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We calculate the branching ratios and CP-violating asymmetries for B0 ! K0 �K�0, �K0K�0, K�K��,
K�K��, and B� ! K� �K�0, and �K0K�� decays by employing the low energy effective Hamiltonian and
the perturbative QCD (pQCD) factorization approach. The theoretical predictions for the branching ratios
are Br�B0= �B0 ! K�K��� � 7:4	 10�8, Br�B0= �B0 ! K0 �K�0� �K0K�0�� � 19:6	 10�7, Br�B� !
K� �K�0� � 3	 10�7 and Br�B� ! K�� �K0� � 18:3	 10�7, which are consistent with currently available
experimental upper limits. We also predict large CP-violating asymmetries in these decays:
Adir

CP�K
� �K�0� � �20%, Adir

CP�K
�� �K0� � �49%, which can be tested by the forthcoming B meson

experiments.
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I. INTRODUCTION

The study of exclusive nonleptonic weak decays of B
mesons provides not only good opportunities for testing the
standard model (SM) but also powerful means for probing
different new physics scenarios beyond the SM. The
mechanism of two body B decay is still not quite clear,
although many scientists devote to this field. Starting from
factorization hypothesis [1], many approaches have been
built to explain the existing data and some progresses have
been made. For example the generalized factorization (GF)
[2], QCD factorization (QCDF) approach [3,4], the pertur-
bative QCD (pQCD) approach [5–8] and the soft-collinear
effective theory (SCET) [9]. The pQCD approach is based
on KT factorization theorem [10] while others are mostly
based on collinear factorization [11].

In our opinion, the pQCD factorization approach has
three special features: (a) Sudakov factor and threshold
resummation [12] are included to regulate the end-point
singularities, so the arbitrary cutoff [13] is no longer nec-
essary; (b) the form factors for B! M transition can be
calculated perturbatively, although some controversies still
exist about this point; and (c) the annihilation diagrams are
calculable and play an important role in producing CP
violation [8,14]. Up to now, many Bmeson decay channels
have been studied by employing the pQCD approach, and
it has become one of the most popular methods to calculate
the hadronic matrix elements.

In this paper, we will study the branching ratios and CP
asymmetries of B! KK� decays in the pQCD factoriza-
tion approach. Theoretically, in the B! KK� decay
modes, the B meson is heavy and sitting at rest. It decays
into two light mesons with large momenta, so these two
energetic final state mesons may have no enough time to
get involved in soft final state interaction (FSI). In this
case, the short distance hard process dominates the decay
amplitude and the nonperturbative FSI effects may not be

important, this makes the pQCD approach applicable. At
the same time, the B! KK� decays have been studied
before in the GF approach [2] and the QCDF approach
[3,4]. The similar decays such as B! KK and K�K�

decays have been investigated in the pQCD approach
recently [15,16]. On the experimental side, the first mea-
surement of B0 ! �K0 �K�0 � �K0K�0� decay has been re-
ported very recently by BABAR collaboration [17] in units
of 10�6 (upper limits at 90% C.L.):

 Br �B0 ! K0 �K�0 � �K0K�0� 
 0:2�0:9�0:1
�0:8�0:3�<1:9�: (1)

For B� ! K� �K�0 decay, only the experimental upper limit
is available now [18,19]

 Br �B� ! K� �K�0�< 5:3	 10�6: (2)

This paper is organized as follows. In Sec. II, we give the
theoretical framework of the pQCD factorization ap-
proach. Next, we calculate the relevant Feynman diagrams
and present the various decay amplitudes for B! KK�

decays. In Sec. IV, we show the numerical results of the
CP-averaged branching ratios and CP asymmetries and
compare them with currently available experimental mea-
surements or the theoretical predictions in QCDF ap-
proach. The summary and some discussions are included
in the final section.

II. THEORETICAL FRAMEWORK

The three scales pQCD factorization approach [6,7] has
been developed and applied in the nonleptonic B meson
decays for some time. In this approach, the decay ampli-
tude is factorized into the convolution of the mesons’ light-
cone wave functions, the hard scattering kernel and the
Wilson coefficients, as illustrated schematically by Fig. 1,
which stands for the soft, hard and harder dynamics char-
acterized by three different energy scales �t�

O�
�����������
��MB

q
�;mb;MW� respectively. Then the decay ampli-

tude A�B! M1M2� is conceptually written as the con-
volution
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A�B! M1M2� �
Z
d4k1d

4k2d
4k3 Tr�C�t��B�k1�

	�M1
�k2��M2

�k3�H�k1; k2; k3; t�; (3)

where ki’s are momenta of light quarks included in each
mesons, and the term ‘‘Tr’’ denotes the trace over Dirac
and color indices. C�t� is the Wilson coefficient which
results from the radiative corrections at short distance. In
the above convolution, C�t� includes the harder dynamics
at scale larger than MB and describes the evolution of local
4-Fermi operators from mW (the W boson mass) down to

t�O�
�����������
��MB

q
� scale, where �� � MB �mb. The function

H�k1; k2; k3; t� describes the four quark operator and the
spectator quark connected by a hard gluon whose q2 is of

the order of ��MB, and includes the O�
�����������
��MB

q
� hard dy-

namics. Therefore, this hard part H can be evaluated as an
expansion in power of �S�t� and ��=t, and depends on the
processes considered. The function �M �M 
 B;M1;M2�
is the wave function which describes hadronization of the
quark and antiquark into the meson M, and independent of
the specific processes. Using the wave functions deter-
mined from other well measured processes, one can
make quantitative predictions here.

Since the b quark is rather heavy we consider the B
meson at rest for simplicity. It is convenient to use light-
cone coordinate �p�;p�;pT� to describe the meson’s mo-
menta

 p� 

1���
2
p �p0 � p3� and pT 
 �p1; p2�: (4)

Using the light-cone coordinates the B meson and the two
final state meson momenta can be written as

 P1 

MB���

2
p �1; 1; 0T�; P2 


MB���
2
p �1; r2

k� ; 0T�;

P3 

MB���

2
p �0; 1� r2

k� ; 0T�;
(5)

respectively, where rK� 
 mK�=mB; and the terms propor-
tional to m2

K=m
2
B have been neglected.

For the B! KK� decays considered here, only the K�

meson’s longitudinal part contributes to the decays, its
polarization vector is �L 


MB��
2
p
MK�
�1;�r2

K� ; 0T�. Putting

the light (anti-) quark momenta in B, K� and K mesons
as k1, k2, and k3, respectively, we can choose

 k1 
 �x1P�1 ; 0;k1T�; k2 
 �x2P�2 ; 0;k2T�;

k3 
 �0; x3P
�
3 ;k3T�:

(6)

Then the integration over k�1 , k�2 , and k�3 in Eq. (3) will
lead to
 

A�B! KK�� �
Z
dx1dx2dx3b1db1b2db2b3db3

	 Tr�C�t��B�x1; b1��k� �x2; b2�

	�k�x3; b3�H�xi; bi; t�St�xi�e
�S�t�; (7)

where bi is the conjugate space coordinate of kiT , and t is
the largest energy scale in function H�xi; bi; t�. The large
logarithms ln�mW=t� coming from QCD radiative correc-
tions to four quark operators are included in the Wilson
coefficients C�t�. The large double logarithms (ln2xi) on
the longitudinal direction are summed by the threshold
resummation [12], and they lead to St�xi� which smears
the end-point singularities on xi. The last term, e�S�t�, is the
Sudakov form factor resulting from overlap of soft and
collinear divergences, which suppresses the soft dynamics
effectively [20]. Thus it makes the perturbative calculation
of the hard part H applicable at intermediate scale, i.e., MB
scale.

The weak effective Hamiltonian Heff for B! KK� de-
cays can be written as [21]

 H eff 

GF���

2
p

�
VubV�ud�C1���Ou

1��� � C2���Ou
2����

� VtbV
�
td

X10

i
3

Ci���Oi���
�
: (8)

where Ci��� are Wilson coefficients evaluated at the re-
normalization scale � and Oi are the four-fermion opera-
tors for b! d transition:

 Ou
1 


�d���Lu� � �u���Lb�;

Ou
2 


�d��
�Lu� � �u���Lb�;

O3
 �d��
�Lb� �

X
q0

�q0���Lq
0
�;

O4
 �d��
�Lb� �

X
q0

�q0���Lq
0
�;

O5
 �d��
�Lb� �

X
q0

�q0���Rq
0
�;

O6
 �d��
�Lb� �

X
q0

�q0���Rq
0
�;

O7

3

2
�d��

�Lb� �
X
q0
eq0 �q

0
���Rq

0
�;

O8

3

2
�d���Lb� �

X
q0
eq0 �q0���Rq

0
�;

O9

3

2
�d���Lb� �

X
q0
eq0 �q0���Lq

0
�;

O10

3

2
�d��

�Lb� �
X
q0
eq0 �q

0
���Lq

0
�;

(9)

where � and � are the SU�3� color indices; L and R are the

 

B (P1) K (P3)

K ∗(P2 , ε)

H
k1 u, d k3

b̄ s̄
ū(d̄) s

k2

FIG. 1. Factorization for B! KK� decays.
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left- and right-handed projection operators with L 
 �1�
�5�, R 
 �1� �5�. The sum over q0 runs over the quark
fields that are active at the scale � 
 O�mb�, i.e.,
�q0�fu; d; s; c; bg�. For the decays with b! s transition,
simply make a replacement of d by s in Eqs. (8) and (9).

The pQCD approach works well for the leading twist
approximation and leading double logarithm summation.
For the Wilson coefficients Ci��� �i 
 1; . . . ; 10�, we will
also use the leading order (LO) expressions, although the
next-to-leading order calculations already exist in the lit-
erature [21]. This is the consistent way to cancel the
explicit � dependence in the theoretical formulae. For
the renormalization group evolution of the Wilson coeffi-
cients from higher scale to lower scale, we use the leading
logarithmic running equations as given in Appendix C and
D of Ref. [22].

In the resummation procedures, theBmeson is treated as
a heavy-light system. In general, the B meson light-cone
matrix element can be decomposed as [23]

 

Z 1

0

d4z

�2��4
eik1�zh0j �b��0�d��z�jB�pB�i


 �
i���������

2Nc
p

�
�p6 �mB��5

�
�B�k1�

�
n6 � � n6 ����

2
p ��B�k1�

��
��
; (10)

where n� 
 �1; 0; 0T�, and n� 
 �0; 1; 0T� are the unit
vectors pointing to the plus and minus directions, respec-
tively. From the above equation, one can see that there are
two Lorentz structures in the B meson distribution ampli-
tudes. They obey to the following normalization conditions

 

Z d4k1

�2��4
�B�k1� 


fB
2
���������
2Nc
p ;

Z d4k1

�2��4
��B�k1� 
 0:

(11)

In general, one should consider these two Lorentz struc-
tures in calculations of Bmeson decays. However, it can be
argued that the contribution of ��B is numerically small
[24], thus its contribution can be numerically neglected
safely. Using this approximation, we can reduce one input
parameter in our calculation. Therefore, we only consider
the contribution of Lorentz structure

 �B 

1���������
2Nc
p �p6 �mB��5�B�k1�: (12)

The K and K� mesons are treated as a light-light system.
Based on the SU(3) flavor symmetry, we assume that the
wave functions of K and K� mesons are the same in
structure as the wave functions of � and �, respectively,
then the K meson wave function is defined as [25,26]

 

�K�P; x; 	� �
1���������
2Nc
p �5fp6 �A

K�x� �m
K
0 �

P
K�x�

� 	mK
0 �v6 n6 � v � n��

T
K�x�g (13)

where P and x are the momentum and the momentum
fraction of K, respectively. The parameter 	 is either �1
or �1 depending on the assignment of the momentum
fraction x. While in B! KK� decays, K� meson is longi-
tudinally polarized, only the longitudinal component �L

K�

of the wave function should be considered [24,27],

 �L
K� 


1���������
2Nc
p f�6 �p6 �T

K� �x� �mK��K� �x� �mK��
S
K� �x�g:

(14)

The second term in above equation is the leading twist
wave function (twist-2), while the first and third terms are
subleading twist (twist-3) wave functions. The transverse
part of �K� can be found, for example, in Ref. [16].

The explicit expressions of the distribution functions
�B�k1�, �A

K�x�, �P
K�x�, �T

K�x�, �K� �x�, �S
K� �x�, and

�T
K� �x� will be given in next section. The initial conditions

of leading twist distribution functions �i�x�, i 
 B, K�, K,
are of nonperturbative origin, satisfying the normalization
condition

 

Z 1

0
�i�x; b 
 0�dx 


1

2
���
6
p fi; (15)

where fi is the decay constant of the corresponding meson.

III. PERTURBATIVE CALCULATIONS

For the considered decay modes, the Feynman diagrams
are shown in Figs. 2–4. We firstly analyze the correspond-
ing decay modes topologically: (i) the eight diagrams can
be categorized into emission and annihilation diagrams;
(ii) each category contains four diagrams: two factorizable
and two nonfactorizable. In Fig. 2, for example, Figs. 2(a)–
2(d) are emission diagrams, while Figs. 2(e)–2(h) are
annihilation ones topologically; and Figs. 2(a), 2(b), 2(g),
and 2(h) are factorizable and Figs. 2(c)–2(f) are nonfac-
torizable diagrams.

For B0 ! K0 �K�0�K�0 �K0� decays, only the operators
O3–10 contribute via penguin topology with light quark
q 
 s (diagrams a,b,c,d) and via the annihilation topology
with the light quark q 
 d (diagram 2(f) and 2(h)] or s
(diagram 2(e) and 2(g)]. It is a pure penguin mode with
only one kind of CKM elements, and consequently, there is
no CP violation for these decays.

For the B0� �B0� ! K�K���K��K�� decays (see Fig. 3),
the current-current operators O�u�1;2 contribute via the anni-
hilation topology [Figs. 3(c), 3(d), 3(g), and 3(h)], while
the operators O3–10 contribute via the annihilation topol-
ogy with the light quark q 
 s [Figs. 3(a), 3(b), 3(e), and
3(f)] or q 
 u [Figs. 3(c), 3(d), 3(g), and 3(h)].
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For the B� ! K� �K�0�K�� �K0� decays (see Fig. 4), the
current-current operators O�u�1;2 contribute via the annihila-
tion topology [Figs. 4(e)– 4(h)], while the penguin opera-
tors O3–10 contribute via the penguin topology with the
light quark q 
 s [Figs. 4(a)–4(d)] or via the annihilation
topology with q 
 u [Figs. 4(e)–4(h)].

In the analytic calculations, the operators with �V �
A��V � A� structure work directly, while the operators
with �V � A��V � A� structure will work in two different
ways:

(i) In some decay channels, some of these operators
contribute directly to the decay amplitude in a fac-
torizable way.

(ii) In some other cases, we need to do Fierz transforma-
tion for these operators to get right flavor and color
structure for factorization to work. In this case, we
get �S� P��S� P� operators from �V � A��V � A�
ones.

A. B0 ! K0 �K�0�K�0 �K0� decay

For the sake of the reader, we take the B0 !
K0 �K�0�K�0 �K0� decay channel as an example to show the

ways to derive the decay amplitude from individual dia-
gram. As shown explicitly in Fig. 2(a), the meson M1

which picks up the spectator quark can be K0 or K�0, the
emitted meson M2 should be �K�0 or �K0 at the same time.
The B0 meson therefore can decay into the final state f 

K0 �K�0 and �f 
 K�0 �K0 simultaneously. The �B0 meson, on
the other hand, also decay into the same final state f 

K0 �K�0 and �f 
 K�0 �K0 simultaneously.

Now we consider the usual factorizable diagram 2(a)
and 2(b) for the case of M1 
 K�0. The �V � A��V � A�
operators O3;4 and O9;10 contribute through diagram 2(a)
and 2(b), the sum of their contributions is given as
 

FeK� 
4
���
2
p
GF�CFfKm4

B

Z 1

0
dx1dx3

	
Z 1

0
b1db1b3db3�B�x1;b1� � f��1�x3��K� �x3;b3�

��1�2x3�rK� ��
s
K� �x3;b3���

t
K� �x3;b3��

��s�t
1
e�he�x1;x3;b1;b3�exp��Sa�t

1
e�

�2rK��
s
K� �x3;b3��s�t

2
e�he�x3;x1;b3;b1�

	exp��Sa�t2e�g; (16)

 

b̄
B 0

s̄

d d

d s

M 1 = K 0(K ∗0)

M 2 = K
∗0

(K
0
)

(a )

b̄ s̄

d d

d s

(b )

b̄ s̄

d d

d̄ s

(c )

b̄ s̄

d d

d̄ s

(d )

b̄

s̄

d s

d

d̄
(e )

b̄
d̄

d d

s

s̄
(f )

b̄

d
s

s̄
d

d̄
(g )

b̄

d
d

d̄
s

s̄
(h )

FIG. 2. Typical Feynman diagrams contributing to B0 ! K0 �K�0�K�0 �K0� decays. The diagram (a) and (b) contribute to the form
factor AB!K

�

0 or FB!K0;1 for M1 
 K�0 or K0, respectively. Other four Feynman diagrams obtained by connecting the gluon lines to the d
quark line inside the B0 meson for (e) and (f), and to the lower s or d quark line for (g) and (h) are omitted.
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where CF 
 4=3 is a color factor. The functions hie, the
scales tie and the Sudakov factors Sa�t1e� and Sa�t2e� will be
given explicitly in the appendix. In Eq. (16), we do not
include the Wilson coefficients of the corresponding op-
erators, which are process dependent. They will be shown
later in this section for different decay channels.

The form factor of B toK� transition, AB!K
�

0 �0�, can also
be extracted from FeK� in Eq. (16), that is

 AB!K
�

0 �q2 
 0� 


���
2
p
FeK�

GFfKm2
B

: (17)

The operators O5–8 have a structure of �V � A��V � A�.
Some of these operators contribute to the decay amplitude
in a factorizable way. Since only the axial-vector part of
(V � A) current contribute to the pseudoscaler meson pro-
duction

 hK�jV�AjBihKjV�Aj0i 
�hK�jV�AjBihKjV�Aj0i:

(18)

The contribution of these operators is opposite in sign with
FeK� in Eq. (16):

 FP1
eK� 
 �FeK� : (19)

In some other cases, one needs to do Fierz transforma-
tion for these operators first and then get right color struc-
ture for factorization to work. In this case, one gets
�S� P��S� P� operators from �V � A��V � A� ones. For
these �S� P��S� P� operators, Figs. 2(a) and 2(b) gives

 FP2

eK� 
 8
���
2
p
GF�CFfKrKm

4
B

Z 1

0
dx1dx3

	
Z 1

0
b1db1b3db3�B�x1; b1� � f��K� �x3; b3�

� rK� ��x3 � 2��s
K� �x3; b3� � x3�t

K� �x3; b3��

� �s�t
1
e�he�x1; x3; b1; b3� exp��Sa�t

1
e�

� �x1�K� �x3; b3� � 2rK��s
K� �x3; b3��

	 �s�t2e�he�x3; x1; b3; b1� exp��Sa�t2e�g:

(20)

For the nonfactorizable diagram ]2(c) and 2(d), all three
meson wave functions are involved. The integration of b3

can be performed using 
 function 
�b3 � b1�, leaving
only integration of b1 and b2. MeK� denotes the contribu-
tion from the operators of type �V � A��V � A�, and MP1

eK�

 

b̄

B 0

s̄

d s

K + (K ∗+ )

K ∗− (K − )

u

ū
(a)

b̄

s̄

d s

u

ū
(b)

b̄

ū

d u

s

s̄
(c)

b̄

ū

d u

s

s̄
(d)

b̄

d
s

s̄
u

ū
(e)

b̄

d
s

s̄
u

ū
(f )

b̄

d
u

ū
s

s̄
(g)

b̄

d
u

ū
s

s̄
(h)

FIG. 3. Feynman diagrams for B0 ! K�K���K��K�� decays.
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is the contribution from the operators of type �V � A��V � A�:

 

MeK� 

16���

3
p GF�CFm4

B

Z 1

0
dx1dx2dx3

Z 1
0
b1db1b2db2�B�x1; b1��A

K�x2; b2� � f���x2�K� �x3; b1� � rK�x3��s
K� �x3; b1�

��t
K� �x3; b1�� � �s�tf�h

1
f�x1; x2; x3; b1; b2� exp��Sc�t

1
f� � ��x2 � x3 � 1��K� �x3; b1� � rK�x3��

s
K� �x3; b1�

��t
K� �x3; b1�� � �s�tf�h

2
f�x1; x2; x3; b1; b2� exp��Sc�t

2
f�g; (21)

 

MP1

eK� 

16���

3
p GF�CFm4

B

Z 1

0
dx1dx2dx3

Z 1
0
b1db1b2db2�B�x1;b1�rK � f��x1� x2���P

K�x2;b2���T
K�x2;b2���K� �x3;b1�

� rK� �x1��P
K�x2;b2���T

K�x2;b2����
s
K� �x3;b1���t

K� �x3;b1��� x2��P
K�x2;b2���T

K�x2;b2�� � ��
s
K� �x3;b1�

��t
K� �x3;b1��� x3��P

K�x2;b2���T
K�x2;b2����

s
K� �x3;b1���t

K� �x3;b1����s�tf�h1
f�x1; x2; x3;b1;b2�exp��Sc�t1f�

� ��x1� x2� 1���P
K�x2;b2���T

K�x2;b2���K� �x3;b1�� rK� �x1��P
K�x2;b2���T

K�x2;b2����
s
K� �x3;b1�

��t
K� �x3;b1��� �1� x2���P

K�x2;b2���T
K�x2;b2����

s
K� �x3;b1���t

K� �x3;b1��

� x3��P
K�x2;b2���T

K�x2;b2����
s
K� �x3;b1���t

K� �x3;b1����s�tf�h2
f�x1; x2; x3;b1;b2�exp��Sc�t2f�g: (22)

For the nonfactorizable annihilation diagram 2(e), we have three kinds of contributions: MaK� for �V � A��V � A�
operators, MP1

aK� for �V � A��V � A� operators and MP2

aK� for �S� P��S� P� operators.

 

b̄
B +

s̄

u u

d s

K + (K ∗+ )

K
∗0

(K
0
)

(a)

b̄ s̄

u u

d s

(b)

b̄ s̄

u u

d̄ s

(c)

b̄ s̄

u u

d̄ s

(d)

b̄
d̄

u u

s

s̄
(e)

b̄
d̄

u u

s

s̄

(f )

b̄

u
u

d̄
s

s̄
(g)

b̄

u
u

d̄
s

s̄
(h)

FIG. 4. Feynman diagrams for B� ! K� �K�0�K�� �K0� decays.
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MaK� 

16���

3
p GF�CFm

4
B

Z 1

0
dx1dx2dx3

Z 1
0
b1db1b2db2�B�x1; b1� � f��x2�K� �x3; b2��

A
K�x2; b2�

� rK�rK��P
K�x2; b2���x2 � x3 � 2� ��s

K� �x3; b2� � �x2 � x3��t
K� �x3; b2��

��T
K�x2; b2���x3��

s
K� �x3; b2� ��t

K� �x3; b2�� � 2�t
K� �x3; b2� � x2��

s
K� �x3; b2� ��t

K� �x3; b2����

� �s�t
3
f�h

3
f�x1; x2; x3; b1; b2� exp��Sc�t

3
f� � �x3�K� �x3; b2��A

K�x2; b2� � rK�rK��x2��P
K�x2; b2� ��T

K�x2; b2��

� ��s
K� ��

t
K� � � x3��P

K�x2; b2� ��T
K�x2; b2����

s
K� �x3; b2� ��t

K� �x3; b2���

� �s�t4f�h
4
f�x1; x2; x3; b1; b2� exp��Sc�t4f�g; (23)

where rK 
 mK
0 =mB with mK

0 
 m2
K=�ms �md�.

 

MP1

aK� 

16���

3
p GF�CFm

4
B

Z 1

0
dx1dx2dx3

Z 1
0
b1db1b2db2�B�x1; b1� � f��rK� �x3 � 2���s

K� �x3; b2� ��
t
K� �x3; b2��

� rK�x2 � 2��K� �x3; b2���
P
K�x2; b2� ��

T
K�x2; b2�� � �s�t

3
f�h

3
f�x1; x2; x3; b1; b2� exp��Sc�t

3
f�

� ��x2rK�K� �x3; b2���P
K�x2; b2� ��T

K�x2; b2�� � x3rK��A
K�x2; b2���

s
K� �x3; b2� ��t

K� �x3; b2��

� �s�t
4
f�h

4
f�x1; x2; x3; b1; b2� exp��Sc�t

4
f�g: (24)

 

MP2

aK� 

16���

3
p GF�CFm

4
B

Z 1

0
dx1dx2dx3

Z 1
0
b1db1b2db2�B�x1; b1� � f�x3�K� �x3; b2��

A
K�x2; b2�

� rK�rK���x2 � x3 � 2��s
K� �x3; b2� � �x2 � x3��t

K� �x3; b2���P
K�x2; b2� � �x3��

s
K� �x3; b2� ��t

K� �x3; b2��

� x2��
t
K� �x3; b2� ��

s
K� �x3; b2�� � 2�t

K� �x3; b2���
T
K�x2; b2�� � �s�t

3
f�h

3
f�x1; x2; x3; b1; b2� exp��Sc�t

3
f�

� ��x2�K� �x3; b2��A
K�x2; b2� � rK�rK��x2��P

K�x2; b2� ��T
K�x2; b2�� � ��

s
K� �x3; b2� ��t

K� �x3; b2��

� x3��
P
K�x2; b2� ��

T
K�x2; b2�� � ��

s
K� �x3; b2� ��

t
K� �x3; b2����s�t

4
f�h

4
f�x1; x2; x3; b1; b2� exp��Sc�t

4
f�g: (25)

The factorizable annihilation diagram 2(g) involves onlyK� andK wave functions. The decay amplitude FaK� , FP1
aK� and

FP2
aK� represent the contributions from �V � A��V � A� operators, �V � A��V � A� operators and �S� P��S� P� opera-

tors, respectively.
 

FaK� 
 �4
���
2
p
�GFCFfBm4

B

Z 1

0
dx2dx3

Z 1
0
b2db2b3db3 � f�x3�K� �x3; b3��A

K�x2; b2�

� 2rK�rK�
P
K�x2; b2���1� x3��

s
K� �x3; b3� � �1� x3��

t
K� �x3; b2���s�t

3
e�ha�x2; x3; b2; b3� exp��Sd�t

3
e�

� �x2�K� �x3; b3��
A
K�x2; b2� � 2rK�rK�

s
K� �x3; b3���1� x2��

P
K�x2; b2�

� �1� x2��
T
K�x2; b2���s�t

4
e�ha�x3; x2; b3; b2� exp��Sd�t

4
e�g; (26)

 FP1

aK� 
 �FaK� ; (27)
 

FP2

aK� 
 �8
���
2
p
GF�CFm

4
BfB

Z 1

0
dx2dx3

Z 1
0
b2db2b3db3 � f�2rK�K� �x3; b3��

P
K�x2; b2� � x3rK� ��

s
K� �x3; b3�

��t
K� �x3; b2���A

K�x2; b2� � �s�t3e�ha�x2; x3; b2; b3� exp��Sd�t3e� � �2rK��
s
K� �x3; b3��A

K�x2; b2�

� x2rK��P
K�x2; b2� ��T

K�x2; b2���K� �x3; b3� � �s�t4e�ha�x3; x2; b3; b2� exp��Sd�t4e�g: (28)

In the above equations, we have assumed that
x1 � x2, x3. Since the light quark momentum fraction
x1 in B meson is peaked at the small x1 region, while
quark momentum fraction x2 of K is peaked around 0.5,
this is not a bad approximation. The numerical results
also show that this approximation makes very little
difference in the final result. After using this approx-
imation, all the diagrams are functions of k�1 

x1mB=

���
2
p

of B meson only, independent of the variable
of k�1 .

For the Feynman diagram 2(f) and 2(h), the correspond-
ing decay amplitude is the same in structure as those for
2(e) and 2(g). We get the decay amplitude easily by making
two replacements of x2 ! 1� x2 and x3 ! 1� x3 in the
relevant distribution amplitudes.

For the case of M1 
 K0 and M2 
 �K�0, by following
the same procedure, one can find all decay amplitudes:
FeK, FP1

eK, and FP2
eK, MeK, MP1

eK, MaK, MP1
aK and MP2

aK, FaK,
FP1
aK, and FP2

aK. The explicit expressions of these decay
amplitudes will be given in Appendix A.
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B. Total decay amplitudes

Based the isospin symmetry and the analytical results
obtained in last subsection, one can derive out all the decay

amplitudes for B0 ! K�K���K��K�� and B� !
K� �K�0�K�� �K0� decays.

Combining all contributions, the total decay amplitude
for all considered decay modes can be written as

 

M�B0!K0 �K�0� 
 ��t

�
FeK

�
C3

3
�C4�

C9

6
�
C10

2

�
�MeK

�
C3�

C9

2

�
�MP1

eK

�
C5�

C7

2

�
�MaK

�
C3�C4�

C9

2
�
C10

2

�

�MP1
aK

�
C5�

C7

2

�
�MP2

aK

�
C6�

C8

2

�
�MaK�

�
C4�

C10

2

�
�FaK

�
4

3
C3�

4

3
C4�C5�

C6

3
�
C7

2
�
C8

6

�
2

3
C9�

2

3
C10

�
�MP2

aK�

�
C6�

C8

2

�
�FaK�

�
C3�

C4

3
�C5�

C6

3
�
C7

2
�
C8

6
�
C9

2
�
C10

6

�

�FP2
aK

�
C5

3
�C6�

C7

6
�
C8

2

��
; (29)

 

M�B0!K�0 �K0� 
 ��t

�
FeK�

�
C3

3
�C4�

C9

6
�
C10

2

�
�FP2

eK�

�
C5

3
�C6�

C7

6
�
C8

2

�
�MeK�

�
C3�

C9

2

�
�MP1

eK�

�
C5�

C7

2

�

�MaK�

�
C3�C4�

C9

2
�
C10

2

�
�MP1

aK�

�
C5�

C7

2

�
�MP2

aK�

�
C6�

C8

2

�
�FP2

aK�

�
C5

3
�C6�

C7

6
�
C8

2

�

�FaK

�
C3�

C4

3
�C5�

C6

3
�
C7

2
�
C8

6
�
C9

2
�
C10

6

�
�MaK

�
C4�

C10

2

�
�FaK�

�
4

3
C3�

4

3
C4�C5

�
C6

3
�
C7

2
�
C8

6
�

2

3
C9�

2

3
C10

�
�MP2

aK

�
C6�

C8

2

��
; (30)

 

M�B0 ! K�K��� 
 �u

�
MaKC2 � FaK

�
C1 �

C2

3

��
� �t

�
MaK�C4 � C10� �M

P2

aK�

�
C6 �

C8

2

�
� FaK

�
C3 �

C4

3
� C5

�
C6

3
� C7 �

C8

3
� C9 �

C10

3

�
�MP2

aK�C6 � C8�

� FaK�
�
C3 �

C4

3
� C5 �

C6

3
�
C7

2
�
C8

6
�

1

2
C9 �

C10

6

�
�MaK�

�
C4 �

C10

2

��
; (31)

 

M�B0 ! K��K�� 
 �u

�
MaK�C2 � FaK�

�
C1 �

C2

3

��
� �t

�
FaK

�
C3 �

C4

3
� C5 �

C6

3
�
C7

2
�
C8

6
�
C9

2
�
C10

6

�

� FaK�
�
C3 �

C4

3
� C5 �

C6

3
� C7 �

C8

3
� C9 �

C10

3

�
�MaK� �C4 � C10� �MaK

�
C4 �

C10

2

�

�MP2
aK

�
C6 �

C8

2

�
�MP2

aK� �C6 � C8�

�
; (32)

 

M�B� ! K� �K�0� 
 �u

�
MaKC1 � FaK

�
C1

3
� C2

��
� �t

�
FeK

�
C3

3
� C4 �

C9

6
�
C10

2

�
� FP2

aK

�
C5

3
� C6 �

C7

3
� C8

�

�MeK

�
C3 �

C9

2

�
�MP1

eK

�
C5 �

C7

2

�
�MaK�C3 � C9� �M

P1
aK�C5 � C7�

� FaK

�
C3

3
� C4 �

C9

3
� C10

��
; (33)
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M�B� ! K�� �K0� 
 �u

�
MaK�C1 � FaK�

�
C1

3
� C2

��
� �t

�
FeK�

�
C3

3
� C4 �

C9

6
�
C10

2

�
� FP2

eK�

�
C5

3
� C6 �

C7

6
�
C8

2

�

� FP2

aK�

�
C5

3
� C6 �

C7

3
� C8

�
�MeK�

�
C3 �

C9

2

�
�MP1

eK�

�
C5 �

C7

2

�
�MaK� �C3 � C9�

�MP1

aK� �C5 � C7� � FaK�
�
C3

3
� C4 �

C9

3
� C10

��
; (34)

where �u 
 V�ubVud, �t 
 V�tbVtd. The exact expressions of
individual transition amplitudes not given explicitly in this
section, such as FaK and MaK, etc., are collected in
Appendix A.

The decay amplitudes for those charge-conjugated de-
cay channels can be obtained from the results as given in
Eqs. (29)–(34) by simple replacements of �u ! ��u and
�t ! ��t .

Analogous to Eq. (17), the form factor FB!K0;1 �q
2 
 0�

can also be extracted from FeK via the following relation

 FB!K0;1 �q
2 
 0� 


���
2
p
FeK

GFfK�m2
B

: (35)

IV. NUMERICAL RESULTS AND DISCUSSIONS

A. Input parameters and wave functions

Before we calculate the branching ratios and CP violat-
ing asymmetries for the B decays under study, we firstly
present the input parameters to be used in the numerical
calculations.

 ��f
4�

MS

 0:25 GeV; fB 
 0:19 GeV;

mK
0 
 1:7 GeV; fK� 
 0:217 GeV;

fTK� 
 fK 
 0:16 GeV; mK 
 0:497 GeV;

mK� 
 0:89 GeV; MB 
 5:2792 GeV;

MW 
 80:41 GeV:

(36)

The central values of the CKM matrix elements to be used
in numerical calculations are

 jVudj 
 0:9745; jVubj 
 0:0036;

jVtbj 
 0:9990; jVtdj 
 0:0075:
(37)

For the B meson wave function, we adopt the model
[15,22,24]

 �B�x; b� 
 NBx2�1� x�2 exp
�
�
M2
Bx

2

2!2
b

�
1

2
�!bb�2

�
;

(38)

where the shape parameter !b 
 0:4� 0:04 GeV has
been constrained in other decay modes. The normalization
constant NB 
 91:745 is related to fB 
 0:19 GeV and
!b 
 0:4.

The K� meson distribution amplitude up to twist-3 are
given by [27] with QCD sum rules.

 

�K� �x� 

3���
6
p fK�x�1� x��1� 0:57�1� 2x�

� 0:07C3=2
2 �1� 2x�; (39)

 

�t
K� �x� 


fTK�

2
���
6
p f0:3�1� 2x��3�1� 2x�2 � 10�1� 2x� � 1�

� 1:68C1=2
4 �1� 2x�

� 0:06�1� 2x�2�5�1� 2x�2 � 3�

� 0:36�1� 2�1� 2x� � 2�1� 2x� ln�1� x�g;

(40)

 

�s
K� �x� 


fTK�

2
���
6
p f3�1� 2x��1� 0:2�1� 2x�

� 0:6�10x2 � 10x� 1� � 0:12x�1� x�

� 0:36�1� 6x� 2 ln�1� x�g; (41)

where the Gegenbauer polynomials are defined by

 C3=2
2 �t�


3
2�5t

2�1�; C1=2
4 �t�


1
8�35t4�30t2�3�: (42)

For K meson, we use �A
K of twist-2 wave function and

�P
K and �T

K of the twist-3 wave functions from [26,27]
 

�A
K�x� 


3���
6
p fKx�1� x��1� 0:51�1� 2x�

� 0:3�5�1� 2x�2 � 1�; (43)

 

�P
K�x�


fK
2
���
6
p �1�0:12�3�1�2x�2�1�

�0:12�3�30�1�2x�2�35�1�2x�4�=8; (44)

 �T
K�x� 


fK
2
���
6
p �1� 2x��1� 0:35�10x2 � 10x� 1�: (45)

Based on the definition of the form factor AB!K
�

0 and
FB!K0;1 as given in Eqs. (17) and (35), we find the numerical
values of the corresponding form factors at zero momen-
tum transfer.

 AB!K
�

0 �q2 
 0� 
 0:46�0:07
�0:06�!b�;

FB!K0;1 �q
2 
 0� 
 0:35�0:06

�0:04�!b�:
(46)

where the errors are induced by the change of!b for!b 

0:40� 0:04 GeV. These results are close to the light-cone
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QCD sum rule predictions [28]

 AB!K
�

0 �q2 
 0� 
 0:374� 0:034;

FB!K0;1 �q
2 
 0� 
 0:331� 0:041:

(47)

B. Branching ratios

In order to calculate the branching ratios and CP asym-
metries in a more clear way, we rewrite the decay ampli-
tudes as given in Eqs. (29)–(34) in a new form

 M 
 V�ubVudT � V
�
tbVtdP 
 V�ubVudT�1� ze

i���
�;

(48)

where the term ‘‘T’’ and ‘‘P’’ denote the ‘‘tree’’ and
‘‘penguin’’ part of a given decay amplitude M, which is
proportional to �u 
 V�ubVud or �t 
 V�tbVtd, respectively.
While the ratio

 z 

��������V

�
tbVtd

V�ubVud

��������
��������PT

�������� (49)

is proportional to the ratio of penguin (P) to tree (T)

contributions, the CKM angle � 
 arg��
VtdV�tb
VudV�ub

 is the

weak phase, and 
 is the relative strong phase between
the tree and penguin part.

Take M�B� ! K� �K�0� in Eq. (33) as an example, its
‘‘T’’ and ‘‘P’’ parts can be written as in the form of

 T 
 MaKC1 � FaK�
1
3C1 � C2�; (50)

 

P 
 FeK�
1
3C3 � C4 �

1
6C9 �

1
2C10� � F

P2
aK�

1
3C5 � C6

� 1
3C7 � C8� �MeK�C3 �

1
2C9� �M

P1
eK�C5 �

1
2C7�

�MaK�C3 � C9� �M
P1
aK�C5 � C7�

� FaK�
1
3C3 � C4 �

1
3C9 � C10�: (51)

In pQCD approach, the ratio z and the strong phase 

can be calculated perturbatively. For B� ! K� �K�0 and
K�� �K0 decays, for example, we find numerically that

 z�K� �K�0� 
 2:1; 
�K� �K�0� 
 �13�;

z�K�� �K0� 
 2:7; 
�K�� �K0� 
 �44�:
(52)

The major error of the ratio z and the strong phase 
 is
induced by the uncertainty of !b 
 0:4� 0:04 GeV but is
small in magnitude. The reason is that the errors induced
by the uncertainties of input parameters are largely can-
celed in the ratio.

From Eq. (48), it is easy to write the decay amplitude for
the corresponding charge-conjugated decay mode

 

�M 
 VubV�udT � VtbV
�
tdP 
 VubV�udT�1� ze

i����
�:

(53)

Therefore the CP-averaged branching ratio for B0 ! KK�

decay can be defined as

 Br 
 �jMj2 � j �Mj2�=2


 jVubV
�
udTj

2�1� 2z cos� cos
� z2; (54)

where the ratio z and the strong phase 
 have been defined
in Eqs. (48) and (49).

It is a little complicate for us to calculate the branch
ratios of B0= �B0 ! f� �f�, since both B0 and �B0 can decay
into the final state f and �f simultaneously. Because of
B0 � �B0 mixing, it is very difficult to distinguish B0 from
�B0. But it is easy to identify the final states. Therefore we
sum up B0= �B0 ! K0 �K�0 as one channel, and B0= �B0 !
�K0K�0 as another, although the summed up channels are

not charge conjugate states [29]. Similarly, we have
B0= �B0 ! K�K�� as one channel, and B0= �B0 ! K�K��

as another. We show the branching ratio of B0= �B0 !
K�K��, B0= �B0 ! K�K��, B� ! K� �K�0 and B� !
K�� �K0 decays as a function of � in Fig. 5.

Using the wave functions and the input parameters as
specified previously, it is straightforward to calculate the
branching ratios for the four considered decays. The pQCD
predictions for the branching ratios are the following:

 Br �B� ! K� �K�0� 
 3:1�1:2
�0:8�!b� 	 10�7; (55)

 Br �B� ! K�� �K0� 
 18:3�6:8
�4:7�!b� 	 10�7; (56)

 Br �B0= �B0 ! K0 �K�0 � �K0K�0� 
 19:6�7:9
�5:4�!b� 	 10�7;

(57)

 Br �B0= �B0 ! K�K�� � K�K��� 
 7:4�1:0
�1:3�!b� 	 10�8;

(58)

 

FIG. 5. Branching ratios (in units of 10�7) of B� ! K�� �K0

(dash-dotted curve), B� ! K� �K�0 (dotted curve), B0= �B0 !
K0 �K�0 � �K0K�0 (solid curve), B0= �B0 ! K�K�� � K�K��

(dashed curve) as a function of CKM angle �.
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where the major error is induced by the uncertainty of
!b 
 0:4� 0:04 GeV.

As a comparison, we also list the theoretical predictions
in QCDF approach [4]:

 Br �B� ! K�K�0� 
 3:0�6:0
�2:5 	 10�7; (59)

 Br �B� ! K��K0� 
 3:0�7:2
�2:7 	 10�7; (60)

 Br � �B0 ! �K0K�0� 
 2:6�4:8
�2:0 	 10�7; (61)

 Br � �B0 ! K0 �K�0� 
 2:9�7:3
�2:7 	 10�7; (62)

 Br � �B0 ! K�K��� 
 1:4�10:7
�1:4 	 10�8; (63)

 Br � �B0 ! K�K��� 
 1:4�10:7
�1:4 	 10�8; (64)

where the individual errors as given in Refs. [4] have been
added in quadrature. For B� ! K�K�0 decay, the pQCD
and QCDF predictions agree very well. For remaining
decay modes, the pQCD predictions are larger than the
QCDF predictions by a factor of 2 to 5, although they are
still consistent with each other within errors because the
theoretical uncertainties are still very large. When com-
pared with the experimental upper limits, the theoretical
predictions in both approaches still agree with the data.
The large differences between the pQCD and QCDF pre-
dictions will be tested by the forthcoming precision
measurements.

C. CP-violating asymmetries

Now we turn to the evaluations of the CP-violating
asymmetries of B! KK� decays in the pQCD approach.
For B� ! K� �K�0 and B� ! K�� �K0 decays, the direct
CP-violating asymmetries Adir

CP can be defined as

 A dir
CP 


j �Mj2 � jMj2

j �Mj2 � jMj2



2z sin� sin


1� 2z cos� cos
� z2 ; (65)

where the ratio z and the strong phase 
 have been defined
in previous subsection and are calculable in PQCD
approach.

Using the definition in Eq. (65), it is easy to calculate the
direct CP-violating asymmetries for B� ! K� �K�0�K�0�
and B� ! K�� �K0�K0� decays. The numerical results are
 

Adir
CP�B

� ! K� �K�0�K�0�� 
 �0:20� 0:05��� � 0:02�!b�;

Adir
CP�B

� ! K�� �K0�K0�� 
 �0:49�0:07
�0:03��� � 0:07�!b�:

(66)

for � 
 100� � 20� and !b 
 0:40� 0:04 GeV. These
pQCD predictions are also consistent with those in QCDF
approach [4]:

 Adir
CP�B

� ! K� �K�0�K�0�� 
 �0:24�0:28
�0:39;

Adir
CP�B

� ! K�� �K0�K0�� 
 �0:13�0:29
�0:37;

(67)

where the individual errors as given in Ref. [4] have been
added in quadrature. In Fig. 6, we show the �-dependence
of the pQCD predictions of Adir

CP for B� ! K� �K�0�K�0�
(the solid curve) and B� ! K�� �K0�K0� decay (the dotted
curve), respectively.

For B0= �B0 ! K0 �K�0� �K0K�0� decays, they do not exhibit
CP violating asymmetry, since they involve only penguin
contributions at the leading order, as can be seen from the
decay amplitudes as given in Eqs. (29) and (30).

We now study the CP-violating asymmetries for
B0= �B0 ! K�K���K�K��� decays. Since both B0 and �B0

can decay to the final state K�K�� and K��K�, there are
four decay modes. Here we use the formulae as given in
Ref. [29]. The four time-dependent decay widths for
B0�t� ! K�K��, �B0�t� ! K�K��, B0�t� ! K�K��, and
�B0�t� ! K�K�� can be expressed by four basic matrix
elements [29]:

 g 
 hK�K��jHeff jB0i; h 
 hK�K��jHeffj �B0i;

�g 
 hK�K��jHeffj �B
0i; �h 
 hK�K��jHeffjB

0i;
(68)

which determines the decay matrix elements of B0 !
K�K��, �B0 ! K�K��, B0 ! K�K�� and �B0 ! K�K��

at t 
 0. The matrix elements g and �h are given in
Eqs. (31) and (32). The matrix elements h and �g are
obtained from �h and g by simple replacements of �u !
��u and �t ! ��t : i.e., changing the sign of the weak phases
contained in the products of the CKM matrix elements �u
and �t.

Following the general procedure, the B0 � �B0 mixing
can be defined as

 B1 
 pjB0i � qj �B0i; B2 
 pjB0i � qj �B0i; (69)

with jpj2 � jqj2 
 1. Following the notation of Ref. [29],
the four time-dependent decay widths of the considered

 

FIG. 6. The direct CP asymmetry Adir
CP (in percentage) of

B� ! K� �K�0 (the solid curve) and B� ! K�� �K0 (the dotted
curve) as a function of CKM angle �.
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decay modes can be written as

 ��B0�t� ! K�K��� 
 e��t 1

2
�jgj2 � jhj2� 	 f1� a�0 cos��mt� � a���0 sin��mt�g;

�� �B0�t� ! K�K��� 
 e��t 1

2
�jgj2 � jhj2� 	 f1� a�0 cos��mt� � a���0 sin��mt�g;

�� �B0�t� ! K�K��� 
 e��t 1

2
�j �gj2 � j �hj2� 	 f1� a ��0 cos��mt� � a�� ��0 sin��mt�g;

��B0�t� ! K�K��� 
 e��t 1

2
�j �gj2 � j �hj2� 	 f1� a ��0 cos��mt� � a�� ��0 sin��mt�g;

(70)

where the four CP violating parameters are defined as

 a�0 

jgj2 � jhj2

jgj2 � jhj2
; a���0 


�2 Im�qp
h
g�

1� jh=gj2

a ��0 

j �hj2 � j �gj2

j �hj2 � j �gj2
; a�� ��0 


�2 Im�qp
�g
�h
�

1� j �g= �hj2
;

(71)

where q=p 
 e2i�. Using the decay amplitudes as given in
Eqs. (31) and (32), it is straightforward to calculate the
above four CP-violation parameters. The central values of
the pQCD predictions are

 a�0 
 0:74; a���0 
 0:68;

a ��0 
 0:25; a�� ��0 
 �0:88;
(72)

for � 
 100�. The �-dependence of these four CP violat-
ing parameters are shown in Fig. 7. It is difficult to measure
these physical observables in current and forthcoming B
meson experiments because of its tiny branching ratio (�
10�8).

At last, we will say a little more about the possible FSI
effects. As mentioned in the introduction, we here do not
consider the possible FSI effects on the branching ratios
and CP-violating asymmetries of the B! KK� decays.
The FSI effect is in nature a subtle and complicated sub-

ject. The smallness of FSI effects has been put forward by
Bjorken [30] based on the color transparency argument [5],
and also supported by further renormalization group analy-
sis of soft gluon exchanges among initial and final state
mesons [20]. At present, the excellent agreement between
the pQCD predictions for the branching ratios and CP
violating asymmetries and the precision measurements
strongly support the assumption that the FSI effects for
B! K� decays are not important [7]. For B! KK de-
cays, fortunately, good agreement between the pQCD pre-
dictions for the branching ratios of B� ! K�K0,
B0 ! K�K� andK0 �K0 decays [15,16] and currently avail-
able experimental measurements [19] indicates that the FSI
effects are most possibly not important also [16]. Of
course, more studies are needed about this issue, while
further consistency check between the pQCD predictions
and the precision data will reveal whether FSI effects are
important or not.

V. SUMMARY

In this paper, we calculate the branching ratios and
CP-violating asymmetries of B0= �B0 ! K0 �K�0� �K0K�0�,
B0= �B0 ! K�K���K�K���, B� ! K� �K�0, and B� !
K�� �K0 decays, together with their charge-conjugated
modes, by employing the pQCD factorization approach.

From our calculations and phenomenological analysis,
we found the following results:

(i) The pQCD predictions for the form factors ofB! K
and K� transitions are

 FB!K0;1 �0� 
 0:35�0:06
�0:04; AB!K

�

0 
 0:46�0:07
�0:06;

(73)

for !b 
 0:40� 0:04 GeV, close to the light-cone
QCD sum rule results [28].

(ii) the pQCD predictions for the CP-averaged branch-
ing ratios are
 

Br�B� ! K� �K�0� � 3:1	 10�7;

Br�B� ! K�� �K0� � 18:3	 10�7;

Br�B0= �B0 ! K0 �K�0 � �K0K�0� � 19:6	 10�7;

Br�B0= �B0 ! K�K�� � K�K��� � 7:4	 10�8:

(74)

 

FIG. 7. CP violating parameters of B0= �B0 !
K�K���K�K��� decays: a�0 (dash-dotted line), a ��0 (dotted
line), a���0 (dashed line) and a�� ��0 (solid line) as a function of
CKM angle �.
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The above pQCD predictions agree with the QCDF
predictions within still large theoretical errors and
close to currently available experimental upper
limits.

(iii) For the CP-violating asymmetries of the considered
decay modes, the pQCD predictions are generally
large in magnitude.
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APPENDIX A: NON-ZERO TRANSITION
AMPLITUDES

The factorizable amplitudes FeK� , FP1
eK� , and FP2

eK� , FaK� ,
FP1
aK� and FP2

aK� have been given in Sec. III. The remaining
factorizable transition amplitudes in B! KK� decays are
written as

 FeK 
 4
���
2
p
�GFCFfK�m

4
B

Z 1

0
dx1dx3

Z 1
0
b1db1b3db3�B�x1; b1� � f��1� x3��

A
K�x3; b3� � rK�1� 2x3���

P
K�x3; b3�

��T
K�x3; b3�� � �s�t

1
e�he�x1; x3; b1; b3� exp��Sa�t

1
e� � 2rK�

P
K�x3; b3��s�t

2
e�he�x3; x1; b3; b1� exp��Sa�t

2
e�g;

(A1)

 FP1
eK 
 FeK; (A2)

 

FaK 
 4
���
2
p
�GFCFfBm4

B

Z 1

0
dx2dx3

Z 1
0
b2db2b3db3 � f�x3�K� �x3; b3��A

K�x2; b2� � 2rK�rK�P
K�x2; b2���1� x3��

s
K� �x3; b3�

� �1� x3��
t
K� �x3; b2���s�t

3
e�ha�x2; x3; b2; b3�exp��Sd�t

3
e�� �x2�K� �x3; b3��

A
K�x2; b2�

� 2rK�rK�
s
K� �x3; b3���1� x2��

P
K�x2; b2� � �1� x2��

T
K�x2; b2���s�t

4
e�ha�x3; x2; b3; b2�exp��Sd�t

4
e�g; (A3)

 FP1
aK 
 �FaK; (A4)

 

FP2
aK 
 8

���
2
p
GF�CFm4

BfB
Z 1

0
dx2dx3

Z 1
0
b2db2b3db3 � f�2rK�K� �x3; b3��P

K�x2; b2� � x3rK� ��
s
K� �x3; b3�

��t
K� �x3; b2���

A
K�x2; b2� � �s�t

3
e�ha�x2; x3; b2; b3� exp��Sd�t

3
e� � �2rK��

s
K� �x3; b3��

A
K�x2; b2�

� x2rK��
P
K�x2; b2� ��

T
K�x2; b2���K� �x3; b3� � �s�t

4
e�ha�x3; x2; b3; b2� exp��Sd�t

4
e�g: (A5)

For B! KK� decays, the nonfactorizable transition amplitudes not shown explicitly in Sec. III are written as

 

MeK 
 �
16���

3
p GF�CFm

4
B

Z 1

0
dx1dx2dx3

Z 1
0
b1db1b2db2�B�x1; b1��K� �x2; b2�

� f��x2�
A
K�x3; b2� � rKx3��

P
K�x3; b2� ��

T
K�x3; b2�� � �s�t

1
f�h

1
f�x1; x2; x3; b1; b2� exp��Sb�t

1
f�

� ��x2 � x3 � 1��A
K�x3; b2� � rKx3��P

K�x3; b2� ��T
K�x3; b2�� � �s�t2f�h

2
f�x1; x2; x3; b1; b2� exp��Sb�t2f�g; (A6)

 

MP1
eK 
 �

16���
3
p GF�CFrK�m

4
B

Z 1

0
dx1dx2dx3

Z 1
0
b1db1b2db2�B�x1; b1� � f�x2�

A
K�x3; b2���

s
K� �x2; b2� ��

t
K� �x2; b2��

� rK�x1��
P
K�x3; b2� ��

T
K�x3; b2����

s
K� �x2; b2� ��

t
K� �x2; b2�� � x2��

P
K�x3; b2� ��

T
K�x3; b2����

s
K� �x2; b2�

��t
K� �x2; b2�� � x3��

P
K�x3; b2� ��

T
K�x3; b2�� � ��

s
K� �x2; b2� ��

t
K� �x2; b2����s�t

1
f�h

1
f�x1; x2; x3; b1; b2�

	 exp��Sb�t1f� � ��1� x2��A
K�x3; b2���

s
K� �x2; b2� ��t

K� �x2; b2�� � rK�x1��P
K�x3; b2� ��T

K�x3; b2����
s
K� �x2; b2�

��t
K� �x2; b2�� � �1� x2���P

K�x3; b2� ��T
K�x3; b2����

s
K� �x2; b2� ��t

K� �x2; b2�� � x3��P
K�x3; b2� ��T

K�x3; b2��

� ��s
K� �x2; b2� ��t

K� �x2; b2����s�t2f�h
2
f�x1; x2; x3; b1; b2� exp��Sb�t2f�g; (A7)
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MaK 
 �
16���

3
p �GFCFm

4
B

Z 1

0
dx1dx2dx3

Z 1
0
b1db1b2db2�B�x1; b1� � f�x2�K� �x2; b2��

A
K�x3; b2�

� rK�rK���x2 � x3 � 2��s
K� �x2; b2� � �x2 � x3��t

K� �x2; b2���P
K�x3; b2� ��T

K�x3; b2���x3��
s
K� �x2; b2�

��t
K� �x2; b2�� � 2�t

K� �x2; b2� � x2��
s
K� �x2; b2� ��t

K� �x2; b2���� � �s�t
3
f�h

3
f�x1; x2; x3; b1; b2� exp��Sc�t

3
f�

� �x3�K� �x2; b2��A
K�x3; b2� � rK�rK�x2��P

K�x3; b2� ��T
K�x3; b2�� � ��

s
K� �x2; b2� ��t

K� �x2; b2�� � x3��P
K�x3; b2�

��T
K�x3; b2�� � ��

s
K� �x2; b2� ��t

K� �x2; b2����s�t4f�h
4
f�x1; x2; x3; b1; b2� exp��Sc�t4f�g; (A8)

 MP1
aK 
 MP1

aK� ; (A9)

 MP2
aK 
 MP2

aK� ; (A10)

where rK 
 mK
0 =mB with mK

0 
 m2
K=�ms �md�.

APPENDIX B: RELATED FUNCTIONS

We show here the function hi’s, coming from the Fourier transformations of H�0�,

 

he�x1; x3; b1; b3� 
 K0�
���������
x1x3
p

mBb1����b1 � b3�K0�
�����
x3
p

mBb1�I0�
�����
x3
p

mBb3�

� ��b3 � b1�K0�
�����
x3
p

mBb3�I0�
�����
x3
p

mBb1�St�x3�; (B1)

 ha�x2; x3; b2; b3� 
 K0�i
���������
x2x3
p

mBb2����b3 � b2�K0�i
�����
x3
p

mBb3�I0�i
�����
x3
p

mBb2�

� ��b2 � b3�K0�i
�����
x3
p

mBb2�I0�i
�����
x3
p

mBb3�St�x3�;
(B2)

 

h�j�f �x1; x2; x3; b1; b2� 
 f��b2 � b1�I0�MB
���������
x1x3
p

b1�K0�MB
���������
x1x3
p

b2�

� �b1 $ b2�g �
K0�MBD�j�b2�; for D2

�j� > 0

�i
2 H

�1�
0 �MB

�����������
jD2
�j�j

q
b2�; for D2

�j� < 0

0
B@

1
CA; (B3)

 

h3
f�x1; x2; x3; b1; b2� 
 f��b1 � b2�K0�i

���������
x2x3
p

b1MB�I0�i
���������
x2x3
p

b2MB�

� �b1 $ b2�g �
�i
2
H�1�0 �

����������������������������������������������������������
x1 � x2 � x3 � x1x3 � x2x3

p
b1MB�; (B4)

 

h4
f�x1; x2; x3; b1; b2� 
 f��b1 � b2�K0�i

���������
x2x3
p

b1MB�I0�i
���������
x2x3
p

b2MB�

� �b1 $ b2�g �
K0�MBF�1�b1�; for F2

�1� > 0

�i
2 H

�1�
0 �MB

�����������
jF2
�1�j

q
b1�; for F2

�1� < 0

0
B@

1
CA; (B5)

where j 
 1 and 2, J0 is the Bessel function and K0, I0 are
modified Bessel functions K0��ix� 
 ���=2�Y0�x� �
i��=2�J0�x�, and F2

�1�, D�j�’s are defined by

 F2
�1� 
 �x1 � x2�x3; D2

�1� 
 �x1 � x2�x3;

D2
�2� 
 ��1� x1 � x2�x3:

(B6)

The threshold resummation form factor St�xi� is adopted
from Ref. [24]

 St�x� 

21�2c��3=2� c�����

�
p

��1� c�
�x�1� x�c; (B7)

where the parameter c 
 0:3. This function is normalized
to unity.
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The Sudakov factors used in the text are defined as

 

Sa�t� 
 s�x1mB=
���
2
p
; b1� � s�x3mB=

���
2
p
; b3�

� s��1� x3�mB=
���
2
p
; b3� �

1

�1

�
ln

ln�t=��

� ln�b1��

� ln
ln�t=��

� ln�b3��

�
; (B8)

 

Sb�t� 
 s�x1mB=
���
2
p
; b1� � s�x2mB=

���
2
p
; b2�

� s��1� x2�mB=
���
2
p
; b2� � s�x3mB=

���
2
p
; b1�

� s��1� x3�mB=
���
2
p
; b1� �

1

�1

�
2 ln

ln�t=��

� ln�b1��

� ln
ln�t=��

� ln�b2��

�
; (B9)

 

Sc�t� 
 s�x1mB=
���
2
p
; b1� � s�x2mB=

���
2
p
; b2�

� s��1� x2�mB=
���
2
p
; b2� � s�x3mB=

���
2
p
; b2�

� s��1� x3�mB=
���
2
p
; b2� �

1

�1

�
ln

ln�t=��

� ln�b1��

� 2 ln
ln�t=��

� ln�b2��

�
; (B10)

 

Sd�t� 
 s�x2mB=
���
2
p
; b2� � s�x3mB=

���
2
p
; b3�

� s��1� x2�mB=
���
2
p
; b2� � s��1� x3�mB=

���
2
p
; b3�

�
1

�1

�
ln

ln�t=��

� ln�b2��
� ln

ln�t=��

� ln�b3��

�
; (B11)

where the function s�q; b� are defined in the Appendix A of
Ref. [22]. The scale ti’s in the above equations are chosen
as

 t1e 
 max�
�����
x3
p

mB; 1=b1; 1=b3�; t2e 
 max�
�����
x1
p

mB; 1=b1; 1=b3�; t3e 
 max�
�����
x3
p

mB; 1=b2; 1=b3�;

t4e 
 max�
�����
x2
p

mB; 1=b2; 1=b3�; t1f 
 max�
���������
x1x3
p

mB;
������������������������
�x1 � x2�x3

q
mB; 1=b1; 1=b2�;

t2f 
 max�
���������
x1x3
p

mB;
���������������������������������
�1� x1 � x2�x3

q
mB; 1=b1; 1=b2�;

t3f 
 max�
����������������������������������������������������������
x1 � x2 � x3 � x1x3 � x2x3

p
mB;

���������
x2x3
p

mB; 1=b1; 1=b2�;

t4f 
 max�
������������������������
�x1 � x2�x3

q
mB;

���������
x2x3
p

mB; 1=b1; 1=b2�:
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