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The distributions of two-jet event shapes contain information on hadronization in QCD. Near the two-
jet limit, these distributions can be described by convolutions of nonperturbative event shape functions
with the same distributions calculated in resummed perturbation theory. The shape functions, in turn, are
determined by correlations of momentum flow operators with each other and with lightlike Wilson lines,
which describe the coupling of soft, wide-angle radiation to jets. We observe that leading power
corrections to the mean values of event shapes are determined by the correlation of a single momentum
flow operator with the relevant Wilson lines. This generalizes arguments for the universality of leading
power corrections based on the low-scale behavior of the running coupling or resummation. We also show
how a study of the angularity event shapes can provide information on correlations involving multiple
momentum flow operators, giving a window to the system of QCD dynamics that underlies the variety of
event shape functions. In deriving these results, we review, develop and compare factorization techniques
in conventional perturbative QCD and soft-collinear effective theory (SCET). We give special emphasis to
the elimination of double counting of momentum regions in these two formalisms.
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I. INTRODUCTION

In perturbative quantum chromodynamics (QCD), scat-
tering amplitudes computed with massless partons suffer
from infrared and collinear singularities, which, however,
cancel in suitably-defined infrared safe cross sections.
Event shapes, e�N�, are numbers associated with final
states, N, defined so that the semi-inclusive cross sections
with initial state I at center-of-mass energy Q,

 

d�
de
�Q� �

1

2Q2

X
N

jMI!Nj
2�2��4�4�Q� pN���e� e�N��

(1)

are infrared safe for leptonic initial states (annihilation),
and are factorizable into parton distributions and infrared
safe short-distance functions for hadronic initial states.
Infrared safety requires, in general, that the event shape
e�N� be equal for states that differ only by a rearrangement
of collinear partons or by the emission or absorption of
zero-momentum partons.

Event shapes have been the subject of extensive study,
partly as tools to explore the evolution of QCD dynamics
from weak to strong coupling (see Ref. [1] for a review).
This paper will compare event shapes as treated in full
QCD using factorization theorems and in the QCD effec-
tive theory, soft-collinear effective theory (SCET). In the
process, we will derive a number of new results, relying on
our ability to express infrared dynamics in terms of specific
matrix elements in the full and effective theories.

Although infrared safe, and therefore calculable self-
consistently in perturbation theory, event shape cross sec-
tions at all but the very highest energies are not usually

well-approximated by perturbative results alone. The rela-
tionship between perturbative and nonperturbative contri-
butions to fully inclusive cross sections (e�N� � 1) was
formulated early in terms of QCD sum rules [2] based on
fixed order in perturbation theory and the operator product
expansion, and later in terms of its high-order behavior [3].
Eventually, it was realized that a similar analysis can be
applied to many semi-inclusive cross sections that are
infrared safe.

The leading nonperturbative contributions to the mean
values of many event shapes enter at the level of 1=Q in
leptonic annihilation experiments, with Q the total center-
of-mass energy. This dependence was predicted from the
high-order behavior of QCD perturbation theory at infrared
scales, using analyses based on the running of the coupling
[4–7]. These analyses naturally led to the proposal that
coefficients of the 1=Q power are universal up to calculable
factors.

Power corrections in event shapes can be measured by
comparing fixed-order perturbative predictions to data
from a range of Q, and 1=Q corrections are readily seen
in such comparisons [1]. For the mean values of many
event shapes, these corrections are indeed universal, in a
sense that we will review below. This is a striking predic-
tion for nonperturbative effects, based on an analysis of
perturbation theory at infrared scales.

Beyond mean values, the distributions of event shapes
require, as described below, convolutions of resummed
perturbative cross sections with nonperturbative ‘‘event
shape functions’’ [8,9], a different one for each event
shape. The event shape functions summarize the leading
power corrections for all the moments of the event shape in
question.
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The roles and determinations of event shape functions
are in some ways analogous to those of parton distribution
functions. Parton distributions can be defined in terms of
matrix elements in QCD, and these matrix elements have
universality properties based on factorization. As we shall
review below, event shape functions may also be defined as
matrix elements in QCD or SCET, which describe corre-
lations between energy flow in different directions in the
presence of lightlike color sources [9]. The universality
properties of event shape functions, however, are certainly
less well understood.

These issues can be addressed in the terminology of
perturbative QCD, using techniques of factorization and
resummation. At the present time, however, a growing
body of work in jet physics relies on the language of
soft-collinear effective theory to study power corrections
[10,11] and perturbative resummations [12,13]. With this
in mind, we will use event shapes in the two-jet limit of
leptonic annihilation to compare treatments based on fac-
torized cross sections in perturbative QCD [5,8,9] and
alternatively in SCET [10,11]. We hope that this dual
description will be helpful to some readers. Of course,
even for this limited set of observables, a full comparison
for both perturbative resummation and nonperturbative
power corrections would require a lengthy discussion. In
this paper, we will concentrate on power corrections im-
plied by these closely-related formalisms.

Not surprisingly, we will find that the two approaches
are equivalent at the level of leading power corrections and
shape functions that are associated with soft gluon emis-
sion. In both cases, infrared dynamics will be described by
matrix elements involving Wilson lines. In particular, we
will see that the soft shape functions of the factorization
theorem can be defined to correspond directly to the func-
tions that describe ultrasoft gluon radiation in these
observables.

Once we have discussed the formalism relating event
shapes to matrix elements of momentum flow operators,
we will derive a number of results of phenomenological
interest. The universality relations between different 1=Q
corrections proposed in Refs. [4–7] for mean values of
event shapes can be derived from the field-theoretic shape
functions, without invoking the dominance of single soft
gluon emission or related assumptions on the universality
of the infrared running coupling [14]. In particular, we will
derive the universality of leading power corrections to the
average values of a large class of event shapes entirely
from factorization and the boost-invariance of products of
the relevant lightlike Wilson lines.

To specify the full event shape function for an arbitrary
infrared safe observable, it is in principle necessary to
know all the energy flow correlators. Relations between
event shape functions, however, have been conjectured for
a particular class of event shapes, the angularities [15–17],
which include the thrust and jet broadening. A scaling

relation for the angularity shape functions follows from
the assumption of negligible correlations between jet hemi-
spheres for soft radiation. We will use insight gained from
comparing factorized QCD and SCET to derive explicit
relations between energy correlations and violations of the
scaling rule, providing a set of measurements that relate
directly to the correlations.

Before going further, it is important to emphasize that
the strength of nonperturbative power corrections to any
observable depends generically on the definition of pertur-
bation theory chosen for that observable. In particular, in
observable-specific perturbative schemes for the coupling
based on the method of effective charges [18], as reviewed
in Ref. [19], the coefficients of power corrections to aver-
age values tend to decrease markedly compared to pertur-
bative expansions in MS definitions. This method
incorporates measurements of the observable in question
directly into the renormalization scheme. It therefore
builds more information into perturbative expansions for
these observables than is possible in conventional schemes.
Certainly a better understanding of the relationships be-
tween process-specific and process-independent ap-
proaches to perturbation theory would be helpful. In the
discussion of this paper, however, we will assume that the
strong coupling, �s, is defined in a process-independent
fashion.

Our discussion begins in the following section with a
description of the class of event shapes that we study, and
specifically defines the angularity event shapes. In Sec. III,
we review and relate factorization formalisms for event
shapes in full QCD and SCET, exhibit the matrix elements
that determine the soft gluon dynamics and define the event
shape functions. We explore this relationship further in
Sec. IV, with a comparison of the elimination of double
counting through zero-bin subtraction in SCET [20] and
eikonal subtractions in QCD. In Sec. V we introduce
momentum flow operators and draw the consequences of
boost invariance for their correlations in soft functions. We
show that power corrections associated with jet functions
are subleading for a large class of angularities.

In Section VI we apply the formalism of Sec. V first to
the average values of event shapes, demonstrating the
universality properties of these mean values. We go on to
treat the scaling properties of angularities beyond their
mean values, and we discuss the information on momen-
tum flow correlators that is implicit in possible violations
of the scaling rule proposed in Refs. [16,17].

II. TWO-JET EVENT SHAPES

In this paper, we study event shapes that can be ex-
pressed in the form

 e �
1

Q

X
i2N

jp?i jfe��i�; (2)

where the sum is over final state particles, and the trans-
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verse momenta and (pseudo-)rapidities �i � ln cot��i=2�
are measured with respect to the thrust axis.1 Two ex-
amples of these are the C-parameter and angularities
(which include the thrust), which are expressed in terms
of the rapidities as [16,21]

 C �
1

Q

X
i2N

3jp?i j
cosh�i

; �a �
1

Q

X
i2N

jp?i je
�j�ij�1�a�: (3)

In the limit e! 0, the cross sections for all of these event
shapes are dominated by final states consisting of two
perfectly-collimated jets. For this reason, we refer to
them as two-jet event shapes, and the limit e! 0 as the
two-jet limit. Power corrections to the distributions for
these event shapes enter at the level of 1=�eQ�n, starting
at n � 1, in addition to corrections suppressed by addi-
tional powers of Q [4–7,10,11].

Near e � 0, all such event shapes generate double log-
arithms in perturbation theory, which in many cases can be
resummed to next-to-leading logarithms [22–24] and be-
yond [15]. A quantitative description of these distributions,
however, requires nonperturbative input, which can be
summarized in an event shape function, SNP;e. The physi-
cal cross section is then given as a convolution of this shape
function with the resummed perturbative function [8,9]

 

d��e;Q�
de

�
Z

0
d�SNP;e��Q;��

d�PT�e� �;Q;��
de

: (4)

The mass �, which we may think of as a scale comparable
to, but larger than, �QCD, represents the boundary between
perturbative and nonperturbative contributions. Below, it
will appear as the renormalization scale for certain matrix
elements that define the nonperturbative function.

The nonperturbative function SNP;e��Q;�� for event
shape e is independent of the overall momentum scale,
Q. Estimating SNP;e��Q;�� in Eq. (4) from the plentiful
data at the Z pole, for example, allows predictions of cross
sections at lower and higher energies. These predictions
successfully describe e�e� data for the thrust and jet mass
distributions over a wide range of center-of-mass energies
[8,9,25].

Our discussion below is focused on values of e that
describe two-jet events, which dominate final states in
leptonic annihilation. Extensive data on these shapes
have been recorded, which may in principle be mined for
information on the process of hadronization in QCD.
Extensions to multijet events are possible, following
Refs. [26,27]. Certainly, the reasoning below will require
further development for these cases.

III. FACTORIZATION IN THE TWO-JET LIMIT

In this section, we review basic results on the factoriza-
tion of cross sections in the two-jet limit. We begin with an
outline of the factorization analysis in full QCD, in the
notation of Ref. [15], followed by a discussion based on
soft-collinear effective theory [10,11]. Our discussion will
apply to both perturbative and nonperturbative
contributions.

Most of the results of this section have been given
previously elsewhere, but we believe that a side-by-side
presentation may help to shed light on both formalisms. In
particular, a comparison of the formalisms will suggest the
importance in both cases of the elimination of double
counting. This will be the subject of Sec. IV, where we
make use of the SCET discussion of ‘‘zero-bin subtrac-
tions’’ in Ref. [20].

A. QCD matrix elements

In the two-jet limit, the differential cross section (distri-
bution) for a two-jet event shape e factorizes into a con-
volution of functions that characterize the jets with a
‘‘soft’’ function that describes wide-angle gluon emission
[15],
 

d�
de
� �0�Q�

Z
dende �ndeS��e� en � e �n � eS�

� Jn�Q; en�J �n�Q; e �n�Sn �n�eSQ� �O�e0�; (5)

where �0 carries the overall dimensions, and can be de-
fined as the Born cross section to lowest order in �s. In
perturbation theory this cross section behaves as the order
1=e times logarithms as e vanishes, with contributions at
order e0 from wide-angle three-jet events.

In Ref. [15], the perturbative resummation of the angu-
larities was studied, with the functions in Eq. (5) defined in
terms of QCD matrix elements. We may start by defining a
set of incoming path-ordered exponentials or Wilson lines,

 ��f�	c �z� � P exp
�
ig
Z 0

�1
d
	c �A�f��
	c � z�

�
; (6)

where f labels a color representation. The vector 	c, which
defines the path of the ordering, was taken in Ref. [15] to be
off the light-cone, at least to start.

Following Ref. [15], the jet functions of Eq. (5) are
defined in terms of matrix elements
 

J�c �Q; eJc� �
2

Q2

�2��6

NC

X
NJc

Tr���h0j��q�y	c
�0�q�0�jNJci

� hNJc j �q�0��
�q�
	c
�0�j0i	��eJc � e�NJc��

� ��Q�!�NJc���
2�n̂Jc � n̂�NJc��; (7)

where c � n, �n labels the direction of the jet as above. The
jet functions are constructed from the squared amplitudes
for the quark (or other partonic) field to produce states NJc

1The thrust axis is the choice of axis that minimizes the
quantity on the right-hand side of �a in Eq. (3) for a � 0.
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with total energyQ, with a momentum whose direction n̂ is
in a fixed direction n̂Jc , and with a fixed contribution eJc 

1 to the event shape in question. The amplitudes are
rendered gauge invariant by multiplying the partonic fields
by ordered exponentials (6) in the 	c directions and in the
quark representation.

To define the soft function, we introduce ‘‘eikonal’’
cross sections

 �� �eik���; e� �
1

NC

X
Neik

h0j���q�y�n �0���q�yn �0�jNeiki

� hNeikj�
�q�
n �0��

��q�
�n �0�j0i��e� e�Neik��;

(8)

in which final states Neik are produced by products of
outgoing Wilson lines in directions n� and �n�, which we
may take to be opposite-moving. These are defined by
analogy to Eq. (6) with the ‘‘time’’ variable 
 running
from zero to infinity. The eikonal cross section, Eq. (8)
must be renormalized, with scale �. It provides a good
approximation for soft radiation that is not collinear to
these vectors, but it also contains collinear-singular radia-
tion parallel to the directions of the lines. The collinear
enhancements are already taken into account in the jet
function, and the soft function S in Eq. (5) must be defined
in such a way as not to double-count these regions. In fact,
it is easier than it might seem to avoid double-counting.
This is because we can apply the same factorization to the
eikonal as to the full cross section, factoring the same soft
function S from a set of eikonal jet functions, which can
themselves be defined in terms of matrix elements as
 

J�eik�
c �Q; ec� �

1

NC

X
N�eik�
c

h0j��fc�y	c
�0���fc�yc

�0�jN�eik�
c i

� hN�eik�
c j��fc�c

�0���fc�	c
�0�j0i

� ��ec � e�N
�eik�
c ��; (9)

where the roles of the quark fields are taken by recoilless,
lightlike Wilson lines.

We first observe that there is a certain ambiguity in the
separation of jet and soft functions. The ambiguity is
exhibited clearly by a Laplace transform, where large �
is conjugate to small e. Under the Laplace transform,
d�=de in Eq. (5) factorizes into a simple product of jet
and soft functions,

 ~��Q; �� �
Z

0
dee��e

d��Q�
de

� �0�Q�~Jn�Q; ��~J �n�Q; ��~S�Q=��: (10)

Notice that dependence on the upper limit of the integral
over e is exponentially suppressed at large �. The product
on the right in (10) can be treated in different ways,
depending on the task at hand. The potential sources of

double counting are eliminated in this case by defining
~S�Q=�� as the transform-space ratio of the eikonal cross
section to the product of eikonal jets,

 

~S�Q=�� �
~��eik��Q; ��

~J�eik�
n �Q; ��~J�eik�

�n �Q; ��
: (11)

In Eq. (11), the eikonal cross section and eikonal jet
functions approximate well the wide-angle soft radiation
in the full cross section and in the jet functions, respec-
tively. Thus the inverse eikonal jet functions in Eq. (11)
cancel the contributions of the soft radiation in the partonic
jet functions in Eq. (10). When expanded in the coupling,
the denominators can be reinterpreted as sets of nested
subtractions.

For the study of power corrections [9], it will be more
useful to implement a slightly different organization, found
by simply shifting the factors ~J�eik�

n �Q; ��~J�eik�
�n �Q; �� from

the soft function to the jets:

 ~��Q; �� � �0�Q� ~J n�Q; �� ~J �n�Q; ��~�eik�Q; ��; (12)

where

 

~J n��� �
~Jn�Q; ��

~J�eik�
n �Q; ��

; ~J �n�Q; �� �
~J �n�Q; ��

~J�eik�
�n �Q; ��

: (13)

The eikonal subtractions serve the same role as above in
Eq. (11), but now all double counting is subtracted from the
jet functions. We will show in Sec. IV that this method of
subtraction is directly related to the ‘‘zero-bin subtraction’’
scheme [20] in SCET. But first let us review the factoriza-
tion of jet cross sections from the perspective of SCET.

B. Factorization for event shapes in SCET

The SCET analysis begins with the expression for the
distribution of event shape e in QCD (the ‘‘full theory’’
from an effective theory point of view),
 

d�
de
�

1

2Q2

X
N

jhNjJ��0�j0iL�j
2�2��4�4�Q� pN�

� ��e� e�N��; (14)

where J� � �q��q is the production current in QCD. The
vector L� is the leptonic part of the amplitude for e�e� !
�qq. SCET organizes QCD in an expansion in powers of a

parameter 
�
������������������
�QCD=Q

q
[28,29]. The modes in the effec-

tive theory we will use are collinear quarks and gluons, 	n; �n
and An; �n, and ultrasoft (usoft) gluons, Aus. These modes are
distinguished by the scaling of the light-cone components
p � �n � p; �n � p; p?� of their momenta, defined with re-
spect to light-cone vectors n; �n � �1; 0?;1�. Ultrasoft
momenta scale as pus �Q�


2; 
2; 
2�. Collinear modes
can have momenta with one of two possible scalings: pn �
Q�
2; 1; 
� or pn �Q�
4; 1; 
2�, and similarly for
�n-collinear momenta p �n. The theory with collinear modes
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with the first scaling is called SCETI, and with the second,
SCETII [30]. The typical transverse momenta of the col-
linear particles in the final state determines the correct
choice of scalings. (For example, very narrow jets with
p? ��QCD must be treated in SCETII.) We begin by
matching QCD onto SCETI, and consider SCETII when
we wish to account for narrower jets.

At leading (zeroth) order in the expansion in 
, the full
theory current J� matches onto the SCETI operators [31],

 j�!;!0 � ��n;!��� �n;!0 ; (15)

where !, !0 denote label momenta, and the jet fields �n; �n
are given by

 �n;! � �W
y
n 	n	!: (16)

Here Wn is a Wilson line of collinear gluons,

 Wn�z� � P exp
�
ig
Z 0

�1
ds �n � An� �ns� z�

�
: (17)

Label momenta are the ‘‘large’’ pieces of collinear mo-
mentum. The momentum of a collinear mode splits into
this label piece and a residual piece. More precisely, pn �
~pn � k, where the label momentum ~pn � �n � ~pn

n
2� ~p?n

contains only the O�Q� piece of �n � pn and the O�Q
�
piece of p?n , and the residual momentum k is of order �QCD

in all components. A collinear field with a label ! creates
and destroys only modes with small O��QCD� fluctuations
about the momentum !.

The matching between the full and effective theories is
performed by matching matrix elements at a scale �:

 hJ�iQCD��� � C�!;!0;��hj�!;!0 iSCET���; (18)

where the labels !, !0 are summed over. The coefficient
C�!;!0;�� is the Wilson coefficient in this matching. The
combinations of fields and Wilson lines in these expres-
sions bear a close resemblance to the jet functions of
Eq. (7).

We can remove the coupling between ultrasoft gluons
and the collinear fields in the SCETI Lagrangian via the
field redefinitions [32],

 	n � Yyn 	0n; An � Yyn A0nYn; Wn � YynW0nYn;

(19)

and similarly for the �n-collinear fields, using the ‘‘out-
going’’ [33] Wilson line of ultrasoft gluons,

 Yn�z� � P exp
�
ig
Z 1

0
dsn � Aus�ns� z�

�
: (20)

For instance, the term containing the collinear quark-usoft
gluon interaction becomes

 

�	 nin �Dus	n ! �	0nin � @	
0
n; (21)

where iDus � i@� gAus. With this separation, we have
established an effective theory that captures the dynamics

in the full theory for the two-jet event shape distributions in
the two-jet limit. The identification of jet and soft quanta
precisely matches the ‘‘leading regions’’ of the full theory,
as identified by analysis of momentum-space integrals for
arbitrary diagrams [34]. This analysis, of course, is
process-dependent, and the validity of this SCET holds
up to the same corrections that apply to Eq. (5), and is
improvable by adding more jets, for example.

The redefined jet production current becomes

 j�!;!0 � ��0n;!Yn��Yy�n �
0
�n;!0 ; (22)

where the primes on the redefined fields �0 refer to the use
of 	0 andW0 in Eq. (16). This leads to a factorization of the
differential cross section in Eq. (14), analogous to Eq. (5),

 

d�
de
� jC�Q;�Q;��j2

Z
deJ�J�eJ;��S�e� eJ;��; (23)

where the function �J contains the collinear fields and
states:
 

�J�eJ;�� �
1

2Q2

L2

3

X
NJnNJ �n

jhNJnNJ �n
j ��0n;Q���0�n;�Qj0ij

2���

� ��eJ � e�NJnNJ �n
��; (24)

where L2 is the spin-averaged, squared leptonic amplitude,
and where the soft function S contains the usoft fields:

 S�e;�� �
1

NC
Tr
X
Xu

jhXujT�YnY
y
�n 	j0ij

2�����e� e�Xu��:

(25)

We have split up the final state N into the jets NJn; �n and the
usoft sector Xu, imagining them to live in clearly separated
regions. The notation in Eq. (23) setting the labels !,!0 of
the collinear fields toQ means that the fields must create
a quark and an antiquark jet with total label momenta
n � ~pJn � �n � ~pJ �n

� Q, and ~p?Jn � ~p?J �n
� 0.

Before we proceed, let us consider briefly the scale
dependence of the jet and soft functions. The matching
from QCD to SCET is done at the scale � � Q, minimiz-
ing large logarithms in the Wilson coefficient
C�Q;�Q;��. The collinear matrix element is naturally
evaluated at a scale�c �Q
, and the soft function at�s �
Q
2, to minimize logarithms in those functions. The run-
ning between these scales and � � Q is achieved by
renormalization group evolution. The calculations required
to do this in SCET are described in Refs. [12,13]. In this
paper, we focus not on the details of the perturbative
matching and evolution, but rather on the properties of
matrix elements at the scale���QCD that must be treated
as nonperturbative quantities.

For observables dominated by fairly wide jets with

p? �Q
�
����������������
�QCDQ

q
, the collinear jet function at �c �

Q
 may be evaluated in perturbation theory, leaving only
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the soft function at �s � �QCD as a nonperturbative func-
tion. For observables in which narrow jets with p? �
�QCD contribute heavily, the collinear matrix elements
are naturally evaluated at the scale �c � �QCD. Between
the scales Q
 and Q
2, the theory SCETI at the higher
scale must be matched onto SCETII at the lower scale. The
form of the collinear operator (22) remains the same; only
the momentum scaling of the collinear fields changes. A
collinear matrix element in SCETII is a nonperturbative
quantity. In Sec. V, we compare the relative sizes of non-
perturbative corrections to event shape distributions from
the soft and jet functions. For the observables of most
interest to us, the power corrections from the soft function
will dominate.

Returning now to the jet function in Eq. (24), we can
further separate the matrix elements involving the jet
quanta into the form:

 �J�eJ;�� �
1

2Q2

L2

3
Tr
�

�y�
X
NJn

h0j�0n;QjNJni

� hNJn j ��
0
n;Qj0i�

�
X
NJ �n

h0j ��0�n;�QjNJ �n
i

� hNJ �n
j�0�n;�Qj0i

�
�����eJ � e�Jn� � e�J �n��:

(26)

The individual squares of matrix elements are closely
related to the jet functions in factorization-based treat-
ments of semi-inclusive cross sections, Eq. (7) [15]. In
particular, the operator content, including the presence of
the Wilson lines Wn, is essentially equivalent. The choice
of vector [	c in Eq. (7)] is somewhat different. Another
difference is that here the collinear fields are fully sepa-
rated from usoft partons, so that the sums over explicit jet
final states jNJn; �ni contain no usoft lines at all, while
correspondingly, the virtual states that enter the jet matrix
elements have no soft lines. In the soft function as well, jet
lines appear neither in the final state jXui nor in the matrix
elements.

In SCET, this bookkeeping is built in by a ‘‘zero-bin
subtraction’’ prescription for collinear fields [20]. For each
collinear field in the SCET Lagrangian, there is a sum over
all label momenta, which must always be nonzero, to avoid
overlap with usoft modes. Thus, regions of collinear loop
diagrams or phase space integrals where a collinear parti-
cle can become ultrasoft must always be subtracted off.

Each particle in the final state may be placed in a bin
determined by its label momentum, leaving it with a re-
sidual momentum inside the bin, while those with zero
label fall into the zero bin, and are assigned to the usoft
sector Xu. The couplings of usoft particles to the states
NJn; �n have already been factored out and accounted for in
the soft function S.

A natural question at this point is whether the jet and soft
functions so defined are individually infrared safe. The
answer is yes, because infrared safety does not require
Lorentz invariance, only the hermiticity of the interaction
Hamiltonian, and a sufficiently smooth shape function
[35]. In our case, the cancellation of soft and collinear
singularities in leptonic annihilation processes can be car-
ried out for fixed values of one of the components of light-
cone momentum [34]. We thus expect infrared safety for
each of the SCET jet and soft functions.

IV. ELIMINATING DOUBLE COUNTING

In this section, we continue our comparison of the SCET
treatment of event shapes to analyses based directly on
factorization [9,15], concentrating on the elimination of
double counting. The observations below are relatively
simple, but to our knowledge they have not yet been
made in the literature in this context.

Proofs of factorization in perturbative QCD typically
make use of Ward identities and subtractions to avoid
double counting of leading configurations while maintain-
ing infrared safety [15,36]. Unlike their SCET analogs, the
matrix elements in Sec. III above have no restrictions on
their momentum integrals. The jet functions thus include a
considerable contribution from what in SCET are classified
as usoft gluons.2 The soft function S was correspondingly
defined to avoid double-counting of collinear gluons by the
soft function, and wide-angle soft gluons by the jet func-
tions. As noted above, the soft function is constructed from
Wilson lines in a manner precisely analogous to the SCET
soft function, Eq. (25). From Eqs. (12) and (13), with
double-counted soft modes subtracted from the collinear
jets, we see that the eikonal cross section of Eq. (8) is
exactly the same as the SCET soft function (25), except
that the former does not include an explicit limitation to
usoft final states, Xu.

The subtraction of double-counted soft modes from the
jet functions is precisely what is achieved in SCET by the
zero-bin subtraction for collinear fields (cf. Eqs. (74) and
(75) in Ref. [20]). Although there is a restriction to ultra-
soft states in (25), the phase space integrals implicit in the
sum still cover the entire region of momentum space, so
that the eikonal soft function in QCD and the SCET shape
function (25) are practically equivalent. It is not inconsis-
tent to integrate up to infinite momenta in a usoft integral.
One is first taking the limit 
! 0, i.e. Q! 1, then
integrating up to infinity the usoft momenta, which remain
always formally much smaller thanQ.3 It is important only

2They also include quanta collinear to the opposite-moving jet.
In SCET, these quanta are simply not present in the jet lines. In
the factorized jet functions of Eq. (7), although present they do
not produce collinear singularities because the Wilson lines �	c
are defined with respect to vectors 	c that are not lightlike.

3We thank A. Manohar for discussions on this point. See
related remarks in Ref. [11].
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that the soft functions for the observables we calculate are
dominated by those particles which have ‘‘truly’’ usoft
momenta. Below, we will examine the validity of this
assumption for the event shapes we consider. First, let us
elaborate on the connection between double-counting sub-
traction procedures in QCD and SCET.

A. Zero-bin subtractions in factorization

The leading-order (in 
) Lagrangian of SCET contains
several parts (see, e.g., Ref. [32]). First, the purely ultrasoft
Lagrangian for quarks and gluons is identical to that in
QCD:

 L us � �qusi 6Dusqus �
1
2G

��G�� �Lg:f:
us ; (27)

where the ultrasoft field strength, G�� � i
g �D

�
us; D�

us	, is
given in terms of the ultrasoft covariant derivative, iD�

us �
i@� � gA�us. The usoft gauge fixing and ghost terms are
represented by Lg:f:

us . Meanwhile, the Lagrangian for col-
linear quarks is
 

L�q�c � �	n;p0 �in �Dus � gn � An;q � �P6 ? � gA6 ?n;q�

�W
1
�P
Wy�P6 ? � gA6

?
n;q0 �

� �6n
2
	n;p; (28)

where �P and P? are label momentum operators which
pick out the O�Q� piece of the �n � p component and the
O�Q
� piece of the p? component of the collinear mo-
menta. Here W is the Wilson line defined in Eq. (17),
organizing collinear gluons �n � A, each of which are lead-
ing power in 
 [37]. There is also an implicit sum over all
labels and conservation of label momentum in each term
[37]. Finally, the collinear gluon Lagrangian is

 L �g�
c �

1

2g2 Tr f�iD� � gA�n;q; iD� � gA�n;q0 	
2g �Lg:f:

c ;

(29)

where iD� � n�
2

�P � P�
? �

�n�
2 in �Dus, and Lg:f:

c contains
the collinear gauge fixing and ghost terms.

The component n � Aus of the usoft gluon field appears in
the collinear quark and gluon Lagrangians above. The field
redefinition (19) removes this interaction, through the
identities in �DusY

y
n � 0 and iD� � Yyn iD

�
�0�Yn, where

iD�
�0� �

n�
2

�P � P�
? �

�n�
2 in � @. This gives the redefined

collinear quark Lagrangian
 

L0�q�c � �	0n;p0
�
in � @� gn � A0n;q

� �P6 ? � gA6
0?
n;q�W

1
�P
Wy�P6 ? � gA6

0?
n;q0 �

� �6n
2
	0n;p;

(30)

and collinear gluon Lagrangian

 

L0�g�c �
1

2g2 Tr f�iD�
�0� � gA

0�
n;q; iD�

�0� � gA
0�
n;q0 	

2g

�L0g:f:c : (31)

It is in the theory described by the redefined Lagrangian
L0
�c� that we derived factorization for the two-jet event

shape distributions. As given in Eq. (23), the full distribu-
tions are convolutions of soft and separate jet functions for
the two jets, which are easily abstracted from Eq. (26). For
example, in terms of the collinear SCET quark field, 	0n in
(30), we can define a jet function Jcn�e�, as

 Jcn�e�
�
n6
2

�
�
X
NJn

jhNJn j�
�	0nW

0
n	pn j0ij

2
L0c
��e� e�NJn��; (32)

where the total label momentum of the collinear fields
must equal the label momentum ~pn of the states NJn , which
are free of quanta in the usoft sector. The right-hand side is
proportional to the matrix n6 =2, as shown, and Jcn�e� is a
remaining scalar function. Here we include a subscript on
the matrix elements to emphasize the Lagrangian in ques-
tion. This jet function contains contributions only from
truly collinear particles with nonzero label momenta, and
all usoft particle contributions are accounted for in the soft
function S. Restricting collinear label momenta to nonzero
values avoids double-counting of usoft contributions in
these two functions. It may be convenient, however, to
allow integrals over collinear momenta to include the
‘‘zero-bin’’. One must then define a prescription to subtract
it out again. This can be achieved by the zero-bin subtrac-
tion procedures illustrated by Manohar and Stewart in
Ref. [20], or by the method of factoring out eikonal jet
functions described by Ref. [15].

In order to establish the connection between the zero-bin
and eikonal jet methods for subtraction, let us take another
look at the collinear quark Lagrangian in SCET, now with
sums over labels explicit:
 

L0�q�c �x� �
X

~p;~p0�0

ei�~p
0�~p��x �	0n;p0 �x�

�
in � @

� g
X
~q�0

e�i~q�xn � A0n;q�x�
� �6n

2
	0n;p�x�: (33)

We have dropped for now the terms with A6 ? gluons, since
they are irrelevant for the remainder of this discussion.4

The tildes denote label momenta containing only the large
O�Q� and O�Q
� pieces, ~p� � �n � ~p n�

2 � ~p�?, and the
remaining x dependence of collinear fields fluctuates on a
scale described by residual momenta k of order Q
2. The
sums over collinear labels are restricted to nonzero values
to avoid double counting the usoft modes, and we have
shown explicitly the phases that enforce label momentum

4The perp gluons in the zero-bin overlap with usoft gluons, but
these interact with collinear fields only at subleading order in 
.
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conservation. As in the zero-bin prescription of Ref. [20],
the sums over labels can be allowed to include the zero bin
if we add a term that subtracts it out again. Let us worry
about this only for the gluon field, since the interaction of
usoft quarks with collinear fields is subleading in 
. These
steps can be achieved beginning with a Lagrangian L00 that
includes zero-bin collinear gluons:
 

L00�q�c �x� �
X

~p;~p0�0

ei�~p
0�~p��x �	00n;p0 �x�

�
in � @

� g
X

~q

e�i~q�xn � A00n;q�x�
� �6n

2
	00n;p�x�: (34)

We then perform a field redefinition on (nonzero-bin) col-
linear fields:

 	00n;p � Uyn	0n;p; A00n;p � UynA0n;pUn;

W00n � Uyn ~W0nUn;
(35)

where Un is a ‘‘zero-bin’’ Wilson line:

 Un�x� � P exp
�
ig
Z 1

0
dsn � A00n;0�ns� x�

�
; (36)

mimicking the field redefinition (19) with the usoft Wilson
line. The Lagrangian obtained from L00�q�c by the redefini-
tion (35) is precisely L0�q�c , with the ~q � 0 term subtracted
off. The redefinition of the gluon field removes the zero-bin
gluons from the corresponding collinear gluon Lagrangian.
Note, however, that it does not yet remove zero-bin �n � An
fields in W00. Thus, the Wilson line ~W0 is not yet W0, when
the latter is defined to be free of zero-bin gluons.

The jet function Jcn�e� of Eq. (32) is, as indicated,
calculated in the theory described by L0c in order to avoid
double-counting the usoft modes. However, if we for con-
venience decide to include the zero-bin in all the collinear
momentum integrals, we are actually calculating a slightly
different jet function, Jn, in the theory described by L00c .
Via the field redefinition (35) we can move back to the
Lagrangian L0c, but then we must include the Un Wilson
line in the current:

 Jn�e�
�
n6
2

�
�
X
NJn

jhNJn j�
�	00nW

00
n 	pn j0ij

2
L00c
��e� e�NJn��

�
X
NJn

jhNJn j�
�	0n ~W0n	pnUnj0ij

2
L0c
��e� e�NJn��:

(37)

In the Lagrangian L0c, however, the zero-bin gluons do not
interact with the collinear fields at all. Once the �n � An;0
zero-bin gluons have been removed from ~W0, this jet
function factorizes into ‘‘purely’’ collinear and ‘‘zero-
bin’’ parts. To accomplish this, let us also split the collinear
Wilson line ~W0n into its zero-bin and purely collinear parts,

 

~W 0
n�z� � W0n�z��n�z�; (38)

where

 �n�z� � P exp
�
ig
Z 0

�1
ds �n � An;0� �ns� z�

�
; (39)

and W0n is the collinear Wilson line with restrictions to
nonzero label momenta on all gluons. Then the alternative
(L00) jet function factorizes into
 

Jn�e�
�
n6
2

�
�

X
NJcn ;N

�eik�

jhNJcn j�
�	0nW

0
n	pn j0ihN

�eik�j�nUnj0ij
2
L0c

� ��e� e�NJcn� � e�N
�eik���

�
Z
decJcn�ec�J

�eik�
n �e� ec�

�
n6
2

�
; (40)

where Jcn is the jet function calculated in the purely-
collinear theory described by L0c, and J�eik�

n is the eikonal
jet function. The collinear fields in Jcn can only produce
gluons with nonzero label momenta, while the Wilson lines
�n, Un in J�eik�

n produce gluons in the zero bin. It is closely
related to the eikonal jet function defined above, in Eq. (9).

By taking the Laplace transform of the jet functions in
this convolution, we may solve for the purely-collinear jet
function

 

~J cn��� �
~Jn���

~J�eik�
n ���

; (41)

which is precisely Eq. (13). This relation tells us that we
may calculate the jet function on the left, Jcn, by calculating
instead the jet function on the right, Jn, which include the
zero-bins in collinear integrals, if we then subtract out the
double-counted usoft contributions with the eikonal jet
function, which is precisely the prescription of Ref. [15].
We emphasize that the alternative SCET jet function, Jn, is
directly analogous to the pQCD jet function defined in
Eq. (7). There remain technical differences associated
with the states jNJci in (7), which can also contain ener-
getic lines collinear to the opposite-moving jet, for ex-
ample. As noted above, the effect of such lines is
perturbatively calculable, so that these remaining differ-
ences are perturbatively calculable. We have thus shown its
equivalence to the zero-bin subtraction procedure of
Ref. [20] in SCET.

B. The ultrasoft region in SCET

For the purposes of our discussion below, we need to
consider in some detail the precise definition of our usoft
region. In each of the two-jet event shapes of Sec. II, the
contributions of particles in the far forward and backward
regions are suppressed exponentially in the absolute value
of their rapidity, and hence as a power of their larger light-
cone momentum (order Q). The contributions of jetlike
particles at low (order �) transverse momenta are sup-
pressed by a power of Q compared to those emitted with
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similar low transverse momenta at wide angles. For this
reason, to leading powers in 1=�eQ�, we need not include
separate nonperturbative functions for the jets [5], which
may be expected to enter beginning at the level of
1=�eQ1�b�, where b depends on the event shape at hand.
For the angularities, b � 1� a. We will give a more
formal argument for this result in the next section. The
soft shape function organizes all powers like 1=�eQ�n,
while neglecting all further suppression by powers of Q.

Our analysis of power corrections from the soft function
will depend crucially on the boost invariance of the usoft
Wilson lines appearing in S, and, in the sum over usoft
states in (25), we integrate over all momenta. With this in
mind, we will want our ultrasoft region formally to include
all gluons with small transverse momenta but boosted to
arbitrarily large rapidities. The light-cone components k

of their momenta are then, strictly speaking, larger than the
typical usoft scaling Q
2. Formally, the usoft modes in
SCET do cover all momenta up to the scale � � Q,
although the effective theory Lagrangian is a good approxi-
mation to the dynamics only of the truly usoft particles. As
long as we pick observables to which only these truly usoft
particles contribute significantly, it is safe to include the
highly-boosted particles as well in the usoft sector of the
theory. Indeed, for event shapes such as the angularities,
the contribution of particles in the far-forward and far-
backward regions are power-suppressed.

Consider, for example, the shape function (25) for the
angularities as defined in Eq. (3). Do the usoft modes in
SCET correctly describe the dynamics of all the small
transverse-momentum particles that make a non-negligible
contribution to the observable �a? Let us say that if the
exponential factor, exp��j�ij�1� a�	, for particle i is of
order 
 or smaller, then its contribution is negligible. Then
the largest-rapidity particle making a non-negligible con-
tribution to the event shape has

 j�ij � �
1

1� a
ln
; (42)

or, defining the rapidity as � � 1
2 ln� �n � k=n � k�,

 max
�

�n � k
n � k

;
n � k
�n � k

�
� 
�2=�1�a�: (43)

Now, because n � k �n � k� k2
?, and for usoft particles, k? �

Q
2, Eq. (43) implies that usoft particles with the larger of
their light-cone momenta up to the order Q
2�1=�1�a�

contribute non-negligibly to the event shape �a. For a <
1=2, this light-cone momentum is still smaller than the
corresponding component of a collinear momentum, which
is order Q (e.g. for the thrust, a � 0. With Q� 100 GeV
and �QCD � 1 GeV, we have 
 � 0:1, so the largest usoft
light-cone momentum that contributes to �0 is 10 GeV, still
well belowQ.) As long as this hierarchy of scales holds for
the large light-cone components of usoft and collinear
momenta, the only component of usoft gluons that interacts

with collinear modes in the n direction in the leading-order
SCET Lagrangian is the n � Aus component ( �n � Aus in the �n
direction), so that these interactions can be removed by the
field redefinitions with the Wilson lines Yn; �n. This guaran-
tees the form of our usoft shape function (25), and ensures
that only the truly usoft particles contribute to the sum. We
can extend the range of allowed values of a beyond a <
1=2 (but only up to a < 1) by relaxing our criterion for the
size of ‘‘non-negligible’’ terms (i.e. allowing
exp��j�ij�1� a�	 to be larger than 
 but smaller than
1). For the C-parameter, we need 1= cosh�i < 
, which
for the values chosen above translates to n � k, �n � k &

20 GeV.
Thus, in the following we may safely incorporate the

power-suppressed contributions of the very far-forward
and far-backward radiation in the SCET shape function,
Eq. (25), and identify it with the eikonal cross section,
Eq. (8), evaluated at the corresponding scale. This means
that in both SCET and full QCD we may treat the sum over
states in the shape function as boost-invariant. It is this
result that will lead us to demonstrate universality proper-
ties below.

V. IDENTIFYING POWER CORRECTIONS

We are now ready to identify the power corrections that
arise naturally when the soft and jet functions are evaluated
at scales of order �QCD. In doing so, we set aside issues of
perturbative resummation and of matching, treated in full
QCD for the angularities in Ref. [15], and very recently in
SCET for the closely-related jet cross sections by
Refs. [12,13]. In the discussion of this section, we will
find useful a variant of the energy flow operators intro-
duced in Refs. [38] and applied in this context by Ref. [9].
This operator is clearly also closely related to the energy-
energy correlations of Refs. [39].

As mentioned earlier, the typical transverse momenta of
the collinear particles in the jets which contribute to a
given observable determine whether they should be treated
in the theory SCETI, in which collinear momenta scale as
pc � �n � pc; �n � pc; p?c � �Q�
2; 1; 
� or Q�1; 
2; 
�, re-

calling that 
�
������������������
�QCD=Q

q
. The typical virtuality of such

particles being p2
c � Q�QCD, jet functions in this theory

can be calculated perturbatively. However, some event
shapes may weight much narrower jets more heavily, in
which jet constituents with transverse momenta of order
Q
2 ��QCD become important. These degrees of freedom
must be treated as collinear particles in SCETII, in which
collinear momenta scale as pc �Q�
4; 1; 
2� or
Q�1; 
4; 
2�. These particles have virtualities of order p2

c �

�2
QCD, and so give rise to nonperturbative effects in addi-

tion to those from soft particles. For such event shapes,
nonperturbative power corrections to the jet functions may
compete with (or even dominate) those in the soft
functions.
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We will now compare the size of power corrections from
the soft and collinear functions for the event shapes in
question. We will give our arguments in terms of SCET
matrix elements, keeping in mind that they can be pre-
sented in terms of matrix elements in full QCD in a similar
manner. For the C-parameter and angularities �a with a <
1, the dominant power corrections (of the order �QCD=Q)
will come only from the effect of usoft particles whose
momenta are of O�Q
2�. Power corrections from collinear
particles will be found to scale as ��QCD=Q�

2�a, which
then dominate for a � 1. However, for a � 1, there are
also other power corrections, for example, due to the shift
in the thrust axis itself caused by the soft radiation
[15,23,40]. The inclusion of these effects, while necessary
for a complete treatment of power corrections to �a with
a � 1, is outside the scope of this paper.

Consider the distribution of an event shape of the form in
Eq. (2), given in SCET by Eqs. (23)–(25). The collinear
cross section (24) is, writing out the general event shape of
Eq. (2) in the delta function explicitly
 

�J�eJ;�c� �
1

2Q2

X
NJnNJ �n

jhNJnNJ �n
j ��n;Q��� �n;�Qj0ij

2��c�

� �
�
eJ �

1

Q

X
i2NJnNJ �n

jp?i jfe��i�
�
; (44)

while the soft function is
 

S�e;�s� �
1

Nc
Tr
X
Xu

jhXujYn �Y �nj0ij
2��s�

� �
�
e�

1

Q

X
i2Xu

jk?i jfe��i�
�
; (45)

where we have now chosen to denote explicitly the depen-
dence of the jet and soft functions on the scales �c, �s.
Also, we have suppressed the factor associated with the
leptonic part, and we have removed the time-ordering
operator that was in the soft function in Eq. (25) by using
the Wilson line �Y �n, where the bar denotes the antifunda-
mental representation of SU�Nc� [11]. For event shapes
such as �a for a < 1, the collinear scale �c can be chosen
at a perturbative scale �c �Q
, and we are in SCETI. For
a > 1, the event shapes pick out narrower jets so that the
collinear scale is determined to be of order �c ��QCD,
putting us in SCETII, where the jet function is
nonperturbative.

We may express the delta functions in Eqs. (44) and (45)
in operator form by making use of a transverse energy flow
operator, defined by its action on states N:

 E T���jN�ki�i �
X
i2N

jk?i j���� �i�jN�ki�i; (46)

where the sum is over the particles i in state N. This is
equivalent to the energy flow operators discussed in
Refs. [9,38,41]. In terms of this operator, the collinear

and soft functions (44) and (45) can be written as
 

�J�eJ;�c� �
1

2Q2

X
NJnNJ �n

�
0

�������� �� �n;�Q
����n;Q

� �
�
eJ �

1

Q

Z 1
�1

d�fe���ET���
���������NJnNJ �n

�

� hNJnNJ �n
j ��n;Q��� �n;�Qj0i; (47)

and
 

Se�e;�s� �
1

NC
Tr
X
Xu

�
0

�������� �Yy�nY
y
n

� �
�
e�

1

Q

Z 1
�1

d�fe���ET���
���������Xu

�

� hXujYn �Y �nj0i: (48)

We can expand the delta functions in power series to
identify the power corrections. If we first factor out the
overall, canonical factor of 1=e, shared with perturbation
theory, and assume that the matrix elements are of the order
of the momentum components of the usoft gluons, Q
2 �

�QCD, we derive a power series in �QCD=�eQ�. Indeed, the
purpose of event shape functions is to organize all terms in
this series when �QCD=�eQ� � 1 and all such power cor-
rections are comparable. These power corrections are par-
ticularly clearly exhibited by Laplace transforms, Eq. (10),
of the soft function at low scales [9],

 

~S e��;�s� �
Z

0
de exp���e	Se�e;�s�

�
1

NC
Tr h0j �Yy�nY

y
n exp

�
�
�
Q

�
Z 1
�1

d�fe���ET���
�
Yn �Y �nj0i; (49)

where we have summed over the complete set of inter-
mediate states in Eq. (48), as argued in Sec. IV B.
Expanding the exponential, we find a series in powers of
the Laplace variable � divided by Q.

For the soft function, according the discussion in the
previous section, the sum over usoft states is unrestricted,
as is the integral over rapidities inside the delta function. In
the collinear function, choosing eJ to be close to the two-
jet limit eJ � 0, or specifying a jet definition to pick out
two-jet events, restricts the phase space integrals in the
collinear cross section to those with large rapidities, effec-
tively limiting the range of the rapidity integral as well.
The rapidities � can be written in terms of the light-cone
momenta of final state partons, � � 1

2 ln� �n � p=n � p�. For
a usoft parton, the ratio n � pus= �n � pus � 1, as all momen-
tum components are O�Q
2�, so j�j � 0, while for col-
linear partons in SCETII, one light-cone component is
O�Q� while the other is O�Q
4�. Thus, n � pc= �n � pc �

4 or 
�4, so �� ln
2. Consider what this implies for
the collinear and soft functions in the case of the angular-
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ities. The function fe�e� for e � �a is f�a��a� � e�j�j�1�a�.
In the usoft function, this factor is of O�1�. In the collinear
integral, the phase space restrictions limit the rapidity
integral to j�j * ln�1=
2�, so that the collinear function
is effectively
 

�J��a��
1

2Q2

X
NJnNJ �n

�
0

�������� �� �n;�Q
����n;Q

��
�
�a�

2

Q

Z 1
ln�1=
2�

d�e��1�a��ET���
���������NJnNJ �n

�

�hNJnNJ �n
j ��n;Q��� �n;�Qj0i: (50)

Although we cannot compute these nonperturbative matrix
elements at the scale �c �Q
4, we can estimate their
dependence on 
 from dimensional analysis. Matrix ele-
ments of powers of the operator ET��� in collinear states in
SCETII should vary as corresponding powers of Q
2.
Similarly, each rapidity integral should behave as 
2�1�a�.
Combined with the factor 1=Q in front of the rapidity
integral, power corrections to the collinear jet function
occur as powers of 
4�2a=�a � �1=�a���QCD=Q�

2�a.
Correspondingly, in Laplace moment space, this becomes
a power series in ���QCD=Q�

2�a. The latter is also the only
argument for the jet function that serves as a boundary
condition in the perturbative QCD resummation of
Ref. [15].5 As long as a < 1, we may consider these to
be subleading compared to the power corrections of the
soft function, which are powers of �QCD=Q. For a * 1, we
must take them into account, along with the recoil correc-
tions mentioned above [16,17,42].

From now on, we consider only observables that pick out
jets with typical transverse momenta well above the non-
perturbative scale. In the language of SCET, this allows us
to work in the theory SCETI and consider power correc-
tions only from the soft function.

VI. MOMENTUM FLOW OPERATORS,
UNIVERSALITY AND SCALING

A. Nonperturbative universality from perturbative
QCD

A striking prediction from the analysis of event shapes in
perturbation theory, including those given in Eq. (3), is the
universality of power corrections to their mean values [5–
7,9,15–17,21,41,43,44],

 hei � heiPT � ce
A

Q
: (51)

In this expression, A is a universal parameter and ce is a
calculable coefficient that depends on the observable, as
we shall see below. The same reasoning that leads to (51),
when applied to the event shape distributions, produces a

shift in the resummed perturbative cross section

 

d�
de
�e�
��������PT

NP
! d�
de

�
e� ce

A

Q

���������PT
: (52)

These relations were derived in Refs. [6,7,43] from the
assumption of a ‘‘dispersive’’ representation for �s��2�
considered as an analytic function of the scale �, and in
Refs. [5] they were abstracted directly from the form of
resummed perturbation theory.

A more general approach [9,16,17] replaces the shift of
Eq. (52) by a convolution with a shape function defined as
above, which reduces to a product in Laplace moment
space, Eq. (10). As we have noted, these shape functions
are all different, but for the angularities a generalization of
the universality of Eq. (51) has been suggested, in the form
of a scaling relation. The Laplace-transformed shape func-
tion for angularity distributions arising from resummed
perturbation theory at next-to-leading logarithm (NLL)
[16,17] displays a simple scaling with the parameter a:

 lnSa��� �
1

1� a

X1
n�1


n

�
�
�
Q

�
n
; (53)

where 
n is independent of a. If we keep only the linear,
�=Q, term in the shape function, its inverse Laplace trans-
form gives a delta function, which in the convolution of
Eq. (5) leads immediately to the shift of Eq. (52). As noted
above, we limit our attention to angularities for a < 1. The
values of the coefficients 
n of Eq. (53), of course, must be
abstracted from a combination of experiment and re-
summed perturbation theory.

Event shape functions derived from resummation organ-
ize all corrections in �=Q that are implied by perturbation
theory. Formally, the coefficients 
n are given in the NLL
resummed cross section by

 
n �
2

nn!

�
�
�
Q

�
n Z �2

0

dp2
T

p2
T

pnTA��s�pT��; (54)

where A��s�pT�� � Ci��s=�� � . . . is the residue of the
1=�1� x� pole in the splitting function for the parton, i �
quark or gluon, that initiates the jet, and � is an infrared
factorization scale. In this picture of power corrections, the
coefficients 
n are independent of a. The coefficient of the
lowest power, n � 1, is equivalent to an integral over the
running coupling, defined in a scheme where the coupling
incorporates all higher powers of A��s� in MS [45]. This
approach generalizes the dispersive treatment of
Refs. [7,43,44] to higher power corrections, but shares
with it a reliance on (exponentiated) low-order gluon
emission.

Analyses based on a dispersive coupling or on resum-
mation rely to a greater or lesser extent on the kinematics
of single soft gluon emission in the final state, and the
universality relations follow from the boost invariance of
these emission cross sections. The ‘‘Milan factor’’ [44] of5See, for example, Eqs. (67) and (74) of Ref. [15].
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the dispersive approach accounts for effects at next order in
�s, where boost invariance and the resultant universalities
can be maintained. We are about to show that the boost
invariance of Wilson lines in the soft shape function
Eq. (25) is by itself enough to prove the universality
relation for the mean values without further assumptions.
In Refs. [9,41] the role of energy flow was explored in a
manner closely related to our discussion below.

B. Universality in average event shapes from the soft
function

We continue to limit our attention to event shapes for
which the dominant power corrections come from the soft
function. For the shape function in the form given in
Eq. (48), the operators in the matrix element no longer
contain any reference to the final state Xu, so, as in
Eq. (49), we may perform the sum over intermediate ultra-
soft states, leaving

 Se�e� �
1

NC
Trh0j �Yy�nY

y
n �
�
e�

1

Q

�
Z
d�ET���fe���

�
Yn �Y �nj0i: (55)

From now on we drop the explicit dependence of the soft
function on the scale �s. In (55), we insert factors of
U����0��yU����0�� � 1, implementing a Lorentz boost
of each operator in the z-direction with a rapidity �0. The
vacuum j0i is invariant under Lorentz boosts, and the
Wilson lines are also invariant:
 

U����0��Yn�0�U����0��y

� U����0��P exp
�
ig
Z 1

0
dsn � Aus�ns�

�
U����0��y

� P exp
�
ig
Z 1

0
ds�n � Aus��ns�

�
� Yn�0�; (56)

where � � e��
0
, as n! �n and �n! ��1 �n. (This is also

known in SCET as type-III reparametrization invariance
[46].) The only change is in the operator ET���:

 U����0��ET���U����
0��y � ET��� �

0�; (57)

which follows from the defining relation for the ET opera-
tors, Eq. (46). Thus, the argument of the operator ET��� in
the shape function in Eq. (55) may be shifted to any value
of rapidity, ET��� ! ET��� �0�. At this stage, this does
not yet allow us to perform the rapidity integral of fe���
inside the delta function. Thus we do not find that the
leading power correction simply shifts the argument of
the perturbative event shape distributions, as the delta
function is a highly nonlinear function of the energy flow
operator and sits sandwiched between Wilson lines in the
matrix element. If we do neglect correlations between
these operators, we derive a delta function for the shape
function, and reproduce the shift in the distribution,
Eq. (52) [9,41].

The boost property (57) of a single operator, however,
gives a strong result when applied to the first moment of an
event shape distribution [14]. Taylor expanding the delta
function in Eq. (55) (which is valid if we integrate the
distribution over a sufficiently large region near the end-
point), we find
 

Se�e� � ��e� � �0�e�
1

Q

Z
d�fe���

1

NC

� Tr h0j �Yy�nY
y
nET��� �0�Yn �Y �nj0i � � � � : (58)

Recalling the boost properties of the Wilson lines and the
energy flow operators ET���, we are free to choose any
value for �0 in this expression. Then, choosing �0 � ��,
we find that, remarkably, we may take the matrix element
of the ET operator out of the integral over �, leaving the
result

 Se�e� � ��e� � �0�e�ce
A

Q
� � � � ; (59)

where the coefficient ce is given by the integral

 ce �
Z 1
�1

d�fe���; (60)

and the universal quantity A is

 A �
1

NC
Trh0j �Yy�nY

y
nET�0�Yn �Y �nj0i: (61)

For the C-parameter and angularities �a, the integrals of
the corresponding weight functions

 fC��� �
3

cosh�
; f�a � e�j�j�1�a�; (62)

over all rapidities give the coefficients

 cC � 3�; c�a �
2

1� a
: (63)

When convoluted with the perturbative distribution, Se�e�
reproduces the universality relations of Eq. (51) for the first
moments of the distributions. We have thus established
these results without appealing to a one-gluon or related
approximation. All higher-order corrections due to
multiple-gluon emission separate from the observable-
dependent factor ce, which can be computed in a ‘‘naive’’
fashion [1] as in Eq. (60) above.

The result for the C-parameter may be extended to a
larger class of related event shapes by defining functions,
fCa��� � 3=cosha�, by analogy to the angularities. The
integral over rapidities of this function gives the coefficient
cCa � 3B�a=2; 1=2�, where B�x; y� is the beta function. In
like manner, various new event shapes may be defined by
appropriate choices for the function fe���.
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C. Angularity distributions and momentum flow

The expression (55) for the shape function in terms of
energy flow operators enables us to put the power expan-
sion of Eq. (53) into a more general field-theoretic context,
and to discuss the possible significance of scaling
violation.

Let us compare Eq. (53), derived from resummed per-
turbation theory, with the Laplace transform of the corre-
sponding shape function in Eq. (55) [41]. This is given by

 

~S a��� �
1

NC
Trh0j �Yy�nY

y
n exp

�
�
�
Q

�
Z
d�e�j�j�1�a�ET���

�
Yn �Y �nj0i; (64)

which can be reexpressed as an expansion in cumulants,
 

ln
�~Sa���

~Sa�0�

�
�
X1
n�1

1

n!

�
�
�
Q

�
n
���Z

d�e�j�j�1�a�ET���
�
n
��

�
X1
n�1

1

n!

�
�
�
Q

�
n
An�a�: (65)

Here, and below, in the cumulants the Wilson lines Yn and
Y �n are understood. With this normalization, the coefficient
A1�a� for the angularities is related to the universal coef-
ficient A in Eq. (61) by A1�a� � 2A=�1� a�. The
factor of ~Sa�0� on the left-hand side of Eq. (65) correctly
accounts for the normalization of the soft function. [Of
course, from Eq. (64), we see that ~Sa�0� � 1, but the
normalization would not be trivial in the analogous equa-
tion for the jet function, for instance.] In terms of the
matrix elements above, we find a general form for the
coefficients 
n, which is not limited to NLL resummation,

 
n�a� �
1� a
n!

An�a�; (66)

which, in the general case for n > 1, may still depend upon
a, as indicated.

To explore the information contained in the cumulants,
An, let us study the a dependence of the parameters 
n in
Eq. (66) for low n. The n � 1 term, 
1�a�, is independent
of a, as we showed in the previous section, in agreement
with the resummed perturbation theory result, Eq. (54).
The a dependence of the second and higher terms, how-
ever, differs in general. Nevertheless, boost invariance al-
ways allows us to perform one rapidity integral in the
cumulant matrix elements. For the case n � 2, we have
 


2�a� �
1

2

Z 1
�1

d��1� �1� a�j�j	

� e�j�j�1�a�hhET�0�ET���ii: (67)

Under certain conditions, the a dependence of this expres-
sion also disappears. In Ref. [16], it was observed that the
scaling rule for the nth cumulant term in Eq. (65) is good
when the energy flow correlations are negligible for rapid-

ity intervals larger than a range ��� 1=�n�1� a�	.
Assume, then, that the correlator hhET�0�ET���ii is nonzero
only for �
 1

2�1�a� . Then we may Taylor expand the
remainder of the integrand in Eq. (67) about � � 0:

 

Z 1
0
d�

	
1�

1

2
��1� a��	2 �

1

3
��1� a��	3 � � � �




�hhET�0�ET���ii: (68)

Insofar as the correlator hhET�0�ET���ii has support only
over a region �
 1

1�a , the leading term of the expansion
dominates, and we recover the a-independence of 
2.
Interestingly, there is no O��� term in the expansion multi-
plying the correlator, so that violations of the scaling rule
should be even smaller than onemight initially expect, at
least for moderate values of 1� a.

We must wait on the analysis of data to interpret the
significance of scaling violation for the angularities.
Supposing, however, that substantial scaling violation
were found in the power ��=Q�2 in the shape functions
for angularities, we can learn about nonperturbative corre-
lations in energy flow through Laplace moments of the
cumulants. For example, using Eq. (67), we observe that

 C 2�a� �
@

@ ln�1� a�
C2�a� � 
2�a�; (69)

where C2�a� is a direct Laplace moment of the correlator of
energy flow operators in terms of their rapidity separation,
with one fixed at rapidity zero,

 C 2�a� �
1

2

Z 1
�1

d�e��1�a�j�jhhET�0�ET���ii: (70)

Assuming that the correlations vanish for a! �1, the
solution to Eq. (69) gives these Laplace moments directly
in terms of the cumulants A2, and hence in terms of the
coefficient 
2�a�, which is, in principle, an observable

 C 2�a� � �1� a�
Z a

�1

da0

�1� a0�2

2�a

0�: (71)

Furthermore, derivatives of C2�a� with respect to a provide
information on Laplace moments of the cumulants supple-
mented by powers.

For higher n, the situation becomes somewhat more
complex, but continues to encode potentially interesting
physical information. For the coefficient A3 in Eq. (65),
we can similarly perform one of the three rapidity integrals
and obtain
 

A3�a� �
4

1� a

Z 1
0
d�2

Z 1
0
d�3e���2��3��1�a�

� �3hhET�0�ET���2�ET��3�ii

� hhET�0�ET��2�ET��3�ii	; (72)

which again respects the 1
1�a scaling under the assumption

that the correlators are nonzero only for �2;3 

1

1�a .
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VII. CONCLUSION

We have explored power corrections for event shapes
using factorization theorems in both full QCD and SCET.
In this context, we have shown that the formalisms lead to
equivalent event shape functions that summarize nonper-
turbative effects of soft gluon emission on event shape
distributions for two-jet events. We have shown how the
boost invariance of lightlike Wilson lines implies the uni-
versality of the leading 1=Q corrections to the mean values
of the event shapes, without relying on low-order or even
resummed perturbative calculations.

In addition, we have used the field-theoretic formalism
to interpret potential violations of the scaling rule for
angularity shape functions in terms of correlations between
energy flow operators for soft gluon radiation. Using 1=Q2

corrections in shape functions as an example, we have
demonstrated how, in principle, a violation of scaling for
the angularities can provide information on specific matrix
elements in the effective theory. The analysis of existing

extensive and high-quality data from leptonic annihilation
experiments could, in this way, provide a new experimental
window into the process of hadronization in quantum
chromodynamics.
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