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The invariant cross sections for direct photon production in hadron-hadron collisions are calculated for
several initial energies (SPS, ISR, Sp �pS, RHIC, Tevatron, LHC) including initial parton transverse
momenta within the formalism of unintegrated parton distributions (UPDF). Different approaches from
the literature are compared and discussed. A special emphasis is put on the Kimber-Martin-Ryskin (KMR)
distributions and their extension into the soft region. Sum rules for UPDFs are formulated and discussed in
detail. We find a violation of naive number sum rules for the KMR UPDFs. An interesting interplay of
perturbative (large k2

t ) and nonperturbative (small k2
t ) regions of UPDFs in the production of both soft and

hard photons is identified. The kt-factorization approach with the KMR UPDFs is inconsistent with the
collinear approach at large transverse momenta of photons. Kwieciński UPDFs provide very good
description of all world data, especially at super proton synchrotron (SPS) and intersecting storage rings
(ISR) energies. Off-shell effects are discussed and quantified. Predictions for the CERN LHC are given.
Very forward/backward regions in rapidity at LHC energy are discussed and a possibility to test
unintegrated gluon distributions (UGDF) is presented.
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I. INTRODUCTION

It was realized relatively early that the transverse mo-
menta of initial (before a hard process) partons may play an
important role in order to understand the distributions of
produced direct photons, especially at small transverse
momenta (see e.g. [1]). The emitted photon may be pro-
duced directly in a hard process and/or from the fragmen-
tation process. The latter process involves the parton-to-
photon fragmentation functions which are not very well
known. The isolation criterion used now routinely in the
analysis of experimental data helps to reduce the second
component almost completely.

The simplest way to include parton transverse momenta
is via Gaussian smearing [1–3]. This phenomenological
approach is not completely justified theoretically. One
should remember that there are different reasons for non-
zero transverse momenta of incoming partons. First is
purely nonperturbative, related to the Fermi motion of
true hadron constituents. The transverse momenta related
to the internal motion of hadron constituents are believed
to be not too large, definitely smaller than 1 GeV. The
second is of dynamical nature, related to QCD effects
involved in the evolution of the parton cascades. The latter
effect may be strongly dependent on longitudinal momen-
tum fraction of the parton taking part in the hard
(sub)process.

The unintegrated parton distributions (UPDF) are the
basic quantities that take into account explicitly the parton
transverse momenta. The UPDFs have been studied re-
cently in the context of different high-energy processes
[4–12]. These works concentrated mainly on gluon de-

grees of freedom which play the dominant role in many
processes at very high energies. At somewhat lower ener-
gies also quark and antiquark degrees of freedom become
equally important. Recently the approach which dynami-
cally includes transverse momenta of not only gluons but
also of quarks and antiquarks was applied to direct photon
production [11,13]. In these calculations unintegrated par-
ton distributions proposed by Kimber-Martin-Ryskin [14]
were used. In this approach one assumes that the transverse
momenta are generated only in the last step of the evolution
ladder.

Up to now there is no complete agreement how to
include evolution effects into the building blocks of the
high-energy processes—the unintegrated parton distribu-
tions. In the present paper we shall discuss in detail a few
approaches how to include transverse momenta of the
incoming partons in order to calculate distributions of
direct photons.

II. UNINTEGRATED PARTON DISTRIBUTIONS

In general, there are no simple relations between unin-
tegrated and integrated parton distributions. Some of
UPDFs in the literature are obtained based on familiar
collinear distributions, some are obtained by solving evo-
lution equations, some are just modeled, or some are even
parametrized. A brief review of unintegrated gluon distri-
butions (UGDFs) that will be used also here can be found
in Ref. [10]. We shall not repeat all details concerning
those UGDFs here. We shall discuss in more details only
approaches which treat unintegrated quark/antiquark
distributions.
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In some of the approaches mentioned one imposes the
following relation between the standard collinear distribu-
tions and UPDFs:

 a�x;�2� �
Z �2

0
fa�x; k

2
t ; �

2�
dk2

t

k2
t
; (1)

where a � xq or a � xg.
Since familiar collinear distributions satisfy sum rules,

one can define and test analogous sum rules for UPDFs. We
shall discuss this issue in more detail in a separate section.

The larger energies, the smaller values of parton mo-
mentum fractions come into game. Therefore at larger
energies we shall use some other distributions constructed
exclusively for small values of x. Two of them are based on
the idea of gluon saturation. One of them was obtained
based on a saturation-inspired parametrization of the
dipole-nucleon cross section which leads to a good de-
scription of the hadron elektron ringanlage (HERA) data
[15]. The second one [16] was constructed to describe the
inclusive relativistic heavy ion collider (RHIC) pion spec-
tra. The third one is the asymptotic Balitsky-Fadin-Kuraev-
Lipatov (BFKL) distribution [17]. We do not wish to repeat
more details here. It can be found in individual references
as well as in Ref. [10] where applications of UGDFs to c �c
correlations were discussed.

Below we shall concentrate on UGDFs which are ob-
tained based on standard collinear distributions.

A. Gaussian smearing

Because of its simplicity the Gaussian smearing of initial
transverse momenta is a good reference point for other
approaches. It allows to study phenomenologically the role
of transverse momenta in several high-energy processes.
We define simple unintegrated parton distributions:

 F Gauss
i �x; k2

t ; �2
F� � xpcoll

i �x;�
2
F� � fGauss�k2

t �; (2)

where pcoll
i �x;�

2
F� is a standard collinear (integrated) par-

ton distribution �i � g; q; �q� and fGauss�k2
t � is a Gaussian

two-dimensional function:

 fGauss�k2
t � �

1

2��2
0

exp��k2
t =2�2

0�=�: (3)

The UPDFs defined by Eqs. (2) and (3) are normalized
such that:

 

Z
F Gauss

i �x; k2
t ; �2

F�dk
2
t � xpcoll

i �x;�
2
F�: (4)

B. KMR distributions

Kimber, Martin, and Ryskin proposed a method to
construct unintegrated parton distributions from the
conventional Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
(DGLAP) parton distributions [14]. Then

 

fa�x; k
2
t ; �

2� � Ta�kt; ��

�

�
�s�k2

t �

2�

Z 1��

x

X
a0
Paa0 �z�a

0

�
x
z
; k2
t

�
dz
�
;

(5)

where Paa0 �z� are splitting functions and a0�xz ; k
2
t � are par-

ton densities, where a0 � x
z g or xz q. Angular-ordering con-

straint � � �=��� jktj� regulates the soft gluon
singularities. Recently Lipatov and Zotov [11] used this
method to calculate the direct photon spectra. Technically
they did not use the original KMR method. Instead they
have written
 

fq�x; k
2
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2
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Z 1

x
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�
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�
x
z
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x
z
; k2
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��
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fg�x; k2
t ; �2� � Tg�k2
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�s�k
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�
Z 1

x
dz
�X
q

Pgq�z�
x
z
q
�
x
z
; k2
t

�

� Pgg�z�
x
z
g
�
x
z
; k2
t

�
���� z�

�
: (7)

In the following we shall call it the Lipatov-Zotov (LZ)
KMR prescription.

The virtual corrections are resummed via Sudakov form
factors:

 lnTq�k
2
t ; �

2� � �
Z �2

k2
t

dp2
t

p2
t

�s�p2
t �

2�

Z zmax

0
dzPqq�z�; (8)

 

lnTg�k
2
t ; �

2� � �
Z �2

k2
t

dp2
t

p2
t

�s�p2
t �

2�

�

�
nf
Z 1

0
dzPqg�z� �

Z zmax

zmin

dzzPgg�z�
�
;

(9)

where zmax � 1� zmin � �=��� jptj�.
The KMR method presented above can be used for

transverse momenta k2
t > k2

t;0. In the present paper we
assume saturation of UPDFs for k2

t < k2
t;0. This is a bit of

an arbitrary procedure. We shall discuss the consequences
of the procedure for physical observables.

C. Sum rules for KMR UPDFs

In order to gain more insight into the KMR distributions
described shortly in the previous section in the following
section we shall formulate and check some sum rules.

Let us start from the valence number sum rules. We
define the following integrals for up quarks:
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 Nuval
��2; k2

t;0� �
Z 1

0

dx
x

Z �2

0
dk2

t 	fKMR
u �x; k2

t ; �2�

� fKMR
�u �x; k2

t ; �2�
 (10)

and for down quarks:

 Ndval
��2; k2

t;0� �
Z 1

0

dx
x

Z �2

0
dk2

t 	f
KMR
d �x; k2

t ; �
2�

� fKMR
�d
�x; k2

t ; �
2�
: (11)

The parameter k2
t;0 is implicit for the KMR distributions as

discussed in the previous section. Naively one would ex-
pect: Nuval

� 2 and Ndval
� 1. We shall check the depen-

dence of these quantities on �2 and the freezing parameter
k2
t;0. The results of the valence number sum rules as a

function of �2 using a standard KMR prescription with
the Sudakov form factor defined above for up and down
quarks are shown in Fig. 1. Somewhat surprisingly the
results depend strongly on �2 and the freezing parameter
k2
t;0. The results are identical for the standard KMR pre-

scription and the one proposed by Lipatov and Zotov. In the
integrals above the parameter �2 occurs as an argument of
the parton distributions as well as the upper limit of the
internal integral. It seems interesting to allow for indepen-
dent parameters in the two places. Therefore we define new
quantities for up quarks:

 

N0
uval
��2; �2

0; k
2
t;0� �

Z 1

0

dx
x

Z �2

0
dk2

t 	fKMR
u �x; k2

t ; �2
0�

� fKMR
�u �x; k2

t ; �
2
0�
 (12)

and for down quarks:

 

N0
dval
��2; �2

0; k
2
t;0� �

Z 1

0

dx
x

Z �2

0
dk2

t 	fKMR
d �x; k2

t ; �2
0�

� fKMR
�d
�x; k2

t ; �
2
0�
: (13)

The results for several �2
0 are shown in Fig. 2. Now a

saturation of the sum rules for �2 larger than 100 GeV2

can be observed.

 

FIG. 1. The number sum rule as a function of �2 using standard KMR prescription with the Sudakov form factor for up valence
quarks (upper panel) and down valence quarks (lower panel) for several values of k2

t;0.

 

FIG. 2. The modified number sum rule as a function of �2 using standard KMR prescription with the Sudakov form factor for up
valence quarks (upper panel) and down valence quarks (lower panel) for several values of �2

0.

PARTON TRANSVERSE MOMENTA AND DIRECT PHOTON . . . PHYSICAL REVIEW D 75, 014023 (2007)

014023-3



Another interesting quantity is:

 xN0
i ��

2; �2
0; k

2
t;0� �

Z 1

0
dx
Z �2

0
	fKMR
i �x; k2

t ; �2
0�
dk

2
t

(14)

which can be interpreted as the contribution of parton of a
given type i to the momentum sum rule. In Fig. 3 we show
contributions for g, u, �u, d, �d, s � �s as a function of the
scale parameter �2. Again the defined above integrals are
functions of the scale �2. In this case there are huge
differences for the standard (left panel) and LZ (right
panel) prescription. These differences cancel as far as
valence quarks are considered, which can be seen by
inspection of Eq. (5) and/or Eqs. (6) and (7).

In contrast to the KMR distributions, the distributions
obtained by the Gaussian smearing discussed above, and
Kwieciński distributions to be discussed below fulfill the
sum rules discussed in this section.

D. Kwieciński unintegrated parton distributions

Kwieciński has shown that the evolution equations for
unintegrated parton distributions takes a particularly sim-
ple form in the variable conjugated to the parton transverse
momentum [18]. In the impact-parameter space the
Kwieciński equation takes the following simple form

 

@~fNS�x; b; �
2�

@�2 �
�s��

2�

2��2

Z 1

0
dzPqq�z�

�
��z� x�J0��1� z��b�~fNS

�
x
z
; b; �2

�
� ~fNS�x; b; �2�

�
;

@~fS�x; b; �
2�

@�2 �
�s��

2�

2��2

Z 1

0
dz
�
��z� x�J0��1� z��b�

�
Pqq�z�~fS

�
x
z
; b;�2

�
� Pqg�z�~fG

�
x
z
; b;�2

��

� 	zPqq�z� � zPgq�z�
~fS�x; b; �2�

�
;

@~fG�x; b; �
2�

@�2 �
�s��

2�

2��2

Z 1

0
dz
�
��z� x�J0��1� z��b�

�
Pgq�z�~fS

�
x
z
; b;�2

�
� Pgg�z�~fG

�
x
z
; b;�2

��

� 	zPgg�z� � zPqg�z�
~fG�x; b;�
2�

�
:

(15)

We have introduced here the shorthand notation
 

~fNS � ~fu � ~f �u; ~fd � ~f �d;

~fS � ~fu � ~f �u � ~fd � ~f �d �
~fs � ~f �s:

(16)

The unintegrated parton distributions in the impact factor
representation are related to the familiar collinear distribu-
tions as follows

 

~f k�x; b � 0; �2� �
x
2
pk�x;�

2�: (17)

On the other hand, the transverse momentum dependent

UPDFs are related to the integrated parton distributions as

 xpk�x;�2� �
Z 1

0
dk2

t fk�x; k2
t ; �2�: (18)

The two possible representations, in the momentum space
and in the impact-parameter space, are interrelated via
Fourier-Bessel transform
 

fk�x; k2
t ; �2� �

Z 1
0
db bJ0�ktb�~fk�x; b; �2�;

~fk�x; b; �
2� �

Z 1
0
dkt ktJ0�ktb�fk�x; k

2
t ; �

2�:

(19)

 

FIG. 3. The momentum sum rule as a function of �2 using standard KMR prescription (upper panel) and Lipatov-Zotov prescription
(lower panel) with the Sudakov form factor. Here k2

t;0 � 0:25 GeV2.
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The index k above numerates either gluons (k � 0), quarks
(k > 0), or antiquarks (k < 0). While physically
fk�x; k2

t ; �2� should be positive, there is no obvious reason
for such a limitation for ~fk�x; b; �2�.

In the following we use leading-order parton distribu-
tions from Ref. [19] as the initial condition for QCD
evolution. The set of integro-differential equations in
b-space was solved by the method based on the discretiza-
tion made with the help of the Chebyshev polynomials (see
[18]). Then the unintegrated parton distributions were put
on a grid in x, b, and �2 and the grid was used in practical
applications for Chebyshev interpolation.

For the calculation of inclusive and coincidence cross
section for the photon production (see the next section) the
parton distributions in momentum space are more useful.
This calculation requires a time-consuming multidimen-
sional integration. Therefore an explicit calculation of the
momentum-space of the Kwieciński UPDFs via Fourier
transform needed in the main calculation values of �x1; k2

1;t�

and �x2; k2
2;t� (see the next section) is not possible. There-

fore it becomes a necessity to prepare auxiliary grids of the
momentum-representation UPDFs before the actual calcu-
lation of the cross sections. These grids are then used via a
two-dimensional interpolation in the spaces �x1; k

2
1;t� and

�x2; k
2
2;t� associated with each of the two incoming partons.

The evolution of the parton cascade leads to a spread of
the transverse momentum of the parton at the end of the
cascade (the parton participating in a hard process). Let us
define the following measure of the spread:

 hk2
t ifk�x;�

2� �

R
dk2

t k
2
t fk�x; k

2
t ; �

2�R
dk2

t fk�x; k
2
t ; �

2�
: (20)

Above fk can be either a gluon (k � 0), quark (k > 0), or
antiquark (k < 0) distribution. As an example in Fig. 4 we
show the spread, obtained for different parton species, as a
function of a parton longitudinal momentum fraction. In
this calculation the factorization scale was fixed at �2 �
100 GeV2. The Kwieciński evolution leads to increasing
spread with decreasing longitudinal momentum fraction.
The spread for different species of partons is quite differ-
ent. In the region of small x the spread in k2

t for gluons is
bigger than a similar spread for sea and valence quarks.
This is very different than a corresponding spread for
Gaussian distributions which is usually taken to be inde-
pendent of x and parton species. In addition, the spread of
k2
t for small values of x is considerably larger than the

nonperturbative spread of the initial Gaussian distributions,
taken here identical for all species and encoded in the
model parameter b0.

In contrast to the KMR unintegrated valence quark
distributions the Kwieciński valence quark distributions
fulfill the number sum rules for up quarks:
 

Nuval
��2� �

Z 1

0

dx
x

Z 1
0
dk2

t 	f
Kwiec
u �x; k2

t ; �
2�

� fKwiec
�u �x; k2

t ; �2�
 � 2 (21)

and for down quarks:

 

Ndval
��2� �

Z 1

0

dx
x

Z 1
0
dk2

t 	f
Kwiec
d �x; k2

t ; �2�

� fKwiec
�d
�x; k2

t ; �
2�
 � 1: (22)

E. Mixed distributions

The calculation with the Kwieciński distributions dis-
cussed in the previous section shows that the spread in k2

t
for gluons can be much bigger than that for quarks/anti-
quarks. On the other hand in the region of small x there are
several unintegrated gluon distributions available in the
literature. At high energy (small x) the contribution of
qg, gq subprocesses is larger than the contribution of q �q,
�qq subprocesses. Therefore it seems reasonable to use the
different UGDFs from the literature together with the
Gaussian distributions for quarks and antiquarks as de-
scribed above. Such an approach is especially justified at
forward (y� � 0) and backward photon rapidities (y� �
0), where x1 � 1, x2  1 (hk1;tiglue > hk2;tiq; �q) or x1  1,
x2 � 1 (hk1;tiq �q < hk2;tiglue).

III. UPDFS AND PHOTON PRODUCTION

The cross section for the production of a photon and an
associated parton (jet) can be written as

 

FIG. 4. hk2
t i as a function of x for different unintegrated parton

distributions: solid line—glue, dashed line—uval, dotted line—
dval, and dash-dotted line—sea.
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d��h1h2 ! �; parton�
d2p1;td2p2;t

�
Z
dy1dy2

d2k1;t

�
d2k2;t

�
1

16�2�x1x2s�2
X
i;j;k

jM�ij! �k�j2 ��2� ~k1;t � ~k2;t � ~p1;t � ~p2;t�fi�x1; k
2
1;t�

� fj�x2; k2
2;t�; (23)

where ~k1;t and ~k2;t are transverse momenta of incoming
partons. The longitudinal momentum fractions are calcu-
lated as

 x1 �
m1t���
s
p e�y1 �

m2t���
s
p e�y2 ; (24)

 x2 �
m1t���
s
p ey1 �

m2t���
s
p ey2 ; (25)

where m1t and m2t are respective transverse masses. In the
leading-order approximation: �i; j; k� � �q; �q; g�, � �q; q; g�,
�q; g; q�, �g; q; q�, etc. (see Fig. 5).

If one makes the following replacements

 fi�x1; k
2
1;t� ! x1pi�x1���k

2
1;t� (26)

and

 fj�x2; k2
2;t� ! x2pj�x2���k2

2;t�; (27)

then one recovers the standard collinear formula (see e.g.
[1]).

The inclusive invariant cross section for direct photon
production can be written

 

d��h1h2 ! ��

dy1d2p1;t
�
Z
dy2

d2k1;t

�
d2k2;t

�
�. . .�

�������� ~p2;t� ~k1;t� ~k2;t� ~p1;t

�
Z
dk1;tdk2;tI�k1;t; k2;t; y1; p1;t� (28)

and analogously the cross section for the associated parton
(jet) can be written
 

d��h1h2 ! k�

dy2d
2p2;t

�
Z
dy1

d2k1;t

�
d2k2;t

�
�. . .�

�������� ~p1;t� ~k1;t� ~k2;t� ~p2;t

:

(29)

The integrand I�k1;t; k2;t; y1; p1;t� defined in Eq. (28) de-
pends strongly on UPDFs used. We shall return to this
interesting issue.

Let us return to the coincidence cross section. The
integration with the Dirac delta function in (23)

 

Z
dy1dy2

d2k1;t

�
d2k2;t

�
�. . .��2�. . .� (30)

can be performed by introducing the following new auxil-
iary variables:

 

~Q t � ~k1;t � ~k2;t; ~qt � ~k1;t � ~k2;t: (31)

 

FIG. 5. The diagrams included in our kt-factorization approach with the notation of kinematical variables.

T. PIETRYCKI AND A. SZCZUREK PHYSICAL REVIEW D 75, 014023 (2007)

014023-6



The Jacobian of this transformation is:

 

@� ~Qt; ~qt�

@� ~k1;t; ~k2;t�
�

1 1
1 �1

� �
�

1 1
1 �1

� �
� 2 � 2 � 4: (32)

Then our initial cross section can be written as:

 

d��h1h2! �;parton�

d2p1;td2p2;t
�

1

4

Z
dy1dy2d

2Qtd
2qt�. . .�

��2� ~Qt� ~p1;t� ~p2;t�

�
1

4

Z
dy1dy2 d2qt|{z}�. . .�j ~Qt� ~Pt

�
1

4

Z
dy1dy2 qtdqt|	{z	}d’

z					}|					{
�. . .�j ~Qt� ~Pt

�
1

4

Z
dy1dy2

1

2
dq2

t

z	}|	{
d’�. . .�j ~Qt� ~Pt

:

(33)

Above ~Pt � ~p1;t � ~p2;t. Different representations of the
cross section are possible. If one is interested in the distri-
bution of the sum of the transverse momenta of the out-
going particles (parton and photon), then it is convenient to
write

 d2p1;td
2p2;t �

1
4d

2Ptd
2pt �

1
4d’�PtdPtd’�ptdpt

� 1
42�PtdPtd’�ptdpt: (34)

If one is interested in studying a two-dimensional map
p1;t � p2;t then the differential volume element can be
written

 d2p1;td2p2;t � d�1p1;tdp1;td�2p2;tdp2;t: (35)

Then the two-dimensional map can be written as

 

d��p1;t; p2;t�

dp1;tdp2;t

�
Z
d�1d�2p1;tp2;t

Z
dy1dy2

1

4
qtdqtd�qt�. . .�: (36)

The integrals over �1 and �2 must be the most external
ones. The integral above is formally a six-dimensional one.
It is convenient to make the following transformation of
variables

 ��1; �2� ! ��sum � �1 ��2; �dif � �1 ��2�: (37)

Explicit formulae for the basic matrix elements are given in
Appendix B.

IV. INCLUSIVE PHOTON SPECTRA

A. Integrands of the inclusive cross sections

Before we go to the discussion of the dependence of the
invariant cross sections on the values of rapidity and pho-
ton transverse momentum let us consider the integrand
I�k1;t; k2;t; y1; p1;t� (before integration over k1;t and k2;t) in
Eq. (28).

In Fig. 6 we show an example for
���
s
p
� 63 GeV, y � 0,

and pt;� � 5 GeV. In this calculation the unintegrated
parton distributions based on Glück-Reya-Vogt (GRV) col-
linear parton distributions [20] and Gaussian smearing
(�0 � 1 GeV) in parton transverse momenta were used.
This is a rather standard method to ‘‘improve’’ the collinear
approach. We do not need to mention that this, although
having some physical motivation, is a rather ad hoc pro-
cedure. The two-dimensional distributions are peaked for
small values of k1;t and k2;t. How fast the distribution
decreases with k1;t and/or k2;t depends on the value of the
smearing parameter �0. The larger the �0, the slower the
decrease. In Fig. 7 we show similar maps �

���
s
p
�

63 GeV; y � 0; pt;� � 5 GeV� for the KMR UPDFs.
Three local maxima can be seen in the figure. A first
maximum occurs when both k1;t and k2;t are very small.
This is caused by the structure of UPDFs themselves. The
two other maxima occur when k1;t � pt and k2;t is small or
k2;t � pt and k1;t is small. These are caused by the struc-
ture of matrix elements. The presence of long tails in kt in
the KMR distributions is a necessary condition to produce
the second and third maxima. When pt increases the
second and third maxima move towards larger k1;t and/or
k2;t. This clearly shows that the range of integration must
depend on the value of photon transverse momentum. In
Fig. 8 we show some integrand (KMR UPDFs) but for
larger energy W � 630 GeV and larger photon transverse
momentum pt;� � 50 GeV.

Figure 8 looks very much the same as Fig. 7 if the
transverse momenta of incoming partons are rescaled by
the ratio of photon transverse momenta. In Fig. 9 we show
a similar map for the Kwieciński distributions. In this case
the factorization scale is fixed for �2 � 100 GeV2.

All kinematical variables are exactly the same as in the
previous cases. The integrand is rather similar to the one
for the KMR UPDFs, except that the first maximum at k1;t,
k2;t � 0 is somewhat broader. We shall see consequences
of the different integrands when discussing transverse-
momentum dependence of the photon inclusive cross
sections.

B. Off-shell effects

Let us quantify the kinematical off-shell effect by defin-
ing the following quantities:

 Rqg�k2
1;t; k

2
2;t� �

Ioff-shell
qg �k2

1;t; k
2
2;t�

Ion-shell
qg �k2

1;t; k
2
2;t�

; (38)
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FIG. 7. Integrand under the k1;t and k2;t integration in the invariant cross section formula for proton-proton scattering at
���
s
p
�

63 GeV and y � 0, pt;� � 5 GeV and KMR UPDFs (k2
t;0 � 0:25 GeV2). Off-shell matrix elements for gluons are used. (a) q �q, (b) �qq,

(c) gq, (d) qg.

 

FIG. 6. Integrand under the k1;t and k2;t integration in the invariant cross section formula for proton-proton scattering at
���
s
p
�

63 GeV and y � 0, pt;� � 5 GeV and Gaussian UPDFs (�0 � 1 GeV). Off-shell matrix elements for gluons are used. (a) q �q, (b) �qq,
(c) gq, (d) qg.
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FIG. 9. Integrand under k1;t and k2;t in the invariant cross section formula for proton-proton scattering at
���
s
p
� 63 GeV and y � 0,

pt;� � 5 GeV and Kwieciński UGDF (b0 � 1 GeV�1,�2 � 100 GeV2). Off-shell matrix elements for gluons are used. (a) q �q, (b) �qq,
(c) gq, (d) qg.

 

FIG. 8. Integrand under the k1;t and k2;t integration in the invariant cross section formula for proton-antiproton scattering at
���
s
p
�

630 GeV and y � 0, pt;� � 50 GeV and KMR UPDFs (k2
t;0 � 0:25 GeV2). Off-shell matrix elements for gluons are used. (a) q �q,

(b) �qq, (c) gq, (d) qg.
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 Rgq�k2
1;t; k

2
2;t� �

Ioff-shell
gq �k2

1;t; k
2
2;t�

Ion-shell
gq �k2

1;t; k
2
2;t�

: (39)

In Fig. 10 we present results for Rgq (left panels) and Rqg
(right panels) for proton-proton scattering at W � 63 GeV
�y� � 0; p�;t � 5 GeV� and proton-antiproton scattering

at W � 630 GeV �y� � 0; p�;t � 50 GeV�. When k1;t,
k2;t ! 0 the off-shell effects disappear, i.e. the ratio be-
comes unity. The larger the transverse momenta of gluons,
the larger the off-shell effect is. Therefore one may expect
a related enhancement of the photon inclusive cross section
when the UGDFs with large transverse momentum spread
are used.

 

FIG. 10. Off-shell effects for the dominant mechanisms for pp scattering at
���
s
p
� 63 GeV, y � 0, pt � 5 GeV (upper panels) and

p �p scattering at
���
s
p
� 630 GeV, y � 0, pt � 50 GeV (lower panels).

 

FIG. 11. The ratio of inclusive cross sections with off-shell and on-shell matrix elements with Gaussian UPDFs and different values
of the parameter �0 as a function of photon transverse momentum.
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In Fig. 11 we show the ratio of the inclusive cross
sections obtained with off-shell and on-shell matrix ele-
ments as a function of photon transverse momentum. In
this calculation the Gaussian distributions were used with
different values of the �0 parameter. The bigger the �0, the
larger the enhancement due to the off-shell effects.

In Fig. 12 we show similar enhancement for a few
representative UPDFs discussed in Sec. II. The biggest
enhancement is obtained with the KMR and BFKL distri-

butions, i.e. those which have the biggest gluon transverse-
momentum spread. In general, the bigger the photon trans-
verse momentum, the smaller the enhancement. We con-
clude that at larger photon transverse momenta one can use
standard on-shell matrix elements.

C. Photon transverse-momentum distributions

Let us start the analysis from the lowest energies. In
Fig. 13 we show an inclusive invariant cross section as a
function of Feynman xF for several experimental values of
photon transverse momenta as measured by the WA70
collaboration. It is well known that the collinear approach
(dotted line) fails to describe the low transverse-

 

FIG. 12. The ratio of inclusive cross sections with off-shell and on-shell matrix elements for different UPDFs as a function of photon
transverse momentum.

 

FIG. 13 (color online). Invariant cross section for direct pho-
tons for

���
s
p
� 23 GeV as a function of Feynman xF for different

bins of transverse momenta. In this calculation of shell matrix
elements for subprocesses with gluons were used. The
Kwieciński UPDFs were calculated with the factorization scale
�2 � 100 GeV2. The theoretical results are compared with the
WA70 collaboration data [26].

 

FIG. 14. The ratio of the invariant cross sections as a function
of xF for

���
s
p
� 23 GeV. The Kwieciński UPDFs were calculated

with the factorization scale �2 � 100 GeV2.
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momentum data by a sizeable factor of 4 or even more.
Also the kt-factorization result with the KMR UPDFs
(dashed line) underestimate the low-energy data. In con-
trast, the Kwieciński UPDFs (solid line) describe the
WA70 collaboration data almost perfectly. In order to
illustrate the situation in Fig. 14 we show the ratio

 

d�Kwiec

dyd2pt
�xF; pt�



d�coll

dyd2pt
�xF; pt� (40)

as a function of Feynman xF for pt � 4:11 GeV and pt �
5:70 GeV. This figure shows that the enhancement factor
strongly depends on xF. Such an enhancement is required
by the experimental data as can be seen by inspection of the
previous figure.

In Fig. 15 we show an invariant cross section for direct
photon production as a function of photon transverse mo-

mentum for photon rapidity y � 0 and
���
s
p
� 63 GeV. The

results obtained with the KMR UPDFs strongly depend on
the value of the parameter k2

t;0. The larger the parameter
k2
t;0, the smaller cross section. This means that even at large

photon transverse momenta the nonperturbative effects
(small kt’s) play an important role. This can be better
understood via inspection of the two-dimensional maps
k1;t � k2;t shown in Fig. 7 and is related to the second
and third local maxima which give a significant contribu-
tion to the invariant cross section.

In principle, one could try to find the parameter k2
t;0 by

confronting the theoretical results with experimental data.
If the parameter is adjusted to larger transverse momenta
there is a deficit at smaller transverse momenta compared
to the ISR data [21].

In Fig. 16 we compare our results with recent proton-
proton RHIC data [22]. Here only a low transverse-
momenta of photons were measured. The results obtained

 

FIG. 15 (color online). Invariant cross section for direct photons for
���
s
p
� 63 GeV and y � 0 as a function of photon transverse

momentum. In this calculation off-shell matrix elements for gluons were used. The experimental data of the R806 collaboration are
taken from Ref. [21]. (a) Gaussian smearing (�0 � 1, 2 GeV) versus collinear approach, (b) standard KMR prescription.

 

FIG. 16 (color online). Invariant cross section for direct photons for
���
s
p
� 200 GeV and y � 0. In this calculation off-shell matrix

elements for gluons were used. The experimental data of the PHENIX collaboration are taken from Ref. [22]. (a) standard KMR
prescription, (b) Gaussian smearing (�0 � 1, 2 GeV) versus Kwieciński and collinear approach.
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with the Gaussian UPDFs strongly depend on the value of
the �0 parameter which is not surprising for the low
transverse momenta. The Kwieciński distributions give a
fairly good description of the PHENIX data. In contrast to
the ‘‘low-energy’’ data, there is no deficit for the KMR

UPDFs at larger energies as can be seen from Figs. 17–19.
The KMR UPDFs, however, strongly overestimate the
experimental data at large photon transverse momenta.
This is especially visible for proton-antiproton collisions
at W � 1:96 TeV when compared with recent Tevatron

 

FIG. 17 (color online). Invariant cross section for direct photons for
���
s
p
� 630 GeV. In this calculation off-shell matrix elements for

gluons were used. The UA2 collaboration data were taken from Ref. [27] and CDF collaboration data were taken from Ref. [28].
(a) Gaussian smearing, (b) quark/antiquarks: Gaussian smearing (�0 � 1 GeV), gluons: KL, BFKL, and GBW, (c) standard KMR
prescription.

 

FIG. 18. Invariant cross section for direct photons for
���
s
p
� 1800 GeV. In this calculation an off-shell matrix element for gluons was

used. The CDF collaboration data were taken from Ref. [29]. (a) standard KMR prescription, (b) quarks/antiquarks: Gaussian smearing
(�0 � 1 GeV), gluons: KL, BFKL, and GBW.
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(run 2) data [23]. Figures 18 and 19 show that the unin-
tegrated parton distribution approach with the KMR
UPDFs is clearly inconsistent with the standard collinear
approach at large transverse momenta. This is caused by
the presence of large-kt tails (of the 1=kt type) in the KMR
UPDFs. It is not the case for the Gaussian and Kwieciński
UPDFs which seem to converge to the standard collinear

result at large photon transverse momenta. In this respect
the latter UPDFs seem preferable.

D. Direct photons at LHC

Up to now we have confronted our results with the
existing experimental data from SPS, ISR, RHIC, Sp �pS,

 

FIG. 19 (color online). Cross section for direct photons for
���
s
p
� 1:96 TeV. In this calculation off-shell matrix elements for gluons

were used. The D0 collaboration data were taken from Ref. [23] (a) standard KMR prescription, (b) Gaussian smearing (�0 � 1,
2 GeV) versus Kwieciński UPDFs.

 

FIG. 20 (color online). Predictions for LHC (
���
s
p
� 14 TeV) for different photon rapidities y � 0, 2, 4. We compare results for

different UPDFs: KMR (k2
t;0 � 1 GeV2), GRV� Gaussian smearing (�0 � 1 GeV), and BFKL, KL, and GBW UGDFs with quarks/

antiquarks smeared by a Gaussian distribution (�0 � 1 GeV).
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and Tevatron. In the not too distant future one may expect
experimental data from a newly constructed LHC. In
Fig. 20 we present transverse-momentum dependence of
the invariant cross section for the proton-proton collisions
at W � 14 TeV for different values of photon rapidities.
Different UPDFs lead to quite different results at the LHC
energies. Therefore future measurements at LHC should
give a chance to verify different UPDFs discussed here as
well as others to be constructed in the future.

In Fig. 21 we display average values of x1 and x2 of
partons participating in a hard subprocess for two values of
the photon transverse momentum pt � 10, 50 GeV. At
large rapidities either x1 � x2 or x1 � x2. Then one ex-

pects the dominance of q�valence�g or gq�valence� hard
processes (see Fig. 22). At such small values of x the
evolution effects for UGDFs are expected to be very im-
portant. In addition, one expects rather small transverse
momenta of large-x valence quarks, much smaller than
transverse momenta of the associated small-x gluons.

In Fig. 23 we show the dependence of the invariant cross
section on photon rapidity for fixed values of the photon
transverse momenta.

Results obtained with different UGDFs differ signifi-
cantly in the region of large rapidities.

In the case of the Kwieciński UPDFs at small transverse
momenta (pt � 10, 20 GeV) only a limited part of the full
curve is shown. This is dictated by a purely technical cut on
the longitudinal momentum fraction x > 10�4 when con-
structing interpolation maps of the Kwieciński UPDFs. As
can be seen from Fig. 21 large jyj require very small x1 or
x2, sometimes smaller than 10�4. Furthermore the
Kwieciński distributions are not expected to be reliable at
such small values of longitudinal momentum fractions.
Therefore the range of application of the Kwieciński
UPDFs at LHC is limited in rapidity and photon transverse
momentum. The larger the photon transverse momentum,
the broader the range of application in photon rapidity.

In conclusion, the region of large rapidities (jyj> 3),
discussed in this section, seems an appropriate place to test
models of UPDFs. It is not clear to us if any of the LHC
detectors can register the large-energy forward/backward
photons. The CASTOR detector associated with the com-
pact muon solenoid (CMS) detector is a potential option.

In the present paper we have presented results obtained
with different unintegrated parton distributions. It is of
interest to compare these results with results of the stan-
dard collinear-factorization approach. In many figures we
have already presented transverse-momentum or rapidity
distributions obtained in the collinear-factorization ap-
proach. In order to visualize the differences better we
show separately the ratio of the cross sections obtained
within the kt-factorization approach and the cross section
in the collinear approach. In Fig. 24 we show the ratio as a

 

FIG. 21. Average values of x1 (solid line) and x2 (dashed line)
as a function of photon rapidity. The borders of the bands shown
correspond to pt � 10 GeV (lower limit) ant pt � 50 GeV
(upper limit).

 

FIG. 22. The dominant mechanisms of photon production at forward (left panel) and backward (right panel) rapidities.
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FIG. 23 (color online). The rapidity dependence of the invariant cross section for a few values of photon transverse momenta (pt �
10, 20, 50 GeV). The contribution of gq (solid line) and qg (dashed line) subprocesses are shown separately for each value of the
transverse momentum.

 

FIG. 24. The ratio of the cross sections obtained within the kt-factorization approach and the cross section in the collinear-
factorization approach for selected center-of-mass energies, (a)

���
s
p
� 63 GeV, (b)

���
s
p
� 200 GeV, (c)

���
s
p
� 630 GeV,

(d)
���
s
p
� 1960 GeV.
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function of transverse momentum of the photon for four
selected center-of-mass energies: 63, 200, 630, 1960 GeV.

At low energies (63, 200 GeV) we show results for
Gaussian, KMR, and Kwieciński distributions. All of
them were generated based on the GRV collinear distribu-
tions so a direct comparison seems well justified. Both
Gaussian and Kwieciński distributions cause some en-
hancement in the region of small transverse momenta.
The KMR UPDFs lead to a strong enhancement at large
transverse momenta. As already discussed, this enhance-
ment is not supported by the experimental data. At larger
energies (630, 1960 GeV) we show also results obtained
with unintegrated gluon distributions constructed exclu-
sively for small-x physics: Golec-Biernat–Wüsthoff
(GBW), Kharzeev-Levin (KL), and BFKL. They are not
directly related to the collinear distributions. However,
both KL/coll. and BFKL/coll. ratios stay surprisingly close
to unity.

In Fig. 25 we show similar ratios for proton-proton
collisions at LHC for 3 different values of photon rapid-
ities. The situation here is qualitatively similar to the lower
energies. Therefore even at LHC, where the small-x dy-
namics may become different from the DGLAP dynamics,
one should not expect big deviations from the collinear
result. We conclude that inclusive photon observables are
not the best in order to test deviations from the standard
DGLAP dynamics.

It is often claimed that the leading-order (LO)
kt-factorization approach contains some effects which are
next-to-leading order (NLO) in the collinear approach.
It is also obvious that there exist effects in the NLO
collinear-factorization approach which are not present in
the LO kt-factorization approach. Therefore the LO
kt-factorization approach is not fully competitive as far
as inclusive observables are considered. The situation
changes, however, for more exclusive observables like
photon-jet correlation which goes, however, beyond the
scope of the present paper. This will be a subject of our
next analysis.

Finally we wish to compare our kt-factorization results
with the results of the standard collinear NLO approach. In
Fig. 26 we present results for lower energies and in Fig. 27
for higher energies. In this calculation we have used the
code JETPHOX [24] and have fixed the factorization and
renormalization scales for �2 � p2

t . For reference we also
show results of the leading-order collinear approach. For
the lower energies we show the kt-factorization result with
the Kwieciński UPDFs and at higher energies also results

 

FIG. 25. The ratio of the cross sections obtained within the kt-factorization approach and the cross section in the collinear-
factorization approach for proton-proton collisions at LHC for different values of photon rapidities, (a) y � 0, (b) y � 2, (c) y � 4.

 

FIG. 26. Invariant cross section for photon production at lower
energies. We present results of collinear-factorization LO
(dashed line) and NLO (solid line) approaches, as well as the
results of the kt-factorization approach with Kwieciński UPDFs
(dotted line). The energies are given in the figure legend. Please
note that for clarity the results for different energies, except of
the lowest energy, are multiplied by factors specified in the figure
(101, 102, 103, 104, and 105). The experimental data are from
[21,22,26,30,31].
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with the BFKL UGDF. While for lower energies the NLO
results are similar to our leading-order kt-factorization
result with the Kwieciński UPDFs, at higher energies
(which in this case means also larger photon transverse
momenta) the standard NLO result much better describes
the old CERN and recent Tevatron data. For large photon
transverse momenta the result of the kt-factorization ap-
proach with Kwieciński UPDF is very similar to the LO
collinear-factorization approach. All this may point at
inadequacy of our UPDFs at small values of the longitu-
dinal momentum fraction and/or necessity of including
higher-order corrections in our kt-factorization approach.
The analysis of the last issue clearly goes beyond the scope
of the present paper.

V. CONCLUSIONS

The inclusive cross section for prompt photon produc-
tion has been calculated for different incident energies
from SPS to LHC within the formalism of unintegrated
parton distributions. Different models of UPDFs lead to
rather different results. The Kwieciński distributions pro-
vide the best description of experimental data in the broad
range of incident energies. The existing experimental data
test UPDFs down to x � 10�3, i.e. in the region of inter-
mediate longitudinal momentum fractions adequate for the

application of the Kwieciński equations. Inclusion of the
QCD evolution effects and especially their effect on initial
parton transverse momenta allowed to solve the long-
standing problem of theoretical understanding of the low-
energy and low transverse-momentum data for direct pho-
ton production.

As a by-product we have analyzed momentum sum rule
for different UPDFs. We have found that the KMR UPDFs
violate naive number sum rules. The same distributions
lead to an interesting interplay of soft (small gluon kt’s)
and hard (large gluon kt’s) regions of UPDFs. Even at large
photon transverse momenta this interplay causes a huge
enhancement as compared to the collinear approach, quite
inconsistent with the experimental data at large photon
transverse momenta.

We have presented predictions for LHC based on several
UPDFs with special emphasis on the large rapidity region.
Here different UPDFs lead to quite different predictions.
Therefore we conclude that this region can be very useful
to test different UPDFs.
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APPENDIX A

The moving with center-of-mass hadron-hadron energy
maxima for the KMR distributions cause the integration in
dk1;t and dk2;t to be not very efficient, especially for large
pt. In order to make the integration more efficient we
perform a change of the variables in the integration
dk1;tdk2;t ! dy1dy2, where yi � log10�k

2
i;t�. Then

 

yi � log10�k
2
i;t� ! k2

i;t � 10yi ;

dyi �
1

k2
i;t

1

ln�10�
2ki;tdki;t;

ki;tdki;t �
1

2
10yi ln�10�dyi

which gives

 

Z
k1;tdk1;tk2;tdk2;t �

1

4

Z
10y1 ln�10�dy110y2 ln�10�dy2

�
1

4

Z
10�y1�y2�ln2�10�dy1dy2:

Then the invariant cross section for the production of the
photon (associated with a parton) can be written as

 

FIG. 27. Invariant cross section for photon production at
higher energies. We present results of collinear-factorization
LO (dashed line) and NLO (solid line) approaches, as well as
the results of the kt-factorization approach with Kwieciński
UPDFs (dotted line) and results with BFKL UGDF (dash-dotted
line). The energies are given in the figure legend. Please note that
for clarity the results for different energies, except of the lowest
energy, are multiplied by factors specified in the figure
�101; 103�. The experimental data are from [23,27–29].
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 �inv��1; p1;t� �
d��h1h2 ! �X�

d�1d
2p1;t

�
1

4

Z
d�1d�2 � 10log10�k

2
1;t� ln�10�dlog10�k

2
1;t� � 10log10�k

2
2;t� ln�10�dlog10�k

2
2;t� � d�2 �

1

16�2

�
1

�x1x2s�2
X
i;j;k

jMij!�kj
2
fi�x1; k

2
1;t�

�

fj�x2; k
2
2;t�

�
:

In the formula above fi�x1; k2
1;t� and fj�x2; k2

2;t� are unintegrated parton distribution functions. The invariant cross section
can be formally written as

 �inv��1; p1;t� �
Z
dlog10�k

2
1;t�dlog10�k

2
2;t�Ilog� log�log10�k

2
1;t�; log10�k

2
2;t��:

APPENDIX B

The on-shell as well as off-shell matrix elements
jMij!�Xj

2 are taken into account for the following sub-
processes
 

q �q! �g�on-shell�;

�qq! �g�on-shell�;

gq! �q�on-shell; off-shell�;

qg! �q�on-shell; off-shell�:

When neglecting parton masses the on-shell matrix ele-
ments squared can be written as [1]
 

jMq �q!�Xj
2 � ��em

����������������
�1;s�2;s
p

�16��
�
8

9

��
û
t̂
�
t̂
û

�
;

jM �qq!�Xj
2 � ��em

����������������
�1;s�2;s
p

�16��
�
8

9

��
t̂
û
�
û
t̂

�
;

jMgq!�Xj
2 � ��em

����������������
�1;s�2;s
p

�16��
�
�

1

3

��
û
ŝ
�
ŝ
û

�
;

jMqg!�Xj
2 � ��em

����������������
�1;s�2;s
p

�16��
�
�

1

3

��
t̂
ŝ
�
ŝ
t̂

�
:

Including finite mass effects for quarks/antiquarks and off-
shell effects for gluons [25] the matrix element can be
written as:
 

jMq �q!�Xj
2 � �

8�4��2�em
����������������
�1;s�2;s
p

9�t̂�m2
q�

2�û�m2
q�

2 Fq �q�k1;t; k2;t�;

jM �qq!�Xj
2 � �

8�4��2�em
����������������
�1;s�2;s
p

9�û�m2
q�

2�t̂�m2
q�

2 F �qq�k1;t; k2;t�;

jMgq!�Xj
2 �

�4��2�em
����������������
�1;s�2;s
p

3�ŝ�m2
q�

2�û�m2
q�

2 Fgq�k1;t; k2;t�;

jMqg!�Xj
2 �

�4��2�em
����������������
�1;s�2;s
p

3�ŝ�m2
q�

2�t̂�m2
q�

2 Fqg�k1;t; k2;t�;

where for brevity we have introduced
 

Fq �q�k1;t; k2;t� � 6m8
q � �3t̂2 � 3û2 � 14t̂ û�m4

q

� �t̂3 � û3 � 7t̂û2 � 7t̂2û2�m2
q

� t̂ û�t̂2 � û2�;

F �qq�k1;t; k2;t� � 6m8
q � �3û2 � 3t̂2 � 14û t̂�m4

q

� �û3 � t̂3 � 7ût̂2 � 7û2t̂2�m2
q

� û t̂�û2 � t̂2�;

Fgq�k1;t; k2;t� � 6m8
q � �2k4

1;t � 2ŝ û k2
1;t � 3ŝ2 � 3û2

� 14ŝ û�m4
q � �2ŝ û k4

1;t � 8ŝ û k2
1;t � ŝ

3

� û3 � 7ŝû2 � 7ŝ2û�m2
q

� ŝ û�2k4
1;t � 2ŝ û k2

1;t � ŝ
2 � û2�;

Fqg�k1;t; k2;t� � 6m8
q � �2k4

2;t � 2ŝ t̂ k2
2;t � 3ŝ2 � 3t̂2

� 14ŝ t̂�m4
q � �2ŝ t̂ k

4
2;t � 8ŝ t̂ k2

2;t � ŝ
3

� t̂3 � 7ŝt̂2 � 7ŝ2t̂�m2
q

� ŝ t̂�2k4
2;t � 2ŝ t̂ k2

2;t � ŝ
2 � t̂2�:

In the formula above only transverse momenta of the in-
going gluons are included explicitly when calculating ma-
trix elements. Usually gluons generated via QCD effects
have on average larger transverse momenta than quarks.
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