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We calculate the effects of next-to-leading order perturbative QCD as well as of the quark transverse
motion and off-shellness on the Drell-Yan process cross section. By studying the s! 1 behavior of the
cross section in these approaches, we find that the effects of quark off-shellness and intrinsic-kT
parametrize those of higher twists. In particular, the off-shellness of partons generates part of the
K-factor type corrections to the leading order cross section. Higher-twist contributions to the
pT-spectrum of the Drell-Yan pairs are found to be large for presently accessible energies. The evolution
of quark off-shellness distribution with the hard scale is also studied.
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I. INTRODUCTION

At the future GSI-FAIR facility [1], several experiments
will perform precise measurements of high mass lepton
pair production in �pp and �pA collisions in order to deter-
mine parton distributions in the proton and in nuclei.
Experiments GSI-PAX [2] and GSI-ASSIA [3] are going
to study the polarized process, while GSI-PANDA [4] will
investigate unpolarized �pp! l�l�X at s as low as
15 GeV2.

A good theoretical understanding of the Drell-Yan pro-
cess at the level beyond the leading order (LO) of pertur-
bative QCD (pQCD) is necessary. Indeed, the effects
beyond the LO pQCD are expected to be high at this low
energy [5,6]. These effects on the double-differential cross
section can be roughly parametrized by an overall
K-factor, giving the discrepancy between the LO calcula-
tions and the data. However, in case of the triple-
differential cross section (i.e. transverse momentum distri-
bution of dileptons), the corrections to LO pQCD cannot be
parametrized by a constant factor, as we discuss below.

The diagrams contributing to the Drell-Yan process in
addition to the LO parton model mechanism (a quark from
one hadron annihilates with an antiquark from another
hadron into a virtual photon) are divided into two classes:
those of higher orders of �S and those of higher twists.
Calculating next-to-leading order contributions and refit-
ting the parton distributions accordingly, one can reduce
the discrepancy with the data on the double-differential
Drell-Yan cross section [7,8]. Moreover, the higher twists
are vanishing in the limit of infinite energy. However, these
power-suppressed contributions can be large at realistic
energies. We show in the present paper that the contribu-
tion of higher twists is essential for a proper description of
the data on the triple-differential Drell-Yan cross section
and propose a phenomenological model suitable to calcu-
late these effects. We note that recently also H. Shimizu
et al. [9] have pointed out that at lower energies the

dilepton cross section provides information on the non-
perturbative dynamics.

Applied to the Drell-Yan process �pp! l�l�X, the
leading order approximation of collinear pQCD predicts
the correct dependence of the double-differential Drell-
Yan cross section d2�=dM2dxF on the hard scale M. Here

 xF � pz=jpzjmax (1)

is the Feynman variable of the lepton pair and M its
invariant mass. However, LO pQCD fails to reproduce

(1) the magnitude of this cross section, the discrepancy
being usually parametrized by a K-factor;

(2) the average transverse momentum pT of the
dileptons;

(3) the pT-spectrum of Drell-Yan pairs, which is given
by the triple-differential cross section
d3�=dM2dxFdpT .

Experimentally observed Drell-Yan lepton pairs have non-
vanishing transverse momentum pT , which can be as large
as several GeV. However, in leading order of pQCD, the
cross section is proportional to ��pT�. Indeed, in collinear
QCD, both the transverse momentum and the light cone
energy of quarks inside hadrons are neglected compared to
the large component of the quark momentum, parallel to
the hadron momentum. Thus, the initial state, i.e. the
colliding quark and antiquark to be annihilated into a
lepton pair, has no transverse momentum. Therefore, the
final state has zero transverse momentum, too.

The lepton pairs can gain nonvanishing pT due to two
possible mechanisms

(i) processes of next-to-leading order (NLO) in �S,
(ii) quark transverse motion and off-shellness.

In the former case, the dilepton pair recoils against an
additional jet in the final state. An example is given by
the production of a gluon besides the virtual photon [see
Fig. 1(a)]
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Alternatively, final transverse momentum of the lepton pair
can be caused by a nonvanishing transverse momentum of
the initial state, i.e. by the noncollinearity of quarks inside
the colliding hadrons. In this case, the recoil transverse
momentum is carried by hadron remnants, formed by the
‘‘spectator’’ partons. In addition, the quark and gluon off-
shellness can have a large effect for some observables, as
has been recently shown in [10,11]. The parton off-
shellness arises due to interaction between the partons in
one hadron and thus constitutes a higher-twist effect.

In the present paper, we compare the Drell-Yan process
cross section and the transverse momentum pT of Drell-
Yan pairs in both aforesaid approaches. We calculate in
collinear pQCD the mean hp2

Tipert, which is the part of the
lepton p2

T generated by the next-to-leading order process
(2). This allows us to study the evolution of hp2

Tipert with s
and M. However, it turns out that the magnitude of the
experimentally measured pT cannot be described by NLO
alone. On the other hand, the experimental data are repro-
duced much better by a model, taking into account both the
intrinsic transverse momentum and the off-shellness of
quarks in the proton, as will be shown in Sec. II. In this
model there is no need for a K-factor. Instead, we describe
both shape and magnitude of double as well as triple-
differential cross sections by extracting a quark-off-
shellness from the data, which allows a physical interpre-
tation. We expand the cross section in this model in powers
of 1=s at s! 1 in order to relate the phenomenological
result to higher-twist corrections in Sec. III. We conclude
in Sec. IV.

II. EFFECTS OF NON-COLLINEARITY AND OFF-
SHELLNESS OF QUARKS IN THE PROTON

The transverse momentum distribution of Drell-Yan
dileptons d�=dM2dxFdp2

T in the NLO perturbative QCD

is singular at pT � 0 [12,13]. Neither can the average pT of
Drell-Yan pairs be reproduced in NLO: Using the method
introduced in [12], we calculate h ~p2

Ti of dileptons in NLO
perturbative QCD. The results are presented in Fig. 2. The
pT width calculated in this way is around 0.6 GeV at s �
1600 GeV2 and M � 7 GeV [see Fig. 2(a)]. This value is
about a factor of 2 smaller than the width of the pT
distribution measured by the Fermilab experiment E866
[6]. We have to conclude that NLO pQCD is insufficient to
describe present data on pT of Drell-Yan pairs.

In this context, we note an interesting observation: while
the perturbative hp2

Tipert of Drell-Yan pairs increases with
increasing M at high center of mass energy

���
s
p

[see
Fig. 2(a)], it decreases withM at low s (for instance, at s �
32 GeV2 relevant for the future PANDA experiment,
Fig. 2(b)) due to phase-space limitations.

A natural approach to generate additional pT is to take
into account the primordial transverse momentum of
quarks in the proton. The primordial quark transverse
momentum is a nonperturbative effect and, from the un-
certainty principle, averages at * 200 MeV. On the other
hand, we will show that the higher-twist effect of the
intrinsic kT on the Drell-Yan cross section is of the same
order as the effect of nonvanishing quark off-shellness in
the proton, which is caused by the interaction of partons of
one hadron in the initial state. Therefore, both the intrinsic
kT and quark off-shellness have to be taken into account for
the sake of consistency.

The data on triple-differential cross section also favor a
model, which takes into account both noncollinearity and
off-shellness of quarks. Such a model was proposed and
tested against the E866 data [6] in earlier publications
[5,11]. The method utilizes phenomenological transverse
momentum and off-shellness distributions of quarks in the
proton.

This approach is based on the factorization assumption
and on a second assumption that the soft part of the cross
section can be approximated by a product of functions of
the quark k� momentum, the transverse momentum, and
the virtuality m2 � k�k� � ~k2

T . The part dependent on k�

and kT is

 gq�M2; �; ~kT� � g� ~kT�q��;M2�; (3)

where q��;M2� denotes parton distribution of quark flavor
q at momentum fraction � and scale M2. We use a
Gaussian distribution of quark intrinsic transverse momen-
tum kT

 g� ~kT� �
1

4�D2 exp
�
�

~k2
T

4D2

�
; (4)

 

(a) (c)(b)

FIG. 1. O��S� contributions to the Drell-Yan process:
(a) gluon Bremsstrahlung, (b) vertex correction, (c) gluon
Compton scattering. Virtual photons (dashed lines) split into
lepton pairs, waved lines denote gluons, arrows denote quarks.
In each diagram, time runs from left to right.
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the mean squared partonic intrinsic transverse momentum
being h ~k2

Ti � 4D2. We note that both the factorization
ansatz (3) and the Gaussian parametrization (4) are model
assumptions, which are open for improvement [14], even
though they are widely used at present [15].

The quark virtuality distribution cannot be calculated
from first principles. Using analogy to many body theory,
we parametrize the quark virtuality distribution as a Breit-
Wigner with width �

 A �m� �
1

�
�

m2 � 1
4 �2

: (5)

The exact off-shell kinematics as well as the off-shell and
noncollinear subprocess cross section (at LO in �S) are
used.

The cross section of the process
0
hadron A

0
�

0
hadron B

0
! l�l�X in this approach is [11]

 

d3�

dM2dxFdp
2
T

�
X
q

Z
d ~k1?

Z
d ~k2?

Z 1
0
dm1

Z 1
0
dm2

Z 1

0
d�1

�
Z 1

0
d�2A�m1�A�m2�g

A
q �M

2;�1; ~k1?�

� �gBq �M2;�2; ~k2?�
d3�̂q�m1;m2; ~k1?; ~k2?�

dM2dxFdp
2
T

;

(6)

in which not only the three-dimensional (longitudinal and
transverse) motion of partons, but also the virtualities of
the active quark and antiquark are explicitly taken into
account by means of a phenomenological double-
unintegrated parton density.

In (6), the following off-shell partonic cross section is
used

 

d�̂

dM2dxFdp
2
T
� �0	2M4 �M2�m2

1 � 6m1m2 �m
2
2� � �m

2
1 �m

2
2�

2
�
�
M2 �m2

1 �m
2
2 � �1�2P

�
1 P
�
2

�
�m2

1 �
~k2
1?��m2

2 �
~k2
2?�

�1�2P�1 P
�
2

� 2 ~k1? � ~k2?

�
�
�
xF �

���
s
p

s�M2

�
�2P�2 � �1P�1 �

�m2
1 �

~k2
1?�

�1P�1

�
�m2

2 �
~k2
2?�

�2P
�
2

��
��� ~k1? � ~k2?�

2 � p2
T�; (7)

with

 �0 �
2��2e2

q

3M4Nc8
�������������������������������������
�k1 � k2�

2 �m2
1m

2
2

q : (8)

In (7),

 �k1 � k2� � �1�2P�1 P
�
2 �

�m2
1 �

~k2
1?��m

2
2 �

~k2
2?�

�1�2P
�
1 P
�
2

� ~k1?
~k2?; (9)

 �P�1 �
2 � �P
2 �

2 �
s
2
�M2

N 


���������������������������
s
2

�
2
�M2

Ns

s
(10)

in the hadron center of mass system.1

In the scaling limit �s! 1; s=M2 � const�, the spectral
functions effectively drop out due to normalization (cf.

 

FIG. 2 (color online). Perturbatively generated pT �
���������������
h ~p2

Tipert

q
as a function of the invariant mass M of the dilepton pair.

1The formula (7) is a corrected version of the erroneous
formula (39) in [11] rewritten in the Lorentz invariant form.
Numerically, the difference between the two expressions is less
than 1% in the kinematics studied in [11] but might be large at
xF ! 1 and pT � M.
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discussion later), and the hadronic cross section (6) goes to
 

d3�

dM2dxFdp2
T

�
X
q

�q�x1; x2�

� d2�̂q
dM2dxF

�
LO

�
1

8D2 exp
�
�
p2
T

8D2

�
; (11)

where

 �q�x1; x2� � qA�x1� �q
B�x2� � �qA�x1�q

B�x2�; (12)

 

� d2�̂q
dM2dxF

�
LO
�

4��2e2
q

9M4

x1x2

x1 � x2
�1� x1x2�; (13)

and the parton momentum fractions �x1; x2� are defined via

 M2 � x1x2s; (14)

 xF � �x2 � x1�=�1� x1x2�: (15)

Note that the x1x2 in the denominator of the xF definition in
(15) is sometimes omitted in textbooks, where an approxi-
mate definition xF � 2pz=

���
s
p

is used instead of (1).
In [11], our model was compared to the data on the

triple-differential Drell-Yan cross section
d3�=dM2dxFdpT from experiment E866 [6] at Fermilab
in pp collisions at 800 GeV incident energy. Both the slope
and magnitude of the pT distribution of the Drell-Yan pairs
were described well without the need for a K-factor. In
particular, the experimentally measured hp2

Ti is reproduced
in this model by fitting the model parameter D (the disper-
sion of the quark intrinsic transverse momentum). At s �
1600 GeV2, we obtained D � 0:5
 0:18 GeV. On the
other hand, the detailed shape of the distribution turned
out to be sensitive to the off-shellness, giving � �
50–300 MeV (depending on the mass bin) for this particu-
lar experiment.

The distribution of the transverse momentum of lepton
pairs produced in the Drell-Yan process off nuclei pA!
l�l�X also can be reproduced within this model. For
example, in Fig. 3 the calculation for the transverse mo-
mentum spectrum of Drell-Yan dileptons of our model is
compared to the data of the experiment E605 [16] on pCu
collisions at

���
s
p
� 38:8 GeV, xF � 0:1. The cross section

plotted in Fig. 3 is

 E
d3�

d3p
�

2E
�

���
s
p

d�

dxFdp
2
T

�
2E
�

���
s
p

Z
bin

d�

dM2dxFdp
2
T

dM2:

(16)

where E is given by

 E �
��������������������������������������������������������������
M2 � p2

T � x
2
F�s�M

2�2=�4s�
q

: (17)

The model parameters D, � used in the calculations were
fitted to data on pp! l�l�X in [11] and no readjustment
was done for the pA case.

In the present paper, we want to make a consistent
comparison with NLO results. However, the triple-
differential cross section Ed3�=d3p, plotted in Fig. 3,
cannot be compared directly to the NLO result, because
the latter is singular in every fixed order of pQCD [8,17].
We, therefore, apply the described model now to the
double-differential cross section d2�=dMdxF.

In Fig. 4, the Drell-Yan process cross section
d2�=dMdxF predicted at leading order of perturbative
QCD (dashed line) is compared to the data of the
Fermilab experiment E439 [18] on pW collision at
400 GeV incident energy, at xF � 0:1. The LO prediction
lies below the data. The solid line shows the LO curve
scaled up with a factor K � 1:6. The K-factor depends
somewhat on the parametrization of parton distributions
used. We use here the parametrization [19]. If one assumes
a larger contribution of sea quarks, the K-factor needed to
describe the data is lower.

The K-factor, which is needed to increase the magnitude
of the LO prediction for the double-differential Drell-Yan
process cross section so that it agrees with the data, can be
decreased from 2 to 1.1 by taking into account NLO
processes [7]. In order to determine, what part of this LO
K-factor can be accounted for by the model with intrinsic
kT and off-shellness of quarks, we compare data to the
triple-differential cross section (6) integrated over pT .

In order to calculate the double-differential Drell-Yan
process cross section in our model, we first find the triple-
differential cross section from (6). The double-differential
cross section is obtained using

 

d2�

dM2dxF
�
Z �p2

T �max

0

d3�

dM2dxFdp2
T

dp2
T: (18)

Note that the maximum transverse momentum of the Drell-
Yan pair �p2

T�max is fixed by kinematics

 

FIG. 3 (color online). Prediction for the pT spectrum of Drell-
Yan dileptons in our model at

���
s
p
� 40 GeV and xF � 0:1 as

compared to the data of experiment E605 [16].
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 �p2
T�max �

�s�M2 �M2
R�

2

4s
� x2

F
�s�M2�2

4s
�M2; (19)

where M2
R is the minimal invariant mass of the undetected

remnant.
The data are reproduced well (see Fig. 5) with K � 1.

We conclude that in the experimentally relevant region the
K-factor of the double-differential Drell-Yan cross section
can be explained by two alternative scenarios: either as an
effect of higher orders of perturbative QCD as shown in
[7,8] or as an effect of noncollinearity and off-shellness of
quarks in our phenomenological approach. The experimen-
tal cross section magnitude can be reproduced in NLO
calculations by fitting the renormalization scale or in our

model by fitting the parameters D and �. The latter expla-
nation of the K-factor has the advantage that it can explain
also the triple-differential cross section.

In the following, we additionally study the relative
importance of quark off-shellness and quark intrinsic trans-
verse motion by comparing our result to that of the
intrinsic-kT approach. The intrinsic-kT approach [20] is a
limiting case of our model at �! 0. The factorization
assumption in this case gives
 

d4�

dM2dxFd ~pT
� g� ~kT1� � g� ~kT2� �

d2�̂� ~kT1; ~kT2�

dM2dxF

� �� ~pT � ~kT1 � ~kT2�: (20)

The formula is often simplified by neglecting the depen-
dence of �̂ on ~kT1 and ~kT2, for example, in [21] and in
PYTHIA [22]. In this case, the pT spectrum of Drell-Yan
pairs d3�=dM2dxFdp2

T is also simply a Gaussian in p2
T .

The cross section (20) has to be integrated over the azimu-
thal angle of the lepton pair and over p2

T according to (18).
Because of the finite integration interval in (18), we do not
recover the normalization of the kT-distribution (4), but
obtain a cross section suppression that increases with D.

The double-differential Drell-Yan process cross section
in the intrinsic kT approach with collinear subprocess cross
section at three values ofD is compared to the LO of pQCD
and the data of the experiment E439 in Fig. 6. The magni-
tude of the measured cross section cannot be reproduced in
this leading order intrinsic kT approach, in which the
dependence of the partonic d�̂ on ~k1T and ~k2T are ne-
glected. Just as in LO of pQCD, scaling with an overall
K-factor ranging from 1.6 to 4 is necessary to describe the

 

FIG. 5 (color online). Drell-Yan cross section in our model at
D � 500 MeV, � � 200 MeV compared to the data of experi-
ment E439 [18]. K � 1.

 

FIG. 6 (color online). Drell-Yan cross section in a simplified
intrinsic-kT approach at D � 50 MeV (short dash), D �
250 MeV (dash), D � 500 MeV (dash-dot) compared to LO
pQCD (thin solid line) and the data of experiment E439 [18].
The solid line gives the theoretical curves multiplied by
D-dependent K-factors fitted to the data. Everywhere, � � 0.

 

FIG. 4 (color online). Result of LO collinear QCD for a
double-differential Drell-Yan cross section (dashed line) at

���
s
p
�

20 GeV and xF � 0:1 as compared to experiment E439 [18].
Solid line is the LO result scaled up with a factor K � 1:6.
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data. It is apparent from Fig. 6 that the K-factor extracted
from the data isD-dependent. Therefore, this scaling factor
should be understood as a phenomenological parameter
and not as a measure of higher order corrections.

Summarizing, there are three phenomenological ap-
proaches to the Drell-Yan process beyond LO pQCD:

(1) our model, accounting for both intrinsic transverse
momentum (D � 0) and off-shellness (� � 0) of
quarks;

(2) intrinsic-kT approach (D � 0), which is the limiting
case of our model at � � 0;

(3) simplified intrinsic-kT approach (� � 0), in which
the primordial transverse momentum is not zero
(D � 0), but the noncollinearity of the �qq! l�l�

subprocess cross section d�̂, i.e. its dependence on
~k1 and ~k2, is neglected.

We compare the effects of primordial kT , noncollinearity of
d�̂ and quark off-shellness by plotting the triple-
differential Drell-Yan cross section calculated in the three
aforesaid phenomenological approaches in Fig. 7. The
simplified intrinsic-kT approach gives a Gaussian for the
pT-distribution (dash line). As we will show in the next
section, the approximation of � � 0 and collinear d�̂ is
equivalent to restricting oneself to the leading order in the
twist expansion, that is, in the case of the unpolarized
Drell-Yan process, the expansion in powers of 1=M. In
Fig. 7, the importance of higher-twist corrections in the
Drell-Yan process is illustrated by the difference between
the solid and dash lines.

The part of higher-twist effects incorporated in the full
intrinsic-kT approach changes the distribution consider-
ably (cf. the dash and dash-dot curves in Fig. 7). On the
other hand, additional higher-twist effects, modeled by

quark off-shellness and given by the difference between
the dash-dot and solid curves, are of the same order. We
conclude that higher twists in the Drell-Yan process can be
large and that we have to take into account both non-
collinearity and off-shellness of quarks in order to model
them.

III. TWIST NATURE OF THE
PHENOMENOLOGICAL CORRECTIONS

In the previous section we have shown that the double-
differential Drell-Yan cross section is reproduced by a
model accounting for intrinsic kT and off-shellness of
quarks without a need for a K-factor. In addition, the pT
distribution of the Drell-Yan pairs can be explained in our
model [11], but not in NLO of pQCD [13,17]. Therefore,
the effects of quark off-shellness and intrinsic kT do not
arise solely from the diagrams of NLO pQCD. Instead, we
will show that they parametrize higher-twist processes.
Some of the diagrams that contribute to the Drell-Yan cross
section at higher-twist are shown in Fig. 8. Gluon radiation
in the initial state and gluon exchange between the active
parton and spectators generate intrinsic kT and virtuality of
quarks in the proton in the Drell-Yan process. Some of
these processes (for example, the gluon exchanges that
connect factorized regions—the subprocess and a soft
matrix element) are suppressed by powers of s in the
scaling limit. However, the power-suppressed corrections
give a sizable contribution to the transverse momentum
spectrum of Drell-Yan pairs at finite s accessible in modern
experiments.

 

FIG. 7 (color online). Drell-Yan cross section in three ap-
proaches: simplified intrinsic-kT with collinear subprocess cross
section (dash), full intrinsic-kT (dash-dot), our model at � �
225 MeV (solid). Everywhere, D � 550 MeV,

���
s
p
� 40 GeV,

M � 7:5 GeV.

 

FIG. 8 (color online). Example of gluon radiation diagrams
generating intrinsic kT and virtuality of quarks in the proton as
probed in the Drell-Yan process.
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In this section, we investigate the relationship of NLO
and higher-twist corrections to those calculated in our
phenomenological approach by comparing their behavior
in the Drell-Yan scaling limit, in which s! 1 and M2 !
1 with � � s=M2 finite. The NLO corrections are propor-
tional to �S; therefore we expect only a logarithmic de-
pendence of these corrections on the hard scale s�M2. On
the other hand, higher-twist contributions are suppressed in
powers of s in the scaling limit. In order to determine
whether the effects of quark virtuality and intrinsic kT
are leading twist, we study the behavior of the Drell-Yan
cross section calculated in our model in the scaling limit.

For comparison, note that the lowest order triple-
differential cross section is given by

 

�
d3�

dM2dxFdp2
T

�
LO
�
X
q

�q�x1; x2�

� d2�̂q
dM2dxF

�
LO
��p2

T�:

(21)

From (11) one observes that the corrections to the pT
distribution of the Drell-Yan pairs due to quark noncolli-
nearity in the proton are not suppressed in the limit s! 1.
The model taking into account the intrinsic kT of partons
therefore parametrizes some of the leading twist effects.
This part of the model effects, i.e. the Gaussian smearing of
pT , is related to contributions of the higher order diagrams
of the perturbative QCD series as is shown for deep inelas-
tic scattering at small Bjorken x in [8].

On the other hand, the corrections to the LO cross
section generated by the kT dependence of the subprocess

cross section d�̂ are suppressed by powers of the hard scale
s. Therefore, they represent part of the higher-twist effects.
To study this in more detail, we expand the cross section
(6) in a series in 1=s around s � 1, keeping this time not
only the leading term, as it has been done in (11), but all the
terms that are suppressed by less than s3=2. We analyze the
cross section at the specific value of xF � 0 to make the
formulas less bulky.

We start from the general formula (6). First, we expand
the integrand of (6) in 1=s. For this purpose not only d�̂ of
(7) has to be evaluated at s! 1, but also the combination
of parton distributions (3) that enters (6) has to be Taylor
expanded around ��1 �

���
�
p
; �2 �

���
�
p
�. The arguments of

parton distributions �1 and �2 are fixed after integrating out
the �-functions in (7). As a result, the probed parton light
cone momentum fractions depend on quark intrinsic trans-
verse momentum and off-shellness. After integrating (6)
over �1, �2 and angles, the quantity �q�~�1; ~�2� enters the
hadronic cross section formula. Here, ~�1 and ~�2 are

 

~� 1 �
���
�
p

�
1�

p2
T=2�m2

2 � k
2
2���

�
p
s

�O
�

1

s2

��
; (22)

 

~� 2 �
���
�
p

�
1�

p2
T=2�m2

1 � k
2
1���

�
p
s

�O
�

1

s2

��
: (23)

Keeping the first two orders in the Taylor expansion of
�q�~�1; ~�2� and in the 1=��s�-expansion of d�̂, we obtain:

 

d�3
q

dM2dxFdp2
T

��������xF�0
�

�2e2
q�1� ��

8�D46�2 ���
�
p
s3

Z 1
0
dk2

2

Z �k2
1�max

�k2
1�min

dk2
1

Z �m2�max

0
dm2

Z �m1�max

0
dm1

A�m1�A�m2� exp��
k2

1�k
2
2

4D2 ����������������������������������������������������
k2

1k
2
2 �

1
4 �p

2
T � k

2
1 � k

2
2�

2
q �

Gq
1���

�

���
�
p

8

�
p2
T

2
�m2

2 � k
2
2

�
�Gq

2���

���
�
p

8

�
p2
T

2
�m2

1 � k
2
1

�
� Tq���

�
�s
8
�
p2
T

16
� F�m1; m2�

�
�O

�
1

s

��
;

(24)

where

 �k2
1�min � �pT � k2�

2; (25)

 �k2
1�max � �pT � k2�

2; (26)

 �m1�max �
���������������������������������
�s� p2

T=2� k2
1

q
; (27)

 �m2�max �
���������������������������������
�s� p2

T=2� k2
2

q
; (28)

 

F�m1;m2��
1

�

�
2�m2

1�m
2
2���=8� ~�2

1=6� ~�1

���
�
p
=6�

��m1�m2�
2�=6�m2

1�=6��m2
1�m

2
2�

~�1

���
�
p
=6

�m2
1�

���
�
p
=�6 ~�1��

�
8
�m2

1�m
2
2�k

2
1�k

2
2�

�
;

(29)

 Tq��� � �q�
���
�
p
;
���
�
p
�; (30)

and

 Gq
1��� �

@�q�x1; x2�

@x1

���������x1�
��
�
p
;x2�

��
�
p
�

; (31)

 Gq
2��� �

@�q�x1; x2�

@x2

���������x1�
��
�
p
;x2�

��
�
p
�

(32)
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are the derivatives of the parton distribution product at
around �

���
�
p
;
���
�
p
�. Note that the term in square brackets in

Eq. (24) is not symmetric in k1 and k2. This is due to the
different integration boundaries present in the k1 and k2

integrations. Several �-functions are evaluated to get from
(6)–(24). In the course of these calculations, it turned out to
be useful to treat ~k1? and ~k2? differently.

To further investigate the dependence of the integral (24)
on s, we have to specify the quark spectral function.
Indeed, the integration variables m1 and m2 at s! 1 can
be arbitrarily big, as can be seen from (27) and (28).
Therefore, only after the integration over mi has been
performed can we judge whether any off-shellness gener-
ated term is subleading in s and how much it is suppressed.
On the other hand, the integration over mi provides addi-
tional terms �k2=s, interconnecting the off-shellness and
intrinsic kT effects.

In the following, we perform the analytical integration
of (24), assuming different functional forms for the spec-
tral function A�m�:

(1) a Dirac delta-function ��m�,
(2) a Breit-Wigner function (Lorentz distribution) with

a constant parameter �, see (5).
In the former case, the model reduces to the intrinsic-kT

approach. Integrations over mi drop out, while the remain-
ing integrals over k2

1 and k2
2 can be done analytically via

Bessel functions. As the result, one finds the leading term
(11) plus 1=��s� suppressed contributions.

Let us now consider the second, more general, case. The
cross section for A�m� � ��m� is the limiting case of the
formulas given below for a Breit-Wigner distribution (5) at
� � 0. Inserting the spectral function (5) into (24), per-
forming all the integrations and keeping only the first few
leading terms in 1=M, we obtain (note that M2 � �s! 1,
as s!1)

 

d3�q
dM2dxFdp

2
T

��������xF�0
�

1

8D2 exp
�
�

~p2
T

8D2

�X
q

� d2�̂q
dM2dxF

�
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�

�
Tq��� � f4Tq��� �

���
�
p
�Gq

1���

�Gq
2����g

1

�
�

M
�

� ���
�
p
�Gq

1���

�Gq
2����

�
p2
T

4
� 2D2

�
�

8

3
Tq���

�

�
5p2

T

4
�D2

��
1

M2 �O
�

�

M3

��
:

(33)

At leading twist, the Gaussian distribution of pT (11) is
recovered. However, it is modified by the higher twists,
suppressed in the limit s! 1, but substantial at finite s
accessible in experiment. The term proportional to 1=M �
1=

�����
�s
p

is pT-independent and leads to an overall enhance-
ment of the cross section, while the pT-dependent terms

proportional to 1=M2 additionally modify the shape of the
pT distribution.

The contribution of the off-shellness of quarks to (33) is
given by the summands proportional to �. It is suppressed
by powers of M and vanishes in the intrinsic kT approach,
in which � � 0. Thus, the model, which additionally ac-
counts for quark off-shellness, parametrizes more higher-
twist effects than the intrinsic-kT approach alone.

It is interesting that the effects due to the finite quark
width � appear in the expansion at odd powers of 1=M in
contrast to those due to the intrinsic-kT . The first
�-dependent correction is proportional to 1=M � 1=

�����
�s
p

.
Therefore, the corrections due to the virtuality of quarks
seem to have a nonanalytical dependence on s as ��s��1=2.
In order to preserve analyticity of the cross section we have
to assume that the quark spectral function width � has a
particular scaling behavior at large hard scale of the probe
M �

�����
�s
p

:

 ��M� �
1

M
as M ! 1: (34)

Then, in (33), the terms proportional to �=M and the terms
proportional to 1=M2 together constitute the dominant
higher-twist correction to the leading result (11) in the
scaling limit.

We expect the formula (33) to give a good approxima-
tion to the Drell-Yan cross section (6) at large finite M and
s. In order to illustrate this, we compare the result of the
exact calculations, i.e. the numerical integration of (6), to
the leading twist approximation (11) and to the next-to-
leading twist result (33) in two regimes:

(i) at M � 7 GeV and s � 1600 GeV2, see Fig. 9;
(ii) at M � 1 GeV and s � 30:25 GeV2 relevant for

FAIR [1], see Fig. 10.

 

FIG. 9 (color online). Cross section of pp! l�l�X at M �
7 GeV, s � 1600 GeV2 in our model (solid), in the leading
order in 1=M2 (dash), up to the next-to-leading order in 1=M2

expansion (dash-dot). D � 650 MeV, � � 225 MeV, xF � 0.
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As expected, the sum of leading and next-to-leading terms
of the power series (33) reproduces the full calculations
quite well at M as high as 7 GeV. The approximate cross
section has the same average magnitude and slope.
Therefore, it is dominating the K-factor type corrections
to the leading twist cross section. Only the bend of the
cross section at low pT , which is seen in the full calcula-
tions and in the data (Fig. 3), is not reproduced at the next-
to-leading twist.

From the Fig. 10, one sees that our model predicts the
higher-twist effects to be very large at low M and s. The
discrepancy between approximate and exact Drell-Yan
cross sections is large in this regime, too, especially at
low pT . We conclude that one needs to go beyond the next-
to-leading twist at this low M and s. In this region, our
model becomes indispensable, because it effectively sums
higher orders and higher twists.

IV. CONCLUSIONS

We have analyzed the double-differential Drell-Yan
cross section d2�=dM2dxF and the pT distribution of the
Drell-Yan dileptons d3�=dM2dxFdp2

T in two alternative
approaches: collinear perturbative QCD at next-to-leading
order and a model, which makes use of phenomenological
distributions for kT and off-shellness of quarks in the
proton.

We find that the transverse momentum spectrum of the
Drell-Yan pairs at the next-to-leading order pQCD dis-

agrees with experiment both quantitatively and qualita-
tively. In contrast, we find that the phenomenological
model with off-shell noncollinear partons successfully de-
scribes both the double-differential Drell-Yan cross section
and the pT spectrum of Drell-Yan pairs without the need of
a K factor.

The analysis of the Drell-Yan process cross section in
our model in the Drell-Yan scaling limit has shown that the
phenomenological model parametrizes higher-twist ef-
fects. Higher-twist contributions were up to date usually
considered to be small, because they are suppressed by
powers of the hard scale. As a rule, they are neglected in
pQCD calculations. However, the power-suppressed effect
can be large at realistic energies.

We have found that the intrinsic transverse momentum
of quarks generates both leading twist and 1=��s� � 1=M2

suppressed effects. This is in line with our analysis of
Sec. 1, which has shown that only part of observed hp2

Ti
can be explained by NLO effects. In addition, we have
shown that next-to-leading twist corrections due to quark
off-shellness lead to an overall cross section enhancement
and are therefore responsible for a part of the K-factor type
discrepancy between the leading order pQCD and data.
Although we have shown this only for a Breit-Wigner
parametrization of the spectral function, we do not expect
these results to depend on its special form, since all calcu-
lated cross sections involve only integrals over the spectral
functions.

If a Breit-Wigner parametrization for a quark spectra
function is used, the next-to-leading contribution is pro-
portional to �=

�����
�s
p

. This leads us to suggest that the quark
spectral function width � scales as ��M� � 1=M at large
hard scale M �

�����
�s
p

.
The formula that we obtained for the Drell-Yan cross

section at the next-to-leading twist level can be very useful
for applications, for example, in an event generator.
Indeed, it requires no numerical integration, while provid-
ing a good approximation to the full calculations at M *

5 GeV. However, atM & 5 GeV, one has to go beyond the
next-to-leading order in the power series and use the for-
mulas of [11].

The results show that the higher-twist corrections to high
energy processes can be large. Therefore, a detailed study
and modelling of these effects is necessary, if one hopes to
reliably extract quark and gluon properties from hadron
scattering data.
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FIG. 10 (color online). Cross section of p �p! l�l�X at M �
1 GeV and s � 30:25 GeV2 in our model (solid), in the leading
order in 1=M2 (dash), up to the next-to-leading order in 1=M2

expansion (dash-dot). D � 600 MeV, � � 250 MeV, xF � 0.
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