1�

2 � �Dy1D1��D
y
2D2� � �

1
27M

3 �bb; (88)

already contain all the Grassmann variables, and the prod-
uct with other Da or Dya vanishes. By using Eq. (88), we
find that the fourth order terms in Da and Dya can be
arranged in the form of �

P
�ya�a�

2 � �v2�2. In the second
order terms, we use the symmetry for each color index, for
example, h�y1�1iv � v2=3.

Unfortunately we again have the term containing the
coupling of the three-quark and baryon, �bB� �Bb, from
DyaDa � Y � �bB� �Bb (see Eq. (17)),
 

exp� �bB� �Bb� �
Z

D�v�e�v
2�Yhe�

yD�Dy�iv

�
Z

D�v�e�v
2�Y�v2� �bB� �Bb�Y�=3�v4M3 �bb=162

/ ev
2� �bB� �Bb�=3�v2�RvY�v4M3 �bb=162; (89)

 Rv � 1� v2=3: (90)

In the third line, we have assumed that the integral in the
right-hand side (r.h.s.) can be approximated by the repre-
sentative value of v. This approximation would be valid
when the diquark condensate is strong. In this mean field
ansatz, then we can solve this self-consistent relation as
follows,

 eRv� �bB� �Bb� ’ e�v
2�RvY�v4M3 �bb=162; (91)

where we have ignored the constant shift in the exponent.
As a result, we obtain the following relation,

 exp� �bB� �Bb� ’ exp
�
�
v2

Rv
�
v4M3 �bb
162Rv

� Y
�
: (92)

Coupling terms of Mn �bb can be bosonized by introducing
n bosons, whose expectation values are related to the
product of �qq pair and �bb pair Mk �bb, h!ki � ��khMi �
�khMk �bbi, in a similar way to that in Sec. II. After in-
troducing three auxiliary fields,!2,!1,!0, it is possible to
carry out the Grassmann variable integral, b and �, and we
obtain the effective free energy,

 F �Tbv�
eff � FX�	; v;!i� � F

�b�
eff �g!!� � F

�q�
eff �mq�; (93)

 FX �
1

2
�a		2 �!2 �!2

1 �!
2
2� �

v2

Rv
; (94)

 a	 �
1
2� �

2 � �2 � �2
1 � �

2
2; (95)

 mq � a		� �!� �1!1 � �2!2 �m0; (96)

 g! �
1

9��2

�
1�

�2v4!1!2

18�1�2Rv

�
: (97)

Here we have replaced !0 � ! and �0 � �.
With zero diquark condensate, the effective free energy

F �Tbv�eff in Eq. (93), has a similar structure to F eff in
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Eq. (62). Specifically, when we take the linear approxima-
tion in the same way to that in Eq. (61), we find that the
chiral condensate polarizability and the coupling constant
are the same as before, b�Tbv�	 � b	, g�Tbv�	 � g	 defined in
Eq. (64), and we obtain the same effective free energy as
before defined in Eq. (62),
 

F �Tbv�eff �v � 0� ’ 1
2b
�Tbv�
	 	2 � F�q�eff �b

�Tbv�
	 	�m0�

��F�b�eff �g
�Tbv�
	 	� � F eff : (98)

This equivalence may serve a cross check of the effective
free energy derived in Sec. II.

On the other hand, there are no potential effects propor-
tional to v2 while we have a quadratic term in FX, then we
will not have any second order phase transition to the
diquark condensed state. This comes from the cancellation
in Eq. (92) in the case of one staggered fermion. A detailed
analysis of the effective free energy Eq. (93) and its ex-
tension with multistaggered fermions [29,34] will be re-
ported elsewhere.

V. SUMMARY

In this work, we have studied the phase diagram of QCD
for color SU(3) at finite temperature (T) and finite chemi-
cal potential (�) by using an effective free energy derived
in the strong coupling limit including baryon effects. We
have adopted the effective action up to the next-to-leading
order of the 1=d expansion (O�1� and O�1=

���
d
p
�), and by

using the mean field ansatz, an analytical expression of the
effective free energy is derived. The baryonic composite
term in the effective action is decomposed into the terms
consisting of diquark condensates, baryons, and quarks
[32]. By introducing auxiliary fields of the baryon, diquark,
baryon potential, and chiral condensate, we have obtained
the effective action in the bilinear form of fermions. Then
the Grassmann integral of quarks and the sum over the
Matsubara frequency can be carried out exactly, provided
that the solution of det�gab�km�� � 0 is obtained. At zero
diquark condensate, we can further perform the integral
over the temporal link variables and baryon fields
analytically.

This is the first trial which introduces baryon and finite
temperature effects simultaneously in the strong coupling
limit of lattice QCD for color SU(3). It is important to note
that baryon has effects to reduce the effective free energy
F eff as shown in Fig. 7 and to extend the hadron phase to a
larger � direction at low temperatures as shown in Fig. 8,
when F eff , �, and T are measured relative to Tc. We may
expect that this feature remains in the realistic parameter
region of finite 1=g2. It would then be interesting to com-
pare the phase boundary behavior between SU(3) and U(3)
to examine the baryon effects in this parameter region.

The obtained phase diagram has the second order phase
boundary at small chemical potentials, and the first order
phase boundary at small temperatures separated by a tri-

critical point. This feature is the same as that in previous
works, but the ratio of the critical baryon chemical poten-
tial at zero temperature with respect to the critical tem-
perature at zero chemical potential, R�T 	 3�c�T �
0�=Tc�� � 0�, is found to be much smaller than the em-
pirical value or that suggested in Monte Carlo simulations.
Small R�T is a common feature in models based on the
strong coupling limit, and it would be necessary to extend
in the direction of the reality axes in Fig. 10 for a quanti-
tative discussion. On the other hand, we expect that
Monte Carlo simulations should reproduce the strong cou-
pling results of the phase boundary including the small
value of R�T at a large value of g.

Finally, we have proposed a method, color angle average
in colored auxiliary fields, which enables us to extract a
color singlet order parameter and to include the diquark
condensate explicitly in the effective free energy.

One of the problems which we have found in this work is
the parameter dependence of the effective free energy F eff .
During the bosonization, we have introduced two parame-
ters, � and �. Since these are introduced through identities,
the results should not strongly depend on the parameter
choice and in fact we have shown that we can absorb a
major parameter dependence of F eff at small 	 values,
which determines the second order chiral transition, in the
choice of the lattice spacing. For the remaining parameter
dependence, we have required that the scaled effective free
energy F eff=Tc in vacuum becomes as small as possible,
and we have adopted � � 0:2 and �2 � �2 � 1=2� 0.
This choice of parameters results in the temporal lattice
spacing of �c � 1=aTc�� � 0� ’ 6:45 in a symmetric
lattice. However, we have learned that 1=aTc�� � 0� is
not large and less than two in the strong coupling
Monte Carlo simulations with one species of staggered
fermion (without quarter root of the quark determinant as
in the present work) [43]. It means that the parameter
region, 0:5 � � � 0:6, is preferred, rather than � ’ 0:2.
Considering these situations, we have to agree that the
baryonic effect on the phase diagram delicately depends
on the choice of the parameter �, and it is desired to find a
general procedure to determine them.

There are several future issues to be studied further: The
first one is an extensive analysis of the effective free energy
at finite quark masses and/or with diquark condensates.
Second, an interesting and promising direction is to con-
sider multispecies of staggered fermions, since color su-
perconductor is expected to emerge at high densities when
multiquark flavors are introduced [9].
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APPENDIX A: SUM OVER THE MATSUBARA
FREQUENCIES

The quark determinant G�x� that appeared in Eq. (43) is
an even function of km, then it may be expressed as a
polynomial of coskm,

 G�x� 	
Y�=2

m�1

det�gab�km�� �
Y�
m�1

det�gab�km��1=2

�
Y�
m�1

Y6

j�1

�coskm � rYj�x��1=2;

where r � 1. The derivative by r reads

 

d logG�x�
dr

�
1

2

X
m;j

�Yj
coskm � rYj

�
1

2�

X
j

�I dz
2�i

�Yj
cosz� rYj

�i�

1� ei�z
�
X
zrj

�Yj
� sinzrj

�i�

1� ei�z
r
j

�

�
i�
2�

X
j;zrj

Yj
sinzrj

1

1� exp�i�zrj�
�
�i�
2�

X
j;zrj

dzrj
dr

1

1� exp�i�zrj�
�

d
dr

1

2�

X
j;zrj

log�1� exp��i�zrj��: (A1)

In the contour integral, we have contributions from z � km
poles as well as z � zrj, whose sum becomes zero. Here zrj
is the solution of cosz � rYj, and � stands for the degen-
eracy for zrj��2n�i�. In the second line from the bottom in
Eq. (A1), we have used the relation

 

d coszrj
dr

� � sinzrj
dzrj
dr
� Yj: (A2)

Now we obtain logG up to a facto.

 logG�x� �
1

2

X
j

X
zj

log�1� exp��i�zj�� � const: (A3)

The sum over zj is understood as we ignore the degeneracy
2n�i, but we still have two solutions in a pairwise way,
zj, since zj is the solution of cosz � Yj. We choose one
of them as a principle value.
 

logG�x� �
1

2

X
j

log��1� e�i�zj��1� ei�zj�� � const

�
1

2

X
j

log�1� cos�zj� � const: (A4)

We ignore the constant terms in logG�x�, and we get G�x�
as follows,

 G�x� �
�Y

j

�1� cos�zj�x��
�

1=2
: (A5)

APPENDIX B: BARYON INTEGRAL

In this appendix, we show how to obtain the baryon
determinant det�1�!VB�.

First, we make a Fourier transformation of baryon field

 bm�x� �
1������
L3
p

X
k

eik�xbmk; k �
2�
L
�k1; k2; k3�: (B1)

The staggered factor �j�x� in VB connects four different
momenta

 k�1� � �k1; k2; k3�; k�2� � �k1 � �; k2; k3�;

k�3� � �k1 � �; k2 � �; k3�; k�4� � �k1; k2 � �; k3�;

(B2)

and two different frequencies,m andm� �=2. As a result,
VB is found to be block diagonal,

 

X
m;n;k;k0

� �bmk; VBbnk0 � �
XL=2

k1;k2�1

XL
k3

X�=2

m�1

�bm �b0m

 �

�
0 S�k�

S�k� 0

� �
bm
b0m

� �
; (B3)

where bm represents the baryon field with four different
momenta

 b m � �bmk�1� ; bmk�2� ; bmk�3� ; bmk�4� �; b0m � bm��=2:

(B4)

The matrix S represents how these different momentum
states are connected through �j,

 S � �
i
4

sink1 sink2 sink3 0
sink2 � sink1 0 sink3

sink3 0 � sink1 � sink2

0 sink3 � sink2 sink1

0BBB@
1CCCA: (B5)

It is interesting to find that the square of S becomes a
c-number,

 S � S � �
1

16
s21;

�
s2 �

X3

j�1

sin2kj

�
: (B6)

Now we can evaluate the baryon integral
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 exp���L3F�b�eff � 	 detVB
Z

D�b; �b� exp��� �b; ~V�1
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For very large spatial lattice size L, we can replace the sum by the integral

 F�b�eff �!� � �
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� �
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’ �
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� �a�b�0 f�b�

�
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4

�
: (B8)

In the fourth line, we have made an approximation to replace the average in a box to that in a sphere. With this
approximation, the effective free energy from the baryon integral can be represented by a function f�b��x�,

 f�b��x� 	
3

2x3

Z x

0
k2dk log�1� k2� �

1

2
log�1� x2� �

1

x3

�
arctanx� x�

x3

3

�
: (B9)

From numerical studies, following the normalization factor and the cutoff,

 a�b�0 � 1:0055; � �
�
2
� 1:015 02 (B10)

are found to give a good global fit of F�b�eff .
The baryon determinant F�b��eff in Eqs. (83) and (84) can be also evaluated by using a similar technique shown here. We

show only the results here,

 F�b��eff �m;T;�� 	 �
T

L3 log det�m=4� VB�� � �
T

2L3

X
k0;k

log�m2 � sin2�k0 � 3i�� � s2�

� �
T

L3

X
k

log�cosh�� arcsinh
�����������������
s2 �m2

p
� � C3��; (B11)

where s2 �
P3
j�1 sin2kj. In the numerical calculations in Subsection IV B, we have adopted the following approximation

assuming that the spatial lattice size L is large enough and that the average in a cubic box can be well approximated by the
average in a sphere,

 F�b��eff �m;T;�� ’ �a�b��0 T
3

4��3

Z �
dk log�Cb�k; m� � C3��; (B12)

 Cb�k; m� � cosh�� arcsinh
������������������
k2 �m2

p
�; (B13)

where the simple ansatz a�b��0 � 1 and � � �=2 are used in the numerical calculations shown in Subsection IV B.
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