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We construct the S-wave part of the electromagnetic vector annihilation current to O��sv2� on the
lattice for heavy quarks whose dynamics are described by the NRQCD action, and v is the nonrelativistic
quark velocity inside the meson. The lattice vector current for Q �Q annihilation is expressed as a linear
combination of lattice operators with quantum numbers L � 0, JP � 1�, and the coefficients are
determined by matching this lattice current to the corresponding continuum current in QCD to O�v2�
at one-loop. The annihilation channel gives a complex amplitude and a proper choice for the contours of
integration is needed; a simple Wick rotation is not possible. In this way, and with a careful choice of
subtraction functions in the numerical integration, the Coulomb-exchange and infrared singularities
appearing in the amplitudes are successfully treated. The matching coefficients are given as a function
of the heavy quark mass Ma in lattice units. An automated vertex generation program written in PYTHON

is employed, allowing us to use a realistic NRQCD action and an improved gluon lattice action. A change
in the definition of either action is easily accommodated in this procedure. The final result, when
combined with lattice simulation results, describes the electromagnetic decays of heavy quarkonia,
notably the � meson.
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I. INTRODUCTION

Heavy quark states like the J=� [1,2] and � [3,4]
mesons play a central role in the experimental study of
the electroweak interactions. It is therefore important that
we have reliable nonperturbative QCD predictions of their
properties against which to compare. Lattice Monte Carlo
simulations provide the only systematically improvable
framework for such studies, but relativistic quark actions
do not lend themselves very easily to lattice simulations of
heavy quark dynamics; the Compton wavelengths of heavy
quarks are small compared to currently feasible lattice
spacings.

Fortunately, the heavy quarks are much heavier than the
hadronic scale � � 200 MeV, while their kinetic energy is
small (as demonstrated by the radial excitations of the
mesons being much smaller than the ground state energy).
This allows a nonrelativistic description of the mesons
using the NRQCD effective field theory [5,6], using the
heavy quark velocity as the expansion parameter.

Simply put, the goal of this paper is to provide matching
coefficients that allow NRQCD matrix elements (calcu-
lated nonperturbatively in a lattice simulation) to be used to
predict heavy quark phenomenology, in particular, the
leptonic widths of the � mesons.

More precisely, to obtain accurate results from a lattice
simulation the QCD and NRQCD actions must be system-
atically improved to eliminate errors due to lattice artifacts,
relativistic corrections, and radiative effects. Both pertur-
bative and nonperturbative methods exist to do this. A
similar program is needed for improvement of lattice op-

erators and currents. In this paper we use perturbation
theory to match matrix elements of the S-wave part of
the vector Q �Q heavy-heavy electromagnetic annihilation
current calculated on the lattice to the continuum result,
ensuring that the lattice results give the correct answer to
O��s� in the strong coupling constant and O�v2� in the
velocity. This technique has already been used to improve
the weak annihilation current for leptonic B-meson decay
[7,8] via the weak annihilation of a heavy quarkQ and light
antiquark �q.

The Q �Q annihilation is more complicated than the weak
Q �q case. In the heavy-light case, we can exploit the cross-
ing symmetry of the relativistic light quark action to match
instead the weak heavy-light Qq form factor. The ampli-
tude for this is purely real and so the choice of integration
contour for the temporal component of the momentum is
straightforward (parallel to the imaginary axis). The
NRQCD action lacks this crossing symmetry and so the
timelike improved lattice vector current (relevant for anni-
hilation) is not a priori related to its spacelike counterpart
(which determines the heavy quark form factor). The am-
plitude for on-shell Q �Q annihilation is complex with a
threshold for Q �Q scattering and has the additional compli-
cation that it contains a Coulomb singularity. The calcu-
lation therefore entails a careful choice for the integration
contours. For heavy quark velocities v > 0 this does not
correspond to the simple Wick rotation (generally with
constant real part displacement) which suffices for the
improvement of the form factor.

In addition, the Coulomb singularity gives rise to terms
odd in v starting at O�v�1�, and the integrand must be
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subtracted in a suitable way so that the numerical integral
along the contour that passes close to the singularity can be
done accurately. None of these difficulties occur in the
matching calculations for the spacelike weak and electro-
magnetic form factors involving heavy quarks. We choose
to match the real part of a suitable linear combination of
the electromagnetic form factors F1�q

2�, F2�q
2� for time-

like q with q2 � 4M2�1� v2�.
Earlier matchings of the vector annihilation current

avoided these issues by either being restricted to tree level
[9] or to v � 0 [10,11]. Neither is satisfactory: v2 and �s
are comparable at around 0:1 in the � system and failure to
include both leads to strong discretization errors in calcu-
lations of the leptonic width [12]. In addition, in [11] only
the simplest NRQCD action was used, keeping only terms
to leading order in v.

This study corrects this, using a gauge action that allows
lattice matrix elements to be calculated using the state-of-
the-art lattice QCD ensembles produced by the MILC
collaboration. The NRQCD action is the same improved
form used in recent studies, e.g. [12,13]. When the match-
ing coefficients calculated here are married to lattice
NRQCD matrix elements, it will allow a determination of
the leptonic width that is correct to O�10%� and of the ratio
of the widths of the 2S and 1S � states correct to within a
few percent. The size of these uncertainties matches those
in the experimental measurements [12], which justifies our
one-loop, perturbative approach in the matching.

The structure of the paper is as follows. In Sec. II we
describe the matching procedure. The continuum QCD
matrix element analytic calculation is given in Sec. III. In
Sec. IV we present the numerical calculation of the corre-
sponding NRQCD matrix elements. The final matching
coefficients are determined in Sec. V, and discussed in
Sec. VI. In the Appendices, we describe the tests we
have applied in our calculation to ensure the correctness
of the Feynman rules and of the loop integration, and also
to establish the independence of the results on the gauge
fixing and infrared regulator.

A preliminary version of this work was presented in
Ref. [14].

II. MATCHING S-WAVE DECAYS

The leptonic width of a heavy quarkonium state of mass
M �QQ is given in terms of a QCD matrix element MME by

 �ee �
16�

6M2
�QQ

jMMEj
2e2
Q�

2
em (1)

where eQ is the electric charge of the heavy quark and �em

the fine structure constant. The matrix element represents
the probability of the heavy quarks meeting and annihilat-
ing, and in the simplest picture is represented by a hydro-
genic ‘‘wave function at the origin’’: jMMEj

2 ’  y �0�.

To compare with the experimentally measured widths,
we want to calculate this matrix element in continuum
QCD, in a way that embodies all the nonperturbative
dynamics. As explained in the Introduction, we cannot
do this directly and must instead use lattice NRQCD
simulations.

The problem is that we do not know a priori which
NRQCD current we should use. Instead, we should con-
sider a set of suitable currents and separately calculate the
matrix elements of each one using the Monte Carlo gen-
erated ensemble. The true QCD matrix element is a linear
combination of these, and this paper provides the necessary
coefficients.

We choose our NRQCD currents to be

 J i � �

�
�2

M2

�
i
; (2)

where bold face symbols denote spatial 3-vectors and M is
the heavy quark mass.

To convert our nonperturbative lattice NRQCD current
matrix elements into the corresponding QCD value,
MME � h0jJQCDj �QQi, we need matching coefficients ai
such that

 h0jJQCDj �QQi �
X
i

aih0jJij �QQi: (3)

In this paper we fix them.
When we calculate the matrix elements of Ji in the

simulation, the mass M will of course be replaced by a
number. We may choose it to be the bare mass or (less
usually) the renormalized value. The ai will differ accord-
ingly, so we will give separate results for the bare and
renormalized cases.

Our matching method is summarized as follows: the
NRQCD matrix elements each depend differently on the
heavy quark velocity (at tree level, for instance,
h0jJij �QQi / v2i). By choosing the ai appropriately we
can match the QCD velocity dependence order by order
in v2. We make this choice perturbatively, performing the
velocity matching at each order in �s in turn [15].

We start by expanding the currents and matching coef-
ficients as power series in �s:

 ai �
X
n

�nsa
�n�
i ; h0jJj �QQi �

X
n

�ns h0jJj �QQi�n�: (4)

The superscript �n� denotes the O��ns � perturbative
contribution.

Working in the Breit frame (where the decaying meson
is stationary), we take the Euclidean four momentum of the
quark and antiquark to be

 p� � �iE0;�p�; p � �0; 0; aMv�: (5)

The dimensionless expansion parameter is v. Although we
refer to it as the heavy quark velocity, it is related to the

true velocity by v � �=
���������������
1� �2

p
.
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We treat the heavy quarks as being on shell. This is
exact, even though we might expect off shell contributions
at O��2

s�. By using the equations of motion, the contribu-
tions from these within a bound state are seen to vanish at
all but a subset of spacetime points of measure zero
[16,17].

A. Matching at tree level

The matching at tree level is essentially trivial. Using the
standard Dirac representation for the �-matrices in terms
of Pauli �-matrices:

 �0 �
1 0
0 �1

� �
; �i �

0 �i

��i 0

� �
; (6)

the spinors become

 u�p� �
 

��p
E�M 

� � ���������������
E�M

2E

s
;

v�p� �
��p
E�M�
�

� � ���������������
E�M

2E

s
;

(7)

where  and� are the standard Pauli spinors for quarks and
antiquarks, respectively. We have chosen the nonrelativis-
tic normalization for consistency with NRQCD, since the
Foldy-Wouthuysen-Tani transformation [18–21] is
unitary.

In terms of these Pauli spinors, the relevant Dirac tensor
components of the nonrelativistic expansion of the tree-
level matrix element h0jJQCD;�j �QQi�0� 	 �v��p���u�p�
are

 

�v��p��0u�p� � 0;

�v��p��u�p� � �y�
�

2

3
�
M
3E

�
 	 f1�v

2��y� ;

�v��p�
i�i0E
M

u�p� � �y�i
�
E

3M
�

2

3

�
 	 f2�v

2��y�i :

(8)

where we have averaged over spatial directions for S-wave
decays [9].

The tree-level matching coefficients must satisfy the
leading order term in Eq. (3):

 h0jJQCDj �QQi�0� �
X
i

a�0�i h0jJij �QQi�0�: (9)

The expansions in powers of v are

 f1�v2� � 1�
1

6
v2 �

1

8
v4 �O�v6�;

f2�v2� � 1�
1

6
v2 �

1

24
v4 �O�v6�:

(10)

Using Eq. (5), the tree-level NRQCD matrix elements can
be written as

 h0jJij �QQi�0� � gi�v��y� : (11)

The tree-level velocity dependence is

 g0�v� � 1 g1�v� � �
4

�aM�2
sin2

�
aMv

2

�

g2�v� �
4

�aM�4

�
4sin2

�
aMv

2

�
� sin2�aMv�

� (12)

such that gi�v� � ��v2�i at lowest order in v.
A term by term comparison of these expansions with

that of f1 yields

 a�0�0 � 1; a�0�1 �
1

6
; a�0�2 �

1

8
�
�aM�2

72
: (13)

B. Matching at one-loop order

To match at one-loop order, we need to calculate the
one-loop QCD and NRQCD corrections to the quark-
antiquark annihilation vertex. The QCD corrections consist
of both self-energy insertions on the external legs and a
vertex correction, and for the case of a quark-antiquark
vertex can be written as

 h0jJQCDj �QQi�1� � F�1�1 �4E
2� �v��p��u�p�

� iF�1�2 �4E
2� �v��p�~qu�p�

� 
F�1�1 �4E
2�f1�v

2�

� F�1�2 �4E
2�f2�v

2���y� (14)

where ~qi 	 �i�q
�=M and F�1�1;2 are the O��s� contributions

to the vertex structure functions. We note that, while after
renormalization F�1�1 is UV-finite because of the Ward
identity, it contains IR divergences. These infrared diver-
gences, however, are the same as those that arise in
NRQCD, since the low-energy behavior of the two theories
is the same.

The O��s� matching condition from Eq. (3) is then

 

X
i

a�1�i h0jJij �QQi�0� � 
F�1�1 �4E
2�f1�v2�

� F�1�2 �4E
2�f2�v

2���y� 

�
X
i

a�0�i h0jJij �QQi�1�

	 �IQCD � INRQCD��
y� : (15)

The infrared divergences cancel between the first two
terms, leaving an IR- and UV-finite expression that can
be evaluated numerically. We opt to project out the �2

component and use the tree-level expectation values of the
NRQCD operators Ji as our basis functions to fit the
difference between the QCD and NRQCD one-loop results
and determine a�1�i :
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X
i

a�1�i gi�v� � IQCD � INRQCD: (16)

To match to O�v2� in this calculation i runs from 0 to 1
only.

III. CONTINUUM QCD CALCULATION

To evaluate IQCD analytically, we must regulate the
infrared Coulomb divergence in the Feynman integrals.
To avoid the complications of twisted boundary conditions,
we introduce a gluon mass � and use the gauge invariant
Stückelberg propagator for the massive vector field [see
Sec. (3-2-3) of Ref. [22]]:

 G�� �
g�� � k�k�=�2

k2 ��2 � i"
�

k�k�=�2

k2 ��2=	� i"
; (17)

where 	 is the gauge fixing parameter.
The one-loop QCD contribution is given by the sum of

the Feynman diagrams shown in Fig. 1. The two leftmost
rescale the tree-level element by the quark wave function
renormalization constant Z. The rightmost diagram is the
one-loop vertex correction. The full one-loop vertex func-
tion is a rather formidable-looking expression [23]. We
know from the Ward identity, however, that the vertex
function must take the form

 �u�p0���u�p� � �u�p0�
�
F1�q2���

�
i

2M
F2�q2����q�

�
u�p� (18)

when sandwiched between on-shell spinors, where q �
p� p0 is the gluon momentum flowing out of the vertex.
We also know from the Ward identity that Z�1 � F1�0�, so
that we can renormalize the vertex function order by order
by subtracting from F1�q

2� its value at zero gluon momen-
tum to obtain the renormalized structure function

 F�n�;R1 �q2� � F�n�1 �q
2� � F�n�1 �0�: (19)

This amounts to including the effects of the first two
diagrams, with which we will therefore no longer concern
ourselves.

For the case of quark-antiquark annihilation, we then
have

 h0jJQCD
� j �QQi�1� � �v��p�

�
F�1�;R1 �4E2���

�
iE
M
F�1�2 �4E

2���0

�
u�p� (20)

or, in terms of Pauli spinors

 h0jJQCD
i j �QQi�1� � �y�i 
F

�1�;R
1 �4E2�f1�v

2�

� F�1�2 �4E
2�f2�v

2��: (21)

To compute F1 and F2 without resorting to the Feynman or
Schwinger parameter representations (which are not avail-
able for NRQCD because the denominators are not qua-
dratic), we employ a number of techniques. A discussion of
these will be useful later.

Since the decomposition of the vertex function into form
factors stated above is only valid between on-shell spinors,
we put it between the appropriate on-shell projectors
 

�p6 �M����p
0;p��p6 �M� � �p6 �M�

�
F1�q

2���

�
i

2M
F2�q

2����q
�
�
�p6 �M�;

(22)

where the appropriate on-shell momenta for an incoming
quark-antiquark pair are given by p� � �E;p� and p0� �

��E;p� with E �
�������������������
M2 � p2

p
.

Contracting the above equation with either �p� p0�� or
��, and taking the trace of both sides, we obtain two
equations for F1 and F2:

 A 	
�p� p0��

2M
Tr��p6 �M����p

0; p��p6 �M��

�
�p� p0�2

2M2 �4M2F1�q
2� � q2F2�q

2��;

B 	 Tr����p6 �M����p
0; p��p6 �M��

� 4�2M2 � q2�F1�q2� � 6q2F2�q2�;

(23)

with solutions

 F1�q
2� �

1

4�4M2 � q2�

�
12M2

�p� p0�2
A� B

�
;

F2�q
2� �

2M2�2M2 � q2�

q2�p� p0�2

�
A

�p� p0�2
�

B

2�2M2 � q2�

�
:

(24)

At the one-loop level, the vertex function is given by the
integral expression (in Feynman gauge)

 ��1�� �p0; p� � 4�C2

Z d4k

�2��4

�
�
�l6 �M����l6 �M��




�k2 ��2��l02 �M2��l2 �M2�
; (25)

IQCD

FIG. 1 (color online). One-loop corrections to the quark-
antiquark annihilation current in QCD.
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where we have defined the loop momenta l � k� p and l0 � k� p0 and introduced a gluon mass � as an infrared
regulator. After performing the manipulations outlined above, this vertex function leads to

 

F�1�1 �q
2� � 4�C2

Z d4k

�2��4
4

�p� p0�2�k2 ��2��l02 �M2��l2 �M2�

�
2M2l � l0 � 2M2�p� p0� � �l� l0�

�
6M2

�p� p0�2
�p� p0� � l�p� p0� � l0 � 2p � l0p0 � l�M4 �M2p � p0

�
;

F�1�2 �q
2� � 4�C2

Z d4k

�2��4
2M2�2M2 � q2�

q2�p� p0�2�k2 ��2��l2 �M2��l02 �M2�

�
4��p� p0� � �l� l0� � l � l0 �M2�

�
2

�p� p0�2
�p� p0� � l�p� p0� � l0 �

8

2M2 � q2 �M
2l � l0 � 2p � l0p0 � l�M2�p� p0�

� �l� l0� � p � p0 � 2M2�

�
(26)

for the structure functions.
In the physical limit �! 0, the one-loop structure

functions are of course well known analytically, since
they are just the QED structure functions multiplied by
the group-theoretic factor C2 � 4=3:

 F�1�;R1 �q2� �
g2C2

4�2

��
log

�
M
� 1

�
�� cot�� 1�

� 2 cot�
Z �=2

0
� tan�d��

�
4

tan
�
2

�

F�1�2 �q
2� �

g2C2

8�2

�
sin�

;

(27)

where

 � � 2 arcsin�E=M�: (28)

We have compared our numerical evaluation of the struc-
ture functions in both the form factor and annihilation
channels with their analytical values and have found ex-
cellent agreement. Especially, we were able to replicate the
infrared divergence by varying our gluon mass �.
Resolving the 1=v Coulomb singularity in the annihilation
channel requires special care. To avoid a contamination of
the low-v behavior by the gluon mass �, which acts as a
cutoff on the v dependence by limiting the momentum of
the exchanged gluon, we have scaled � with v, and then

were able to observe the correct Coulomb singularity
behavior in the infrared finite part of F1.

A. Wick rotation

In doing these calculations, we must be careful how we
Wick rotate our integration contour. In the quark-antiquark
annihilation channel, the poles of the integrands in the
complex k0 plane are located as shown in Fig. 2. For �k�
p�2 > p2, the poles are all located second and fourth
quadrants of the Argand diagram for k0, and the usual
Wick rotation of the integration contour is possible as in
Fig. 2(a). When �k� p�2  p2, the fermionic poles cross
the imaginary k0 axis and we need to be more careful and
deform the contour as per Fig. 2(b). This choice of contour
is, however, impractical. The short piece of the contour
running along the real axis is by far the most dominant
contribution to the integral. We will estimate the value of
the integral using Monte Carlo methods. To get this con-
tribution correctly, we need to sample all three momenta
along the contour with comparable weights. We therefore
use the equivalent contour shown in Fig. 2(c), which works
much more efficiently.

In this triple-contour case, we choose the outlying con-
tours to be midway between the gluonic and fermionic
poles. The Stückelberg gluon propagator has two poles:
one associated with the physical gluon mass, and a second

0
Mk(a) (b) (c)k 0

M k 0
M

FIG. 2 (color online). Locations of the poles and choice of integration contour for the (Minkowski metric) k0 integration in QCD
quark-antiquark annihilation. The solid circles represent poles in the gluon propagator, and the open circles the fermionic poles for
various jkj.
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at �2=	. To avoid possible numerical instabilities, we use
the smaller of the two to fix the position of the outer two
contours.

Note that if we work with v � 0 as in Ref. [10] we can
always Wick rotate as per Fig. 2(a). For nonzero v, how-
ever, it is important to note that the choice of an appropriate
contour is essential to obtain the correct result: with a naive
standard Wick rotation, the structure functions obtained
would not even be Lorentz invariant. We have explicitly
checked that our choice of contours leads to structure
functions that are invariant under a Lorentz boost.
Another point to note is that even in the quark form-factor
channel at spacelike q2, where the quark poles do not cross
each other, a standard Wick rotation about the origin is not
correct, and the rotated contour has to be shifted along the
real axis by an amount depending on the kinematic frame,
in order to pass between the poles and pick up the correct
result.

IV. LATTICE NRQCD CALCULATION

In this section we describe the perturbative calculation
using the lattice NRQCD action.

A. The NRQCD action

The NRQCD action we consider is the same as Gulez
et al. [13], and also the same as has been used in recent
simulations [12,24] (although there is a typographical error
in the description in the latter [25]):
 

SNRQCD �
X
x;t

 y �  y
�

1�
aH

2

��
1�

aH0

2n

�
n

�Uy4

�
1�

aH0

2n

�
n
�
1�

aH
2

�
 ; (29)

The  y field is understood to be located at �t; x�, with the
position of  on the time slice t� 1 fixed by gauge
invariance. Other than consistency with previous work,
there are no strong arguments for the relative ordering of
the kinetic and interaction terms in the action. The ordering
here differs from, for instance, Ref. [6].

The leading kinetic term is

 H0 � �
�2

2aM
; (30)

where M is the bare mass and n is a stability parameter for
the nonrelativistic evolution equation, that must fulfill the
condition n > 3=�2aM� for the time-reversal symmetric
evolution equation [6,26]. Gluonic corrections decrease
the lower bound on n to just above 1=�aM� [27].

The time-reversal symmetric splitting of theH0 operator
either side of the temporal link [6] is designed to mimic the
full time evolution due to H0 along a temporal lattice
spacing in a way that avoids the well-known instability in
the discretization of parabolic differential equations (see,
for instance, Sec. 19.2 of Ref. [28]). In this way, the time

step in the evolution equation is small enough to allow the
highest momentum modes in the theory to come into
equilibrium, while avoiding the need for a very small
lattice spacing which makes the theory too expensive to
simulate.

The interaction term corrects for relativistic and discre-
tization effects:

 aH � �c1
���2��2

8�aM�3
� c2

i

8�aM�2
�r � ~E� ~E � r�

� c3
1

8�aM�2
� � �~r� ~E� ~E� ~r�

� c4
1

2�aM�
� � ~B� c5

��4�

24�aM�
� c6

���2��2

16n�aM�2
:

(31)

We note that improved derivatives are used in the term
proportional to c3 and that the improved field strength has
not been rendered explicitly traceless. The terms propor-
tional to ci for i � 1 . . . 4 provide relativistic corrections to
O�Mv4� [6,29] and represent the relativistic correction to
the kinetic energy, the non-Abelian analogue of the Darwin
term, the spin-dependent interactions leading to spin-orbit
couplings and the quark chromomagnetic moment, respec-
tively. The final two terms remove the leading order dis-
cretization error. All terms are understood to be tadpole
improved. We use the tree-level values ci � 1, as in
Refs. [12,13]. Other than tadpole improvement, we do
not consider the effects of radiatively correcting the ci.

We obtain the Feynman rules for the NRQCD and gauge
actions using an automated procedure [30], as outlined in
Appendix A. We also detail there the tests we have carried
out to ensure that the Feynman rule expressions are correct,
and the techniques we employ to speed up their evaluation
for specific momenta.

B. The lattice gauge action

To maintain compatibility with the MILC collaboration
simulations, we use the Symanzik-improved gauge action

 

SG � ��
X

x; �<�

�
5

3
P���x� �

1

12
R����x� �

1

12
R����x�

�

�O��s�; (32)

where P, R are 1� 1 and 2� 1 Wilson loops, respectively.
O��s� denotes possible radiative and tadpole improvement
of the action. As discussed later, these terms will not
contribute at one-loop.

The inverse lattice Stückelberg propagator is

 ����k� � V���k� � �a��2�� � 	k̂�k̂�; (33)

where the two-point function V�� depends on the action
chosen. Gauge invariance requires the gauge fixing term to
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be constructed from lattice momentum vector k̂� 	
2 sin�ak�=2�, so the Feynman gauge (	 � 1) propagator
is only diagonal for the Wilson gauge action (for which the
gluon two-point function is V�� � k̂
k̂


�� � k̂�k̂�).
Note that 	 � 1=� in the notation of Ref. [31]. As we do
not consider Landau gauge here, the inverse propagator is
directly invertible and we do not need to use an intermedi-
ate gauge.

C. Annihilation currents and radiative improvements

We use lattice NRQCD annihilation currents that are the
naive discretizations of Eq. (2):

 J 0 �
X
x

�yx� x;

J1 �
X3

x;i�1

�yx
�

�aM�2
�Ui�x� x�î �U

y
i �x� î� x�î � 2 x�

(34)

and the links in J1 are understood to be tadpole improved.
Removing the mean field, ‘‘tadpole’’ contributions im-
proves the convergence of lattice perturbation theory mark-
edly [32]. Operationally, this is done by dividing every
gauge link U in the action by a factor of u0. Common
definitions for u0 are that it is the mean link in Landau
gauge or the fourth root of the mean plaquette. We use the
former, expanding the link perturbatively as u0 	

1� �su
�2�
0 � � � � with u�2�0 � 0:750 from Ref. [33] and as

used in Ref. [13].
Tadpole improvement of the NRQCD action does not

contribute to our calculation, as the fermion wave function
renormalization has no tadpole correction for the time-
reversal symmetric form of the NRQCD action (the argu-
ment mirrors the mean field analysis in Ref. [6]). As
discussed before, we do not consider any further radiative
improvements of the NRQCD action.

Tadpole and other radiative improvements of the gauge
action also do not contribute to the matching calculation.
The leading order effect of these is an O��s� insertion in
the gluon propagator. As there are no external gluons in our
calculation, such insertions will only contribute at two
loops and above.

The only effect of tadpole improvement comes from the
current J1, and its contribution to INRQCD can be easily
calculated:

 Itadpole �
2u�2�0 a

�0�
1

�aM�2
X3

i�1

cospi

� �u�2�0 a
�0�
1

�
�

6

�aM�2
� v2 �O�v4�

�
: (35)

The only other possible source of radiative corrections
comes from the mass used in Eq. (2) when we calculate
the nonperturbative NRQCD matrix elements in the Monte

Carlo lattice simulation. If the number M used in the
simulation is the renormalized heavy quark mass, there is
no further correction. If the number for the bare mass is
used instead, the renormalized mass is ZMM and we should
divide the matching coefficient ai by �ZM�2i. In this study,
that amounts to shifting a�1�1 ! a�1�1 � 2a�0�1 Z

�1�
M . We calcu-

late the multiplicative mass renormalization factor in
Appendix B, and will present our results for the matching
coefficients both with and without the shift.

D. Calculating the vertex corrections

The one-loop diagrams contributing to the quark-
antiquark annihilation amplitude in NRQCD are shown
in Fig. 3. The NRQCD k0 integrals are around the unit
circle in the eik0a-plane. The quark poles sometimes cross
the unit circle (just as they crossed the imaginary axis in
the QCD integrals), so we scale the circle of integration to
avoid them and adopt a similar triple-contour strategy:
integrating along three appropriately scaled concentric
circles when the poles cross each other, and along the
unit circle otherwise.

The gi�v� are all even functions of v, but IQCD and
INRQCD both contain odd powers. We must assure ourselves
that these exactly cancel in Eq. (15). The argument is that
NRQCD is an effective theory of QCD which can be
systematically improved to reproduce all features of
QCD, including the odd powers. There are, however, no
S-wave operators containing odd powers of v that we could
use in the improvement. The odd powers must therefore
cancel exactly in Eq. (15). This is not entirely surprising
given that the odd powers arise from an even polynomial in
v multiplied by the 1=v Coulomb IR divergence, and we

earlobe Ibubble

IvertexIz

I

I

x 2

x 2

Σ

tadpole

Σ

FIG. 3 (color online). One-loop corrections to the self-energy
and annihilation current in NRQCD. The gluons in these dia-
grams can be temporal as well as spatial. The solid (blue) circles
represent the current in Eq. (3). The open (red) circle represents
the contribution from tadpole improvement of the current. ‘‘�2’’
denotes a similar diagram on the outgoing fermion line.
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know that NRQCD must reproduce the IR physics exactly.
Nonetheless, it is worth examining the cancellation in more
detail.

Consider the power expansion of the QCD expression

 F�1�;R1 �4E2�f1�v
2� � F�1�2 �4E

2�f2�v
2� (36)

with F�1�;R1 defined in Eq. (19). Using the analytic results
given above, we see that both f1�v2� and f2�v2� contain
only even powers of v. Any odd powers in the expansion
must therefore come from F�1�;R1 �4E2� or F�1�2 �4E

2�. The
analytical evaluation of the structure functions shows us
that F�1�2 �4E

2� contains odd powers in v only in its imagi-
nary part, so the odd powers in the final answer must come
from F�1�;R1 �4E2�.

On the NRQCD side, we know that any odd powers in v
must come from the quark pole giving rise to the Coulomb
singularity, since the residues in the k0-plane of all other
poles can be expanded in powers of v2. The odd powers
therefore originate exclusively from integrals of the form

 

Z d3k

�2��3
�k2���p2��

k2�k2 � 2k � p� i��
: (37)

A careful analysis of these shows that only those integrals
with � � 0 contribute to the real part, whereas the others
(which are UV-divergent in the continuum) contribute only
to the imaginary part. Since

 

Z d3k

�2��3
1

k2�k2 � 2k � p� i��
�

1

16jpj
; (38)

the only odd powers of v in the NRQCD result will come
from multiplying powers of p2 in the numerator with the
Coulomb singularity. Expanding these, we find the same
coefficients multiplying each odd power of v as in the
above QCD result.

We note that to obtain correct results to order v2n we
have to use the correctly matched O�v2n� tree-level anni-
hilation operator. We must also use O�v2n� quark-gluon
vertices in the diagram involving spatial gluons and the
O�v2n�2� quark propagator [the expansion of the latter
around the Coulomb singularity pole gives an O�v2n�
contribution].

In summary, then, matching at tree level to O�v2p�
guarantees the cancellation of the odd powers at one-loop
level to O�v2p�1�.

We will estimate the NRQCD loop integrals stochasti-
cally using the adaptive Monte Carlo package called
VEGAS [34,35] (see Sec. 7.8 of Ref. [28] for further dis-
cussion). These estimates of the NRQCD integrals will
only converge if the integrands are both finite and rela-
tively smooth. Both IQCD and INRQCD have an infrared
Coulomb divergence. Although these are formally regu-
lated by the gluon mass, the integrands are still sharply
peaked, leading to unacceptably slow convergence of the
numerical integration.

As we have discussed, all odd powers of v cancel
pointwise in the difference of the two integrands, IQCD �

INRQCD, leaving a smooth integrand. The obvious strategy
is to numerically estimate the difference as a single inte-
gral, remembering that the NRQCD integrand is only
defined inside the finite Brillouin zone.

Direct subtraction has problems. The NRQCD integrand
is quite complicated and time consuming to evaluate for
given momenta. This limits the number of integration
points that VEGAS can consider in a set time. Conversely,
the QCD integrand needs a large number of points to
accurately estimate the integral: the terms like 1=�p�
p0�2 in Eq. (26) give rise both to an apparently UV-
divergent contribution to the 1=v Coulomb singularity
and 1=v2 term in the result. These terms, however, come
with a factor of cos� from the scalar products with �p�
p0�, and thus vanish only after integration over all spatial
angles.

If we directly subtract the integrands, we arrive at a
function that is both expensive to evaluate and needs
many integration points to converge. To get around this,
we use an analytic form of the QCD structure functions and
only evaluate the NRQCD integrals numerically. For the
latter, we need to smooth out the regulated 1=v infrared
divergence by subtracting an integrand with the same low-
momentum structure. Fortunately, we can still cancel all
the odd powers of v from the NRQCD integrand by multi-
plying the integral to be subtracted by an appropriate
function of v2:
 

Iodd � Im
�
�

4h�v2�

3

Z d4k

�2��4
�k2 ��2��1

�

�
ik0 �

k2 � 2k � p

2M

�
�1
�
ik0 �

k2 � 2k � p

2M

�
�1
�

�
h�v2�

12v
(39)

with

 h�v2� �
�1� 2v2��1� 2

��������������
1� v2
p

�

3�1� v2�
: (40)

This is certainly sufficient for the low powers of v2 which
we are interested in here. By comparing the respective
power-series expansions term by term, it can easily be
seen that the odd powers of v are the same as in the
QCD result.

To evaluate Eq. (16) we therefore take the difference of
�IQCD � Iodd� calculated analytically and �INRQCD � Iodd�

estimated numerically. Both expressions are even power
series in v, and the subtracted NRQCD integrand is now
sufficiently smooth that no change of variable in the mo-
mentum coordinate, designed to ‘‘squash’’ many evalu-
ation points onto the contour in the neighborhood of the
pole [36], is required. It is convenient to split Iodd into two
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integration regions, within (Iin) and outside (Iout) the
NRQCD Brillouin zone jk�j  �=�aM�.
Ivertex and IZ separately have infrared ‘‘cutting’’ diver-

gences that cancel in their sum. Although the divergences
are regulated by the gluon mass, by evaluating Ivertex and IZ

together we would have a smoother integrand for VEGAS.
We meet the same problem as before, however: Ivertex has a
relatively cheap integrand but the VEGAS estimates are slow
to converge. IZ converges quickly, but taking derivatives of
Feynman rules makes the integrand expensive to evaluate.
Therefore, we calculate the NRQCD integrals in Fig. 3
separately using VEGAS, choosing the number of integra-
tion points to give comparable statistical accuracy in the
results.

The final calculation is then made up of

 IQCD � INRQCD � �IQCD � Iodd� � �INRQCD � Iodd�

� �IQCD � Iodd� � �
Ivertex � Iin� � Iout

� IZ � Iearlobe � Ibubble � Itadpole�:

(41)

V. RESULTS

In this paper we present results for four choices of heavy
quark mass: aM � 4:0, 2:8, 1:95, and 1:0. The first three
represent the b-quark mass on the MILC improved stag-
gered ensembles with a ’ 0:09 fm (‘‘fine’’), 0.12 fm
(‘‘coarse’’), and 0.17 fm (‘‘supercoarse’’) [12]. Mass
aM � 1 represents the charm quark mass on the super-
coarse lattices. In agreement with Ref. [12], we use n � 2
for all masses except aM � 1:0, where n � 4.

We choose IR gluon mass �a��2 � 10�4 and use
Feynman gauge 	 � 1. In Appendix C we show that our
results do not depend on either of these choices. We also
compare with relevant existing results in the literature for
v � 0.

The NRQCD diagrams were evaluated for a range of
velocities from v � 0:03 to v � 0:15. In addition, we
evaluated Ibubble and Iearlobe at v � 0. The results are shown
in Table I. We extracted the matching parameters using a
linear fit as per Eq. (16). The matching coefficients a�1�0 and

a�1�1 are given in Tables II and III. Results from the former
are to be used when the number for the renormalized heavy
quark mass is used to construct the currents in Eq. (34).
Results from the latter are to be used if the bare mass is
instead employed.

The results in the renormalized mass case are shown
graphically in Fig. 4. We note that, for smaller masses, the
coefficients of the J1 current, a�1�1 , and b�1�1 are much
smaller when renormalized masses are used.

We have checked that the fits are not biased by higher
terms in the velocity expansion. Note that, whereas �IZ,
�Ivertex, and �Ibubble reduce monotonically as aM is in-
creased, Iout, �Iearlobe, and �Itadpole grow. Given that the
result of combining these will depend on �aM�2, �aM�4,
and 1=�aM�2, it is not surprising that the matching coef-
ficients do not vary monotonically with the heavy quark
mass.

Our computations of these diagrams have been per-
formed on the SunFire Galaxy-class supercomputer at the
Cambridge-Cranfield High Performance Computing
Facility using an implementation of the VEGAS algorithm

TABLE I. Diagrams contributing to matching calculation. Where no statistical error is given, it is smaller than the quoted precision
of the number.

aM v �IQCD � Iodd� �Ivertex � Iin� Iout IZ Iearlobe Ibubble Itadpole IQCD � INRQCD

4.0 0 0.02155 (1) �0:06695�3� 0.046 88
0.03 �0:8511 �1:3258�28� 1.2176 (5) 1.8226 (9) 0.0216 �0:0668 0.0468 �0:1315�30�
0.07 �0:8611 �1:3112�39� 1.2262 (5) 1.8212 (9) 0.0220 �0:0661 0.0463 �0:1452�40�
0.10 �0:8738 �1:2979�44� 1.2370 (5) 1.8247 (9) 0.0224 �0:0652 0.0456 �0:1615�45�
0.15 �0:9044 �1:2636�55� 1.2623 (5) 1.8288 (9) 0.0234 �0:0631 0.0441 �0:2004�56�

2.8 0 0.052 03 (2) �0:13678�5� 0.095 66
0.03 �0:8511 �1:3689�21� 0.9240 (4) 1.6225 (9) 0.0521 �0:1365 0.0956 �0:1736�23�
0.07 �0:8611 �1:3678�29� 0.9468 (4) 1.6241 (9) 0.0526 �0:1359 0.0951 �0:1809�31�
0.10 �0:8738 �1:3659�33� 0.9550 (4) 1.6249 (8) 0.0532 �0:1349 0.0944 �0:1862�35�
0.15 �0:9044 �1:3622�39� 0.9726 (4) 1.6266 (9) 0.0545 �0:1327 0.0929 �0:2007�40�

1.95 0 0.123 94 (3) �0:28210�6� 0.197 24
0.03 �0:8511 �1:3636�15� 0.7415 (2) 1.3505 (8) 0.1241 �0:2820�1� 0.1971 �0:1356�17�
0.07 �0:8611 �1:3669�23� 0.7459 (2) 1.3486 (9) 0.1246 �0:2812�1� 0.1966 �0:1357�24�
0.10 �0:8738 �1:3734�26� 0.7503 (2) 1.3503 (9) 0.1254 �0:2804�1� 0.1960 �0:1379�27�
0.15 �0:9044 �1:3979�84� 0.7634 (4) 1.3537 (14) 0.1271 (1) �0:2780�1� 0.1944 �0:1319�86�

1.0 0 0.5093 (2) �1:0720�4� 0.750 00
0.07 �0:8611 �1:3681�13� 0.5004 (2) 0.4335 (10) 0.5103 (2) �1:0713�4� 0.7494 0.4040 (17)
0.10 �0:8738 �1:3956�16� 0.5034 (2) 0.4323 (10) 0.5110 (2) �1:0701�4� 0.7488 0.4044 (19)
0.15 �0:9044 �1:4146�18� 0.5127 (2) 0.4323 (10) 0.5132 (2) �1:0676�4� 0.7472 0.4005 (21)
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adapted to parallel computers using MPI (message passing
interface).

A. Mixing downwards

Whilst at tree-level matrix elements of J1 contribute
only at O�v2n�, at higher loop orders there will be contri-
butions at lower orders of v2. We call this ‘‘mixing down.’’
In the case of J1, the integrals Iearlobe, Ibubble, and Itadpole are

only weakly momentum dependent and Ivertex also makes a
contribution at v � 0.

This is theoretically inconvenient as we must redo all
previous calculations when we improve the current to
higher orders of v2 and cannot easily compare the new
numbers with the old to check for consistency. We can get
around this by introducing subtracted currents to prevent
this downward mixing of currents. Although not essential
for lattice Monte Carlo calculations, subtracted currents
are also useful here as they make the convergence of the
double series in �s and v2 in Eq. (3) most explicit. Thus,
we can expect that the matrix element of the subtracted J1

will vary as v2 (to some order in �s).
We define the subtracted currents as �Ji 	 zijJj, where

the coefficients zij are chosen to prevent this downward
mixing of currents at all radiative orders:

 jh0j �Jij �QQi�n�j � v2i �O�v2�i�1�� 8 n: (42)

At tree level z�0�ij � ij. At higher loop level we set z�n>0�
ij �

0 for j � i, as we are only concerned with preventing
downward mixing. For O�v2�matching, the only nontrivial
element is z�1�10 , fixed by

 z�0�1j h0jJjj �QQi�1� � z�1�1j h0jJjj �QQi�0�jv�0 � 0;

) z�1�10 � �h0jJ1j �QQi�1�jv�0:
(43)

Note that in this calculation we consider only Ibubble, Iearlobe

Itadpole, and Ivertex, all at v � 0. Data for z�1�10 are given in
Table IV. The reader should note that the numbers in
column 3 are not exactly the sum of the numbers for v �
0 in Table I. We have improved the accuracy of these by
extrapolating data for all v to v � 0 using g1�v�.

Correcting for mixing down does not change the tree-
level matching coefficients. The subtracted one-loop fac-
tors are related to the original numbers by

 �a �1�0 � a�1�0 � z
�1�
10 ; �a�1�1 � a�1�1 : (44)

As this subtraction is less likely to be needed in a lattice

0 0.01 0.02 0.03 0.04

g1(v) = v
2
 + O(v

4
)

-0.2

0

0.2

0.4

I Q
C

D
 -

 I N
R

Q
C

D aM = 1.0
aM = 1.95
aM = 2.8
aM = 4.0

FIG. 4 (color online). The fits to the tadpole improved data
versus velocity dependence of h0jJ1j �QQi�0�.

TABLE IV. The mixing down subtraction. All diagrams are
evaluated at v � 0. See the comment below Eq. (43) for details
of column 3.

Ibubble � Iearlobe�

Ma n Itadpole Ivertex z�1�10

4.0 2 0.001 46 (2) �0:118 89 (4) 0.117 43 (5)
2.8 2 0.010 94 (4) �0:172 65 (6) 0.161 71 (8)
1.95 2 0.039 07 (5) �0:261 96 (9) 0.222 89 (11)
1.0 4 0.1870 (3) �0:829 70 (26) 0.6427 (4)

TABLE III. The matching coefficients, as a function of the
bare heavy quark mass, for the leptonic width (ai) and leptonic
width ratio (bi). Note that a0

0 � 1, a0
1 � b�0�1 �

1
6 , and that there

is no subtraction to prevent mixing down.

Ma n a�1�0 a�1�1 b�1�1 b�0�2

4.0 2 �0:1288�27� �3:32�29� �3:30�30� �0:097 22
2.8 2 �0:1732�21� �1:35�22� �1:32�22� 0.016 11
1.95 2 �0:1358�16� �0:16�16� �0:14�17� 0.072 19
1.0 4 0.4056 (20) �0:50�16� �0:56�17� 0.111 11

TABLE II. The matching coefficients, as a function of the
renormalized heavy quark mass, for the leptonic width (ai)
and leptonic width ratio (bi). Note that a0

0 � 1, a0
1 � b�0�1 �

1
6 ,

and that there is no subtraction to prevent mixing down.

Ma n a�1�0 a�1�1 b�1�1 b�0�2

4.0 2 �0:1288�27� �3:29�29� �3:27�30� �0:097 22
2.8 2 �0:1732�21� �1:27�21� �1:24�22� 0.016 11
1.95 2 �0:1358�16� �0:02�16� 0.00 (17) 0.072 19
1.0 4 0.4056 (20) �0:22�16� �0:29�17� 0.111 11
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evaluation of NRQCD matrix elements, it has not been
applied to the results in Tables II and III.

B. Matrix element ratios

If we are only interested in the ratio of leptonic widths
of, say, ��2s� and ��1s�, we do not care about the overall
normalization of the matrix element (which is independent
of the mass of the meson). We can therefore express the
ratio of leptonic widths as a ratio of differently normalized
matrix elements

 

MME

a0
� hJ0i �

a1

a0
hJ1i �

a2

a0
hJ2i

	 hJ0i � b1hJ1i � b2hJ2i: (45)

The advantage of this is that for � states v2 � �s � 0:1.
We can obtain a ratio that is accurate to a few percent,
O�1%–5%� (to two loops, effectively) by knowing a0, a1 to
one-loop and a2 to tree level. That is, by knowing no more
than we have already calculated in this paper:

 b1 	
a1

a0
�
a�0�1

a�0�0

�
�s
a�0�0

�
a�1�1 �

a�0�1 a
�1�
0

a�0�0

�
;

b2 	
a2

a0
�
a�0�2

a�0�0

:

(46)

We give these values for the unsubtracted currents in
Tables II and III. Note that the inclusion of J2 at this order
does not affect a�1�0 , a�1�1 , as there is no mixing down at tree
level.

VI. SUMMARY AND CONCLUSIONS

In this paper we have presented a method to determine
the QCD/NRQCD matching coefficients for electromag-
netic decays of heavy quarkonia in lattice perturbation
theory to order O�v4; �sv2�. This calculation was carried
out for a realistic lattice NRQCD action using largely
automated methods for performing lattice perturbation
theory.

The lattice NRQCD currents are given in Eq. (34). When
calculating their matrix elements in a lattice Monte Carlo
simulation, we have a choice as to whether we replace M
by the renormalized heavy quark mass or the bare mass. If
we chooseM to be the renormalized heavy quark mass, the
relevant matching coefficients are given in Table II. If the
bare mass is used instead, the matching coefficients include
ZM and are given in Table III.

We note that, for the smaller quark masses, the a�1�1 and
b�1�1 coefficients of the current J1 are very much smaller
when the renormalized quark mass is used. This is particu-
larly relevant to NRQCD simulations of charm quarks on

fine lattices, and shows that the use of the renormalized
rather than bare mass is a major source of improvement in
such simulations.

Individual Feynman diagrams vary monotonically with
the mass, but when combined together the competing
dependencies lead to the final answer varying as a compli-
cated function of M.

We have performed a wide variety of checks of our
calculation: we have confirmed that the Feynman rules
are correctly generated by comparing with separately ob-
tained expressions in the literature, and that the one-loop
self-energy renormalization similarly agrees. We have
checked that the infrared divergences vary as expected
with changes in the size of the regulating gluon mass and
the choice of gauge. We have also checked that the final
answer is independent of both of these factors. We have
assured ourselves that the statistical errors quoted by
VEGAS are consistent with the size of variations in the
Monte Carlo estimates of the one-loop integrals.

These results could conceivably be checked using a
series of high-� Monte Carlo simulations [37]. Looking
further, the computation of the perturbative one-loop cor-
rection to the coefficient c1 of the � �B could be carried
out using the methods employed in this paper.
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APPENDIX A: FEYNMAN RULES

We use an automated method to obtain Feynman rules
from the actions and currents used in this calculation. The
algorithm and its implementation are described in
Ref. [30]. This allows us to specify the action as a set of
Wilson line contours that are then Taylor expanded. The
symmetries of the action are exploited to produce very
compact descriptions of the reduced vertex functions as
sums of n monomials (each involving a relatively expen-
sive exponentiation).

The gluonic action expansion has been tested in a num-
ber of calculations [31,38– 40]. The expansion of the cur-
rents was checked by hand.

We tested the NRQCD action expansion by comparing
with the Feynman rules quoted in Eqs. (A11)–(A36) of
Ref. [13]. We find complete agreement for general ci, save
in Eq. (A33) which gives the two gluon vertex for momenta
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specific to the gluon tadpole graph. Our automated method shows this expression to be incomplete; it should read

 
O1�
�2��;�
s�0 �k; k; q;�q� �

�
c1

2�aM0�
3 �

c6
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2
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�
ij cos�kj�

X3

l�1

sin2

�
kl
2

�
�

1

2
sin
�
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2

�
sin
�
kj �

qj
2

��

�
ic2

16�aM0�
2

�
��;j�;0 � �;0�;j� cos

�
kj �

qj
2

�
sin�qj� cos

�
q0

2

�
�j0 � �;j�;j2 cos

�
kj �

qj
2

�

� sin�q0� cos
�qj

2

�
�j0

�
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�c5

12�aM0�
�;j�;j

�
cos�kj� � cos�2kj�cos2

�qj
2

�
�

1

2
sin�2kj� sin�qj�

�
(A1)

where the change is the addition of the final, underlined
term. This vanishes for k � 0 and so does not affect the
results in Ref. [13]. Nonetheless, our detecting it highlights
the usefulness of an automatic action expansion program
both for developing new improved actions and for check-
ing existing perturbative results. We are happy to share
copies of the program with interested parties.

The NRQCD action in Eq. (29) naturally factorizes into
the product of several distinct operators:

 SNRQCD �
X
t

 yt  t �  
y
t AtBtU

y
4Bt�1At�1 t�1; (A2)

where

 A �
�
1�

H0

2n

�
n
; B �

�
1�

aH
2

�
; (A3)

and the subscript refers to the time slice on which the fields
are located.

In the ‘‘by-hand’’ expansion it simplifies the algebra to
derive separate Feynman rules for A and B and combine
them using the convolution theorem [13,29]. We also
follow this approach: the AB and BA factors are on differ-
ent time slices so no compression of the set of monomial
factors (‘‘entities’’) contributing to the reduced vertex
function can occur. Without such compression, it is com-
putationally cheaper to calculate the Feynman rules as a
convolution of the expansions of A and B. The implemen-
tation of this has been checked by comparing with the
reduced vertex functions from the expansion of the full
action.

Partial derivatives of the Feynman rules are computed
automatically in the code as per Ref. [30]. We exploit the
fact that the velocity is purely along the z-axis to write

 

@

@p2 �
1

2p3

@
@p3

: (A4)

The total on-shell derivative is implemented as

 

d

dp2 �
@

@p2 �
dp0

dp2

@
@p0

;
dp0

dp2 �
i

1� T�p�
dT�p�

dp2 ;

(A5)

with T�p� � G�1
0 �0;p� coming from the bare fermion

propagator.

APPENDIX B: RENORMALIZING THE FERMION
PROPAGATOR

In this Appendix we review the one-loop renormaliza-
tion of the fermion propagator. The bare fermion propa-
gator is

 aG�1
0 �p0;p� � 1� z�1� aT�p2��; (B1)

where z � e�iap0 and T�p� is the kinetic energy. The
O��s� NRQCD quark self-energy can always be written as
 

a��p0;p� � A� B�p0;p�aT�p�

� C�p0;p�
1� z�1� aT�p���; (B2)

where A is a constant. The resummed propagator is
 

aG�1�p0;p� � aG�1
0 �p0;p� � �sa��p0;p�

� �1� �s�A� C��
1� z�1� �sA�

� �1� aT�p�
1� �sB=z��� �O��2
s�:

(B3)

In the infrared limit of small p2, this should be compared to
the renormalized form of Eq. (B1):

 aG�1 � Z�1
 �1� �z
1� aTR�p���; (B4)

with TR�p� � p2=�ZMM�. Identifying �z � z�1� �sA�, the
additive shift in the rest energy is

 a�Erest � ln�z=�z� � ��sA�O��2
s�; (B5)

and A � a��p0 � 0;p � 0�. The p0 pole in the propaga-
tor occurs at �z � z0 	 �1� aTR�

�1. The wave function
renormalization is found by Taylor expanding Eq. (B3)
around this pole:

 Z �p� � 1� �s

�
A� C� BaT � aT �z

@B
@�z

�
on-shell

� 1� �s

�
a��

@a�

@�iap0�

�
on-shell

; (B6)

where the expressions are evaluated on the mass shell. As
the terms in brackets are already O��s�, it is sufficient to
identify T and TR and evaluate them at the pole of the bare
propagator �z � �1� aT��1. This result is general and in-
cludes all orders in v2 at O�g2�. Morningstar [29] gives the
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expression for Z at zeroth order in v2 and our result agrees
with his to this order.

Working on the renormalized mass shell, the mass re-
normalization follows from

 

1

2ZMM
�
dTR
dp2

��������p2�0
�

1

2M
� �s

d�BT�

dp2

��������p2�0
: (B7)

We note that the total differential must also be evaluated on
the (bare) mass shell. From this we obtain

 ZM � 1� �s2M
da�

dp2

��������p2�0
: (B8)

Tadpole improvement affects �Erest and ZM, but not Z for
NRQCD actions that are symmetric under time reversal
[6]. The one-loop contributions are given in Eqs. (35) and
(36) of Ref. [13].

APPENDIX C: FURTHER CODE TESTS

In this Appendix we describe further, nontrivial tests of
our perturbative calculation that verify that our contour
shifting and numerical integration techniques are correct.

1. One-loop self-energy

We have calculated the renormalization of the NRQCD
propagator as per Appendix B using Feynman gauge and a
gluon mass of �a��2 � 10�4. The results are given in
Table V. For comparison, we also give the results of
Gulez et al. [13]. Our data agree very closely. This provides
further evidence that not only are our Feynman rules
correct, but also that we are combining them correctly to
form diagrams and evaluating the resulting integrals cor-
rectly using VEGAS. We have also checked that the results
are correctly gauge variant and that the effect of the finite
gluon mass is negligible.

2. Gauge covariance and invariance

We have also looked closely at the effect of changing the
gauge and infrared regulator. For these tests, we use a
simpler NRQCD action with coefficients ci � 0 for i �
1 . . . 4 and c5 � c6 � 1, as used in Ref. [10], with n � 2
and aM � 2:1. We used both the Wilson and Symanzik-

improved gauge actions and set current J1 � 0, which
implies Iearlobe � Ibubble � Itadpole � 0. We use three
choices of gauge: Feynman gauge 	 � 1, an unnamed
gauge with 	 � 2, and Yennie-Fried gauge 	 � 1

3 .
First, IQCD � INRQCD should be independent both of the

choice of gauge and the gluon mass. This is seen for v �
0:03 in Fig. 5. We note that the size of the scatter of points
about a single mean value is consistent with the statistical
errors assigned to the data points by VEGAS. This gives us
some confidence that these errors are not being underesti-
mated in our calculation.

Next, Z and V separately have infrared divergences that
are regulated by the gluon mass, but which cancel in Z�
V. The cancellation has already been shown by the absence
of diverging behavior at small a� in Fig. 5.

Here we check that the individual diagrams show the
correct divergence. We compare with the expectations for
continuum QCD: lattice NRQCD is an effective descrip-
tion of this and must preserve the same infrared structure
(up to possible discretization errors of order a�).

0.0001 0.001 0.01

gluon mass, (aµ)
2

-0.045

-0.04

-0.035

-0.03

-0.025

-0.02

I Q
C

D
 -

 I N
R

Q
C

D

α=0.5
α=1.0
α=3.0

Symanzik glue

Wilson glue

FIG. 5 (color online). IQCD � INRQCD for the NRQCD action
described in Appendix C 2 at aM � 2:1 and v � 0:03.

TABLE V. The renormalization of the fermion propagator, as compared to Ref. [13]. Note that
an IR factor corresponding to Eq. (C2) with �a��2 � 10�4 has been applied to the subtracted
data quoted in Ref. [13] for Z�1� �p � 0�.

Z�1� �p � 0� Z�1�M a�E�1�0

aM n Us Ref. [13] Us Ref. [13] Us Ref. [13]

4.0 2 1.8207 (7) 1.813 (3) 0.0817 (5) 0.082 (4) 0.8390 (1) 0.850
2.8 2 1.6232 (6) 1.617 (3) 0.2350 (6) 0.235 (4) 0.7570 (10) 0.767
1.95 2 1.3494 (5) 1.344 (3) 0.4201 (8) 0.421 (4) 0.6765 (10) 0.689
1.0 4 0.4334 (7) 0.8285 (16) 0.9684 (13)

6 0.410 (3) 0.859 (4) 0.758
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Given the lack of overall divergence in Z� V, it is
sufficient to concentrate on Z, which is determined to
greater statistical accuracy.

The one-loop continuum expression is given in Eq. (7-
44) of Ref. [22] (adding a color factor of 4=3):

 Zcont � �
1

12�2

�
1

	
ln

�2

M2 � 3 ln
�2

M2 �
1

	
ln
�2

	M2 �
9

4

�
(C1)

The infrared divergent contribution is

 ZIR � �
1

12�2

�
3�

1

	

�
ln�2; (C2)

which vanishes in Yennie-Fried gauge.
In Fig. 6 we plot Z with the continuum divergence

removed (replacing � by a�). There is no discernible
divergence as a�! 0. The slight gradient betrays a resid-
ual dependence on the gluon mass. To emphasize this, we
plot the deviation �Z�a�� � Z�a�� � Z�10a�� in Fig. 7.
The deviation disappears as we take a� to zero and is a
discretization effect.

3. Current matching at v � 0

Finally, we have tried to verify the one-loop, O�v0�
annihilation current matching of Jones and Woloshyn
[10]. Following the method in the main text, we get a�1�0 �
�0:0225�3� for �a��2 � 10�4 and �0:0228�3� for
�a��2 � 10�3 (using n � 2 and aM � 2:1 with the
Symanzik gauge action). The extrapolations to v � 0 are
shown in Fig. 8. The statistical compatibility of the results

shows that �a��2 � 10�4 is small enough that any residual
gluon mass dependence of the results is swamped by the
statistical uncertainties in the VEGAS integration.

At the same parameter values, Jones and Woloshyn give
a�1�0 � �0:0253�3� [inserting the appropriate number from
Table II into their Eq. (27)]. This result broadly agrees with
ours, which gives us confidence that there are no gross
disagreements in our methods.
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FIG. 8 (color online). Determination of a�1�0 for the NRQCD
action described in Appendix C 2 at aM � 2:1 and v � 0:03
using the Wilson gauge action.
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FIG. 7 (color online). �Z for the NRQCD action described in
Appendix C 2 at aM � 2:1 and v � 0:03 using the Wilson
gauge action.
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FIG. 6 (color online). Z� ZIR for the NRQCD action de-
scribed in Appendix C 2 at aM � 2:1 and v � 0:03 using the
Wilson gauge action.
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There is still a small, but apparently significant devia-
tion, which we also see at a second mass value. The
stringent tests described in these Appendices were our
attempt to account for this difference. As already de-
scribed, we have checked our Feynman rules are correct
and give the correct self-energy (and derivatives). We find

the correct infrared divergences and Lorentz invariance.
We have gauge invariance and independence on the gluon
mass regulator. We have also checked that the statistical
errors quoted by VEGAS are not underestimated. In light of
these, we feel confident that our calculation is correct.
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