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We address the problem of determining the type I, type II or borderline dual superconductor behavior in
maximal Abelian gauge SU�2� through the study of the dual Abrikosov vortex. We find that significant
electric currents in the simulation data call into question the use of the dual Ginzburg-Landau Higgs
model in interpreting the data. Further, two definitions of the penetration depth parameter take two
different values. The splitting of this parameter into two is intricately connected to the existence of electric
currents. It is important in our approach that we employ definitions of flux and electric and magnetic
currents that respect Maxwell equations exactly for lattice averages independent of lattice spacings.
Applied to specific Wilson loop sizes, our conclusions differ from those that use the dual GLH model.
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I. INTRODUCTION

In the search for simplicity in the physics of color
confinement, lattice gauge theory models have been
studied extensively for a clue to a mechanism or an under-
lying principle governing the phenomenon. Spontaneous
gauge symmetry breaking (SGSB) of the dual U�1�, and
the resulting condensation of U�1� monopole currents,
defined after appropriate gauge fixing, remains a candidate.
The persistent monopole currents of dual superconductiv-
ity in pure U�1� lattice models leads to confinement of
charge. There has been some success in the postulate of
Abelian dominance in correlating monopoles and confine-
ment physics but no breakthrough in uncovering a defini-
tive mechanism. There are a number of reviews of the
subject [1–9]. Some of the principal directions include
accounting for string tension in Abelian Wilson loops
[10,11], similarly for monopole dominance of Wilson
loops [12,13], correlating percolating monopole clusters
and confinement [14–17], spontaneous gauge symmetry
breaking (SGSB) of dual U�1� symmetry of the vacuum
[18–20], the dual Ginzburg-Landau Higgs (GLH) model
[21,22] and studies of the structure of the dual Abrikosov
vortex in the confining string [23–31] modeled by the dual
GLH model.

Truncation to relevant variables invariably leads to sys-
tematic errors. Ambiguities due the requirement of fixing
the gauge [32–36] and Gribov copies [37] contribute to
these perennial problems. Further it is difficult to see how
this mechanism alone can explain all aspects of color
confinement in arbitrary systems. Nevertheless one can
argue that the well established phenomena can be part of
a larger picture.

One possibility is that we are seeing SGSB as a general
principle rather than just a confining mechanism. The Pisa
group [18–20] has given extensive evidence for this
through QCD vacuum studies of the deconfining transition.
SGSB also manifests itself in the existence of a dual
Abrikosov vortex in the confining string [23–31]; a com-
plementary approach giving rather direct evidence for the
same principle which is the subject of this paper.

The dual Ginzburg-Landau Higgs model has provided
much insight into the physics of dual superconductivity
[21–31]. Bali et al. [27,28] presented the first large lattice
simulation of the dual Abrikosov vortex adding credibility
to this approach to dual superconductivity. They employed
techniques to select the best Gribov copy [37]. In addition
to improving the gauge fixing, this technique reduces noise
coming from the randomness of false maxima. Gubarev
et al. [29] found improvement over the fit of Bali et al. by
using the numerical solution of a lattice version of the dual
GLH model. They concluded that dual superconductivity
type lay on the borderline of type I and type II. Koma et al.
[30,31] went further and checked that the results obey
scaling. They also argue for a decomposition of the vortex
into a photon part and monopole part. Whereas previous
work used a two-dimensional model of the vortex, Koma
et al. fit to a numerical solution of a three dimensional
lattice model. Both Bali et al. and Koma et al. concluded
the theory is described by weakly type I dual
superconductivity.

We present results showing that the strengths of the dual
GLH model are accompanied by weaknesses when applied
to the interpretation of the simulation of this theory in the
standard simulation window. Namely, there are identifiable
parameters in the simulation taking different values that are
equal by default in the dual GLH model. This will inevi-
tably increase systematic errors. Also, in addition to the
well-known area effect of confining magnetic currents, we
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show there is a significant perimeter effect of circulating
electric currents which is absent in the model. Although
these electric current effects are expected to vanish for
Wilson loop sources of very large spacial and temporal
sizes, we show they can have an impact on the determi-
nation of the type I vs type II dual superconductivity for
fixed loop sizes. The added parameter and the electric
currents are intricately related.

In order to explore these issues we present an analysis
that does not depend on the details of the dual GLH model.

We regard the question of type I, type II or borderline to
be the most interesting issue in these studies and we believe
it can not be answered using analysis based on the dual
GLH model. Let us put off that question and answer a
simpler one. What is the apparent type I/II behavior when
the system is probed by a specific Wilson loop? And then
look at increasingly large Wilson loops to speculate on the
behavior of the continuum dual superconductor. We find it
likely that type II behavior goes away as one goes to larger
quark separations and better suppression of excited states.
But this is by no means definitive. Type I brings with it
special problems which are difficult to address as we will
explain.

Since the primary goal is to describe the total electric
flux and the profile of the vortex as well as possible we
consider it a top priority that our analysis satisfies Maxwell
equations exactly for lattice averages. This removes the
arbitrariness in the choice of lattice operators.

With this background, there are in our opinion a number
of reasons to revisit the dual vortex problem. Let us sketch
here the main issues presented in this paper:

A. London relation in superconductivity

It is the lure of a general principle that draws us to
further studies of the dual Abrikosov vortex in this paper.
Let us first recall how this works in superconductivity [38]
since this is the guide to the analysis of the simulation data.
Consider an infinitely long static Abrikosov vortex. Recall

 J �e� � e=f���r � ieA��g;

where� is the complex superconductivity order parameter.
Further consider SGSB of U�1� via

 � � veie!�x�; v constant: (1)

Then

 J �e� � �e2v2�A�r!�

and the curl of this gives the London relation

 B � ��2 curlJ�e�; � � 1=ev: (2)

Equation (1) is the case for an extreme type II supercon-
ductor but it is also valid deep inside a type II supercon-
ductor far from a boundary where the complex phase
degree of freedom of the order parameter dominates over

the modulus. (The order parameter is governed by a
‘‘Mexican hat’’ potential inside the superconductor and
by a symmetric paraboloid potential in the normal mate-
rial. The spacial ‘‘kinetic energy’’ term excites the radial
degree of freedom in the transition region.)

To construct a vortex with one unit of quantized mag-
netic flux assume that the phase of the order parameter
increases by 2� as the azimuthal angle ’ makes one
complete path around the vortex at large transverse dis-
tances where the current is exponentially small. Then

 

I
A � d‘ �

I
r! � d‘; (3)

 �m �
Z
B � dS �

2�
e
: (4)

A source consisting of a hypothetical Dirac monopole-
antimonopole pair would generate an Abrikosov vortex
between them containing one unit of quantized magnetic
flux, �m, which is equal to the monopole magnetic charge.
All the magnetic flux from the magnetic monopoles is
accounted for in the vortex.

To complete the picture using Ampere’s law, Eq. (2)
becomes

 B � �2f�@2
x � @2

y�B�r�r �B�g: (5)

There are two important aspects of this that we wish to
note. First, since r � B � �m � 0, the square root of the
proportionality factor in the London relation is clearly the
penetration depth in the superconducting material. The
Ginzburg-Landau model describes real materials hence
has vanishing magnetic charge. In the four dimensional
version, the GLH model, this is also true.

Second is that the exterior solution to Eq. (5) is the
Bessel function K0�r=��. This solution is applicable as
long as the superconducting order parameter ramps up
from the normal to the superconducting asymptotic value
on a shorter length scale than the penetration depth, i.e.
type II. Then sufficiently deep in the superconducting
medium the tail of the penetrating flux is described by
Eq. (5).

However if the penetration depth is shorter than the
characteristic ramp-up length, i.e. type I, then there is no
regime for which the K0�r=�� solution is applicable. There
is not an easy fix. The complication here is that the surface
energy between the superconducting and normal material
flips sign [39] and an instability develops. It is energeti-
cally favorable to make surfaces and the behavior of the
penetrating flux changes dramatically [40] See Tinkham
[38] for a thorough treatment of the very different physics
of the type I ‘‘intermediate state’’ and the type II ‘‘mixed
state.’’ The solutions of the GL model for type I super-
conductivity in which magnetic flux penetrates material
involves fractals on many length scales [41].
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B. Exact electric Maxwell equations

The above picture translates nicely to a U�1� lattice
gauge theory in which a charge-anticharge pair arising
from an Abelian Wilson loop produces a dual Abrikosov
vortex. More specifically, Zach, Faber, Kainz, and Skala
(ZFKS) [42], using a lattice Ward-Takahashi identity,
found a specific lattice operator for electric flux giving
the exact electric Maxwell equation for lattice averages
independent of lattice spacing a. For example in this for-
mulation the divergence of the electric field is zero every-
where except on the Wilson line sources where it is equal to
the charge e (see Sec. II B). Therefore using the ZFKS
definition the total flux in the vortex, �e, is determined
exactly by the charge on the Wilson loop in the lattice
system which is of course the gauge coupling e.

In 1998, DiCecio, Hart, and Haymaker (DHH)[43],
generalized the ZFKS result to SU�2� in the maximal
Abelian gauge. This case is complicated by the existence
of dynamical electric currents in addition to the static
source. The extra contributions come from the doubly
charged vector matter fields, from the effects of gauge
fixing and from ghosts. Nevertheless by using the DHH
definition, the total flux, �SU�2� in the vortex is again an
exact reflection of all contributions to the charge
distribution.

We consider three definitions of flux in this paper,
ZFKS, DHH, and DeGrand-Touissant [44] (DT) and find
that to a good approximation they give the same vortex
profiles, but differ by a constant scale factor. Bali et al. [27]
did not state their definition but since they used the DT
construction for the magnetic monopoles, it is reasonable
to assume they used the same definition for the electric flux
profile. Koma et al. [31] used the DT definition throughout.
For our DHH definition, and for � � 2:5115 we find the
scale factor differs by 40% from the DT definition.

C. Consistent magnetic Maxwell equations

One can then also get a consistent exact magnetic
Maxwell equation by adopting the same definition of flux
in defining the magnetic current [45]. This is not the
conventional procedure. The conventional one is the DT
construction which identifies cubes with quantized mono-
poles. By using the DHH flux instead, the current is con-
served but is not quantized in cubes. Rather it is smeared
out among neighboring cubes.

The magnetic Maxwell equations determine the solenoi-
dal persistent magnetic currents that determine the shape of
the vortex.

These deviations from the more standard definitions are
clearly tailored for this vortex problem. The lattice ap-
proach allows an infinite variety of definitions as long as
they approach the same continuum limit. We argue in
Sec. II how the DHH formulation might approach the
standard discrete monopole picture in the continuum limit.
However the DT definition is perhaps the only one that can

describe percolating clusters [14–17] since their definition
depends on the discretization of magnetic charge. We use
the DT definition here for the dual vortex problem as a
digression from the main body of this work. We see that it
gives support to the truncation that retains only the perco-
lating cluster.

The three definitions of flux considered in this paper are
applied to the magnetic current and again to a good ap-
proximation give the same vortex profiles but differ from
each other by a constant scale factor.

D. Model-independent analysis

We chose to analyze the data in such a way as to test the
SGSB of dual U�1� independent of specifics of the dual
GLH model. The model commits to a quartic interaction.
And it has vanishing dynamical electric currents. For gauge
fixed SU�2� we determine a value of �d which satisfies a
London equation asymptotically in the tail of the profile
giving direct evidence for SGSB of dual U�1�. That is,
considering the vortex aligned along the z axis

 Ez � ��2
d�curlJ�m��z: (6)

This argument does not depend on specifics of the solu-
tions of the nonlinear equations of the GLH model.

Next consider the profile of the fluxoid [46] Ez

 E z � Ez ��2
d�curlJ�m��z: (7)

The leading decaying exponential behaviors Ez, curlJm 	
e�r=�d , should cancel giving a subleading behavior Ez �
�2
d curlJm 	 e�r=�d . In an extreme type II dual supercon-

ductor the fluxoid would vanish exactly except on the axis
of the vortex where the system is ‘‘normal,’’ i.e. the order
parameter is zero. In our case the order parameter ramps up
over a finite distance and we see a second exponential
behavior after cancelation which defines the length scale
corresponding to the violation of the London relation, i.e.
the dual coherence length �d [47,48]. In this way we can
estimate the three parameters �d, �d and �d as long as
�d > 1, i.e. type II, where [49]

 �d �
�d
�d
: (8)

This analysis of estimating exponential behaviors is
applicable only if �d > �d since only then can one asso-
ciate the two exponential behaviors with the parameters �d
and �d properly. In other words we must have type II dual
superconductivity for these studies to be meaningful. For
type I, the identification of the penetration depth from the
behavior K0�r=�� breaks down because of the ‘‘intermedi-
ate state’’ which is a mixture of normal and superconduct-
ing material. Further the concept of a fluxoid as a
subleading behavior breaks down.

It is our opinion that this limitation to type II is not
unique to our approach for reasons mentioned in Sec. I A
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above. If one models the system with the dual GLH model
and concludes type I behavior, one needs to show that the
solutions used are capable of producing the serpentine
surfaces [40] of the complex ‘‘intermediate state.’’
Further one needs to address how the lattice quantum
averages relate to chaotic classical solutions.

E. Electric currents and dual superconductivity

In the dual GLH model electric currents vanish every-
where except at the location of the Wilson loop static
source. (Recall that the GLH model has vanishing mag-
netic currents.) The dual of Eq. (5) implies then �d � �d.
In the simulation we find that there are nonvanishing
electric currents and further as one would then expect �d �

�d. This argues that our analysis can not be based on the
details of the dual GLH model if we wish to learn more
about these effects.

We are reporting here that the �z; t� curl of the electric
current is nonvanishing on the same plaquette where we
measure the z component of the electric field which is the
same plaquette where we measure the �x; y� curl of the
magnetic current, i.e. �curlJ�m��z, out to rather large trans-
verse distances. A very localized cloud around the sources
was well-known e.g. [27,43,50]. But our results mean that
this perimeter effect is much more pervasive than expected.
For sufficiently large R and T dimensions of the Wilson
loop, the currents and fields approach constants in z and t in
the transverse midplane, resulting in the vanishing of the
�z; t� curl of the electric current. But these currents are
relevant in the simulation window and need to be under-
stood. Determination of dual superconductivity parameters
can only be definitive if the data is interpreted with the
correct model.

Even if the electric currents were to vanish, we point out
that �d depends on the definition of flux relative to the
definition of magnetic current through the London relation,
whereas �d is obtained from a characteristic decay length
independent of normalization. In the dual GLH model
these are of course equal and hence failure to be consistent
in the two definitions will lead to a compromised fit. Hence
we argue for particular definitions based on the physical
principle of satisfying Maxwell equations.

F. Organization of the paper

In Sec. II we review and compare three definitions of
flux that have appeared in the literature. We argue in favor
of particular forms of the flux and current which will
satisfy the Maxwell equations for lattice averages. We
show how the distinction of the two parameters �d and
�d are related to the existence of electric currents in the
vortex. The generalization of the dual of Eq. (5) to the four
dimensional lattice problem is the key. This relation is
exact for lattice averages only with our choice of defini-
tions of flux, i.e. ZFKS for U�1� and DHH for SU�2�,

respectively, and corresponding electric and magnetic cur-
rents which respect Maxwell’s equations.

The numerical results are given in Sec. III. We compare
the three definitions of flux. Then using our preferred
definition of flux, we measure the total flux in the vortex.
We then implement the model-independent analysis de-
scribed in Sec. I D. We find type II behavior for Wilson
loop sizes where others [27,31] find type I behavior.
Although these differences may be the result of differences
in our approaches, or in the details, we regard the dual
GLH model as the central culprit in the case of Koma et al.
which we discuss in Sec. III C.

A comparison of our work with Koma et al. [31] and
Bali et al. [27] shows that our determination of �d is
essentially unaffected by the Gribov copy problem at � �
2:5115 which we discuss in Sec. III C. The other parame-
ters could have a small dependence as reflected by the
small Gribov copy effect reported in the tails of the profiles
[31]. Bali et al. makes use of the London relation as a first
estimate of the penetration depth as we do which allows an
interesting comparison possible between the results of
these two groups and our results.

We give examples of profiles of the electric currents that
are contrary to the dual GLH model.

Also as a digression from the main body of this paper,
we show the effect of using DT definition of magnetic
current compared to a truncated DT definition in which
only the single dominant percolating cluster is included.

Section IV gives our summary and conclusions.

II. THREE DEFINITIONS OF FLUX

Let us consider three definitions of field strength or flux,
all agreeing to lowest order in the lattice spacing a. If we
require that both electric and magnetic Maxwell equations
for lattice averages of flux and current be satisfied, then the
specific form of the action implies a unique definition of
flux. Using any of the alternative definitions introduces
contributions, nonleading in a, that violate Maxwell’s
equations. Consistency would then be restored only by
going to the continuum limit.

As we will see in Sec. II D below it is trivial to get an
exact magnetic Maxwell equation as an operator relation.
This is not possible for the electric Maxwell equations. If
one had an exact electric Maxwell equation on a particular
configuration, updating one link can change a single pla-
quette in the electric divergence violating the equality.
Whereas in the magnetic divergence, changing one link
always changes two plaquettes in a compensating fashion.
Attaining exact electric Maxwell equations is not trivial:
the flux definition depends on the form of the action and the
equations hold only for lattice averages.

A. DeGrand Toussaint [44] (DT): F̂�1���
The first definition is that used by DeGrand and

Toussaint to define discrete monopoles in the U�1� theory:
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F̂�1��	�n� � 
�	�n� � 2�n�	�n�;


�	�n� � 
��n� � 
��n� 	� � 
	�n� � 
	�n���;
(9)

where 
� refers to theU�1� link angle in the domain��<

� <��. The integers n�	 are determined by requiring
that ��< F̂�1��	 <��. That is F̂�1��	 is a periodic function
of 
�	 with period 2� [51]. We also refer to F̂�1��	 as the
‘‘sawtooth’’ flux as shown in Fig. 1.

B. Zach-Faber-Kainz-Skala [42] (ZFKS): F̂�2���
A second definition

 F̂ �2��	�n� � sin
�	�n�; (10)

has the property of giving the exact electric Maxwell
equation for lattice averages for the case of the U�1� gauge
theory with Wilson action. Consider

 ZW����m�� �
Z

d
� sin
W exp��S�;

S �
X

n;�>	

�cos
�	�n� � 1�; � �
1

e2 :
(11)

The subscript of ZW����m�� refers to the incorporation of
the source into the partition function and the argument is a
variable defined as the shift of one particular link,

��m� ! 
��m� � ���m�. This translation can be trans-
formed away since the measure is invariant under such an
operation.

 

�ZW
��

� 0, ���	 hF̂
�2�
�	iW � hĴ

�e�
� iW; (12)

where

 h� � �iW �
h� � � sin
Wi
hcos
Wi

;

and where difference operators are defined

 �����n� � ��n� ��� ���n�;

�����n� � ��n� ���n� ���;

where � is a unit vector.
The current hĴ�e�� iW is that carried by the Wilson loop,

normalized to take values�1, 0, 1, i.e. no factors of e. (The
expectation values are superfluous for this observable since
the shifts produce these values directly from the Wilson
loop factor in the partition function. The left-hand side of
Eq. (12) builds up these integer value from the lattice
average.)

C. DiCecio-Hart-Haymaker [43] (DHH): F̂�3���
The third definition is applicable specifically to Abelian

projected SU�2�. We restrict our attention to the maximal
Abelian gauge defined as a local maximum of

 R �
X
n;�

trf�3U��n��3U
y
��n�g;

over the set of gauge transformations fg�m� � ei�i�m��ig,
U ! Ug. Taking U to be the stationary value, the sta-
tionary condition is given by

 Fjn
U� �
@R
Ug�

@�j�n�

����������0
� 0:

The second derivatives entering in the Jacobian are given
by

 Mjn;im�U� �
@2R
Ug�

@�j�n�@�i�m�

����������0
:

The partition function is

 Zg:f:W �
3
��m�� �

Z

dU�

1

2
Tr
i�3UW�n��

� exp��S�
Y
jn

��Fjn
U���FP; (13)

where the Faddeev-Popov Jacobian is

 �FP � detjMjn;im�U�j:

An infinitesimal shift in this partition function has the
added complication that it violates the gauge condition.
This can be corrected by an infinitesimal accompanying
gauge transformation. Thus the shift in one link affects all
links. However experience has shown that the effect drops
off rapidly with distance from the shifted link.

Invariance under the shift leads to the definition of flux

 F̂ �3��	�n� � C��n�C	�n���C��n� 	�C	�n� sin
�	�n�;

(14)

 

F
^(

1)
 (s

aw
to

o
th

), 
   

   
 F

^(
2)

  (
si

n
e)

plaquette angle

FIG. 1. F̂�1��	 (sawtooth) and F̂�2��	 (sine) as a function of the
plaquette angle 
�	.
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where the link variables are parameterized by 
��n�,
���n�, and ���n�

 U��n� �
C�ei
� S�ei����
��

�S�e�i����
�� C�e�i
�

 !
; (15)

and where

 C��n� � cos���n�; S��n� � sin���n�:

The decomposition of an SU�2� link toU�1� gives aU�1�
gauge link, ei
� , and a doubly charged matter field,
sin��e

i����
�� transforming at the sites [10,11]. In the
maximal Abelian gauge they also satisfy the vector field
auxiliary condition making them bona fide charged vector
matter fields as reviewed in Ref. [50].

This form has the property of giving the exact electric
Maxwell equation for lattice averages for this case of
SU�2� in the maximal Abelian gauge with Wilson action

 ���	 hF̂
�3�
�	i � hĴ

�e�total
� i; (16)

where Ĵ�e�total
� gets contributions from the Abelian Wilson

loop, the charged matter fields, gauge fixing and ghosts.
The normalization of the Wilson loop contribution to the
current in this expression is analogous to the ZFKS case i.e.
no introduced factors of e or a. See Ref. [43] for details.

D. Consistency with the magnetic Maxwell equation

For the second and third cases we have a unique flux
F̂�i��	, for i � 2, 3, by requiring an exact lattice electric
Maxwell equation. Given this definition of flux the mag-
netic Maxwell equation is

 � 1
2�	����	 F̂

�i�
�� � Ĵ�m�� i � 2; 3: (17)

which gives a unique definition of the magnetic current.
However the monopole current is usually taken from the
DT definition

 Ĵ �m�� � �1
2�	����	 F̂

�1�
��:

(This current is normalized to give monopoles with a flux
of 2�n where n is integer.) Hence if we use the conven-
tional F̂�1� to define the monopole current, and F̂�2� or F̂�3�

respectively for U�1� and SU�2� theories to get an exact
expression for flux in the confining string, then the mag-
netic Maxwell equation is violated.

The electric Maxwell equation determines the total
electric flux in the confining string and the magnetic
Maxwell equation determines the transverse profile
through the solenoidal currents. The only way for the
calculation to be consistent with both Maxwell equations
is to relax the usual procedure using the DT monopole
definition and instead use F̂�2� or F̂�3� when defining mag-
netic currents for the U�1� and SU�2� cases, respectively.

A simple configuration will help illustrate the difference
between F̂�1� and F̂�2�. Consider a single DT monopole with

equal flux out of the six faces of the cube (and a Dirac
string extending out from any face). Then the ratio of the
F̂�2� flux out of this cube compared to the F̂�1� flux gives

 

6 sin�2�=6�

6�2�=6�
 0:83: (18)

On a large surface the total flux is the same for the two
definitions. Since charge is conserved, the balance is made
up by magnetic charge in the neighboring cubes. We
interpret this to mean that with magnetic currents defined
with F̂�2�, the discrete monopoles become smeared but
maintain the same total magnetic charge.

E. Comparison

Figure 1 shows a comparison between the first two
definitions. We plot F̂�1��	 as a function of 
�	, giving a
sawtooth shape. Monopoles occur as a consequence of 
�	
crossing the sawtooth edge, giving a mismatch of 2� in the
flux out of a cube. The sine function, F̂�2��	, has no such
discreteness and so the notion of discrete Dirac strings and
Dirac monopoles is absent.

However as one approaches the continuum limit the two
definitions merge. To see this we note that with increasing
�, the Boltzmann factor supresses the plaquette angle to be
in a more restricted effective domain in the neighborhood
of 0 mod 2�. But we see from Fig. 1 that the sin function
and sawtooth function become the same in this domain up
to corrections of the order of a2. We expect both forms to
give the standard Dirac picture in the continuum limit.

The F̂�3��	 definition is a modification of F̂�2��	 involving
factors of C�, the cosine of the matter fields in the Abelian
projection of the SU�2� variables. Poulis [52] pointed out
that C� has small fluctuations and can be taken approxi-
mately as a constant, i.e. hC� �Oi  hC�i � hOi, where
O is a generic operator. Hence to this approximation, we
find

 hF̂�3��	Wi ! hC�i4 � hF̂
�2�
�	Wi:

(The first factor on the right cancels in the physical nor-
malization of the flux as we show in the next subsection.)
We will show in Sec. III A that for � � 2:5115 this ap-
proximation has violations of the order of 10%.

Since C�  1�O�a2� in the maximal Abelian gauge
the fluctuations of this factor are suppressed by an extra
power of a. As an indication of the relative fluctuations in
C�, our measurements of field strength have errors at best
of the order of 1.0% whereas the error in hC�i is 0.01%.

F. Physical normalization of the field strengths

The physical dimension of the fields is obtained from the
leading order of a small a limit. The definition of electric
charge in the U�1� theory is straightforward and well-
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known. The Wilson loop carries the charge of the gauge
coupling constant.

The Abelian projected SU�2� case is not as clear cut.
Measurement of electric flux at the site of the Wilson loop
includes the bare charge. In addition there are contributions
due to the dynamical charged matter fields, the effects of
gauge fixing and ghosts [43]. Further an electrically neutral
combination of the matter fields can not be completely
disentangled from the gauge fields. We propose a normal-
ization that involves the effects of these matter fields.

1. U�1� theory with Wilson action

Given the electric Maxwell equation, Eq. (12) and the
magnetic Maxwell equation, Eq. (17) (for i � 2 and with
the Wilson action, Eq. (11)) one arrives in the usual way
that

 � �
1

e2 and em �
2�
e
:

As mentioned in Sec. II B the current Ĵ�e�� is normalized to
unity on the Wilson loop. Recall that Ĵ�m�� is normalized to
take the value 2� for a DT monopole. The argument in
Sec. II D above shows that the same normalization holds
for a smeared monopole constructed from ZFKS flux. The
normalizations are

 F�2��	 �
1

ea2 F̂
�2�
�	; (19)

 J�e�� �
e

a3 Ĵ
�e�
� ; (20)

 J�m�� �
2�
e

�
1

2�a3 Ĵ
�m�
�

�
: (21)

2. SU�2� theory with Wilson action in the maximal
Abelian gauge

Generalizing to this case we have

 ���	 hF̂
�3�
�	i � hĴ

�e�Abelian Wilson loop
� i � hK̂�e�� i; (22)

where K̂�e�� is the sum of the three dynamical terms in the

current and Ĵ�e�Abelian Wilson loop
� is normalized to unity on the

Wilson loop. The expectation values are understood to be
taken in the background of an Abelian Wilson loop source
with gauge-fixed configurations.

Using the notation of Sec. II C we write the Wilson
action
 

�
X
P

1

2
Tr�U�	� � �

X
P

C��m�C	�m���C��m� 	�

� C	�m�fcos
�	�m� � 1g � � � � :

For the maximal Abelian gauge we will make use of the
fact that the fluctuations of C� are suppressed. If we take

C� to be constant and compare with the U�1� action,
Eq. (11), we can introduce the U�1� charge through the
relation.

 

1

e2
� �hC�i4: (23)

Then we can write

 

��	
a

� F̂�3��	
ea2hC�i

4

�
� e
hĴ�e�Abelian Wilson loop
� i

a3 �

�
e
K̂�e��
a3

�
:

In the simulation for � � 2:5115 we found hC�i �
0:94784�4� which gives

 e � 0:7024�1�: (24)

This is the charge carried by the bare Abelian Wilson loop.
Equation (24) is only an estimate of the value of e because
C� has small fluctuations and can not be considered strictly
a constant.

Considering finally the magnetic equation, Eq. (17) for
i � 3 we arrive at a normalization analogous to that for the
U�1� case

 F�3��	 �
1

ea2hC�i
4 F̂
�3�
�	; (25)

 J�e�� �
e

a3 Ĵ
�e�
� ; (26)

 J�m�� �
1

ea3hC�i4
Ĵ�m�� : (27)

G. Effects due to electric currents using DHH
definitions

Consider the classical magnetic Maxwell equations

 J�m�� � �
1

2
���	

1

a
��� F�	: (28)

Take the curl of this

 � ������� J
�m�
� �

�
����

1

2
���	

�
1

a
������ F�	

� �
1

a
f������F�� ������� F��

� ������F��g: (29)

Using the classical electric Maxwell equation

 

1

a
���F�� � J�e�� ; (30)

we get the following relation:

 ������� J
�m�
� � �����J

�e�
� ���� J

�e�
� � � ���

1

a
���F��:

(31)
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Now using the DHH form in the two currents and the flux,
i.e. F�3��	, this expression must hold for expectation values

 ������� hJ
�m�
� i � ���

�
� hJ

�e�
� i � ��� hJ

�e�
� i�

����
1

a
��� hF

�3�
��i: (32)

Applying this to a vortex oriented along the z axis and
choosing � � 3 and � � 4
 

1

a
���1 hJ

�m�
2 i ���2 hJ

�m�
1 i��

1

a2 ��
�
1 ��1 ���2 ��2 �hF

�3�
43 i

� �
1

a
���3 hJ

�e�
4 i ���4 hJ

�e�
3 i� �

1

a2 ��
�
3 ��3 ���4 ��4 �hF

�3�
43 i:

(33)

The electric current can survive in the dual GLH model
but only as a lattice artifact and it vanishes in the contin-
uum limit. Further the second derivative terms on the right-
hand side of Eq. (33) are designed to be as small as possible
by the choice of the source. Assume first that the right-hand
side vanishes. Then the London relation becomes

 hEzi ��2
d�hcurlJ�m�i�z � hEzi � �2

dr
2
?hEzi � 0:

This clearly identifies �2
d � �2

d as the penetration depth in
the dual superconductor.

However the right-hand side does not vanish for lattice
averages in our simulation as we show in Sec. III. In the
standard simulation window, the terms on the right-hand
side can be comparable to the terms on the left-hand side.
Hence the value �d as measured by the London relation in
the tail of the profile does not control the rate of transverse
fall-off of the profile. In a dual GLH model it does. For this
reason we choose not to rely on a fit to the dual GLH model
but concentrate instead on verifying the model-
independent SGSB, and estimating the three parameters
�d, �d, and �d.

III. SIMULATION

Our measurements were on 208 gauge-fixed configura-
tions on a 324 lattice, with � � 2:5115. Each update con-
sisted of a 10 hit metropolis sweep and an overrelaxation
sweep. We made 13 runs on 16 independent nodes.
Dropping 2000 thermalization updates (on each node),
we made measurements on every 100th update.

We gauge-fixed to the maximal Abelian gauge (MAG)
using overrelaxation with the criterion of the average of the
absolute value of the off-diagonal matrix element of the
MAG adjoint operator <10�6.

We measured Wilson loops in which spacial links were
fattened through 100 iterative steps by adding spacial
staples of weight equal to the original link. In a spot check
of the data sets, increasing the number of iterations from
100 to 200 and/or decreasing the weighting factor of the
staple contribution by one half had no appreciable effect.

Although the fattening appears to have saturated, the data
shows a residual T=a dependence, where T=a is the time
extent of the Wilson loop in lattice units.

All vortex profile graphs presented here are transverse
slices through the midplane, the �x; y� plane, on the quark-
antiquark axis, the z axis. Fitted parameter values are
calculated for 6 quark-antiquark separations R=a �
3; 5; . . . ; 13 and for 7 time separation of T=a �
3; 4; . . . ; 9. We used Minuit for the fits and quote Minuit
errors in the parameters determined by ��2 � 1.

We used a2F�3��	 throughout for the definition of flux in
order to give the correct electric Maxwell equations.
Similarly we used the same definition in constructing the
magnetic current a3J�m�� in order to get the correct magnetic
Maxwell equation. (Exceptions of course include graphs
comparing different definitions and truncated vs complete
monopole loops.)

Noise in these data is a problem. We reduced this by
taking an azimuthal angular average over an annular region
of width � 1 in lattice units in the transverse, �x; y� plane,
weighting the data by the fractional area overlap of the data
point plaquette to the annulus of radius r

 h� � �i� �
1

2�r

Z
r<r0<�r�1�

�� � ��da0: (34)

Using this together with Stokes theorem we have a conve-
nient numerical evaluation of

 

I
r0�r

J � dr0 � 2�rhJ��r�i� �
Z
r0<r
�curlJ� � da0

� �
Z
r<r0
�curlJ� � da0; (35)

where we used the identity
R
�curlJ� � da0 � 0.

Since the current is a first derivative of the flux and the
curl of the current is a second derivative, errors become
more difficult for the latter. However by integrating an
equation over a transverse area involving the curl we are
back to first derivatives which are more manageable.

Except where a fit to the data is noted, the lines in the
graphs connect the data points. All modelling is done using
uncorrelated �2 fits. All axes on all graphs are dimension-
less. For physical normalizations, one can take the standard
value a � 0:086 fm � 0:44 GeV�1.

From this point on, we suppress the expectation value
bracket notation, leaving it understood that we are taking
expectation values with a smeared Wilson loop. All flux,
and currents are constructed using the DHH form F�3��	
except in Sec. III A and III E.

A. Comparing flux definitions

Recall the three definitions of flux: F�1;2;3��	 : Eq. (9), (10),
and (14). Figure 2 shows the Ez profile for the three
definitions of flux. Surveying a large variety of quark
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separations R � 3; 5; . . . ; 13 and time extents T �
3; 4; . . . ; 9 the three definitions appear to differ only in
the scale. We did not notice any significant difference in
shape. The scale factors over this range are approximately
constant for � � 2:5115.

 F�1��	  1:3F�2��	; F�2��	  1:1F�3��	: (36)

We note that if the small fluctuations were in fact absent in

C�, Eq. (14), then F�3��	 � F�2��	 since the C� factors cancel
out in the normalization, Eq. (25).

Figure 3 shows the z component of curlJ�m� constructed
from the three definitions of flux. The same observations
hold here as for the flux. Note that the connecting lines
cross close to zero, further indicating just a scale factor.
They scale with the same factors as the flux to about 1%.

Figs. 2 and 3 show qualitatively the signal for a dual
Abrikosov vortex no matter which definition is chosen. For
large transverse distance, e.g. in this case r=a > 5, the
London relation holds, i.e. the tails can be arranged to
cancel,

 fluxoid : Ez � Ez ��2
d�curlJ�m��z  0: (37)

The integral of the �curlJ�m��z over the whole plane van-
ishes hence the integrand must change sign. For an extreme
type II dual superconductor, the profiles match and cancel
everywhere except for a delta function contribution at r �
0, giving the sign change needed for vanishing of the
surface integral. In our case the scale defining the break-
down of the London relation is the dual coherence length
�d.

Figs. 2 and 3 also show that by varying the relative
definition of the two quantities one would change the value
of �d without changing the value of �d leading to system-
atic errors in the analysis in a model in which the two
parameters are forced to take on the same value.

B. Total electric flux

We first consider the total flux integrated over the trans-
verse midplane since these data generally have the smallest
errors over the range of the 42 data sets.
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FIG. 3. Same as Fig. 2 for the z component of a4 curlJ�m�.
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FIG. 4. Flux and fluxoid integrated over a disk of radius r=a.
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In Fig. 4 we plot the integrated flux and fluxoid in the
interior of the disk r0 � r

 

Z
r0�r

Ezda0;
Z
r0�r

Ezda0:

The integrated fluxoid reaches the asymptotic value at
smaller r=a than the integrated flux because it corresponds
to the ramping up of the order parameter, not the penetra-
tion of the flux. They must have the same asymptote
because the surface integral of the fluxoid over the whole
transverse plane vanishes.

 �SU�2� �
Z
Ezda0 �

Z
Ezda0:

Figure 5 shows the total flux obtained from the radial
asymptote of the fluxoid as a function of R=a and T=a.
This shows that for each R=a the data goes to an asymptote
for large T=a, at least for those values of R=a where the
errors do not mask the behavior. With this as a guide we do
an exponential fit to extract �SU�2� for infinite T=a values,
based on one term in the transfer matrix.

 �SU�2� � A� Be�CT=a:

Further we do a global fit, using all the data available to
arrive at a value of total flux and we then test it for
independence of R. To do this we take the above form
and allow an extra dependence linear in R=a in the pa-
rameters B and C giving

 �SU�2� � A� �B� B0R=a�e��C�C
0R=a�T=a:

The results are shown in Fig. 6. We plot the value of A as
a function of the largest R=a included in the fit, Rmax=a.

Similarly, the family of curves shows the dependence on
Tmax=a. The value of �SU�2� determined this way using all
42 data sets is

 �SU�2� �
Z
Ezda � 1:72�3�; �2=d:f: � 1:0:

As an alternative to this extrapolation, we can also just
take a few data points from Fig. 5 for values of R=a and
T=a large where the value seems to be stable but small
enough so that statistical errors are manageable:

 T=a � 6

8><>:
R=a � 7 �SU�2� � 1:76�6�;
R=a � 9 �SU�2� � 1:75�9�;
R=a � 11 �SU�2� � 1:81�9�:

Table I summarizes the relationship between the gauge
coupling constant and the quantized vortex flux for the four
cases considered here. For the U�1� and SU�2� cases, the
Wilson loop carries the charge eU�1� and eSU�2� respectively.
For the U�1� case, the quantized unit of flux is also eU�1�
and so the elementary charge produces exactly one unit of
quantized flux in the vortex. In the SU�2� case however
there is a dynamical charge distribution generated by the
source exhibited by the large value of edynamical � �SU�2� �

eSU�2� � 1:02�3�. (Since Gauss’ law is satisfied exactly in
this formalism, �SU�2� measures exactly the total charge on
each side of the transverse plane.)

If we are correct that the proper interpretation of the
simulation data implies that there is a dual gauge theory
operating, fixing the quantization of flux to one unit, then
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FIG. 5. Total electric flux in mid transverse plane. Within each
group labeled by R=a, the 7 ticks correspond to T=a �
3; 4; . . . ; 9.
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from lines 2 and 4 in Table I we conclude that the funda-
mental unit of flux in that dual theory is �SU�2� � 1:72�3�,
implying that the gauge coupling constant in that dual
theory is em � 2�=�SU�2�.

Is the assumption of one unit of flux correct? Could it be
that the correct interpretation of our data is a superposition
of vortices with multiple units of flux?

The U�1� example suggests that this is indeed possible
[53]. Consider a lattice with a small extent in the z direc-
tion, i.e. along the alignment of the vortex. Consider the
case in which the distance between the sources is the same
in both directions around the torus. And take a large
enough time extent of the Wilson loop so that the spacial
direction of the flux is not biased in one direction or the
other. We will obviously find half a unit of flux in each
direction. We are describing a system in which the vortex
can occur in either of the two directions. Our interpretation
is that lattice average describes a vortex that can go in
either direction and that the measurement on one side is a
superposition of 0 and 1 units of flux.

Therefore, since a superposition is obviously possible,
we think it is best to regard em � 2�=�SU�2� as a tentative
result subject to a better understanding of the dual GLH
model or a generalization of it to include the electric
currents.

We wish to note some interesting aspects of Fig. 5. For
each value of R=a, �SU�2� increases with T=a. The Wilson
loop carries an electric current and the dynamical currents
circulate in the same sense. This is evident when looking at
a fixed time slice since there is antiscreening in the diver-
gence of the current. Since increasing T=a suppresses
excited states, we must conclude that the electric current
associated with them circulates in the opposite direction
than in the ground state. Further we note that the saturation
of the antiscreening cloud as a function of R=a is also
evident at fixed T=a. We take the case T=a � 7 which has
manageable errors for increasing R=a. In that case the
antiscreening already appears to be saturated for R=a � 5.

C. Three parameters of the vortex

Surveying the quality of the data for all 42 data sets we
arrived at the interval to identify the tails. We chose the 10
points: ri=a � 3:5; 4:0; � � � ; 8:0 for �2 fits.

For the flux, we search for the best values of A and �d

 

Z
r0>ri

a2Ezda
0 � A

���������
ri=a

q
e�ri=�d : (38)

Figure 7 shows the integrated flux profile along with a �2

fit.
In our analysis, we have used exponential tail forms

appropriate for two dimensions. The London relation in
this case leads to exponential behavior K0���, see e.g.
Ref. [38], where K	 is the modified Bessel function. We
make use of the first term in the divergent asymptotic
expansion

 K	��� 
������
�
2�

r
e��

�
1�

4	2 � 1

8�
� � � �

�
:

The two-dimensional choice requires roughly r=a < R=2a
which can not be achieved in the tail of the profile. For
example for R=a � 8 and a transverse distance r=a � 8,
the distance of the observation point to the sources is 8.9 in
lattice units, compared to a distance of 8.0 from the vortex,
which is clearly not a two-dimensional problem.
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FIG. 7. Profiles of electric flux and fluxoid integrated outside a
disk of radius r=a. Fits corresponding to Eqs. (38) and (39) also
shown. R=a � 7, T=a � 6.

TABLE I. Relationship between gauge coupling and quantized flux in the vortex.

Gauge action summand Gauge coupling Quantized vortex flux unit

GLH model � cos
�	 e � ��1=2 �m � em � 2�=e

Dual GLH model ��d� cos
�d��	 em � ��1=2
�d� �e � e � 2�=em

U�1� theory �U�1� cos
�	 eU�1� � ��1=2
U�1� �U�1� � eU�1�

SU�2� MAG theory  �SU�2�hC�i
4 cos
�	 � � � � eSU�2� � ��1=2

SU�2�hC�i
�2 �SU�2� � eSU�2� � �anti�screening

hC�i � 0:947 84�4�
�SU�2� � 2:5115 eSU�2� � 0:7024�1� �SU�2� � 1:72�3�
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Nevertheless it is reasonable at intermediate transverse
distances and becomes correct as R! 1 and for large
transverse distances. And it allows a close comparison
with Bali et al. [27]

Since we use expressions for the profile functions that
have been integrated over the area, consider
 Z 1
�
��	K	�1���d� � ��	K	���; for 	 � �1 and

K	�1��� � K	�1��� �
2	
z
K	���; for 	 � 0:

Hence

 

Z 1
�
K0����d� � �K1��� 

��������
��
2

r
e��:

As explained above, the choice of integrating the flux
reduces noise in the signal.

Next we do a �2 fit of the fluxoid in a similar fashion

 

Z
r0>ri

�
a2Ez �

�2
d

a2 �a
4 curlJ�m��z

�
da0 � B

���������
ri=a

q
e�ri=�d :

(39)

determining �d, B, and �d. Figure 7 also shows the sub-
leading behavior after canceling the leading large r behav-
ior between Ez and �curlJ�m��z, i.e. the fluxoid profile. Also
shown is the fit.

This demonstrates the heart of our method. Through the
fit we find a proportionality constant such that the London
relation is satisfied asymptotically by the penetrating tails
of the flux and the curl of magnetic current, respectively.
Further the violation of the London relation is character-
ized by a second exponential at a shorter length scale. Even
without a fit, the data points alone support the cancellation
inherent in the construction. For specificity, we chose this
operational definition of �d with the understanding that it
sets the scale but there can be a factor close to 1 relating it
to the Ginzburg-Landau definition [49]. Further the border-
line between type I and type II also has a factor close to 1
[50].

Using the parameters �d and �d specifically defined by
Eqs. (38) and (39) then the condition Eq. (8), � � �d=�d >
1 unequivocally signifies type II behavior. Under that
condition, there exists a region, possibly asymptotically,
where the London relation is satisfied and that eliminates
type I as a possibility.

Out of the 42� 2 cases, �2=d:f: < 1:0 in the fits except
for a few cases at small R=a and small T=a. The results of
the fits are shown in Figs. 8–10.

Note first in Figs. 8 and 9 that there are less than 42 data
points for each quantity. This is because we set an inclusion
criterion �d � 1:1�d. The reason is that the method of
isolating the two exponential forms breaks down as the
parameters approach each other. When they are close, large
errors develop in trying to separate the two behaviors.

Hence the 10% cut. The absence of a data point indicates
we tried and failed to produce a fluxoid which indicates
that the parameters appear to be driven close to or into the
type I regime. Therefore every value of R=a and T=a with
a data point indicates that we are able to separate the
leading and subleading exponential forms which implies
unambiguously type II behavior.
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FIG. 8. Fitted parameters �d=a and �d=a based on Eqs. (38)
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spond to T=a � 3; 4; . . . ; 9.

 

R/a = 3          5          7          9          11
0

0.5

1

1.5

2

2.5

Λ
d/a

FIG. 9. Fitted parameters �d=a based on Eqs. (39). Within
each group labeled by R=a, the 7 ticks correspond to T=a �
3; 4; . . . ; 9.

RICHARD W. HAYMAKER AND TAKAYUKI MATSUKI PHYSICAL REVIEW D 75, 014501 (2007)

014501-12



For R=a � 5 and 7 and for all values of T=a except one,
Fig. 8 shows that we were able to construct a fluxoid with
the pattern shown in Fig. 7. Whether one accepts our
parameterization of the tails or not, this is strong model-
independent evidence that for these cases, the system
behaves like type II. On the other hand for the values
R=a � 6 and T=a � 6, fitting to the dual GLH model,
Koma et al. [31], find type I behavior. Because of differ-
ences in the number of smearing steps and the value of the
smearing parameter, we should not compare the two results
for individual values of T=a. However by calculating at
many values of T=a and bracketing their value of R=a we
are sidestepping that problem in a comparison.

This conflict could probably be checked out without any
fitting of profiles or any commitment to a particular method
of interpreting the data. Simply take the data points of the
curl of the magnetic current profile and multiply by an
arbitrary constant �d and scan its value looking for can-
cellation with the data points of the electric profile. A log
plot will reveal if the search turns up a subleading expo-
nential in the difference data points. If so it can only mean
type II, if not then it is borderline or type I.

We have also repeated the whole analysis for a generic
exponential fit to the tails in Eqs. (38) and (39) without
regard to the power behavior multiplying the exponential,
i.e. without the two-dimensional factor

��������
r=a

p
. The pattern

of results for �d and �d were quite similar to those in Fig. 8
but the values of the two parameters tended to be larger.
The present choice gave smaller errors and a more coherent
scatterplot, Fig. 10.

1. Comparison to Bali et al. [27]

Our results allow a rather direct comparison with Bali
et al. [27]. It is interesting to compare their methods and
best estimate of �d=a to ours. They chose T=a � 6, R=a �
8. Here are their steps in order:

(1) London relation in the tail of the flux, �d=a �
1:82�7�.

(2) Include physics of dual GLH
(a) but fitting only the flux, �d=a � 1:84�8�.
(b) Including the magnetic current, �d=a �

1:99�5�.
(c) An alternative to (b), �d=a � 1:62�2�.

(3) Best estimate: �d=a � 1:84�20
�24.

We regard step (1) as an essentially correct definition of
the penetration depth and with minor differences their
methods agrees with ours [54]. Our value e.g. �d=a �
1:96�3� is for T=a � 6, R=a � 7. Koma et al. [31] find
�d � 2:22�1� for T=a � 6, R=a � 6.

Step (2a) is a refinement acknowledging that there may
be a nonzero coherence length detectable at intermediate
distances in the tail.

In the succeeding steps (2b), (2c), and (3) we differ since
they rely on the dual GLH model. The fitted parameter
representing the penetration depth was found to take two
different values statistically inconsistent with the first de-
termination and each other when fitting two different ways.
A similar inconsistency would be expected based on the
thesis of this paper if one tailored the fit to favor the �d
definition of penetration depth vs one that favors the �d
definition. The quoted systematic error in the parameter
was triple the original statistical error indicating to us
trouble since the first approach was correct in our opinion.
They attributed the systematic error to lattice artifacts
coming from the fitting of the whole profile. On the other
hand, the tail is very smooth and lattice artifacts do not
appear to us to be a factor in that region. In our opinion we
regard this as evidence for problems with the dual GLH
model interpretation of the data.

We may or may not differ on type I vs type II. Bracketing
their value T=a � 6, R=a � 8 we find type II for the same
time extent and R=a � 7, and our method breaks down for
our next value R=a � 9. They find type I. Given this
finding, ironically it negates their starting point, step (1),
in using K0�r=�d� since that form is not applicable in the
case of type I. [It is not clear to us if the succeeding steps
depend on step (1).]

2. The effect of Gribov copies

There is more we can say. Bali et al. [27] used the
methods of Bornyakov et al. [37] to find the best maximum
of the gauge fixing algorithm. This allows the use of
successive estimates to look for gauge copy dependencies
in results. On the other hand we did a simple overrelaxation
gauge fixing algorithm. The question arises whether this
difference of our methods with Bali et al. (step (1)) could
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lead to differing results in fitting parameters. It turns out
that the results are insensitive to the maximum selection
criteria of Ref. [37]. To see this consider the upper left hand
graph in Fig. 4 of Koma et al. [31]. We see that the flux
profile is remarkably insensitive to Gribov copies. There is
a very small Gribov copy dependence in the core of the
vortex and it appears to entirely go away in the tail in the
range where we and Bali et al. determined the tail, r=a �
3:5. If we were to take the data from Ref. [31] and use our
model-independent methods we would obviously have to
find our �d parameter insensitive to copies as would Bali
et al. [27] [in their steps (1) and (2a), using the designations
in the previous subsection].

There is another parameter we call �d, the square of
which is the proportionality factor between the tails of the
flux and the curl of the magnetic current. The upper right
hand graph in the same figure, Fig. 4, Ref. [31], shows
there is detectable but small Gribov copy dependence for
the magnetic current in the tail, for r=a � 3:5 where we
work. Using their data and our analysis, that implies �d
could have a small Gribov copy dependence. But if their
analysis gives a penetration depth with measurable copy
dependence then it must come from an artifact of the model
since two independent parameters, �d and �d are forced to
be equal by the model.

If the dual GLH model were the correct model of the
data then the fitted parameters would have to give a faithful
representation of the physical observables apparent in the
tails. And this would be a very strong test of the model if
the parameters truly represented the tails. Unfortunately
there are no log graphs of profiles in the literature where
one could independently verify the fits by eyeball.

Next, consider the effect of copies on the coherence
length. Indeed our �d may very well have Gribov copy
dependence, though small, for the same reason that �d
might show this dependence.

That is not to say the the refinement of using the
Ref. [37] is not necessary. For higher values of �, Koma
et al. [31] have shown that the Gribov copy dependence is
more pronounced.

3. Other features

Some general features of Fig. 8 are worth noting.
Increasing T=a drives the �d and �d together. With limited
statistics we can not take R=a large enough to make a
definitive statement as to whether type II behavior persists.

The results for �d are shown in Fig. 9. We also give a
scatter plot of �d vs �d, Fig. 10. There is no clear tendency
for them to be equal as they are in the dual GLH model.

In Table II we show the sensitivity of the parameters for
a particular Wilson loop size to varying the fitting interval.
Note that the second row of values of �2=d:f: for the
fluxoid fit are exceptionally small. From Fig. 7 we see
that the fit to the points of the fluxoid is excellent but the
error bars appear to be too large given the smooth behavior

of the data points. We attribute this to error propagation in
forming the fluxoid where there might be correlations in
the two canceling contributions.

D. Electric currents

Figure 11 shows an example of the effect of electric
currents in this problem. The four graphs correspond to the
four terms in the identity [a rewriting of Eq. (33) in
dimensionless form and supressing the expectation value
bracket]:

 0 � a3���1 J
�m�
2 ���2 J

�m�
1 � � a

2���1 ��1 � ��2 ��2 �F
�3�
43

� a3���3 J
�e�
4 � ��4 J

�e�
3 � � a

2���3 ��3 � ��4 ��4 �F
�3�
43 :

(40)

TABLE II. First data column: parameters determined from
T=a � 6, R=a � 7 using standard interval. Second data column:
sensitivity to lower cut. Third data column: sensitivity to upper
cut. The value of �SU�2� does not involve cuts.

Fitting range, r=a [3.5, 8] [2.5, 8] [3.5, 10]
No. of pts. 10 12 14

�d=a 1.96(3) 1.92(2) 2.00(3)
�2=d:f: 0.40 0.56 0.63
�d=a 1.21(20) 1.28(11) 1.24(16)
�d=a 1.50(11) 1.47(9) 1.49(8)
�2=d:f: 0.03 0.06 0.14
�SU�2� 1.72(3)
�2=d:f: 1.0
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The curl of the magnetic current is in the �x; y� plane and
the curl of the electric current is in the �z; t� plane. All four
terms live on the same plaquette, which is the same as the
Ez plaquette.

In a continuum dual GLH model, the third term, the
electric current term, vanishes. Further if we consider an
infinitely long static vortex in the dual GLH model, then
the fourth term also vanishes.

Both the third and fourth terms are significant and
remain so over a wide range of R’s and T’s presented
here. The discrepancy between �d and �d further support
the presence of the third and fourth terms over this range.

As we go to larger values of T=a the behavior of the
electric currents is more complicated as shown in Fig. 12.
In particular there are wiggles in the electric current term in
the tail. There are examples of sign changes for other
values of R=a and T=a. It is beyond the scope of this paper
to delve into such features since we do not have a well
motivated model of these currents. Rather we wish to point
out here the evidence that the electric current persists for
the range of R=a’s and T=a’s studied here.

Figure 13 shows the value of this term on the axis. For
R=a � 3 the curl term on axis picks up the large antiscre-
ening contribution adjacent to the source which is dis-
cussed elsewhere [27,43,50]. At R=a � 5 and larger, this
value drops. But it persists and can change sign.

The �z; t� laplacian term also persists. It measures how
well we are in the regime of large R=a and T=a. The
nonvanishing of this term contributes to the nonequality
of �d and �d. Such a term will arise in the three dimen-
sional dual GLH model used by Koma et al. [31]. It would
be interesting to see how well it fits this term. From our

point of view we need a three dimensional model that does
not commit one to the dual GLH model if we are to resolve
the issues raised here.

If one were to drop all expectations about dual super-
conductivity and simply ask in an unbiased way how well
the dual GLH model fits the simulation data, then one
ought to do a �2 fit that includes all four of these terms.
They all live on the same plaquette. Then one would be
truly testing the validity of the dual GLH model. Of course
the result would be that the contribution to �2 involving the
electric current would diverge as statistics improved. And
the contribution involving the �z; t� Laplacian would di-
verge if the source in the model did not match the source in
the simulation. Measuring the latter term offers a good test
of how well one matches the idealization of an infinitely
long static string.

E. Truncated monopole loops

Finally we give a result that is disjoint from the body of
this paper. We looked at monopole loops using the standard
DT definition, i.e. constructed using F�1��	. In this case there
is a distinction between connected and disconnected loops.
Earlier studies have shown that there is a single large
connected percolating cluster of monopole currents that
dominates confinement physics [14–17]. There is a sharp
distinction between this percolating cluster and the large
number of very small loops.

We confirm this result in our configurations and find that
the big cluster contains	40% of the current. We compared
our calculations of the current with the truncated version,
dropping 	60% of the contribution to the current coming
from the small loops. Our results are shown in Fig. 14. This
gives the integrated curl

R
r0<r�curlJ� � da0 as a function of
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r. The truncation has a very minor effect in the core and
essentially no effect in the tail which means that it has a
minor effect in determining the parameters of the vortex.

IV. SUMMARY AND CONCLUSIONS

We regard the most interesting open question in studies
of the dual Abrikosov vortex is whether the system behaves
as type I, type II or on the border line. We have cast doubt
on the use of the dual GLH model as a reliable way to
analyze simulation data. There are no dynamical electric
currents in the dual GLH model for the same reason there
are no dynamical magnetic currents in the GLH model.
Hence it is wrong, but how wrong? We argue that these
currents are important enough to cast doubt on the prior
efforts to establish the type of superconductivity.

How reliable is our model-independent approach in
trying to answer the question? The definition of the GL
coherence length � and the GL borderline parameter � 
�=� are not easily divorced from the GL theory. And we
see in real world superconductivity there are various ways
to set the coherence length scale, but they are related
factors close to 1, see Tinkham [38,49,50]. We have side-
stepped these issues that involve the dual GLH model and
instead defined the parameters based directly on the be-
havior of the flux and fluxoid, See Sec. III C.

Consider Fig. 7. We arrived at the fluxoid profile by
finding a value of �d such that �2

d � curl of the magnetic

current cancels against the electric flux in the sense that the
difference has an exponential behavior with a shorter char-
acteristic length. Ignore the fits in the graph and the details
of the functional forms. One can arrive at this just by
stepping the value of �d until this value is found. It does
not even require determining �d or �d.

The data points alone in Fig. 7, makes it very clear that
the London equation is satisfied asymptotically for large
r=a. This is unequivocal type II behavior for this R=a � 7,
T=a � 6 Wilson loop source. The London equation is
irrelevant to type I behavior because the ramp-up of the
order parameter occurs over a larger distance than the
penetration of the flux.

Figure 8 shows 25 Wilson loop sizes for which that
construction was successful. There may be more but we
made a conservative cut in the data as described in
Sec. III C. There is clearly room for improvement in our
procedure to identify the fluxoid. As we go to larger loop
sizes and better suppression of excited states, the system
seems to be moving toward type I behavior.

Koma et al. [31] reported type I behavior for R=a � 6,
T=a � 6. We report 13 loop sizes that bracket their loop
size for which we are successful in the fluxoid construc-
tion. So we would surmise that had we calculated R=a � 6
we would most likely report type II for all our values of
T=a with the largest value possibly in question. Bali et al.
[27] reported type I for R=a � 8, T=a � 6. We did not
calculate this case or bracket it well enough to speculate
what we would find.

Gubarev et al. [29] reported that the system may lie on
the boundary. This would clearly be the most satisfying
outcome theoretically since it implies there may be some-
thing universal happening.

Given that the total flux in the vortex and the shape of the
vortex are intimately connected to the electric and mag-
netic Maxwell equations, we considered it a high priority
to use a definition of flux that guarantees the equations are
satisfied for lattice averages. A bonus was an identity
relating the magnetic and electric currents which was exact
only for our choice of definitions of flux. This identity,
Eq. (40) was central in elucidating the problems associated
with the dual GLH model.
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for a two-dimensional geometry of an infinitely long
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be less of a problem for Koma et al. [31] since they solve a
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