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In this paper we perform collective quantization of an axially symmetric skyrmion with baryon number
two. The rotational and isorotational modes are quantized to obtain the static properties of a deuteron and
other dibaryonic objects such as masses, charge densities, and magnetic moments. We discuss how gravity
affects those observables.

DOI: 10.1103/PhysRevD.75.014011 PACS numbers: 12.39.Dc, 04.20.�q, 21.10.�k

I. INTRODUCTION

The Skyrme model [1] is considered an unified theory of
hadrons by incorporating baryons as topological solitons of
pion fields, called skyrmions. The topological charge is
identified as the baryon number B. Performing collective
quantization for a B � 1 skyrmion, one can obtain proton
and neutron states within 30% error [2].

Correspondingly, multiskyrmion solutions are expected
to represent nuclei [3–5]. The static properties of a B � 2
skyrmion such as mass spectra, mean charge radius, baryon
number density, magnetic moment, quadrupole moment,
and transition moment were studied in detail by Braaten
and Carson upon collective zero-mode quantization [6].
The results confirmed that the quantized B � 2 skyrmion
can be interpreted as a deuteron.

The Einstein-Skyrme model in which the Skyrme fields
coupled to gravity was first considered by Luckock and
Moss [7]. They obtained spherically symmetric black hole
solutions with Skyrme hair. It is the first discovered counter
example to the no-hair conjecture. Axially symmetric
regular and black hole skyrmion solutions with B � 2
were constructed in [8]. Subsequently the model was ex-
tended to the SU�3� and higher baryon number with dis-
crete symmetries to study gravitating skyrmion solutions
[9].

In the Einstein-Skyrme theory, the Planck mass is re-
lated to the pion decay constant f� and coupling constant
� by Mpl � f�

�������������
4�=�

p
. To realize the realistic value of the

Planck mass, the coupling constant should be extremely
small with ��O�10�39�, which makes the effects of
gravity on the skyrmion negligible. We, therefore, consider
� as a free parameter and study the strong coupling limit to
manifest the effects of gravity on skyrmion spectra. The
property of the skyrmion solution could be drastically
changed for large values of �. Certainly studying the

effects of gravity on soliton spectra is interesting itself.
Nevertheless, we further attempt to give an interpretation
to the solution as a gravitating deuteron or dibaryonic
object and study their mass spectra and other static
observables.

The first step towards the study of gravitational effects
on the quantum spectra of skyrmions was taken in Ref. [10]
by performing collective quantization of a B � 1 gravitat-
ing skyrmion. It was shown there that the qualitative
change in the mass difference, mean charge radius, and
charge densities under the strong gravitational influence
confirms the attractive feature of gravity while the reduc-
tion of the axial coupling and transition moments by the
strong gravity indicates the gravitational effects as a stabil-
izer of baryons.

In this paper we extend the work [10] to the B � 2
axially symmetric gravitating skyrmion and estimate the
static properties of a deuteron or other dibaryonic objects.
We observe how strong gravity affects the baryon observ-
ables e.g., mass spectra, mean charge radius, baryon num-
ber density, magnetic moment, quadrupole moment, and
transition moment.

Although the Skyrme model describes nucleons with
about 30% error, the possibility that it may provide quali-
tatively correct description of the interaction of baryons
with gravity cannot be excluded. It is expected that in the
early universe or equivalent high energy experiments, the
gravitational interaction with baryons is not negligible. We
hope that our work could provide insight into the observa-
tions in such situations.

II. CLASSICAL GRAVITATING B � 2 SKYRMIONS

In this section, we discuss B � 2 classical regular solu-
tions in the Einstein-Skyrme system. The Skyrme
Lagrangian coupled to gravity is defined by the Lagrangian

 L � LG �LS; (1)

 L G �
1

16�G
R; (2)
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where f� is pion decay constant and e is a dimensionless
free parameter. U describes the SU�2� chiral fields. We
impose the axially symmetric ansatz on the chiral fields as
a possible candidate for the B � 2 minimal energy con-
figuration [6]

 U � cosF�r; �� � i� 
 nR sinF�r; ��; (4)

with

 n R � �sin��r; �� cosn’; sin��r; �� sinn’; cos��r; ���;

(5)

where n denotes the winding number of solitons, which is
equivalent to the baryon number B. Since we are interested
in B � 2 skyrmions, we consider only n � 2. Cor-
respondingly, the following axially symmetric ansatz is
imposed on the metric [11]

 ds2 � �fdt2 �
m
f
�dr2 � r2d�2� �

l
f
r2sin2�d’2; (6)

where the metric functions f, m,and l are the function of
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FIG. 1. The profile function F and � in the cylindrical coordinate with � � 0:000, 0.040, 0.080, 0.126 are shown. We use
dimensionless variables P � ef�� and Z � ef�z. There exists no solution for � * 0:127.
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coordinates r and �. This metric is symmetric with respect
to the z xis (� � 0). Substituting these ansatz to the
Lagrangian (3), one obtains the following static energy
density for the chiral fields
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where dimensionless variable x � ef�r is introduced. The
static (classical) energy is thus given by

 M � 2�
f�
e

Z
dxd�"�x; ��: (8)

The covariant topological current is defined by

 B� �
�����

24�2

1�������
�g
p tr�U�1r�UU�1r�UUU�1r�U�;

(9)

whose zeroth component corresponds to the baryon num-
ber density

 B0 � �
1

�2 �������
�g
p sin2F sin��@xF@��� @�F@x��: (10)

For the solutions to be regular at the origin x � 0 and to
be asymptotically flat at infinity, the following boundary
conditions must be imposed:

 @xf�0; �� � @xm�0; �� � @xl�0; �� � 0; (11)

 f�1; �� � m�1; �� � l�1; �� � 1: (12)

For the configuration to be axially symmetric, the follow-
ing boundary conditions must be imposed at � � 0 and
�=2:

 @�f�x; 0� � @�m�x; 0� � @�l�x; 0� � 0; (13)

 @�f
�
x;
�
2

�
� @�m

�
x;
�
2

�
� @�l

�
x;
�
2

�
� 0: (14)

For the profile functions, the boundary conditions at the
x � 0, 1 are given by

 F�0; �� � �; F�1; �� � 0; (15)

 @x��0; �� � @x��1; �� � 0: (16)

At � � 0 and �=2,
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FIG. 2. The metric function f in the cylindrical coordinate
with � � 0:040, 0.080, 0.126 is shown. We use 	 � P=�1�
P� and 
 � Z=�1� Z�, instead of dimensionless variables P �
ef�� and Z � ef�z.
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FIG. 4. Same as Fig. 2 for the metric function l.
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� 0; (17) EQ-TARGET;temp:intralink-;d18;316;747��x; 0� � 0; �
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Since the baryon number is defined by the spatial integral
of the zeroth component of the baryon current, we have

 B �
Z
d3r

�������
�g
p

B0 �
1

2�
�2F� sin2F� cos�

��������
F1;�1

F0;�0

:

(19)

The inner and outer boundary conditions �F0;�0� � ��; 0�
and �F1;�1� � �0; �� yield B � 2.

By taking a variation of the static energy (7) with respect
to F and �, one obtains the equations of motion for the
profile functions. The field equations for the metric func-
tions f, m, and l are derived from the Einstein equations.
We shall show their explicit form in the appendix.

The effective coupling constant of the Einstein-Skyrme
system is given by

 � � 4�Gf2
�; (20)

which is the only free parameter.
We use the relaxation method to solve these nonlinear

equations with the typical grid size 100	 30. In Fig. 1, the
profile functions for � � 0, 0.04, 0.08, 0.126 is presented.
No solution exists for � * 0:127. Also, the metric func-
tions are shown in Figs. 2– 4. In Fig. 5, we display the
metric functions at � � 0, �=4, �=2 as a function of radial
coordinate. Figure 6 shows � dependence of the static
energy M in unit of f�=e. In Fig. 7 the energy densities
defined in Eq. (7) are plotted. The baryon densities b ��������
�g
p

B0 are shown in Fig. 8.
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III. COLLECTIVE QUANTIZATION SCHEME FOR
THE B � 2 SOLITON SOLUTION

In this section, let us try to give an interpretation to the
B � 2 skyrmion solution obtained in the last section as a
baryonic object by assigning quantum number of spin and
isospin to it. We employ the semiclassical zero-mode
quantization following Ref. [6]. Let us introduce dynami-
cally rotated chiral fields

 Û�r; t� � A�t�U�r0�Ay�t�; r0 � R�B�t��r; (21)

and

 Rij�B� �
1
2 Tr��iB�jBy�; (22)

where A�t� and B�t� are the time-dependent SU�2�matrices
generating the isospin and the spatial rotations.
Substituting (21) into the Lagrangian (3), one finds

 L � �M� 1
2aiUijaj � aiWijbj �

1
2biVijbj; (23)

where M is the static energy of the B � 2 skyrmion given
in Eq. (8). The Lagrangian is quadratic in time derivatives

 ai � �iTr�iA
y _A; bi � iTr�i _BBy: (24)

The moments of inertia tensor Uij, Vij, and Wij are ex-
pressed in terms of the chiral field U as
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; U
�
! i�x0 	 r�jU�
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; (26)

 Vij � Wij
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�i
2
; U
�
! i�x0 	 r�iU�

�
: (27)

Body-fixed isospin operator Ki and angular momentum
operator Li are defined as a canonically conjugate to ai
and bi

 Ki �
@L
@ai
� Uijaj �Wijbj;

Li �
@L
@bi
� �WT

ijaj � Vijbj:
(28)

These operators are related to the usual coordinate-fixed
isospin Ii and spin Ji by the orthogonal transformation,

 Ii � �Rij�A�Kj; Ji � �Rij�B�TLj: (29)

The commutation relations for these operators are

 �Ki; Kj� � i�ijkKk; �Li; Lj� � i�ijkLk;

�Ii; Ij� � i�ijkIk; �Ji; Jj� � i�ijkJk:
(30)

These operators satisfy the Casimir invariance by using
Eq. (29)

 K 2 � I2; L2 � J2: (31)

The symmetry of the classical soliton induces the follow-
ing conditions for the inertia tensors

 U11 � U22; V11 � V22; W11 � W22 � 0;

V33 � 4U33; W33 � 2U33:
(32)

Thus it is sufficient to calculate only U11, U33, and V11.
Inserting (4) into Eqs. (25) and (27) one obtains
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p

2f2 x
2 sin�sin2Fsin2�

�
2
��
l
p

f
sin�sin2Fsin2�

�
x2F2

;x � F2
;�

� sin2F�x2�2
;x ��2

;��

��
; (34)

 

V11 �
�

f�e
3

Z
dxd�

�
m

��
l
p

4f2 x
2 sin��F2

;x��2
;�sin2F

� n2cot2�sin2Fsin2��

�

��
l
p

f
x2 sin�sin2Ff�F;x�;��F;��;x�

2

� n2�F2
;x��2

;xsin2F�cot2�sin2�g

�
n2

��
l
p

f sin�

�
cos2��

m
l

�
�F2

;���2
;�sin2F�sin2Fsin2�

�
:

(35)

From Eqs. (28) and (32) we derive the constraint

 �2K3 � L3�jphysi � 0: (36)

Inserting the body-fixed operator (28), Casimir invariant
(31), and constraint (36) into the Lagrangian (23) one can
get the Hamiltonian operator as

 H � M�
I2

2U11
�
J2

2V11
�

�
1

U33
�

1

U11
�

4

V11

�
K2

3

2
: (37)
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The corresponding energy (mass) eigenvalues are

 E � M�
i�i� 1�

2U11
�
j�j� 1�

2V11
�

�
1

U33
�

1

U11
�

4

V11

�
2

2
;

(38)

where i�i� 1�, j�j� 1�, and  are the eigenvalues of the
Casimir operators (31), and the operator K3, respectively.
The parity is defined by the eigenstate of the following
operator:

 P � ei�K3 ; (39)

which means that the parity is ��� for even  and ��� for
odd .

Taking into account the Finkelstein-Rubinstein con-
straints for the axially symmetric soliton [6], one finds
that some combinations of �i; j� are not acceptable. The
allowed states are [6,12]
 

jii30ijjj30i; provided i� j is odd; �for  � 0�

1���
2
p �jii3ijjj3 � 2i � ��1�i�jjii3 � ijjj32i�

�for  � 1; 
 
 
 ;minfi; �j=2�g�: (40)

Therefore,  > 0 is allowed only if i � 1 and j � 2.
We show quantized energy spectra for various values of

� in Table I. The mass difference from the classical energy
is shown as a function of � in Fig. 9. In Table I (and Fig. 9),
we show the results for i, j � 3 with  � 0, and also some
excited states for  � 2. We present a spectroscopic clas-
sification 2s�1Lj in Table I. For  � 0, the system is in S
state, and then j equals to the intrinsic spin s. For  > 0
state, the orbital angular momentum is chosen to be its
lowest value so that it is consistent with the quantum
number j, the parity, and the fact that s � 3 in the six-
quark picture. It is seen that the mass difference increases
monotonically with increasing �. Figure 1 (and also Figs. 7
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FIG. 9. The coupling constant dependence of the dimension-
less mass difference from the classical energy are shown. For
� * 0:127, there exists no solution. We give the baryonic
descriptions if available, otherwise we only show its spectro-
scopic classification �2s�1Lj�i, whose subscript i means eigen-
value of the isospin operator (31).

TABLE I. The dimensionless quantized energy spectra up to i, j � 3 for  � 0, and also some
excited states up to  � 2. In the particle classification, we give the baryonic descriptions if
available, otherwise we only show its spectroscopic classification 2s�1Lj.

Classification i j  Parity � � 0 � � 0:040 � � 0:080 � � 0:126

Classical skyrmion 69.7195 63.6722 56.9827 44.4862
Deuteron (3S1) 0 1 0 � 69.7227 63.6758 56.9866 44.4912
NN (1S0) 1 0 0 � 69.7241 63.6774 56.9886 44.4939
(3P2) 1 2 1 � 69.7294 63.6828 56.9943 44.5006
N� (5S2) 1 2 0 � 69.7339 63.6881 57.0003 44.5089
N� (3S2) 2 1 0 � 69.7368 63.6913 57.0041 44.5143
(3P2) 2 2 1 � 69.7387 63.6932 57.0059 44.5160
�� (7S3) 0 3 0 � 69.7391 63.6935 57.0062 44.5162
(5P3) 1 3 1 � 69.7392 63.6935 57.0060 44.5156
�� (1S0) 3 0 0 � 69.7475 63.7032 57.0176 44.5324
(5D4) 2 4 2 � 69.7479 63.7024 57.0153 44.5262
(5P3) 2 3 1 � 69.7485 63.7039 57.0177 44.5310
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and 8) implies that the strong gravity makes the size of the
skyrmion smaller which makes the inertial moment
smaller, resulting in increase in the mass difference. In
the collective quantization, the skyrmion can be quantized
as a slowly rotating rigid body and the mass difference is
interpreted as a consequence of the rotational kinetic en-
ergy. Thus the gravity works for increasing the kinetic
energy of the skyrmion. In the naı̈ve quark model picture,
the mass difference is ascribed to the hyperfine splittings.
The increase in the mass difference may imply that due to
the reduction of the distance between quarks, the effects of
the hyperfine splittings become dominant by the gravity
[13].

From the data of Table I, one can straightforwardly
obtain the mass value in MeV unit by multiplying f�=e
for any parameter choice �f�; e�. With f� � 108 MeV,
e � 4:84, which is used in Ref. [6], our obtained mass
value in the case of � � 0 is approximately 6% lower than
the value obtained in Ref. [6]. There are two possible
reasons for that. First, the Lagrangian in Ref. [6] includes
the mass term and hence it slightly enhances the mass
value. Thus we also performed the same analysis including
the mass term, which reduced the error from 6% to 0.5% in
the mass. Second, the coordinate system they used is
cylindrical while we adopted the spherical coordinates.
Since the cylindrical coordinate requires a much larger
number of grid points to obtain torus-shape solutions
than the spherical, we suspect that their results are not
fully convergent, producing a slightly larger mass.

IV. ELECTROMAGNETIC PROPERTIES

In this section we shall investigate the gravity effects to
the various observables, i.e. the mean charge radius hr2i1=2

d ,
magnetic moment �d, the quadrupole moment Q, and the
transition moment �d!np, which is associated with the
process �d! 1S0.

Let us introduce the electromagnetic current in the
Skyrme model J�em�

� �x� which consists of the isoscalar
and isovector part,

 J�em�
� �x� �

1

2
B��x� � I3

��x�; (41)

where B��x� is baryon current density given in Eq. (9) and
I3
��x� is the third component of the isospin current density,

defined by

 Ia��x� � �ef
3
�
i
8

�
g�� Tr

�
U�1

�
�i
2
; U
�
U�1@�U

�

� g��g�� Tr
�
U�1

�
�i
2
; U
�
U�1@�U

�

	�U�1@�U;U�1@�U�
�
: (42)

Inserting the dynamical field Û in Eq. (21) into Eq. (41)
gives electromagnetic current operator Ĵ�em�

� .
To estimate the expectation value of these quantum

operators, we describe the quantum spin states (40) in
terms of the products of the rotation matrices

 hAjii3k3i �

�
2i� 1

8�2

�
1=2
Di�i�2Ay�k3i3 ; (43)

 hBjjj3l3i �
�
2j� 1

8�2

�
1=2
Dj�i�2By�j3l3 : (44)

whereDi�A�m;m0 is the well-known WignerD function. The
computation can be performed easily by the following
integration formula [14]:

 

Z
dBDi�B�m1m01

Dj�B�m2m02
Dk�B�m3m03

�
8�2

2k� 1
Ckm3
im1jm2

C
km03
im01jm

0
2
; (45)

where Ckm3
im1jm2

is a Clebsch-Gordan coefficient.

The deuteron charge radius hr2i1=2
d is defined as the

square root of

 hr2id �

	
d
��������
Z
d3rr2Ĵ�em�

0 �r; t�
��������d



; (46)

where jdi represents spin state of the deuteron. In this case,
as only the isoscalar part of Ĵ�em�

0 contributes to the matrix
element, the integration is straightforward:

 hr2id �
�

�ef��
2

Z
dxd�

�������
�g
p

x2B0�r; ��

� �
1

��ef��2
Z
dxd�x2sin2F sin��@xF@��

� @�F@x��: (47)

Figure 10 shows the � dependence of the mean charge
radius. Because of the attractive effect of the gravity, it
decreases with increasing �.

The isoscalar part of the magnetic moments is expressed
in terms of an electromagnetic current as

 �̂ i �
1

2

Z
d3r

�������
�g
p

�ijkrjĴ
�em�
0 �r; t�: (48)

Inserting the dynamical field Û in Eq. (21) into Eq. (48),
one finds the magnetic momentum operator as

 �̂ ijI�0 �
1

2
fRij�B�T;�jkak ��0jkbkg; (49)

where

 �jk �
1

�ef��
2

Z
d3x

1

2
"jlmxl

1

2
Tr
�
Uy

�
1

2
�k; U

�
Cm

�
;

(50)
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�0jk �
1

�ef��
2

Z
d3x

1

2
"jlmxl

1

2
Tr�Uy��ix	 r�kUCm�x��;

(51)

and Cm is

 Cm�x� �
i

8�2 "mnp�U
y@nU��Uy@pU�: (52)

The Rij is the rotation matrix (22) and ai and bi are defined
as Eq. (24). The anticommutator relation in Eq. (48) guar-
antees �̂i to be a Hermitian operator. �ij and �0jk are
diagonal and furthermore they satisfy �11 � �22 � 0,
�011 � �022, and �033 � �2�33. With these relations and
using the body-fixed operator (28), the coordinate-fixed
operator (29), the relation of the moment of inertia com-
ponents (32), and the constraint of Eq. (36) in Eq. (48), one
can get

 �̂ ijI�0 � �
�011

V11
Jl � terms proportional to K3: (53)

Therefore, we only use the component of �011,

 �011 � �
�

4�ef��2
Z
dxd�

�������
�g
p

x2�cos2�� 1�B0�x; ��:

(54)

And the V11 is the moment of inertia given in Eq. (35). The
moments�d of deuteron is defined as the expectation value
of the �̂3 with j3 � 1

 �d � h�̂3i � �
�011

V11
: (55)

In Fig. 11 � dependence of the �d is shown. It decreases
with increasing �, but the effect of gravity is more evident
compared with that of B � 1 [10]. In the nonrelativistic
nuclear physics point of view, the magnetic moment of the
deuteron consists of the sum of the magnetic moment of

the proton plus neutron and some correction terms related
to the D-state probability of the deuteron. This result
indicates that the assumption that the deuteron is almost
S state (contributions to the other states are only �5%)
may no longer be valid under the strong gravitational field.
Therefore, we speculate that the effect of gravity is appar-
ent on the change of such noncentral components of the
nuclear force. This will be more evident by examining the
quadrupole moment. The quadrupole moment is given by

 Q̂ ij �
Z
d3r

�������
�g
p

�3rirj � r
2�ij�Ĵ

�em�
0 �r; ��; (56)

which is the same as the magnetic moment. Inserting (21)
into Eq. (56) one obtains the quadrupole momentum op-
erator

 Q̂ ijjI�0 � Ria�B�TQabRbj�B�; (57)

where

 Qab �
1

2�ef��2
Z
d3x

�������
�g
p

�3xaxb � x
2�ab�B0�x; ��:

(58)

Qij satisfies Q11 � Q22. And the symmetry relation for the
quadrupole moments reduces the expression to

 Q̂ ijjI�0 � Q33�
3
2Ri3�B�

TR3j�B� �
1
2�ij�: (59)

Thus we only need the component of Q33:

 Q33 �
�

�ef��
2

Z
dxd�

�������
�g
p

x2�3cos2�� 1�B0�x; ��: (60)

The deuteron quadrupole moment is defined as the expec-
tation value of Q̂33 with j3 � 1
 

Q� hQ̂33i �Q33�
3
2hd; j

0
3 � 1jRT33�B�R33�B�jd; j3 � 1i� 1

2�:

(61)
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FIG. 11. The coupling constant dependence of the dimension-
less magnetic moment (55).

 

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 0  0.02  0.04  0.06  0.08  0.1  0.12

<
r2 >

d1/
2

α

FIG. 10. The coupling constant dependence of the dimension-
less mean charge radius (47).

HISAYUKI SATO, NOBUYUKI SAWADO, AND NORIKO SHIIKI PHYSICAL REVIEW D 75, 014011 (2007)

014011-10



Now let us evaluate the matrix element. The rotating
matrix R33 is represented as R33�B� � D1�B�00 with the
Wigner D function. The product of two D functions can be
expanded in the following series [14]:
 

DJ1�B�M1N1
DJ2�B�M2N2

�
XJ1�J2

J�jJ1�J2j

X
MN

CJMJ1M1J2M2
DJ�B�MN

	 CJMJ1N1J2N2
: (62)

The matrix element of D1�B�00 derived from Eqs. (44) and
(45) and the relation of the Dl�i�2�0m � ��1�l�m;0,

 hj0j03l
0
3jD

1�B�00jjj3l3i � �
�

2j0 � 1

2j� 1

�
1=2
Cjl3j0l0310C

jj3

j0j0310:

(63)

The deuteron state is the one with j3 � 1. Therefore,
inserting i � 0, j � 1,  � 0 and using the constraint in
Eq. (36), the matrix element in Eq. (61) is evaluated as

 Q � �1
5Q33: (64)

In Fig. 12 � dependence of the Q is shown. As in the case
of the magnetic moment, the quadrupole moment signifi-
cantly decreases with increasing �, which suggests that the
D-state probability is strongly affected by the gravity.

The transition moment �d!np for photodisintegration of
the deuteron into the isovector 1S0 state is defined by the
magnetic moment operator �̂3. It is evaluated in terms of
the matrix element between the j3 � 0 state and i3 � 0
state:

 �d!np � h
1S0; i3 � 0j�̂3jd; j3 � 0i: (65)

Inserting the dynamical field in Eq. (21) into the isovector
part of �̂i, one can obtain

 �̂ ijI�1 � �
1
2R3j�A�WjkRki�B�; (66)

where Wjk is the moment of inertia tensor defined in
Eq. (26). From Eq. (32), one can see that W33 is the only
nonzero component and W33 � 2U33, and hence

 �̂ 3jI�0 � �U33R33�A�R33�B�: (67)

Evaluating the matrix elements of (65) using (63) and the
element of the isospace which is derived in the similar way
in Eq. (63), one can get

 �d!np � �
1
3U33: (68)

In Fig. 13 the coupling constant dependence of �d!np is
shown. As expected, it also decreases with increasing �.
Since the strong gravity reduces the transition moment
significantly, it may be possible to determine the gravita-
tional constant by observing the variation in �d!np. It is
interesting that the decay rates are reduced by the gravita-
tional effects whether the interaction is strong or electro-
magnetic, which means the gravity works as a stabilizer of
baryons.

V. CONCLUSIONS

In this article we have investigated axially symmetric
B � 2 skyrmions coupled to gravity. Performing collective
quantization, we obtained the static observables of the
dibaryons. The rotational and isorotational modes were
quantized in the same manner as the skyrmion without
gravity. It was shown how the static properties of dibaryons
such as masses, charge densities, and magnetic moments
were modified by the gravitational interaction.

The dependence of the energy density and mean radius
on the coupling constant showed that the soliton shrinks as
� becomes larger which reflects the attractive feature of
gravity. The mass difference between dibaryons also be-
comes larger as � increases. These observations can be
interpreted that shrinking the skyrmion reduces the inertial
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FIG. 13. The coupling constant dependence of the dimension-
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momenta and hence induces the large mass difference
between dibaryon spectra.

In the collective quantization, the skyrmion can be
quantized as a slowly rotating rigid body and the various
dibaryon spectra are regarded as the rotational bands of the
classical skyrmion. Thus the large mass difference means
that the gravity works for increasing the rotational kinetic
energy of the skyrmion. The magnetic moment is reduced
significantly as increasing � compared to that of B � 1.
We also calculated the quadrupole moment. For the tran-
sition moments of the deuteron, we found that the gravity
works as a stabilizer. Thus, it may be possible to determine
the gravitational constant by the measurement of the vari-
ous decay rates of the dibaryonic objects.

Throughout the paper, we considered � as a free pa-
rameter and studied skyrmion spectra in the strong cou-
pling limit. We found that the effects of gravity on the
observables estimated here are manifested only in such a
large coupling constant. Some theories such as scalar-
tensor gravity theory [15] and theories with extra dimen-
sions discuss the time variation of the gravitational con-
stant [16]. There may have been an epoch in the early
universe where the gravitational effects on nucleons were
significant.

Let us note that in Ref. [17] the authors computed the
quantum correction to the B � 2 skyrmion by considering
the moduli space of instanton-generated two-skyrmions in
the attractive channel which has a larger dimension (M10)
than the moduli space of the deuteron (M8), which greatly
improved the deuteron observables. Thus, going beyond
the collective coordinate approximation provides a much
greater correction to the observables than gravitational
effects.

As a future work, the analysis of the electromagnetic
form factors of the deuteron is now under consideration.
The SU�3� extension and the analysis of dihyperon coupled
to gravity will be interesting also.
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APPENDIX: FIELD EQUATIONS

For the numerical calculation, we employ the radial
coordinate

 � �
x

1� x
(A1)

to map infinity to � � 1. The regularity requires the con-
dition

 m��; 0� � l��; 0�: (A2)

Following the work of Ref. [9], we introduce the metric
function g as

 g��; �� �
m��; ��
l��; ��

: (A3)

Then the boundary conditions for g are given by

 g�0; �� � 1; g�1; �� � 1; (A4)

 g��; 0� � 1; g
�
�;
�
2

�
� 0: (A5)

The filed equations for the profile function F��; �� and
���; �� are derived as

 �� �������
�g
p

LS

�F

�
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f2
�

4��
l
p

sin�
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F;�� �
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; (A6)
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From Einstein equations, the field equations for the metric functions are derived. We diagonalized those equations to the
2nd derivative of � and � for each metric function
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