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The amplitude for ordinary muon capture on the proton is evaluated, through the first four orders in the
expansion parameter, in a manifestly Lorentz invariant form of baryon chiral perturbation theory.
Expressions for the low energy constants in terms of physical quantities are obtained in each of the
several renormalization schemes which have been proposed for forcing the relativistic approach to obey
the same counting rules as obtained in heavy baryon chiral perturbation theory. The advantages and
disadvantages of these schemes are discussed, using the muon capture results as an example, with the aim
of gaining insight as to which scheme is preferable for practical calculations.
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I. INTRODUCTION

Ordinary, or nonradiative, muon capture (OMC) has
always been an interesting process because, unlike beta
decay, there is a sufficiently high momentum transfer to
explore weak-nucleon form factors away from q2 � 0,
where q� is the four momentum transfer between lepton
and hadron currents. The induced pseudoscalar form fac-
tor, GP, has been of particular interest and OMC is the
main source of information on this form factor, see, e. g.,
Refs. [1–3]. Originally the amplitude for OMC was written
down as the most general form of the current and OMC was
simply an empirical way to determine the coefficients of
this most general current. More recently it has become
possible to calculate these form factors from a more fun-
damental point of view using an effective Lagrangian of
chiral perturbation theory (ChPT) which incorporates the
symmetries of QCD [4]. Such calculations for OMC [5–7]
or for the electromagnetic form factors of the nucleon [8]
have been carried out in so-called heavy baryon ChPT
(HBChPT) which involves a Foldy-Wouthuysen-like ex-
pansion of the Lagrangian in powers of the inverse nucleon
mass. A comprehensive, modern review with references to
earlier work can be found in Ref. [9].

The possibility of a fully relativistic ChPT approach to
OMC, or any other process, has been elusive until recently.
However there now have been several suggestions [10–14]
for relativistic approaches [15]. The difficulty with relativ-
istic theories has been the fact, as pointed out by Gasser,
et al. [16], that they do not obey a counting procedure
which would allow one to associate multiple loop diagrams
with higher powers in an expansion in a small parameter. In
fact in the relativistic approach these multiple loop dia-
grams, specifically those involving the relativistic nucleon
propagator, can contribute to lower orders and so there is

not a well defined prescription for deciding what diagrams
to keep. One solution to this problem was the HBChPT
approach in which diagrams involving more and more
loops contribute at higher and higher orders in an expan-
sion of the amplitude in powers of a typical momentum
scale divided by the nucleon mass. While this approach
works, it has the disadvantage of not being manifestly
Lorentz invariant and of requiring increasingly compli-
cated vertices as the order increases. The recent proposals
for relativistic ChPT resolve this problem in a different
way by showing that it is possible to define renormalization
procedures for a manifestly Lorentz invariant theory which
generate the same type of counting scheme which is
present in HBChPT.

This paper thus has a number of aims. OMC is one of the
simplest nontrivial processes, and so we want to use it as a
laboratory to understand how the relativistic approach and
the various renormalization schemes are applied to a prac-
tical case. We also want to compare and contrast the
various proposed schemes to see if one is preferable for
detailed calculations or if there are alternative methods
which achieve the same result but which are easier to use.

We also want to obtain the muon capture amplitude and
expressions for the low energy constants (LEC’s) in a
unified and consistent approach. In the relativistic ap-
proach one can obtain these quantities to one higher order
than is easily possible in HBChPT. This results from the
fact that the Lagrangian, and the vertex operators originat-
ing from it, increases in complexity with increasing order
much more rapidly for HBChPT than for the relativistic
approach.

The OMC amplitude accesses the weak-nucleon cur-
rents, vector and axial vector, the former being essentially
the same as the electromagnetic current. There is enough
information available to determine all of the LEC’s which
appear. However, just as in HBChPT, the only unused
information, once the LEC’s are determined, serves only
to give the well known expression for GP in terms of the
pion-nucleon coupling and the axial radius. Thus this
evaluation of the OMC amplitude is mainly a way of
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determining the LEC’s and does not provide a ‘‘new’’
number for the rate.

Although many of the pieces have been obtained before
in separate calculations, [16–21] the results for the LEC’s
depend on the details of the calculation and it becomes
dangerous to lift these values for the LEC’s from disparate
calculations and use them for other processes. Therefore it
is important to have a consistent, consolidated and prac-
tical approach as this will provide the basis for determining
the LEC’s which will be necessary for future calculations.
Thus we see this calculation as a basis or starting point for
planned similar consistent applications of this approach to
processes such as �p! n� where there are puzzles in the
HBChPT approach arising from the appearance of unnatu-
rally large LEC’s [22]. It is also intended to be a starting
point for a similar calculation of radiative muon capture,
�� p! n� �� �, [23,24], where there are still unre-
solved problems relative to the extraction ofGP [1,25–28].

II. WEAK FORM FACTORS OF THE NUCLEON
CURRENT

The S-matrix amplitude for the OMC process,�� p!
n� �, with momenta defined by p� � pi � pf � p�, is
given in the notation of Ref. [29] by
 

M �
�iGFVud���

2
p �u�p�����1� �5�u�p��

� �u�pf����V
� � A��u�pi�; (1)

where the vector and axial vector nucleon current operators
are given by

 V� � GV�q2��� �
iGM�q

2�

2mN
���q�;

A� � GA�q2����5 �
GP�q2�

m�
q��5:

(2)

Here GF is the Fermi constant as obtained from muon
decay, Vud is an element of the CKM matrix, m� is the
physical muon mass,mN is the average of physical neutron
and proton masses, mN � �mn �mp�=2, and �� is the
isospin lowering operator, hnj��jpi � 1. Here we do not
include radiative corrections [30] and have neglected pos-
sible second class currents.
GV�q2�, GM�q2�, GA�q2� and GP�q2� are the weak form

factors of interest, with the four momentum transfer q� �
p�f � p

�
i . The vector and weak magnetism form factors,

GV and GM respectively, are related to the isovector elec-
tromagnetic form factors of the nucleon. The axial form
factor at q2 � 0, GA�0�, is most accurately determined
from neutron beta decay and GP is the induced pseudosca-
lar form factor which is accurately predicted by chiral
symmetry. All of these form factors are functions of the
four momentum transfer q2 which for OMC on the proton
is given by

 q2 !
�m��m2

p �m2
n �m�mp�

mp �m�
� �0:88m2

�: (3)

Note that we have normalized these form factors using the
physical masses m� and mN and that we have used the
ChPT sign convention for GA and GP, which makes them
positive, in contrast to the convention which has been used
historically and which is still used in the Particle Data
Group listings [31].

III. EFFECTIVE CHIRAL LAGRANGIAN

A. Effective Lagrangian

In the usual ChPT approach the effective Lagrangian is
expanded in powers of a typical momentum—for this
problem the muon mass m�, the pion mass m�, or the
four momentum transfer squared q2 —divided by a typical
hadronic scale which we take as the physical nucleon mass.
At each order the most general Lagrangian satisfying the
symmetries of QCD is determined.

For this calculation we work in SU�2� � SU�2� and use
for the chiral Lagrangian L	 � L�N �L� where L�N

and L� are, respectively, the Lagrangians in the pion-
nucleon and pion sectors. The pion-nucleon Lagrangian
is expanded in terms of small quantities

 L �N � L�1��N �L�2��N �L�3��N �L�4��N � 	 	 	 ; (4)

where the ellipsis represents the higher order terms and the
superscript denotes the order of the Lagrangian.

The lowest order Lagrangian is given by the standard
form

 L �1�
�N �

���i 6D�m� 1
2gA 6u�5��: (5)

Here the pion and nucleon fields are collected as

 u2 � U � ei ~�	 ~�=F0 ; � �
p
n

� �
: (6)

The covariant derivative D�, when acting on things trans-
forming as nucleon fields, is defined as

 D�� � �@� � ����; (7)

with

 �� �
1
2�u
y�@� � ir��u� u�@� � i‘��uy�; (8)

and with ‘� and r� constructed from the external vector
and axial vector currents as ‘� � v� � a� and r� �
v� � a�. We also have

 u� � i�uy�@� � ir��u� u�@� � i‘��u
y�: (9)

The parameters appearing in this lowest order Lagrangian,
m, F0, gA are, respectively, the ‘‘bare’’ or unrenormalized
values of the nucleon mass, the pion decay coupling and
GA�0� and the fields are the bare fields.
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The higher order Lagrangians are given by

 L �2�
�N �

X7

i�1

ci ��Oi�; L�3��N �
X23

i�1

di ��Oi�;

L�4��N �
X118

i�1

ei ��Oi�;

(10)

where the ci, di, ei are the LEC’s and where the basis
functions Oi are given in Ref. [32] Tables III, IV and V.
Note however that we always normalize the LEC’s to the
physical mass mN rather than to m.

We will also need the Lagrangian in the purely meson
sector, as the results depend on that choice as well. We will
take the standard one

 L � � L�2�� �L�4�� � 	 	 	 ; (11)

where the lowest order Lagrangian is given by

 L �2�
� �

F2
0

4
hD�U�D

�U�yi �
F2

0

4
h	Uy �U	yi: (12)

Here the covariant derivative acting on quantities trans-
forming as U is given by

 D�U � @�U� ir�U� iU‘�: (13)

We also have

 	 � 2B0�s� ip�; (14)

where s and p are the external scalar and pseudoscalar
currents and the chiral symmetry breaking is introduced as
usual by taking p � 0 and s � m̂ with m̂ � �mu �md�=2
the average of up and down quark masses. The parameter
B0 is given in terms of the lowest order pion mass m0�
[cf. Eq. (B1)] by 2B0m̂ � m2

0�. For the fourth order
Lagrangian we take the Gasser-Sainio-Švarc [16] form of
the Gasser-Leutwyler Lagrangian [33] given explicitly, for
example, by Eq. (D.13) of Ref. [9].

B. Counting rules and ‘‘noncounting’’ terms from loop
diagrams

In the usual HBChPT approach the Lagrangians L�1��N,
L�2��N , L�3��N , L�4��N, or more precisely the HBChPT expan-
sions of these Lagrangians, contribute tree-level diagrams,
respectively, of order p, p2, p3, p4 where we mean by p the
generic small expansion parameter, e.g., m�=mN . As a
consequence of using the dimensional regularization pro-
cedure for regularizing the integrals [34], the one loop
graphs containing only vertices from L�1��N contribute at
O�p3� and those containing one vertex from L�2��N contrib-
ute at O�p4�. Two or more loop graphs contribute only at
O�p5� or higher.

In the relativistic approach however the counting breaks
down, with multiloop graphs contributing to lower orders,
O�p2�, O�p3�, etc. [16], than that obtained in HBChPT.

Thus one needs to develop some different scheme for
ordering the various contributions and determining which
to keep.

From a purely practical point of view it is rarely pos-
sible, or necessary, to consider more than one loop.
Furthermore one of the most important general results of
Becher and Leutwyler [12] or more particularly Fuchs,
et al. [10] is that it is always possible to absorb into the
LEC’s those terms from multiloop diagrams which do not
obey the HBChPT counting rules. Thus we will here con-
sider only one loop diagrams and assume that all contri-
butions from multiloop diagrams are either O�p5� or, in
accord with the general result, have been absorbed in the
LEC’s in the original Lagrangians as defined in Eqs. (5)
and (10).

We note also, as will be seen from the explicit expres-
sions below, that associated with each loop is the factor
1=�4�F0�

2. By neglecting multiloop diagrams we are ne-
glecting terms containing higher powers of this factor, e.g.
1=�4�F0�

4. Such higher powers will also arise from the
expansion of unrenormalized quantities in one loop dia-
grams about renormalized values. We will always drop
such higher powers of 1=�4�F0�

2, arguing that such ap-
proximation is consistent with our neglect of multiloop
diagrams.

Thus to summarize, we will work consistently to one
loop, and to O�p4�. This means that we will keep all terms
of O�p4� or lower except for those originating in multiloop
diagrams, which we assume to have been absorbed in the
LEC’s. We also drop terms involving 1=�4�F0� to the
fourth or higher power, an approximation which is consis-
tent with the neglect of multiloop contributions, which
have these same factors. Note also that those one loop
diagrams which have higher order Lagrangians at the
vertices and thus which are of O�p5� or higher in the
HBChPT sense will also be dropped, again assuming that
any lower order terms from these diagrams which do not
obey this counting have been absorbed in the LEC’s.

This choice of diagrams and terms to keep is to some
extent dictated by the practicalities of doing such calcu-
lations. Two loop diagrams and those with many higher
order vertices are difficult to handle, and normally would
be considered only if there were some special circumstance
which suggests that they would be large. Perhaps the most
important result arising from the work of Refs. [10,12] is
that this is a consistent procedure, i.e. that lower order
contributions which originate in these higher order dia-
grams which we must neglect can in fact be absorbed in the
LEC’s in a way that preserves the usual HBChPT counting
procedures.

In the relativistic approach there will also be terms, a
finite number of them, coming from the one loop diagrams
we keep, which do not obey HBChPT counting, e.g. those
of O�p2�. We will flag these terms, but for now keep all of
them explicitly, until we discuss the various renormaliza-
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tion schemes which have been proposed, as these schemes
differ primarily in how they treat these noncounting terms.

IV. EVALUATION OF THE NN 3-POINT VERTEX:
VECTOR AND AXIAL VECTOR CURRENTS

A. Preliminaries

We now proceed to evaluate the amplitude of Eq. (1).
The amplitude originates in the usual current-current in-
teraction which couples the lepton current to the weak-
nucleon current. The lepton current is given by the relativ-
istic tree-level current, l� � �u����1� �5�u�. The (V �
A) weak-nucleon current is calculated from the effective
Lagrangian using the approach described above.

There are three contributions to the weak-nucleon-
nucleon vertex. The first two of these involve coupling of
the nucleons to an external vector field and to an external
axial field. The diagrams which contribute to these two
contributions are given in Fig. 1. The third contribution, to
be discussed in the next section, involves coupling to the
pion, which by virtue of its coupling to the leptonic current
contributes to the overall axial weak-nucleon current.

We take for the external vector current v� ! v�s�� � ~� 	
~v�, i.e., we divide the current into isoscalar and isovector
part. Only the isovector part contributes to the weak cur-
rent, but we will keep both for completeness, and to allow
evaluation of some of the LEC’s via a connection to the
isoscalar electromagnetic form factors of the nucleon.
Similarly we take a� ! a�s�� � ~� 	 ~a�, but in this case

will drop the isoscalar axial current a�s�� .

B. Tree-level diagrams

The tree-level contributions to the amplitude correspond
to diagrams 1–4 in Fig. 1 and are given by

 M1V � i
�������
ZN

p
���v�s�� � ~� 	 ~v�����i

�������
ZN

p
; (15)

 M1A � igA
�������
ZN

p
��f ~� 	 ~a��

��5�i

�������
ZN

p
; (16)

 

M2V � i
�������
ZN

p
��f
i���q�

2mN
��c6 � 2c7�v

�s�
�

� c6 ~� 	 ~v���i

�������
ZN

p
; (17)

 M2A � 0; (18)

 

M3V � i ��f�q�q� � q2g����pi � pf��

�
2d7

mN
v�s��

�
d6

mN
~� 	 ~v�

�
�i; (19)

 

M3A � i ��f���5�4m2
0�d16 ~� 	 ~a�

� d22�q2g�� � q�q�� ~� 	 ~a���i; (20)

 

M4V � i ��fi�
��q��4�q

2e54 � 4m2
0�e105�v

�s�
�

� 2�q2e74 � 4m2
0�e106� ~� 	 ~v���i; (21)

 M4A � 0: (22)

Here the subscript V or A refers to coupling to vector or
axial current, respectively, and the number refers to the
particular diagram in Fig. 1. For these and subsequent
amplitude expressions ��f and �i are to be interpreted as
wave functions, rather than the fields of the original
Lagrangian. That is, they are still two component objects
in isospin space, but made up of spinors �u�pf� and u�pi�
rather than fields. In the HBChPT counting system these
tree-level diagrams contribute to O�p�, O�p2�, O�p3�,
O�p4� respectively. Note that the nucleon wave function
renormalization factor ZN appears only in the M1 and M2

amplitudes which is a consequence of the fact, as shown in
Eq. (B21) of Appendix B, that the leading corrections to
ZN are two orders higher, ZN � 1�O�p2�.

C. Leading one loop diagrams

The next set of diagrams consists of those one loop
diagrams with all vertices coming from L�1��N . In the
HBChPT sense these all contribute first at O�p3�, but in
the relativistic approach they will also contribute some
noncounting terms of O�p2� as well as relativistic correc-
tions of O�p4� and higher.

We express these amplitudes in terms of a general loop
integral I��...:NN...: which is defined in detail in
Appendix A. For present purposes it is sufficient to note

 

FIG. 1. Diagrams which contribute to the coupling of external
vector and axial vector currents to the nucleon. The solid,
dashed, and wiggly lines correspond, respectively, to nucleons,
pions, and external vector or axial vector fields. The unlabeled
vertices come from L�1��N whereas the ones labeled 2, 3, 4 come,
respectively, from L�2��N , L�3��N and L�4��N .
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that I��...:NN...:�ki; . . . :pj; . . . ; A� refers to a loop integral
which contains a pion propagator for each subscript � with
momenta of the form ki � ‘ and a nucleon propagator
denominator for each subscript N with momenta of the
form pj � ‘. The loop integration variable ‘ [35] is chosen
so that the first pion momentum k1 is zero and that argu-
ment is normally not put in explicitly. A is whatever is in
the numerator.

In terms of these loop integrals the lowest order one loop
amplitudes are given by
 

M5V �
ig2
A

4F2
0

��f�3v
�s�
� � ~� 	 ~v��I�NN�pi;pf;‘6 �5�p6 f�‘6 �m�

����p6 i�‘6 �m�‘6 �5��i; (23)

 

M5A � �
ig3
A

4F2
0

��f ~� 	 ~a�I�NN�pi; pf; ‘6 �5�p6 f � ‘6 �m�

� ���5�p6 i � ‘6 �m�‘6 �5��i; (24)

 

M8V �
ig2
A

F2
0

��f ~� 	 ~v�fI�N�pf; ‘6 �5�p6 f � ‘6 �m����5�

� I�N�pi; �
��5�p6 i � ‘6 �m�‘6 �5�g�i; (25)

 M8A �
igA
F2

0

��f ~� 	 ~a�fI�N�pf; ‘6 �5�p6 f � ‘6 �m��
��

� I�N�pi; ���p6 i � ‘6 �m�‘6 �5�g�i; (26)

 M11V � �
i

F2
0

��f ~� 	 ~v����iI��1�; (27)

 M11A � �
igA
F2

0

��f ~� 	 ~a����5�iI��1�; (28)

 

M13V � �
ig2
A

F2
0

��f ~� 	 ~v�I��N��q; pi; �2‘� q���‘6 � q6 �

� �5�p6 i � ‘6 �m�‘6 �5��i; (29)

 M13A � 0; (30)

 M15V �
i

2F2
0

��f ~� 	 ~v�I����q; �2‘� q���2‘6 � q6 ���i;

(31)

 M15A � 0: (32)

D. Further one loop diagrams

The next class of one loop diagrams consists of those
with one vertex from L�2��N with all others from L�1��N . In the
HBChPT sense these would be of O�p4�, but again in the

relativistic formulation they will have noncounting terms
of lower order.

These amplitudes are given by
 

M6V �
ig2
A

4F2
0

��f�3�c6 � 2c7�v
�s�
� � c6 ~� 	 ~v��

� I�NN�pi; pf; ‘6 �5�p6 f � ‘6 �m�

�
i���q�

2mN
�p6 i � ‘6 �m�‘6 �5��i; (33)

 M6A � 0; (34)

 M9V � 0; (35)

 

M9A � �
igA
4F2

0

��f ~� 	 ~a�

�
I�N

�
pf; ‘6 �5�p6 f � ‘6 �m�

�

�
4c2

m2
N

�p�i pi 	 ‘� �pf � ‘�
��pf � ‘� 	 ‘�

� 8c3‘� � 2i���
�
4c4‘� �

c6

mN
q�

���

� I�N

�
pi;

�
4c2

m2
N

�p�f pf 	 ‘� �pi � ‘�
��pi � ‘� 	 ‘�

� 8c3‘� � 2i���
�
4c4‘� �

c6

mN
q�

��

� �p6 i � ‘6 �m�‘6 �5

��
�i; (36)

 

M12V �
3ic2

F2
0m

2
N

��f�v
�s�
� � ~� 	 ~v���pi � pf��I��‘

�‘���i

�
c6

2F2
0mN

��f�
��q� ~� 	 ~v��iI��1�; (37)

 M12A � 0; (38)

 M16V � �
2c4

F2
0

��f�
��q� ~� 	 ~v�I����q; �2‘� q�

�‘���i;

(39)

 M16A � 0: (40)

E. Mass insertion terms

The final set of amplitudes arises from the mass inser-
tions on internal nucleon lines. These insertions come from
the NN two point term in L�2��N , namely ��f4c1m2

0��i. The
relevant amplitudes, those for diagrams 7, 10, 14 of Fig. 1,
can be obtained from the underlying diagrams 5, 8, 13,
respectively, by the substitution for each nucleon propa-
gator in turn
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i
p6 �m� i


!
i

p6 �m� i

�4ic1m

2
0��

i
p6 �m� i


:

(41)

An alternative procedure is to observe that m appears in
the loop integrals only in the propagators, since we nor-
malized all the constants in the Lagrangian to mN not m.
Thus we can use the fact that

 i�4ic1m2
0��

@
@m

�
i

p6 �m� i


�

�
i

p6 �m� i

�4ic1m2

0��
i

p6 �m� i

: (42)

This allows us to obtain the amplitudes with mass inser-
tions by taking derivatives of the corresponding amplitudes
without insertions. As detailed in Appendix A this ap-
proach, while exact, may not be as useful as one might
expect because the derivative in effect reduces the power of
small expansion parameter. Thus in some cases one has to
expand the initial integral to higher order than needed for it
alone so as to get the mass insertion diagrams to the
appropriate order. We actually calculated these mass in-
sertion diagrams explicitly and used this derivative proce-
dure to check the results.

Another approach is to observe that (see Appendix B)
the bare nucleon mass which appears in the original
Lagrangian is related to the physical mass by the relation

 mN � m� 4c1m2
0� �O�p4�: (43)

Thus a propagator with mass m! mN can be expanded as
 

i
p6 �mN � i


!
i

p6 �m� i

�

i
p6 �m� i


�4ic1m2
0��

�
i

p6 �m� i

� . . . : (44)

Thus if we replace m! mN in the propagators in the
one loop diagrams we effectively include the mass inser-
tion diagrams 7, 10, 14 of Fig. 1. At the same time we
reduce the number of separate diagrams to be calculated
and reduce by one the maximum number of propagators
involved in the loop integrals which must be calculated.
Both of these offer significant calculational advantages.
However this expansion only works to first order, so one
must keep only terms in the expansion of the propagators
which are linear in c1. This requires extreme care since c1

appears also in other places in the amplitudes so that in
general there are legitimate terms involving c2

1 which must
be kept.

Note that simply replacing m! mN in all the propaga-
tors is not exactly equivalent to the direct calculation of the
mass insertion diagrams. The expansion of Eq. (44) only
works to lowest order, so with such a substitution there will
be some spurious higher order terms implicitly included.
Also implicitly included will be diagrams like those of

Fig. 2 which involve two mass insertions or which involve
one mass insertion plus a vertex from L�2��N. These would
not have been included in a direct calculation of the mass
insertion diagrams as they would have been nominally of
too high order. To the order we are considering most of
these extra terms can be neglected. In fact in HBChPT all
would be of higher order. However in the relativistic
approach there will be a few terms arising from the non-
counting terms from diagrams such as those of Fig. 2
which will appear in the amplitude in this approximation
and not in the explicit calculation.

To repeat, our approach was to calculate the mass in-
sertion diagrams explicitly and thus our results may differ
from calculations which use one of the above
approximations.

F. Summary

By summing all of the amplitudes given above we obtain
the complete weak nucleon-nucleon amplitude arising
from interaction with external vector and axial vector
fields.

V. EVALUATION OF THE NN 3-POINT VERTEX:
PION TERMS

The third contribution which must be evaluated comes
from the pion-nucleon-nucleon vertex and will contribute
to the axial current. The diagrams which are needed are
given in Fig. 3 and the amplitudes associated with those
diagrams are given by

 M1� � �
gA

2F0

�������
ZN

p
��f ~� 	 ~�q6 �5�i

�������
ZN

p ������
Z�

p
; (45)

 M2� � 0; (46)

 M3� �
m2

0�

F0
�d18 � 2d16� ��f ~� 	 ~�q6 �5�i; (47)

 M4� � 0; (48)
 

M5� �
g3
A

8F3
0

��f ~� 	 ~�I�NN�pi; pf; ‘6 �5�p6 f � ‘6 �m�

� q6 �5�p6 i � ‘6 �m�‘6 �5��i; (49)

 

FIG. 2. Diagrams which are higher order and which would not
be included in an explicit calculation. However parts of these
diagrams would be included implicitly by using the physical
mass mN in the propagators of loop integrals.
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 M6� � 0; (50)

 

M8� � �
gA

4F3
0

��f ~� 	 ~�fI�N�pf; ‘6 �5�p6 f � ‘6 �m��q6 � ‘6 ��

� I�N�pi; �q6 � ‘6 ��p6 i � ‘6 �m�‘6 �5�g�i; (51)

 

M9���
gA

2F3
0

��f ~� 	 ~�
�
I�N

�
pf;‘6 �5�p6 f� ‘6 �m�

�

�
�4c1m2

0��
c2

m2
N

��pf� ‘� 	 ‘�pf� ‘� 	q

�pi 	 ‘pi 	q�� 2c3‘ 	q� 2ic4�
��‘�q�

��

� I�N

�
pi;

�
�4c1m

2
0��

c2

m2
N

��pi� ‘� 	 ‘�pi� ‘� 	q

�pf 	 ‘pf 	q�� 2c3‘ 	q� 2ic4���‘�q�

�

��p6 i� ‘6 �m�‘6 �5

��
�i; (52)

 M11� �
gA

6F3
0

��f ~� 	 ~�q6 �5�iI��1�; (53)

 M12� � 0: (54)

Again the mass insertion diagrams 7 and 10 are obtained
by making the replacement of Eq. (41) in diagrams 5 and 8.

To get the contribution to the weak nucleon-nucleon
axial current from this �NN amplitude we make the
replacement (for q2 � m2

�) ~� 	 ~�! 2iF�q
� ~� 	 ~a�=�q

2 �

m2
��. This arises from the addition of a pion propagator and

pion decay vertex to the �NN vertex. Note that the pa-

rameters F� and m� are the physical ones. Since we have
associated a

������
Z�
p

with the amplitude M1� so that it is
renormalized, we need to use here the renormalized propa-
gator and renormalized pion decay vertex to make the
overall amplitude renormalized.

VI. EVALUATION, REGULARIZATION AND
RENORMALIZATION

The first step in evaluating these amplitudes is to reduce
the numerators of the loop integrals. This is done using the
standard algebra of Dirac matrices and the usual tensor
decomposition of integrals with ‘�, ‘�‘�; . . . in the nu-
merator. The end result is that the full amplitude can be
expressed in terms of the following loop integrals with unit
numerator: I��1�, I�N�p; 1�, INN�pi; pf; 1�, I���q; 1�,
I�NN�pi; pf; 1�, I��N��q; p; 1�, where p can be pi or pf.
For the diagrams with the mass insertion put in explicitly
we need the additional integrals I�NN�pi; pi; 1�,
INN�pi; pi; 1�, INNN�pi; pi; pf; 1�, I��NN��q; pi; pi; 1�
plus the corresponding ones with the roles of pi and pf
interchanged.

In HBChPT these integrals are evaluated using dimen-
sional regularization to extract the divergences, which are
then absorbed in the renormalization of the LEC’s. In the
relativistic approach this procedure works in the same way
for integrals involving only pion propagators. Thus, for
example, we have in standard fashion for dimension d ’ 4

 I��1� �
m2

0�

�4��2

�
R� ln

�
m2

0�

�2

��
; (55)

where

 R � �
1



� �� 1� ln�4��; 
 �

4� d
2

; (56)

with � � ��0�1� � 0:577 . . . :.
In the relativistic approach the same procedure applied

to integrals containing nucleon propagators leads to thegMS scheme in which the R’s are all absorbed in the LEC’s.
The amplitudes however still contain finite terms which do
not obey the usual counting rules of HBChPT. Thus, for
example, one loop diagrams which are nominally O�p3�
may contain contributions at O�p2� and likewise those
nominally O�p4� may contain also terms of O�p2� and
O�p3�. There have been two somewhat different, but simi-
lar, methods proposed to resolve this problem. In the
infrared renormalization (IR) scheme proposed by
Becher and Leutwyler [12] the loop integrals are divided
into two parts. An ’infrared singular’ part contains non-
integer powers of the small expansion parameter and a
‘‘regular’’ part contains only integer powers. They then
renormalize the integrals by dropping the regular part and
absorbing the infinities of the singular part, i.e. the terms
proportional to R, in a renormalization of the LEC’s. Note
that ‘‘drop’’ means ‘‘absorb in the LEC’s’’ or equivalently

 

FIG. 3. Diagrams which contribute to the �NN vertex.
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‘‘cancel via counterterms in the Lagrangian.’’ Thus in this
approach the infinities which appear in both singular and
regular parts are in effect combined and absorbed in the

LEC’s in the same way as would be done in the gMS
scheme. The difference arises in that in the IR scheme
additional regular polynomial terms, including all those
which do not satisfy usual HBChPT counting, are also
absorbed in the LEC’s.

The other approach, the extended on mass shell (EOMS)
scheme of the Mainz group [10], first uses the usual
dimensional regularization to extract the terms propor-
tional to R, which are then absorbed in renormalizations

of the LEC’s in exactly the same fashion as in the gMS
scheme. In the second step the amplitude for each individ-
ual diagram is examined and those terms, all polynomials
in the expansion parameter, which do not obey the count-
ing rules, as used in HBChPT, are determined. This finite
set of terms, the noncounting terms, are then dropped, i.e.
absorbed into the LEC’s. This approach thus eliminates a
somewhat smaller set of terms than does the IR approach.

In practical applications the EOMS approach involves a
number of subtleties. These subtleties, basically amounting
to choices of conventions, affect the specific terms ab-
sorbed in the LEC’s and thus make little difference as
long as one is considering just one process. They simply
change slightly the numerical values of the LEC’s.
However if one wants a consistent scheme to be applied
to a variety of processes, as is our intent here, it is neces-
sary to discuss the various choices and to define exactly
what conventions we take, as one must use the same
conventions in subsequent calculations or when using val-
ues of the LEC’s extracted by others.

First, when extracting the noncounting terms from each
diagram it makes a difference whether one first expresses
the amplitudes as a function of the original massm appear-

ing in the Lagrangian, the mass in the chiral limit m



, or the
physical mass mN . Differences are O�m2

�� and would thus
be higher order corrections in the HBChPT scheme. In the
relativistic approach however such corrections to, say,
O�p2� noncounting terms can enter as O�p4� terms which
are kept. Thus absorbing a noncounting term expressed as a
function of m leads to a slightly different renormalization
than would be obtained by absorbing the equivalent term
expressed as a function of mN . Here we always express the
amplitudes in terms of the physical mass mN before iso-
lating the noncounting terms.

Similarly the log terms in the amplitudes can be ex-
pressed as ln�m2=�2� which makes � � m the logical
choice, since then these terms vanish, or as ln�m2

N=�
2�

which makes� � mN the logical choice. We have kept the
scale parameter � explicit until the end, but have used mN
in the amplitudes and eventually for �.

An essentially similar effect arises in the approach used
for including the diagrams with mass insertions on internal
nucleon lines. We evaluated each diagram explicitly so that

for each of the O�p3� diagrams with an internal nucleon
line, i.e., Fig. 1 diagrams 5, 8, 13 and Fig. 3 diagrams 5,8,
there is an associated diagram of O�p4�, Fig. 1 diagrams
7,10,14 and Fig. 3 diagrams 7, 10, respectively. We then
looked at each diagram in the two sets to determine the
noncounting terms for each. An alternative approach used
in Ref. [18] replaces m! mN in the O�p3� diagrams and
then later expands to first order in the difference to get the
mass insertion contributions. In this approach a term of
O�p2� before expansion would be dropped, as the original
diagrams are nominally of O�p3�. However had the expan-
sion been done first, the expansion of such terms would
give pieces of O�p4� which one would keep, and which in
fact are some of those arising in the diagrams with explicit
mass insertions.

Finally observe that, although the EOMS scheme is
based on extracting from each individual diagram those
terms which do not obey the nominal counting rules and
absorbing those terms in LEC’s, that procedure does not
ensure that each individual diagram obeys the counting
rules. The exact same statement can be made for the IR
scheme and a very similar statement can be made for thegMS scheme, where the renormalization of the LEC’s to
remove the infinities ensures that the amplitude is finite,
but not that each individual diagram is finite. In all these
cases the situation occurs because in general there are not
always LEC’s available to absorb terms from individual
diagrams. The simplest example of this can be seen in the
calculation of the q2 � 0 limit ofGV . In the EOMS scheme
explicit calculation shows that the diagrams 7, 8, 10, 13,
and 14 of Fig. 1 all contribute noncounting terms. Many of
these are removed by the renormalization provided by ZN
(appearing in the tree-level diagrams 1 and 2) as given in
Eq. (B21) of Appendix B. However two contributions
remain, those from diagrams 8 and 13. There are no
LEC’s available here and so no way to absorb these as
individual terms. Instead what happens is that these two
contributions cancel each other so that the sum of the
amplitudes from all individual diagrams contains no non-
counting terms.

Similarly in the gMS scheme diagrams 5, 7, 8, 10, 11, 13,
14, and 15 of Fig. 1 all contain infinite terms proportional
to R. Again ZN renormalizes some of these away, but there
are a number of terms left and no available LEC’s to absorb
them. Instead they cancel among themselves.

Naively it is perhaps obvious that this happens as indi-
vidual diagrams are not physically measurable quantities
and thus do not necessarily satisfy physically relevant
constraints such as counting or finiteness. More precisely,
the argument that the finite number of noncounting terms,
or the infinities, can be absorbed in the LEC’s (or in
counterterms) relies on the fact that the Lagrangian con-
tains all possible counterterms allowed by the symmetries.
In this case the relevant symmetry is current conservation
which, as is well known, ensures that the weak vector
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coupling (or the isovector electromagnetic coupling F1) is
not renormalized by the strong interactions. This symmetry
is obeyed by the full amplitude, but not by individual
diagrams. Thus it perhaps should not be a surprise that
terms are generated for individual diagrams which cannot
individually be absorbed in counterterms. The fact that the
sum cancels as required however is a clear check on the
correctness of the calculation.

Thus to summarize we consider three approaches, thegMS, IR, and EOMS schemes. In all three one first regu-
larizes the integrals using dimensional regularization and
renormalizes the LEC’s to remove all infinities in the usual
way. For IR and EOMS additional sets of finite terms are
extracted and absorbed in the LEC’s so as to preserve
counting. The difference between the two is simply in
the explicit terms extracted.

Note that these three approaches will not lead to any
different predictions for measurable quantities. The for-
mulas for such quantities in terms of the LEC’s will be
different, but that will be compensated by different formu-
las for the LEC’s in terms of unrenormalized quantities and
different numerical values for the LEC’s.

VII. RESULTS

We thus proceed as outlined above, i.e. we extract R
from each of the remaining loop integrals using the stan-
dard dimensional regularization as in Appendix A. The
integrals are first separated into two parts according to the
IR prescription. The parts involving R are recombined and
the renormalization of the LEC’s to absorb R proceeds just

as in the usual gMS scheme. Thus the original LEC’s in the
Lagrangian, x, where x stands for any of the LEC’s, are

eliminated in favor of their gMS renormalized values xr.
The finite parts are then expanded in powers of the small
parameter and terms through O�p4� are kept. We flag those
terms originating in the infrared regular part of the integral
with a parameter �IR, as detailed in Appendix A. We
assume that q2=m2

� � 1, but not necessarily very small,
but for simplicity keep only terms linear in q2 in the final
results. We also replace the original parameters of the
Lagrangian, m, m0�, F0 with their physical values as
determined in Appendix B. Then the contribution of each
diagram is examined and those terms which do not obey
counting and which would be dropped in the EOMS
scheme are flagged with a parameter �EOMS.

The full amplitude is then evaluated and put in the form
of Eq. (1) which gives the vector and axial vector weak-
nucleon currents, V�, A�, appropriate for muon capture
and allows us to extract explicit expressions for the various
form factors in the equation. Two further renormalizations
are then performed. The first expresses xr in terms of the
EOMS renormalized quantities xEOMS and is determined
by requiring that all terms flagged by �EOMS must be
absorbed. The second expresses xEOMS in terms of the IR

renormalized LEC’s xIR and removes all the remaining
terms proportional to �IR. The expressions for the renorm-
alizations seem to be unique, except for the few cases
where only a combination of LEC’s appears, as long as
each renormalization involves only terms with the same
power of m�.

Since there are so many diagrams and so many terms in
each diagram, the actual process of carrying out these
operations was quite complicated and relied heavily on
computer aided manipulations. For the reader interested
in the details we give in Appendix C an analytic analysis
for one diagram showing how this procedure works and, in
particular, how the terms which do not obey counting are
determined.

The weak form factors expressed in terms of the IR
renormalized LEC’s are given by the following. In these
relations we have always used physically measurable
masses, mN , m� and coupling F�, have taken the scale
factor �! mN , and have kept only terms linear in q2, but
otherwise have kept all terms consistent with an expansion
of the amplitude to fourth order in the expansion in the
small parameter.
 

GV�q
2� � 1� q2

�
�2dIR

6 �
1

96F2
��2

�
7g2

A � 1

� �5g2
A � 1� ln

�
m2
�

m2
N

��
�

35g2
Am�

192F2
��mN

�
; (57)

 

GM�q2� � cIR
6 �

g2
AmNm�

4F2
��

� 16eIR
106mNm2

� �
g2
Am

2
�

32F2
��2

� �4c6 � 8� �
m2
�

16F2
��2 �c6 � 2c6g

2
A � 7g2

A

� 4c4mN� ln
�
m2
�

m2
N

�
� q2

�
2dIR

6 � 4eIR
74mN

�
mNg

2
A

48F2
��m�

�
c4mN

24F2
��2

�
1� ln

�
m2
�

m2
N

��

�
g2
A

48F2
��

2

�
7� 6 ln

�
m2
�

m2
N

���
; (58)

 

GA�q2� � gIR
A � 4dIR

16m
2
� �

gAm
2
�

16F2
��2

�
g2
A � �2g

2
A � 1�

� ln
�
m2
�

m2
N

��
�
m3
�gA

6F2
��
�2c4 � c3�

�
m3
�gA

8F2
��mN

�g2
A � 1� � q2dIR

22; (59)

 GP�q2� �
2F�G�NN�m

2
��

m2
� � q

2 � 2mNdIR22 : (60)

The correction terms needed to renormalize the LEC’s
and other parameters are all proportional to 1=F2

�. Thus in
terms already containing this factor it does not matter
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which of the various renormalizations are used as we have
consistently neglected terms of order 1=F4

�. Thus to sim-
plify the notation in the above, and also the equations
below, we have left off the superscript, r, IR or EOMS,
on gA and the various LEC’s when they appear in terms
already containing a 1=F2

�. Note however that for numeri-
cal work we will always use the appropriate LEC wherever
it appears, i.e., when working in the IR scheme, all LEC’s
will be the IR values, and similarly for the other schemes.

Since we kept the isoscalar component of the external
vector field we can also obtain the isoscalar electromag-
netic form factors of the nucleon. (The isovector form
factors are of course the same as GV and GM.)

 F�s�1 �q
2� � 1� 4q2dIR

7 ; (61)

 

F�s�2 �q
2� � cIR

6 � 2cIR
7 � 32eIR

105m
2
�mN �

3g2
Am

2
�

16F2
��2 ln

�
m2
�

m2
N

�
� �c6 � 2c7 � 1� � 4q2�dIR

7 � 2eIR
54mN�: (62)

Finally the pion-nucleon-nucleon coupling G�NN�q2� is
obtained by identifying the �NN amplitude of Eqs. (45)–
(54) with the defining relation

 �G�NN�q2� ��f ~� 	 ~��5�i; (63)

and is

 G�NN�m2
�� �

mN

F�
�GA�0� � 2m2

�dIR
18�: (64)

The IR renormalized LEC’s, expressed in terms of the
EOMS renormalized LEC’s are given by:

 gIR
A � gEOMS

A ; (65)

 cIR
6 � cEOMS

6 ; (66)

 cIR
7 � cEOMS

7 ; (67)

 dIR
6 � dEOMS

6 �
9g2

A

128F2
��

2 ; (68)

 dIR
7 � dEOMS

7 �
3g2

A

256F2
��

2 ; (69)

 dIR
16 � dEOMS

16 �
gA

32F2
��2 �1� g

2
A� �

c1gAmN

16F2
��2 �4� g

2
A�;

(70)

 dIR
18 � dEOMS

18 �
g3
A

192F2
��

2 ; (71)

 dIR
22 � dEOMS

22 �
g3
A

192F2
��2 ; (72)

 eIR
54 � eEOMS

54 �
g2
A

512F2
��2mN

�1� 2c6 � 4c7�; (73)

 eIR
74 � eEOMS

74 �
g2
A

768F2
��2mN

�1� 2c6�; (74)

 

eIR
105 � eEOMS

105 �
3c1g2

A

128F2
��

2 �c6 � 2c7�

�
3g2

A

1024F2
��

2mN
�4� 3c6 � 6c7�; (75)

 eIR
106 � eEOMS

106 �
g2
A

512F2
��2mN

�4� c6� �
5c1c6g2

A

64F2
��2 : (76)

The EOMS renormalized LEC’s, expressed in terms of

the gMS renormalized LEC’s are given by

 gEOMS
A � grA�

g3
Am

2
N

16F2
��

2�
gAm

3
N

576F2
��

2 �9c2� 32c3� 32c4�;

(77)

 cEOMS
6 � cr6 �

g2
Am

2
N

16F2
��2 �c6 � 5�; (78)

 cEOMS
7 � cr7 �

g2
Am

2
N

16F2
��

2 �4� 2c6 � 3c7�; (79)

 dEOMS
6 � dr6 �

c6g
2
A

128F2
��

2 ; (80)

 dEOMS
7 � dr7 �

3g2
A

256F2
��

2 �c6 � 2c7�; (81)

 dEOMS
16 � dr16 �

c1mNg3
A

16F2
��2 �

mNgA
288F2

��2 �c2 � 18c3 � 18c4

� 72c1� �
c1m

2
NgA

1152F2
��

2 �41c2 � 32c3 � 1184c4�;

(82)

 dEOMS
18 � dr18 �

gAmN

144F2
��

2 �c2 � c3 � c4�; (83)

 dEOMS
22 � dr22; (84)

 eEOMS
54 � er54 �

3g2
A

512F2
��2mN

�c6 � 2c7�; (85)

 eEOMS
74 � er74 �

c6g2
A

256F2
��

2mN
; (86)
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 eEOMS
105 � er105 �

3c1g2
A

128F2
��2 �c6 � 2c7�; (87)

 eEOMS
106 � er106 �

3c1c6g2
A

64F2
��2 : (88)

We find for the gMS renormalized LEC’s expressed in
terms of the LEC’s of the original Lagrangian:

 grA�gA�
gAm2

NR

16F2
��2 �2�g

2
A��

gAm
3
NR

96F2
��2 �3c2�8c3�40c4�;

(89)

 cr6 � c6 �
g2
Am

2
NR

32F2
��

2 c6; (90)

 cr7 � c7 �
g2
Am

2
NR

32F2
��2 �2c6 � 3c7�; (91)

 dr6 � d6 � �1� g2
A�

R

192F2
��2 ; (92)

 dr7 � d7; (93)

 

dr16 � d16 �
R

192F2
��

2 �3gA�1� g
2
A� �mNgA�c2 � 6c3

� 18c4� � gAm2
Nc1�35c2 � 56c3 � 232c4��; (94)

 dr18 � d18 �
R

192F2
��2 gAmN�24c1 � c2 � 4c3 � 4c4�;

(95)

 dr22 � d22; (96)

 er54 � e54; (97)

 er74 � e74 �
R

384F2
��

2mN
�g2
A � 1� 4c4mN�; (98)

 er105 � e105 �
3Rg2

A

1024F2
��2mN

�c6 � 2c7��1� 10c1mN�;

(99)

 

er106 � e106 �
R

512F2
��

2mN
�2c6 � 8mNc4

� c6g2
A�1� 10mNc1��: (100)

Note that the renormalizations of gA given in Eqs. (65),
(77), and (89) originate from terms that survive in the
chiral limit and thus they renormalize the original gA
appearing in the Lagrangian to gA in the chiral limit, g




A.

This makes gIR
A � gEOMS

A � g


A and makes the renormali-

zations of LEC’s appearing in combination with gA, e.g.
d16, uniquely determined. Just as discussed for the mass in
Appendix B, very often a counterterm to perform this
renormalization of gA is included in the original
Lagrangian and gA is assumed from the beginning to be
gA in the chiral limit.

VIII. NUMERICAL EVALUATION OF LEC’S

In the preceding sections we have obtained the result for
the complete amplitude for OMC as expressed in Eq. (1)
using the values for the couplings from Eqs. (57)–(60).
This amplitude is expressed in terms of the physical
masses, the pion decay constant F� � 92:4 MeV, the ex-
ternal parameters c1, c2, c3, c4 and the sets of LEC’s xr,
xIR, or xEOMS, depending on the case being considered,
where x stands for gA, c6, c7, d6, d7, d16, d18, d22, e54, e74,
e105, e106. To determine these parameters we use available
data from measurements of weak and electromagnetic
form factors.

For the vector current we have information on the iso-
vector form factors F�v�1 and F�v�2 , equivalent toGV andGM,
and on the isoscalar form factors F�s�1 and F�s�2 . The static
values of the magnetic form factors are given by F�v�2 �0� �

�p � �n and F�s�2 �0� � �p � �n, where the proton and
neutron anomalous magnetic moments are taken as �p �
1:7928 and �n � �1:9130. We define the slopes of the
various form factors in the usual way

 F�q2� � F�0�
�
1�

q2

6
hr2i

�
; (101)

where q2 is the square of the four-vector momentum trans-
fer and hr2i is the rms radius. We take the values of the rms
radii for F1, F2 in the isoscalar and isovector cases from
Mergell, et al. [36] and thus use hr2�v�

1 i � �0:765 fm�2,
hr2�v�

2 i � �0:893 fm�2, hr2�s�
1 i � �0:782 fm�2, hr2�s�

2 i �
�0:845 fm�2.

Information on the axial current comes from neutron
beta decay which givesGA�0� � 1:2695� 0:0029 [31] and
from antineutrino-nucleon scattering [37] which gives the
axial rms radius hr2

Ai � 0:42� 0:04 fm2. We use for the
pion-nucleon coupling constant G�NN�m

2
�� � 13:0� 0:1

[38].
There is one remaining unused equation, Eq. (60), which

gives the well known expression for GP�q2� in terms of
G�NN�m2

�� and d22, which can be determined from hr2
Ai. In

principle, if GP were well measured, this could be used as
an alternative to one of the equations to determine the
LEC’s. In view of the uncertainties in the experimental
value of GP [1] however this is best used to predict GP or
simply as a consistency check.

Finally we need the external parameters c1, c2, c3, c4

which can be obtained from pion-nucleon scattering. One
should in principle evaluate these via a complete calcula-
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tion of pion-nucleon scattering consistent in order and in its
details with the calculation here. That is beyond the scope
of the present paper. So for present purposes we will simply
take the results of a tree-level fit obtained by Becher and
Leutwyler [17], namely, c1 � �0:9m�1

N , c2 � 2:5m�1
N ,

c3 � �4:2m�1
N , c4 � 2:3m�1

N . These parameters appear
only in higher order terms, so this approximation is proba-
bly sufficient.

We have identified above 9 bits of experimental data to
be used to evaluate the parameters. However there are 12
unknown parameters. Note however that at least for the IR
and EOMS schemes at leading order only certain combi-
nations appear. Thus we define

 

~gIR
A � gIR

A � 4m2
�d

IR
16; ~cIR

6 � cIR
6 � 16m2

�mNe
IR
106;

~cIR
7 � cIR

7 � 8m2
�mN�2e

IR
105 � e

IR
106�; (102)

with an analogous definition for the EOMS and gMS
schemes. For the IR and EOMS schemes, which obey
counting, the m2

� coefficient in these definitions means
that we can replace all gA, c6, c7 appearing in higher order
terms with ~gA, ~c6, ~c7. Thus we eliminate all instances of
d16, e105, and e106, and so have enough input data to solve
uniquely for the nine parameters.

For the gMS scheme however this does not work. Because
of the noncounting terms the replacement gA, c6 c7 ! ~gA,
~c6, ~c7 leaves some instances of d16, e105, and e106 which are
not of higher order. Thus we need to assign values to these
LEC’s in order to solve for the others. Since there is not
enough experimental information available we will simply
try a couple of arbitrary cases to get a feel for the sensi-
tivity of the results to these LEC’s. In particular we will

take, for a case gMS-a, d16 � e105 � e106 � 0. As an alter-

native we will take for case gMS-b, d16 � e105 � e106 � 1,
expressed in appropriate units. This latter choice is arbi-
trary, but should correspond to a ‘‘natural’’ size for these
LEC’s.

To actually solve for the LEC’s for say the IR case we
take Eqs. (57)–(59), (61), (62), and (64) and express all of
the LEC’s in terms of their IR forms, so that the equations
are expressed purely in terms of IR quantities. We then
solve these equations self consistently, using the experi-
mental input given above, for all the LEC’s. In particular
this means that we solve the cubic equation for ~gIRA and use
that value in the other equations to solve for the other
LEC’s. To get the EOMS case we use Eqs. (65)–(76) to
replace the IR LEC’s with their EOMS forms, dropping
higher order terms as appropriate, so that the equations are
given entirely in terms of EOMS quantities, and then repeat
the solution procedure. Note that this procedure corre-
sponds to what one would do if one were using the
EOMS scheme from the beginning. It is not quite the
same as simply using Eqs. (65)–(76) to get the EOMS
LEC’s from the IR results because of the numerical con-

sequences of higher order terms which would be treated
slightly differently in those two approaches. Finally one

gets the gMS results in analogous way, though here as noted
above, for that case we have to choose values for d16, e105,
and e106.

The results for the LEC’s obtained as described above by
consistently solving all the relations available from the
OMC amplitude are given in Table I, together with avail-
able results obtained by others.

First we should comment on the comparison with pre-
vious results. There have been two previous calculations of
the electromagnetic form factors and the corresponding
LEC’s in relativistic formulations, Refs. [18,20]. While
our results are qualitatively the same, there are differences
in detail.

Perhaps the main difference in principle is the value of
gA used. In both of these previous works gA was taken to be
gA ’ GA�0� � 1:26 which is the lowest order result of
Eq. (59). Also since d16 does not appear explicitly in the
vector current it was not necessary there to distinguish
between gA and ~gA. We however expressed everything in
terms of ~gA and solved Eq. (59) consistently to the order of
the calculation to obtain a value of ~gA. Since gA appears in
many places, and, in particular, in the corrections to all the
other LEC’s, this made a difference, significant in some
cases, in the values of the LEC’s obtained. In a purely
formal sense the corrections to gA, i.e. the differences
between gA, ~gA, and the lowest order approximation 1.26
are all of higher order. Thus in principle the use of any of
these three interchangeably in the formulas for the LEC’s
would be consistent with our other approximations. The
fact that it makes a difference simply reflects the fact that
the higher order terms are not always small, i.e. that the
expansion does not always converge well. However since
we have the information, via Eq. (59), to calculate the
corrections to gA, it seems appropriate and preferable to
use that information consistently in obtaining the other
LEC’s. Finally note that some further differences arise
because in our self consistent solution for ~gA the results
are different for the IR and EOMS cases, because d16 is
different for those cases.

Additional smaller differences arise because we used the
rms radii appropriate to the Dirac and Pauli form factors
F1, F2 which were the form factors calculated directly,
rather than converting to radii appropriate for the Sachs
form factors. This affects some of higher order terms and
seems to affect d6 particularly. Also, as discussed above,
there are different options for including mass insertions
and for expanding to get the noncounting terms and we did
not always use the same conventions as in previous work.
The value of c4 used was slightly different than the one in
Ref. [20]. Finally we expressed everything in terms of the
physical mass mN instead of m. Again formally these
should be interchangeable, but numerically it made a dif-
ference in some cases.
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While we think the use of the self consistent value of ~gA
is a definite improvement in principle over previous works,
the other differences are really just differences in the de-
tails of the calculation. The fact that they make a numerical
difference in the values of the LEC’s just reinforces the
statement made at the beginning. Namely, if one wants
values of the LEC’s which can be used in further calcu-
lations one must be sure that the same approach and the
same conventions and approximations are made.
Otherwise it is dangerous to simply lift results from one
calculation to use in another.

Now let us look more carefully at the results of Table I.
Note that ~gA, ~c6, ~c7 differ for the IR and EOMS cases.
Since the underlying parameters gA, c6, c7 do not change
(cf. Eqs. (65)–(67)) these differences must be due to dif-
ferences in d16, e105, e106 as given in Eqs. (70), (75), and
(76). The LEC d6 is very different for IR and EOMS
schemes, and also varies from previous results. this is
apparently because of strong cancellations among terms,
which make it very sensitive to the small corrections. Our
value of ~c6 for the EOMS case differs significantly from
that of Ref. [18] apparently because of the c1c6 and c1c7

terms we have [cf. Eqs. (75) and (76)] which they have not
kept. These terms seem to originate in the different way of
including the mass insertions which we used.

In the gMS scheme the parameters ~gA, ~c6, ~c7 and d6

change fairly dramatically as compared with values ob-
tained in the IR or EOMS schemes. Apparently d6 is still
sensitive to cancellations and the other three contain large
noncounting terms, which also do not vanish in the chiral
limit. Had we adopted the common procedure of first add-
ing a counterterm to the Lagrangian to renormalize gA to
the chiral limit, such large terms would not be there for gA,
and presumedly it would be the same as for the IR and
EOMS schemes. However such large terms would still be
present for c6 and c7 and would still affect ~gA, ~c6, ~c7 via the
values of d16, e105, e106 buried in them.

Note that all the results for the gMS scheme are depen-
dent on the somewhat arbitrary choices made for d16, e105,
e106. The two illustrative cases correspond to values of zero
for these LEC’s and values of unity in natural units. Many

of the LEC’s are similar for the two cases but a few,
particularly ~c7, change a lot. Clearly if one wants to

seriously use the gMS scheme, it will be necessary to pin
down d16, e105, e106 from some other process.

Finally we should make a few general remarks. All three
of these schemes, since they differ only in how they absorb
or do not absorb the finite noncounting terms in the LEC’s
will give the same values for the amplitudes. One might
hope that one scheme or another would, say, lead to all
small LEC’s which could be neglected. This does not seem
to be the case and there does not seem to be any general
pattern emerging when we compare the three schemes. The

parameters ~gA; ~c6; ~c7 are perhaps a bit smaller in the gMS
scheme than in the others, indicating that the specific

noncounting terms which are kept explicit in the gMS
scheme but absorbed in the LEC’s in the other schemes
are large. However this does not persist for the d’s or e’s
which are of the same size, or maybe smaller, in the IR and

EOMS schemes as in the gMS scheme.

IX. DISCUSSION OF DIFFERENT APPROACHES

In previous sections we have described an explicit cal-
culation—that of the amplitude for OMC—carried out in
three different schemes for Lorentz invariant chiral pertur-
bation theory. In this section we want to compare and
contrast these schemes, particularly from the point of
view of how best to do a practical calculation.

First, as a matter of principle the IR and EOMS schemes
are major advances in our understanding of how to handle
Lorentz invariant ChPT calculations. Such approaches
show that in general it is possible to rewrite relativistic
ChPT so that it obeys the same counting rules as HBChPT,
which thus solves the problem with such theories raised in
Ref. [16]. It was also shown, particularly in Ref. [12] that,
unlike HBChPT, these schemes preserved the correct ana-
lytic structure of the amplitudes. That feature has not been
important for the OMC calculation, but can be for other
processes.

Thus we now know that in a relativistic theory the choice
of number of loops and the choice of the order of the

TABLE I. Results for ~gA and the various LEC’s in each of the renormalization schemes discussed in this work. Given for comparison
are results from [18,20] converted to account for the normalization, to mN vs m, which we use, and in the case of Refs. [18,19] for the
different combinations of ~c6 and ~c7 they use. The parameters ~gA, ~c6, and ~c7 are dimensionless, and the di and ei have, respectively,
units of GeV�2 and GeV�3. The cases labeled gMS-a and gMS-b involve arbitrary choices of d16, e105, and e106 as described in the text.

~gA ~c6 ~c7 d6 d7 d18 d22 e54 e74 d16 e105 e106

This work IR 0.9568 4.45 �2:34 0.07 �0:65 �0:25 2.28 0.30 2.16 . . . . . . . . .
EOMS 1.1030 6.35 �3:26 �0:57 �0:49 �0:17 2.20 0.26 1.62 . . . . . . . . .gMS-a �0:6244 2.52 �0:49 �1:01 �0:52 �0:49 2.30 0.28 2.72 0.0 0.0 0.0gMS-b �0:5810 2.29 0.66 �1:01 �0:44 �0:48 2.29 0.26 2.77 1.0 1.0 1.0

Ref. [20] IR 1.26 5.18 �2:77 0.80 �0:75 . . . . . . 0.26 1.65 . . . . . . . . .
Ref. [18,19] IR 1.267 4.73 �2:54 0.59 �0:79 . . . . . . 0.25 1.93 . . . . . . . . .

EOMS 1.267 4.73 �2:49 �0:75 �0:54 . . . . . . 0.19 1.59 . . . . . . . . .
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Lagrangian to use at each vertex can be made in a rigorous
way that preserves HBChPT counting, and that low order
contributions from higher order diagrams can all be ab-
sorbed in a consistent way in the LEC’s. From the point of
view of a practical calculation that means that the choice of
diagrams and vertices can be made essentially as in
HBChPT.

Once that choice is made however, from a practical point
of view, one has options. We have considered three possi-

bilities for renormalization: IR, EOMS, and gMS. All three
treat the infinities, i.e. the R terms in the same way. They
differ only in which subset of the set of finite terms which
do not obey counting are absorbed in the LEC’s. Thus the
LEC’s will have different numerical values in the three
schemes and the formulas for measurable quantities will
look different. But all three will give the same predictions
for measurable results. Once the general principles have
been used to choose the diagrams to be considered, any one
of the three schemes could be used consistently for prac-
tical calculations and would give equivalent results.

We can discuss however some of the pros and cons of the
three schemes, relative to practical calculations.

Consider first the IR approach. It absorbs the largest
number of terms in the LEC’s and as a consequence the
formulas tend to look simpler. However one might be
hiding known physics by absorbing such terms. This ap-
proach is probably the simplest of the three as long as one
does not need to work out the exact formulas for renor-
malization of each of the LEC’s. This is because if one just
‘‘drops’’ the terms which would later be absorbed one can
drop a lot of integrals—all with only nucleon propaga-
tors—and thus reduce the number of diagrams to be
calculated. If one calculates explicit formulas for the re-
normalization of the LEC’s, which we have done here,
though it would not normally be really necessary, then all
diagrams have to be calculated for all three schemes.

In contrast the gMS scheme absorbs none of the finite
terms. It is thus closest to the historical approach of de-
scribing a process by a set of Feynman diagrams. Some
noncounting terms will appear, but may be considered to
have physical significance. An example of this can be seen
in the classical approaches to radiative corrections to neu-
tron beta decay where certain terms, which in the relativ-
istic ChPT approach seem to originate as noncounting
contributions from diagrams too high order to keep [30],
appear explicitly in the standard Feynman diagram ap-
proach [39], have been discussed individually [40], and
are considered relevant.

The gMS scheme requires more effort than the IR
scheme, if explicit formulas for the renormalization are
not required, as one must always calculate all diagrams.
Since there are noncounting terms still present, the group-
ing of LEC’s to reduce the number of independent quan-
tities to be fitted to experiment, as done in Eq. (102), will
not necessarily work, as we saw for the present calculation.

This is a serious disadvantage for a single calculation as it
increases the number of LEC’s to be evaluated from data. It
might be less of a problem for a series of calculations as it
is unlikely that the same grouping will work for all pro-
cesses and so in that case for all the schemes one probably
has to evaluate all LEC’s individually anyway.

The EOMS scheme is somewhere in between the other
two. It absorbs the minimum number of terms necessary to
get counting. It thus may preserve some of the good things

about the gMS scheme while still solving the counting
problem. It however requires the most work of all as every
diagram must be evaluated and then one must look at each
diagram individually to determine which terms to subtract.
It also requires a careful statement of conventions, as
discussed above.

In a general sense the LEC’s absorb our ignorance, so it
would seem that one would want to leave explicit as much
known physics as possible, and absorb as little as possible
into the LEC’s. Ideally the LEC’s representing unknown
physics would then get small. This is the general philoso-
phy behind attempts to include explicitly additional de-
grees of freedom, such as the � [41,42] or vector mesons
[20,43,44]. Thus smallness of the LEC’s might be a crite-
rion for the choice of scheme. One has no knowledge of the
size or sign of the sum of terms contributing to an LEC
from higher order diagrams, however. Also, in the present
example, OMC, there is no obvious choice leading to small
LEC’s, so it is not clear how to implement this criterion.

X. CONCLUSIONS

We can thus summarize as follows. We have evaluated
the OMC amplitude through O�p4� in the three schemes,gMS, EOMS and IR. Using available data we have solved
self consistently for the nine LEC’s which appear in the IR

or EOMS schemes. The gMS scheme requires three addi-
tional LEC’s, for which further data would be required.
Similar evaluations of the LEC’s for the vector current
have been done before, and our results differ from these
primarily because we have self consistently solved the
equations coming from the axial current for gA and have
used that value, rather than the lowest order result used in
previous work. Many subtleties and details of the calcu-
lation also affect the numerical values of the LEC’s, which
indicates that before using these or other values of the
LEC’s to calculate new processes it will always be neces-
sary to make sure that the new calculation is done in
exactly the same way as that used to extract the LEC’s.
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APPENDIX A: LOOP INTEGRALS

We will define the general loop integral in d dimensions
containing i pion propagators and j nucleon propagators
and corresponding to the momenta as in Fig. 4 as

 I��...�NN...N�k1; k2; . . . ; ki; p1; p2; . . .pj; A�

� i�4�d
Z dd‘

�2��d
A

D��k1� . . .D��ki�DN�p1� . . .DN�pj�
:

(A1)

Here � is a scale factor and A is the numerator function,
which may contain anything. D��k� � �‘� k�2 �m2

0� �
i
 and DN�p� � �‘� p�2 �m2 � i
 are, respectively, the
pion and nucleon propagator denominators. m0� and m are
the unrenormalized pion and nucleon masses appearing in
the original Lagrangian. Thus the number of subscripts �
and N correspond to the number of pion and nucleon
propagators, respectively. We will always redefine the in-
tegration variable ‘ so as to make the first pion momentum
k1 � 0 and will drop it from the argument list.

In general we can always reduce A to factors which can
be removed from the integral or to powers of ‘�, which at
the one loop level can be reduced out using standard tensor
expansions. Thus the only integrals which need to be
evaluated explicitly have A � 1.

For the basic calculation we need the integrals I��1�,
I���q; 1�, IN�p; 1�, INN�pi; pf; 1�, I�N�p; 1�,
I�NN�pi; pf; 1�, I��N��q; pi; 1�. For those diagrams with
a mass insertion on an internal nucleon diagram, which
duplicates one of the nucleon propagators, we require the
additional integrals INN�p; p; 1�, INNN�pi; pf; pf; 1�,
INNN�pi; pi; pf; 1�, I�NN�p; p; 1�, I�NNN�pi; pf; pf; 1�,
I��NN��q; pi; pi; 1�, where p can be either pi or pf and
where q � pf � pi.

The evaluation of these integrals in the form needed for
the IR or EOMS schemes proceeds in the standard fashion,
as described, for example, in Ref. [12]. The meson and
nucleon propagators are separately combined using the
Feynman parameter approach. The two pieces are then
combined and the infinities extracted using standard di-
mensional regularization formalism. The results can then
be expressed in d dimensions in terms of the R and 
 �
�4� d�=2 of Eq. (56) and of relatively simple integrals
over the Feynman parameters. This approach however
leads, as discussed in the main text, to results which do
not obey the usual HBChPT counting rules.

Becher and Leutwyler [12] modify this procedure by
dividing the integrals into two parts, one containing the
infrared singularities and the other a regular polynomial in
the expansion parameter. The regular part is then dropped,
i.e. in a formal sense absorbed in the LEC counterterms.

In order to discuss both the standard and the Becher-
Leutwyler approach simultaneously we define a parameter
�IR which flags the terms to be dropped in the Becher-
Leutwyler procedure. Thus integrals involving only nucle-
ons obtain an overall �IR in accord with the result that they
are regular. Integrals with only pions are evaluated in the
standard approach and so contain no �IR. For those inte-
grals involving both pions and nucleon propagators the
basic integral on the parameter z is divided into two parts
and evaluated in accord with [11,12] as

 

Z 1

0
dz!

Z 1
0
dz� �IR

Z 1
1
dz: (A2)

As discussed above, the singular terms proportional to R,
which appear in both regular and infrared parts, can be
recombined (i.e. we eventually put �IRR! R) and the
renormalization of the LEC’s carried out in the usual
way. Thus �IR will serve to flag the regular terms which
would be dropped in the Becher-Leutwyler procedure.

With these preliminaries recorded we can list the results
for the integrals we need in this calculation.
I��1�, I���q; 1�, IN�p; 1�, and INN�pi; pf; 1� are standard

and the results are given here for completeness only:
For I��1�

 I��1� �
m2

0�

�4��2

�
R� ln

�
m2

0�

�2

��
: (A3)

For I���q; 1�

 I���q; 1� �
1

�4��2

�
R� 1� ln

�
m2

0�

�2

��
�W���q

2�;

(A4)

with

 W���q2� �
1

�4��2
Z 1

0
dz ln�D� i�� (A5)

 

+ ki

+ ki−1

..........

+ p1 + p2 ...........

+ k1

+ k2

+ pj pfpi

FIG. 4. The general loop integral.
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 � �
q2

96�2m2
0�

�
q4

960�2m4
0�

� . . . ; (A6)

where here

 D � 1�
q2

m2
0�

z�1� z�: (A7)

For IN�p; 1�

 IN�p; 1� � IN�0; 1� � �IR m2

�4��2

�
R� ln

�
m2

�2

��
: (A8)

For INN�pi; pf; 1�

 INN�pi; pf; 1� � �IR 1

�4��2

�
R� 1� ln

�
m2

�2

��
�WNN�q

2�; (A9)

 INN�p; p; 1� � INN�0; 0; 1�

� �IR 1

�4��2

�
R� 1� ln

�
m2

�2

��
; (A10)

 INNN�pi; pf; pf; 1� � INNN�pi; pi; pf; 1� � WNNN�q2�;

(A11)

with

 WNN�q
2� � �IR 1

�4��2
Z 1

0
dz ln�D� i�� (A12)

 � �IR

�
�

q2

96�2m2
N

�
mq

2m2
0�

96�2m4
N

�
q4

960�2m4
N

� . . . :
�
;

(A13)

 WNNN�q2� �
�IR

�4��2m2

Z 1

0

dz
D� i�

(A14)

 � �IR

�
1

32�2m2
N

�
mm2

0�

32�2m4
N

�
q2

192�2m4
N

� . . .
�
; (A15)

where here

 D � 1�
q2

m2 z�1� z� and m �
m2 �m2

N

m2
0�

: (A16)

For simplicity we have given only the first few terms in
the expansions of the W’s above, as the full expressions
used are quite lengthy. In the actual calculations we kept
more terms, as many as necessary to obtain the final
amplitude through the first four orders in the expansion
parameter.

The remaining integrals involve both pion and nucleon
propagators. For those we follow and generalize the pro-
cedure used in Ref. [12] for I�N.

For I�N�p; 1�we find, after combining denominators and
evaluating via dimensional regularization, that

 I�N�p; 1� � �
1

�4��2

�
R� 1� ln

�
m2

�2

��
�2
� 1�

�
Z 1

0

dz
�C� i��


: (A17)

Here C � C0 � C1�z� z0�
2. For this case C1 �

1� 2��� �2, C0 � �2�1��2�=C1 and z0 �
������=C1. Here (and below) � � m0�=m and � �
�p2 �m2 �m2

0��=�2mm0��. These integrals depend on the
square of the four momentum p2 but we will need them
only at the physical on shell point p2 � m2

N. We must
account for the fact that m � mN and hence as above use
m2 �m2

N  mm2
0�, where m is a dimensionless parame-

ter presumedly of order one. In fact, from Appendix B we
have m � 8c1mN � . . . . This allows us to expand in
powers of m0� about the physical mass mN . The integral
can be done analytically, basically by integrating by parts,
as in Ref. [12] and we obtain
 

I�N�p; 1� �
R

�4��2

�
�IR �

m2
0�

2m2
N

��IR � 1��1� m�
�

�W�N�p
2; m2; m2

0��; (A18)

where on shell
 

W�N�m2
N;m

2;m2
0�� �

�IR

16�2

�
ln
�
m2
N

�2

�
� 1

�
�

m0�

16�mN

�
m2

0�

32�2m2
N

�
1� 3�IR�m��IR� 1�

� �1�m�
�
ln
�
m2

0�

�2

�

��IR ln
�
m2
N

�2

���
� . . . : (A19)

In a similar fashion we find for I�NN�pi; pf; 1�,
I�NNN�pi; pf; pf; 1�, and I�NNN�pi; pi; pf; 1�
 

I�NN�pi; pf; 1� � �
1

2m2�4��2

�
R� 1� ln

�
m2

�2

��
�2
�

�
Z 1

0
dy
Z 1

0

zdz

�C� i��1�

; (A20)

 I�NNN�pi; pf; pf; 1� � I�NNN�pi; pi; pf; 1�

� �
1

m4�4��2
�1� 2
�

�
Z 1

0
ydy

Z 1

0

z2dz

�C� i��2�

;

(A21)

where now on shell with p2
i � p2

f � m2
N , C1 �

1� 2��� �2 � y�1� y�q2=m2, C0 � �2�1��2 �
y�1� y�q2=m2�=C1 and z0 � ������=C1. The integrals
on z can be obtained analytically by generalizing the
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procedure of Ref. [12]. This result is then expanded in
powers of the small parameter and integrated term by term
on y. We thus obtain

 I�NN�pi; pf; 1� � W�NN�p
2
i ; p

2
f; q

2; m2; m2
0��; (A22)

 I�NNN�pi; pf; pf; 1� � I�NNN�pi; pi; pf; 1�

�
1

m0�
W�NNN�p

2
i ; p

2
f; q

2; m2; m2
0��;

(A23)
where on shell

 

W�NN�m2
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2
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0�� �

�IR � 1
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1
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�IR ln
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�
� ln

�
m2
�

m2
N

��
�
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64�m3
N

�1� m� �
m2

0�

64�2m4
N

�1� 2�IR�

� �1� 2m� �
m2

0�
2
m

64�2m4
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192�2m4
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�
1� ln

�
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m2
N

�
� �IR ln

�
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N
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��
� . . . ; (A24)

 W�NNN�m2
N;m

2
N; q

2; m2; m2
0��

� �
1

128�m3
N

�
m0�

64�2m4
N

�1� 2�IR � m�

�
3m2

0�

1024�m5
N

�1� 6m � 
2
m� �

q2

512�m5
N

� . . . :

(A25)

The �NN integral with duplicate nucleon propagators can
be obtained by taking q2 ! 0 in I�NN�pi; pf; 1�, namely

 I�NN�p; p; 1� � W�NN�m
2
N;m

2
N; 0; m

2; m2
0��: (A26)

Finally
 

I��N��q; pi; 1� � �
1

2m2�4��2

�
R� 1� ln

�
m2

�2

��
�2
�

�
Z 1

0
dx
Z 1

0

�1� z�dz

�C� i��1�

; (A27)

 I��NN��q; pi; pi; 1� � �
1

m4�4��2
�1� 2
�

�
Z 1

0
dx
Z 1

0

�1� z�zdz

�C� i��2�

;

(A28)

where we now have on shell with p2
i � m2

N , C1 �
1� 2��� �2 � x�1� x�q2=m2, C0 � �2 � C1z2

0 �
x�1� x�q2=m2 and z0 � ������=C1 � x�1�
x�q2=�m2C1� [46]. Again we can do the z integration
analytically and then expand in powers of the small pa-
rameter and do the x integration term by term. We then
obtain

 I��N��q; pi; 1� �
1

m0�
W��N�p

2
i ; p

2
f; q

2; m2; m2
0��;

(A29)

 I��NN��q; pi; pi; 1� �
1

m2
0�

W��NN�p
2
i ; p

2
f; q

2; m2; m2
0��;

(A30)

where on shell

 

W��N�m
2
N;m

2
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� ln
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�
��IR ln

�
m2
N
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192�2m2
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W��NN�m2
N;m

2
N; q

2; m2; m2
0��

� �
1

32�2m2
N

�
1�

q2

6m2
0�

�
�

m0�

128�m3
N

�1� m�

�
q2

1536�m3
Nm0�

�1� 3m� � . . . : (A32)

Finally we observe that there is an alternative method for
obtaining the loop integrals involving two nucleon propa-
gators of the same momentum. It follows from the relations

 

@

@m2

�
1

p2 �m2

�
�

�
1

p2 �m2

�
2
;

@

@m2 �
1

m2
0�

@
@m

;

(A33)

that one can get a loop integral with a duplicate propagator
by taking derivatives, namely

 

1

m2
0�

@
@m

I�N�p; 1� � I�NN�p; p; 1�; (A34)

 

1

m2
0�

@
@m

INN�pi; pf; 1� � INNN�pi; pf; pf; 1�

� INNN�pi; pi; pf; 1�; (A35)
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1

m2
0�

@
@m

I�NN�pi; pf; 1� � I�NNN�pi; pf; pf; 1�

� I�NNN�pi; pi; pf; 1�;

(A36)

 

1

m2
0�

@
@m

I��N��q; pi; 1� � I��NN��q; pi; pi; 1�:

(A37)

We have checked that our results satisfy these relations.
Note that to obtain I�NN�p; p; 1� for example to O�m4

�� we
need I�N�p; 1� to O�m6

�� because of the m2
� introduced in

the denominator by the derivative. This somewhat lessens
the utility of this method for actually calculating the in-
tegrals with duplicate propagators.

APPENDIX B: MASS AND WAVE FUNCTION
RENORMALIZATION

In the meson sector the pion mass and wave function
renormalizations are calculated in standard fashion and are
given in a number of sources, for example, see Ref. [5]. In
our conventions and notation we have

 m2
� � m2

0�

�
1�

2m2
�

F2
�

�
lr3��� �

1

4�4��2
ln
�
m2
�

�2

���
; (B1)

and

 Z� � 1�
2m2

�

F2
�

�
lr4��� �

2

3�4��2
R�

1

3�4��2
ln
�
m2
�

�2

��
:

(B2)

where the LEC’s have been renormalized as

 lr3��� � l3 �
R

4�4��2
; (B3)

 lr4��� � l4 �
R

�4��2
: (B4)

The renormalization of the pion decay constant is also
standard and given from [5] by

 F� � F0

�
1�

m2
�

F2
�

�
lr4��� �

1

�4��2
ln
�
m2
�

�2

���
: (B5)

In the pion-nucleon sector the nucleon mass and wave
function renormalizations must be calculated in a fashion
consistent with the rest of the calculation. The appropriate
diagrams contributing to the nucleon self energy are given
in Fig. 5 and the amplitudes corresponding to those figures
are given by

 M1NN � i ���p6 �m��; (B6)

 M2NN � i ���4c1m
2
0���; (B7)

 M3NN � i ���2m4
0��8e38 � e115 � e116���; (B8)

 M4NN � �
3ig2

A

4F2
0

��I�N�p; ‘6 �5�p6 � ‘6 �m�‘6 �5���; (B9)

 M5NN � �
3im2

0�

F2
0

��
�
2c1 � c3 �

c2p2

dm2
N

�
�I��1�; (B10)

 

M6NN � �
3ig2

A

4F2
0

��4c1m
2
0��

��I�NN�p; p; ‘6 �5�p6 � ‘6 �m�

� �p6 � ‘6 �m�‘6 �5��: (B11)

We evaluate these amplitudes using standard dimen-
sional regularization and expand the integrals in powers
of the small momentum, keeping for now the finite terms
which do not obey counting. As discussed above those
finite terms which would be dropped in the Becher-
Leutwyler procedure are flagged with the symbol �IR.
Likewise we flag terms from each diagram which would
be dropped in the EOMS procedure with �EOMS.

A first renormalization of the low energy constants is
required to ensure that the difference between the physical
nucleon mass mN and the nucleon mass in the chiral limit

m



N is finite. In particular we take

 cr1 � c1 �
3g2

AmNR

128F2
��2 �1� 12c1mN�; (B12)

 

er115 � e
r
116 � 8er38 � e115 � e116 � 8e38

�
3R

128F2
��

2 �c2 � 8c1 � 4c3

� 168c2
1mNg2

A�: (B13)

The finite renormalizations required read

 cIR
1 � cEOMS

1 ; (B14)

 

FIG. 5. Diagrams contributing to the nucleon self energy.
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IR
116 � 8eIR
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(B15)

and
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1 � cr1 �
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A
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2 �1� 8c1mN � �1� 12c1mN�

� ln�m2
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This leads to
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lr3���:

(B18)

Observe that all of the terms in the above formula which
are proportional to 1=F2

� do not contribute to any physical
amplitude we calculate here. They would lead to 1=F4

�
corrections to loop diagrams, the same order as two loop
contributions which we are neglecting. Furthermore the
tree-level diagrams do not contain nucleon masses for
which these terms are relevant. Thus for practical purposes
we can take

 m! mN � 4c1m
2
� � 2m4

��e115 � e116 � 8e38�; (B19)

where we have dropped all terms with 1=F2
�, which also

allows fcIR
1 ; e

IR
115; e

IR
116; e

IR
38g ! fc1; e115; e116; e38g.

Note also that in the chiral limit only the R term sur-
vives, i.e. we obtain

 m


N � m�

3g2
Am

3

32F2
��2 �R� ln�m2=�2��: (B20)

It is common to introduce explicitly or implicitly a counter-
term in the Lagrangian to eliminate the correction term in
this formula and thus to interpret m from the beginning as

the nucleon mass in the chiral limit, m


N , rather than as a

bare mass as we have done.

Finally the nucleon wave function renormalization be-
comes
 

ZN � 1�
3m2

�g
2
A

64F2
��

2

�
2�1� �IR� � �3� 2�IR�R

� 16c1mN�IR��EOMS � 1� � 3 ln
�
m2
�

�2

�

� 2�IR�1� 6c1mN�1� �EOMS�� ln
�
m2
N

�2

�
�

3m��
mN

�
(B21)

If we reexpress the formulas for mN and ZN in terms of
m and m0� and take � � m and take �IR � 0 then these
results agree with those of Ref. [12]. Note however that
there are no LEC’s or counterterms available to absorb the
�IR or �EOMS terms in ZN , i.e. those terms which are to be
dropped in the IR or EOMS schemes. Instead what happens
is that these terms enter the amplitudes via the

�������
ZN
p

terms
which appear in Eqs. (15)–(17) and (45) and are absorbed
in LEC’s elsewhere in the calculation.

APPENDIX C: A SIMPLE EXAMPLE

The full calculation is so complicated that it is perhaps
useful to look at a specific diagram as an example of how
the calculation was carried out and, in particular, how the
terms which do not obey counting were determined and
separated out. Further examples are given in the original
papers, in particular, for the nucleon self energy in
Refs. [10,12] and for the various terms contributing to
the vector amplitude in Ref. [10].

Thus consider one of the leading loop diagrams contrib-
uting to the axial current, diagram 5 of Fig. 1. The ampli-
tude corresponding to this diagram is given by Eq. (24).
The first step is to remove the integration variable ‘� from
the numerator using the standard tensor reduction formu-
las. The resulting loop integrals are then evaluated using
the formulas of Appendix A so as to obtain the amplitude
through O�p4�. The resulting contribution to GA, i.e. the
coefficient of ��f ~� 	 ~a����5�i in this amplitude is given
by
 

g3
A

F2
�

�
�

R

64�2 �4m
2
N �m

2
��1� 28mNc1��

�
m2
�

64�2

�
2� ln

�
m2
�

m2
N

��
�

m3
�

64mN�
�1� 8mNc1�

�
�IR

32�2 �2m
2
N�

EOMS �m2
��1� 32mNc1��

�
: (C1)

For simplicity we have taken q2 � 0, � � mN , and
�IRR � R. The terms proportional to �IR are those coming
from the second integral in Eq. (A2).

The terms in this expression proportional to R are the
ones (together with similar terms from other diagrams)
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which renormalize the bare LEC’s to the gMS renormalized
LEC’s. In this case that takes gA, d16 ! grA, dr16.

To get the noncounting terms which are to be absorbed
in grA and dr16 to get gEOMS

A and dEOMS
16 one has to look

explicitly at each amplitude expression term by term. This
particular diagram is nominally O�p3�. The external axial
field counts as one power of p so the terms in the above
amplitude expression should be at least O�p2�. Upon ex-
amination we see that all (non-R) terms are proportional to
at least m2

�, and so are O�p2� or higher, except for one,
which we have flagged with �EOMS. This is a noncounting

term which is used in the renormalization grA, dr16 !
gEOMS
A , dEOMS

16 . Finally the remaining terms proportional
to �IR are used to renormalize dEOMS

16 ! dIR
16. They are

proportional to m2
� and so satisfy counting.

Note that the EOMS scheme uses only the noncounting
terms for the renormalization, and is thus a minimal way to
restore counting. The IR scheme absorbs these noncount-
ing terms plus a lot of others in the renormalization.

In this example we have considered only one diagram.
To get the full renormalizations one must of course take
into account the contributions from all diagrams.
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