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The Fourier transform of the deeply virtual Compton scattering amplitude (DVCS) with respect to the
skewness parameter � � Q2=2p � q can be used to provide an image of the target hadron in the boost-
invariant variable �, the coordinate conjugate to light-front time � � t� z=c. As an illustration, we
construct a consistent covariant model of the DVCS amplitude and its associated generalized parton
distributions using the quantum fluctuations of a fermion state at one loop in QED, thus providing a
representation of the light-front wave functions (LFWFs) of a lepton in � space. A consistent model for
hadronic amplitudes can then be obtained by differentiating the light-front wave functions with respect to
the bound-state mass. The resulting DVCS helicity amplitudes are evaluated as a function of � and the
impact parameter ~b?, thus providing a light-front image of the target hadron in a frame-independent three-
dimensional light-front coordinate space. Models for the LFWFs of hadrons in �3� 1� dimensions
displaying confinement at large distances and conformal symmetry at short distances have been obtained
using the AdS/CFT method. We also compute the LFWFs in this model in invariant three-dimensional
coordinate space. We find that, in the models studied, the Fourier transform of the DVCS amplitudes
exhibit diffraction patterns. The results are analogous to the diffractive scattering of a wave in optics
where the distribution in � measures the physical size of the scattering center in a one-dimensional
system.
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I. INTRODUCTION

Deeply virtual Compton scattering (DVCS), ���q� �
p�P� ! ��q0� � p�P0�, where the virtuality of the initial
photonQ2 � �q2 is large, provides a valuable probe of the
elementary quark structure of the target proton near the
light cone. At leading twist, QCD factorization applies [1],
and each DVCS helicity amplitude factorizes as a convo-
lution in x of the hard ��q! �q Compton amplitude with
a hadronic subamplitude constructed from the generalized
parton distributions (GPDs) H�x; �; t�, E�x; �; t�, ~H�x; �; t�
and ~E�x; �; t�. Here x is the light-cone momentum fraction
of the struck quark; the skewness � � Q2

2P�q measures the
longitudinal momentum transfer in the DVCS process.

Measurements of the momentum and spin dependence
of the DVCS process in e�p! �e�p can provide a re-
markable window to the QCD structure of hadrons at the
amplitude level. The interference of the DVCS amplitude
and the coherent Bethe-Heitler amplitude leads to an e�

asymmetry which is related to the real part of the DVCS
amplitude [2]. The imaginary part can also be accessed
through various spin asymmetries [3]. In the forward limit
of zero momentum transfer, the GPDs reduce to ordinary
parton distributions; on the other hand, the integration of
GPDs over x reduces them to electromagnetic and gravi-
tational form factors.

The DVCS helicity amplitudes can be constructed in
light-cone gauge from the overlap of the target hadron’s
light-front wave functions (LFWFs) [4,5]. Since the DVCS
process involves off-forward hadronic matrix elements of
light-front bilocal currents, the overlaps are, in general,
nondiagonal in particle number, unlike ordinary parton
distributions. Thus in the case of GPDs, one requires not
only the diagonal parton number conserving n! n over-
lap of the initial and final light-front wave functions,
but also an off-diagonal n� 1! n� 1 overlap, where
the parton number is decreased by 2. Thus the GPDs
measure hadron structure at the amplitude level in contrast
to the probabilistic properties of parton distribution
functions.

The GPDs have become objects of much theoretical as
well as experimental attention since they provide a rich
source of information of hadron structure. Burkardt has
noted that a Fourier transform (FT) of the GPDs with
respect to the transverse momentum transfer �? in the
idealized limit � � 0 measures the impact parameter de-
pendent parton distributions q�x; b?� defined from the
absolute squares of the hadron’s light-front wave functions
(LFWFs) in x and impact space [6,7]. The impact repre-
sentation on the light front was first introduced by Soper
[8] in the context of the FT of the elastic form factor (see
Appendix A). The function q�x; b?� is defined for a hadron
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with sharp plus momentum P�, localized in the transverse
plane, such that the transverse center of momentum van-
ishes, R? � 0. (One can also work with a wave packet
localized in the transverse position space in order to avoid a
state normalized to a � function.) Thus q�x; b?� gives
simultaneous information on the distributions of a quark
as a function of the longitudinal light-front momentum
fraction x � k�=P� � �k0 � k3�=�P0 � P3� and the trans-
verse distance b? of the parton from the center of the
proton in the transverse plane. We use the standard LF
coordinates P� � P0 � P3, y� � y0 � y3. Since the pro-
ton is on shell, P�P� � P2

? � M2
p.

Since the incoming photon is spacelike (q2 < 0� and the
final photon is on shell (q02 � 0), the skewness � is never
zero in a physical experiment. In this paper, we will inves-
tigate the DVCS amplitude in the longitudinal position
space by taking the FT with respect to � . We show that
the FT of the DVCS amplitude in � reveals the structure of
a hadron target in a longitudinal impact parameter space.
Thus, our work is suited for the direct analysis of experi-
mental data and is complementary to the work of Burkardt
and Soper. Physically, the FT of the DVCS amplitude
allows one to measure the correlation within the hadron
between the incoming and outgoing quark currents at
transverse separation b? and longitudinal separation � �
b�P�=2 at fixed light-front time � � z� t=c. Since
Lorentz boosts are kinematical in the front form, the cor-
relation determined in the three-dimensional b?, � space
is frame independent.

Even though light-front dynamics was proposed by
Dirac [9] more than 50 years ago, and the utility of the
light-front momentum fraction x � k�=P� dates to the
inception of the Feynman parton model, very little is
known about the longitudinal coordinate space structure
of hadron wave functions and related physical observables.
To the best of our knowledge, the first work to investigate
this subject is Ref. [10] where it is shown that by Fourier
transforming the form factors one observes profiles in b�

with kinks and antikinks. In addition to the light-front
longitudinal structure of DVCS amplitudes in one-loop
QED and meson models, we also present the correspond-
ing structure of the LFWFs of the quantum fluctuations of a
lepton to order e2 in QED.

Burkardt [6] has noted the possibility of taking the FT
with respect to the longitudinal momentum of the active
quark. However, since the GPDs depend on a sharp x, the
Heisenberg uncertainty relation severely restricts the lon-
gitudinal position space interpretation of GPDs. In con-
trast, we will deal directly with DVCS amplitudes which
are integrated over x and take the FT with respect to the
longitudinal momentum transfer.

It has been shown in [11] that one can define a quantum
mechanical Wigner distribution for the relativistic quarks
and gluons inside the proton. Integrating over k� and k?,
one obtains a four-dimensional quantum distribution which

is a function of ~r and k�, where ~r is the quark phase space
position defined in the rest frame of the proton. These
distributions are related to the FT of GPDs in the same
frame. However, the Wigner distributions cannot be mea-
sured experimentally.

In contrast, we will study the observable DVCS ampli-
tudes directly in longitudinal position space. We shall show
that the Fourier transforms of the DVCS amplitudes in the
variable � � b�P�=2, where the three-dimensional coor-
dinate ~b � �b?; b�� is conjugate to the momentum transfer
~�, provide a light-front image of the target hadron in a
frame-independent three-dimensional light-front coordi-
nate space. We find that, in the models studied, the
Fourier transforms of the DVCS amplitudes exhibit dif-
fraction patterns. The results are analogous to the diffrac-
tive scattering of a wave in optics where the distribution in
� measures the physical size of the scattering center in a
one-dimensional system.

A summary of our main results has been given in [12]. In
this paper we will present a detailed analysis and provide
several additional results.

In order to illustrate the general framework, we will
present an explicit calculation of the FT of the DVCS on
a fermion in QED at one-loop order [13]. In effect, we shall
represent a spin- 1

2 system as a composite of a spin- 1
2

fermion and a spin-1 vector boson, with arbitrary masses
[4]. This one-loop model is self-consistent since it has the
correct interrelation of different Fock components of the
state as given by the light-front eigenvalue equation [14].
In particular, its two- and three-body Fock components can
be obtained analytically from QED. This model has been
used to calculate the spin and orbital angular momentum of
a composite relativistic system [15] as well as the GPDs in
the impact parameter space [16,17]. The calculation is thus
exact to O���, and it gives the Schwinger anomalous
magnetic moment, the corresponding electron’s Dirac
and Pauli form factors [15,16], as well as the correct
gravitational form factors, including the vanishing of the
anomalous gravitomagnetic moment B�0� in agreement
with the equivalence theorem [18]. In addition, it provides
a template for the wave functions of an effective quark-
diquark model of the valence Fock state of the proton light-
front wave function.

Deep inelastic scattering structure functions and their
connection to the spin and orbital angular momentum of
the nucleon have been addressed for a dressed quark state
in light-front QCD in [19,20] using a similar Fock space
expansion of the state. This approach has also been used to
investigate the twist-three GPDs in [21]. We will also
present here numerical results for a simulated model for
a mesonlike hadron, which we obtain by taking a derivative
of the dressed electron LFWF with respect to the bound-
state mass M, thus improving the behavior of the wave
function towards the end points in x. In this model, the
DVCS amplitude is purely real. A similar power-law
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LFWF has been used in [22] to construct the GPDs for a
meson.

In principle, the LFWFs of hadrons in QCD can be
computed using a nonperturbative method such as discre-
tized light-cone quantization (DLCQ), where the LF
Hamiltonian is diagonalized on a free Fock basis [14].
This has been accomplished for simple confining quantum
field theories such as QCD �1� 1� [23].

Models for the LFWFs of hadrons in �3� 1� dimensions
displaying confinement at large distances and conformal
symmetry at short distances have been obtained using the
AdS/CFT method [24]. We will also present the LFWFs in
this hadron model in invariant three-dimensional coordi-
nate space by Fourier transforming in both x and k?.

The plan of the paper is as follows: Sec. II summarizes
the kinematics of the DVCS process. In Sec. III we give the
analytic expressions for the DVCS amplitude and its ex-
plicit formulas in QED at one loop. The calculation of the
Fourier transform of the DVCS amplitude for an electron
target at one loop is given in Sec. IV. The simulated hadron
model is discussed in Sec. V. We then derive the DVCS
amplitudes using a model meson LFWF as obtained from
holographic QCD in Sec. VI. A summary and the conclu-
sions are given in Sec. VII.

II. KINEMATICS

The kinematics of the DVCS process has been given in
detail in [4,5]. One can work in a frame where the momenta
of the initial and final proton has a �! �� symmetry [4];
however, in this frame, the kinematics in terms of the
parton momenta becomes more complicated. Here, we
shall use the frame of Ref. [4]. The momenta of the initial
and final proton are given by

 P �
�
P�; ~0?;

M2

P�

�
; (2.1)

 P0 �
�
�1� ��P�;� ~�?;

M2 � ~�2
?

�1� ��P�

�
; (2.2)

where M is the proton mass. The four-momentum transfer
from the target is

 � � P� P0 �
�
�P�; ~�?;

t� ~�2
?

�P�

�
; (2.3)

where t � �2. In addition, overall energy-momentum con-
servation requires �� � P� � P0�, which connects ~�2

?,
� , and t according to

 t � 2P �� � �
�2M2 � ~�2

?

1� �
: (2.4)

The coordinate b conjugate to � is defined by b �� �
1
2 b
��� � 1

2b
��� � b? ��?. We also define the boost-

invariant variable � � b�P�=2 so that 1
2b
��� �

1
2b
�P�� � �� . Thus � is an ‘‘impact parameter’’ but in

the boost-invariant longitudinal coordinate space.
It is convenient to choose a frame where the incident

spacelike photon carries q� � 0 so that q2 � �Q2 �

� ~q2
? (however, it is not mandatory to choose this frame):

 q �
�
0; ~q?;

� ~q? � ~�?�
2

�P�
�
�M2 � ~�2

?

�1� ��P�

�
; (2.5)

 q0 �
�
�P�; ~q? � ~�?;

� ~q? � ~�?�
2

�P�

�
: (2.6)

We will be interested in deeply virtual Compton scattering,
where Q2 is large compared to the masses and �t. Then,
we have

 

Q2

2P � q
� � (2.7)

up to corrections in 1=Q2. Thus � plays the role of the
Bjorken variable in deeply virtual Compton scattering. For
a fixed value of �t, the allowed range of � is given by

 0 	 � 	
��t�

2M2

� �������������������
1�

4M2

��t�

s
� 1

�
: (2.8)

III. DEEPLY VIRTUAL COMPTON SCATTERING

The virtual Compton amplitude M��� ~q?; ~�?; ��, i.e.,
the transition matrix element of the process ���q� �
p�P� ! ��q0� � p�P0�, can be defined from the light-
cone time-ordered product of currents

 M��� ~q?; ~�?; �� � i
Z
d4ye�iq�yhP0jTJ��y�J��0�jPi;

(3.1)

where the Lorentz indices� and � denote the polarizations
of the initial and final photons, respectively. In the limit
Q2 ! 1 at fixed � and t the Compton amplitude is thus
given by

 

MIJ� ~q?; ~�?; �� � 	I�	�J� M��� ~q?; ~�?; ��

� �e2
q

1

2 �P�
Z 1

��1
dz
�
tIJ�z; �� �U�P0�




�
H�z; �; t��� � E�z; �; t�

i
2M


 ��������

�
U�P�

�
; (3.2)

where �P � 1
2 �P

0 � P�. For simplicity we only consider one
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quark with flavor q and electric charge eq. Here we con-
sider the contribution of only the spin-independent GPDs
H and E. Throughout our analysis we will assume the Born
approximation to the photon-quark amplitude; i.e., the
‘‘handbag’’ approximation, corresponding to setting the
Wilson line to 1 in light-cone gauge. In principle, there
can be rescattering corrections in the light-cone gauge
between the spectators at leading twist analogous to those
which occur in diffractive deep inelastic scattering [25],
but these will not be considered here.

For circularly polarized initial and final photons (I, J are
" or # ) we have

 t""�z; �� � t##�z; �� �
1

z� i	
�

1

z� � � i	
;

t"#�z; �� � t#"�z; �� � 0:

(3.3)

The two photon polarization vectors in light-cone gauge
are given by

 	";# �
�

0; ~	";#? ;
~	";#? �

~k?
2k�

�
; ~	";#? � �

1���
2
p

1
�i

� �
; (3.4)

where k denotes the appropriate photon momentum. The
polarization vectors satisfy the Lorentz condition k � 	 �
0. For a longitudinally polarized initial photon, the
Compton amplitude is of order 1=Q and thus vanishes in
the limit Q2 ! 1. At order 1=Q there are several correc-

tions to the simple structure in Eq. (3.2). We do not con-
sider them here.

The generalized parton distributions H, E are defined
through matrix elements of the bilinear vector and axial
vector currents on the light cone:

 

Z dy�

8

eizP

�y�=2hP0j � �0��� �y�jPijy��0;y?�0

�
1

2 �P�
�U�P0�

�
H�z; �; t��� � E�z; �; t�



i

2M
��������

�
U�P�: (3.5)

The off-forward matrix elements given by Eq. (3.5) can be
expressed in terms of overlaps of LFWFs of the state [4,5].
We now calculate the matrix elements in terms of the
LFWFs. For this, we take the state to be an electron in
QED at one loop and consider the LFWFs for this system.

DVCS in QED at one loop

The light-front Fock state wave functions corresponding
to the quantum fluctuations of a physical electron can be
systematically evaluated in QED perturbation theory. The
light-cone time-ordered contribution for the state to the
DVCS amplitude are given in Fig. 6 of [4]. The state is
expanded in Fock space, giving contributions from je��i
and je�e�e�i, in addition to renormalizing the one-
electron state. The two-particle state is expanded as

 

j�"two particle�P
�; ~P? � ~0?�i �

Z dxd2 ~k?������������������
x�1� x�

p
16
3

�
 "
��1=2��1�x;

~k?�
��������� 1

2
� 1; xP�; ~k?

	

�  "
�1

2�1
�x; ~k?�

��������� 1

2
� 1; xP�; ~k?

	
�  "

��1=2��1�x;
~k?�

��������� 1

2
� 1; xP�; ~k?

	

�  "
��1=2��1�x;

~k?�
��������� 1

2
� 1; xP�; ~k?

	�
; (3.6)

where the two-particle states jszf ; s
z
b; x; ~k?i are normalized as in [4]. Here szf and szb denote the z component of the spins of

the constituent fermion and boson, respectively, and the variables x and ~k? refer to the momentum of the fermion. The
light-cone momentum fraction xi �

k�i
P� satisfies 0< xi 	 1,

P
ixi � 1. We employ the light-cone gauge A� � 0, so that

the gauge boson polarizations are physical. The three-particle state has a similar expansion. Both the two- and three-
particle Fock state components are given in [4]. The two-particle wave functions for spin-up electrons are [4,13,15]

 

8>>>>>>><>>>>>>>:

 "
��1=2��1�x;

~k?� � �
���
2
p

�k1�ik2

x�1�x� ’;

 "
��1=2��1�x;

~k?� � �
���
2
p

k1�ik2

1�x ’;

 "
��1=2��1�x;

~k?� � �
���
2
p �

M� m
x

�
’;

 "
��1=2��1�x;

~k?� � 0;

9>>>>>>>=>>>>>>>;
; (3.7)

 ’�x; ~k?� �
e������������

1� x
p

1

M2 �
~k2
?�m

2

x �
~k2
?��

2

1�x

: (3.8)

Similarly, the wave function for an electron with negative helicity can also be obtained.
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Following Refs. [4,13,15], we work in a generalized form of QED by assigning a mass M to the external electrons, a
distinct mass m for the internal electron lines, and a nonzero mass � for the internal photon lines, assuming the stability
condition M<m� �. This provides a model for a composite fermion state with mass M with fermion and vector
‘‘diquark’’ constituents. The electron in QED also has a one-particle component

 j�";#one particle�P
�; ~P? � ~0?�i �

Z dxd2 ~k?���
x
p

16
3 16
3��1� x��2� ~k?� �1�

��������� 1

2
; xP�; ~k?

	
; (3.9)

where the single-constituent wave function is given by

  �1� �
����
Z
p

: (3.10)

Here
����
Z
p

is the wave-function renormalization of the one-particle state and ensures overall probability conservation. Since
we are working to O���, we can set Z � 1 in the 3! 1 wave-function overlap contributions. At x � 1, there are
contributions from the overlap of one-particle states which depend on Z. We have imposed a cutoff on x near this point.
Also, in order to regulate the ultraviolet divergences, one has to introduce a regulator. Here, we use a cutoff � on the
transverse momentum k? as a regulator.

In the domain � < z < 1, there are diagonal 2! 2 overlap contributions to Eq. (3.5), both helicity flip, F22
�� (�0 � �),

and helicity nonflip, F22
�� (�0 � �) [4]. The GPDs H�2!2��z; �; t� and E�2!2��z; �; t� are zero in the domain � � 1< z< 0,

which corresponds to emission and reabsorption of an e� from a physical electron. Contributions to H�n!n��z; �; t� and
E�n!n��z; �; t� in that domain only appear beyond one-loop level since the DVCS amplitude contains integrations over z,
y�, and x. When the integration over y� is performed, the fermion part of the bilocal current yields a factor ��z� x� and
the antifermion part of the bilocal current yields a factor ��z� x�. The latter contribution is absent in the one-loop DVCS
amplitude of a electron target, which we consider in the present work.

We have

 

F22
�� �

������������
1� �
p

1� �
2

H�2!2��x;�; t��
�2

4�1� �
2�

������������
1� �
p E�2!2��x;�; t�

�
Z d2 ~k?

16
3 � 
"�
��1=2��1�x

0; ~k0?� 
"
��1=2��1�x;

~k?�� 
"�
��1=2��1�x

0; ~k0?� 
"
��1=2��1�x;

~k?�� 
"�
��1=2��1�x

0; ~k0?� 
"
��1=2��1�x;

~k?�
;

(3.11)

 F22
�� �

1������������
1� �
p

��1 � i�2�

2M
E�2!2��x; �; t�

�
Z d2 ~k?

16
3 � 
"�
��1=2��1�x

0; ~k0?� 
#
��1=2��1�x;

~k?� �  
"�
��1=2��1�x

0; ~k0?� 
#
��1=2��1�x;

~k?�
; (3.12)

where

 x0 �
x� �
1� �

; ~k0? � ~k? �
1� x
1� �

~�?: (3.13)

Using the explicit form of the two-particle wave functions, we obtain
 

F22
�� �

e2

16
3

1

�1� x�
��1� �� � x�x� ��
������������

1� �
p �INF1 � INF2 � �B�x; �� �M2x�1� x� �m2�1� x� � �2x
INF3 


�
e2

8
3

�
M

1� �
�

m
x� �

��
M�

m
x

�
x�1� x��x� ��������������

1� �
p INF3 : (3.14)

We use the notation

 L1 � �k
?�2 � 2k? ��?

�1� x�
�1� ��

� B�x; ��; L2 � �k
?�2 �M2x�1� x� �m2�1� x� � �2x (3.15)
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and B�x; �� � M2�1�x��x���
�1���2 � ��

?�2�1�x�2

�1���2 �m2 �1�x�
�1��� � �

2 �x���
�1��� . The integrals are given by

 

INF1 �
Z d2k?

L1
� 
 log

�
�2

jB�x; ��j

�
;

INF2 �
Z d2k?

L2
� 
 log

�
�2

j �M2x�1� x� �m2�1� x� � �2xj

�
;

INF3 �
Z d2k?

L1L2
� 


Z 1

0
d�

1

D�x; �; ��
;

(3.16)

whereD�x; �; �� � �m2�1� x� � �M2x�1� x� � ��2x� �1� ��B�x; �� � �1� ��2�1� x0�2��?�2. Here � is the cut-
off on the transverse momentum k? and x0 � �x���

�1��� .
The helicity-flip part can be written as

 

F22
�� �

e2

8
3

�
x�x� ��������������

1� �
p

�
M�

m
x

�
IF1 �

�
M�

m
x

�
x�1� x��x� ��

�1� ��3=2
IF2

�
�

e2

8
3

�
M

1� �
�

m
� � x

�
x�x� ��������������

1� �
p IF1 ; (3.17)

where IF1 �
R d2k?k?V

L1L2
and IF2 �

R d2k?�?V
L1L2

. We have used the notation A?V � A1 � iA2. These integrals can be done using the

method described in Sec. III of Ref. [17] and we obtain

 IF1 � 

Z 1

0
dy
y�1� x0��?V
Q�x; �; y�

; (3.18)

where Q�x; �; y� � �1� y���M2x�1� x� �m2�1� x� � �2x
 � yB�x; �� � y2�1� x0�2��?�2 and

 IF2 � 

Z 1

0

dy�?V
Q�x; �; y�

: (3.19)

The scale � dependence is suppressed in F22
��.

The contribution in the domain, 0< z < � , comes from an overlap of three-particle and one-particle LFWFs. When the
electron’s helicity is not flipped, this contribution is given by [4]

 

F31
�� �

������������
1� �
p

1� �
2

H�3!1��x; �; t� �
�2

4�1� �
2�

������������
1� �
p E�3!1��x; �; t�

�
������������
1� �

p Z d2 ~k?
16
3 � 

"
��1=2���1=2���1=2��x; 1� �; � � x;

~k?;� ~�?; ~�? � ~k?�

�  "
��1=2���1=2���1=2��x; 1� �; � � x;

~k?;� ~�?; ~�? � ~k?�
; (3.20)

and can be written as, using the three-particle wave function,

 

F31
�� �

e2

8
3 �1� � � �x� x
2�
x
������������
1� �
p

��1� x�

�
1

�1� x�
J0NF1 �

1

�1� ��
J0NF2

�

�
e2

8
3

������������
1� �
p

x2�� � x�
�

�
M�

m
x

��
M

�1� ��
�

m
�� � x�

�
J0NF3 ; (3.21)

with
 

J0NF1 � JNF2 � �M2x�1� x� �m2�1� x� � �2x
JNF3 ;

J0NF2 �
�
2x
�JNF2 � JNF1 � �M2x�1� x� �m2�1� x�

� �2x� A�x; ��
JNF3 
;

J0NF3 � JNF3 :

(3.22)

We denote

 l1 � �k
?�2 �M2x�1� x� �m2�1� x� � �2x;

l2 � �k
?�2 � 2k? � �?

x
�
� A�x; ��;

(3.23)

and A�x; �� � 1
��1��� �x�1� x���

?�2 �m2��1� �� �
x��� � x�M2
. The integrals can be written as
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JNF1 �
Z d2k?

l1
� 
 log

�
�2

j �M2x�1� x� �m2�1� x� � �2xj

�
;

JNF2 �
Z d2k?

l2
� 
 log

�
�2

jA�x; ��j

�
;

JNF3 �
Z d2k?

l1l2
� 


Z 1

0
d�

1

C�x; �; ��
;

(3.24)

where C�x; �; �� � ��M2x�1� x� � �m2�1� x� � ��2x� �1� ��A�x; �� � �1� ��2 x
2

�2 �2
?.

The helicity-flip part is given by [4]

 

F31
�� �

1������������
1� �
p

��1 � i�2�

2M
E�3!1��x; �; t�

�
������������
1� �

p Z d2 ~k?
16
3 � 

#
��1=2���1=2���1=2��x; 1� �; � � x;

~k?;� ~�?; ~�? � ~k?�

�  #
��1=2���1=2���1=2��x; 1� �; � � x;

~k?;� ~�?; ~�? � ~k?�
: (3.25)

Using the three-particle wave function, this can be written as

 

F31
�� �

e2

8
3

������������
1� �

p �
M�

m
x

�
x2�� � x�

�

�
1

�1� ��
JF2 �

1

�1� x�
JF1

�

�
e2

8
3

������������
1� �

p �
M

�1� ��
�

m
�� � x�

�
x2�� � x�

�
1

�1� x�
JF1 ; (3.26)

where

 JF1 �
Z d2k?k?V

l1l2
� 


Z 1

0
dy
�1� y��?V

x
�

P�x; �; y�
; JF2 �

Z d2k?�?V
l1l2

� 

Z 1

0
dy

�?V
P�x; �; y�

; (3.27)

with P�x; �; y� � �1� y�A�x; �� � �1� y�2 x
2

�2 

��?�2 � y��M2x�1� x� �m2�1� x� � �2x
.

We calculate the DVCS amplitude given by Eq. (3.2)
using the off-forward matrix elements calculated above.
The real and imaginary parts are calculated separately
using the prescription
 Z 1

0
dx

1

x� � � i	
F�x; ��

� P
Z 1

0
dx

1

x� �
F�x; �� � i
F��; ��: (3.28)

Here P denotes the principal value defined as

 P
Z 1

0
dx

1

x� �
F�x; �� � lim

	!0

�Z ��	

0

1

x� �
F�x; ��

�
Z 1

��	

1

x� �
F�x; ��

�
; (3.29)

where
 

F�x; �� � F31
ij �x; �;�?�; for 0< x< �

� F22
ij �x; �;�?�; for � < x < 1

with ij � �� for helicity nonflip and ij � �� for
helicity-flip amplitudes. Since the off-forward matrix ele-
ments are continuous at x � � , F��; �� � F22

ij �x �
�; �;�?� � F31

ij �x � �; �;�?�. Note that, for an electron
state, the contribution vanishes for x < 0 and the principal
value prescription cannot be used at x � 0. The off-
forward matrix elements F31 (which contribute in the
kinematical region 0< x< �) vanish as x! 0; as a result,
there is no logarithmic divergence at this point for nonzero
� . But, we need to be careful here as, when we consider the
Fourier transform in � space, � can go to zero and diver-
gences from small x can occur from F22 which is finite and
nonzero at x, � ! 0.

The imaginary part of the amplitude when the electron
helicity is not flipped is then given by

 Im �M��
��;�?� � 
e2F22
���x � �; �;�?�: (3.30)

A similar expression holds in the case when the electron
helicity is flipped (Im�M��
��;�?�) in which F�� are
replaced by F��. The helicity-flip DVCS amplitude is
proportional to ��1 � i�2� as seen from Eqs. (3.17) and
(3.26). In the numerical results for the helicity-flip pro-
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cesses that we present here, for simplicity we have taken
�2 � 0. The imaginary part receives contributions from
x � � . The off-forward matrix elements are continuous at
x � � , and in Eq. (3.30) we have used this continuity. The
other regions of x contribute to the real part. It is to be

emphasized that we are using the handbag approximation
of the DVCS amplitude. Contributions from the Wilson
lines are, in general, not zero, and they can give rise to new
phase structures as seen in single-spin asymmetries [26].

The real part of the DVCS amplitude is given by

 Re �M��
��;�?� � �e2
Z ��	1

	
dxF31

���x; �;�?�
�

1

x
�

1

x� �

�
� e2

Z 1�	

��	1

dxF22
���x; �;�?�

�
1

x
�

1

x� �

�
: (3.31)

A similar expression holds for the helicity-flip DVCS
amplitude.

The energy dependence of the DVCS amplitude at the
high energies s� Q2;�t can be deduced up to logarithms
using Regge analysis. In our QED model for DVCS, two
spin 1=2 propagators are exchanged in the t channel. This
implies Regge behavior s��0�, where ��0� � j1 � j2 �
1 � 0. Thus, up to logarithms, the DVCS amplitude has
no dependence on the initial energy of the incident electron
and photon.

IV. CALCULATION OF THE FOURIER
TRANSFORM

In order to obtain the DVCS amplitude in b� space, we
take a Fourier transform in � as

 A����; t� �
1

2


Z 1�	2

	2

d�ei��M����;�?�;

A����; t� �
1

2


Z 1�	2

	2

d�ei��M����;�?�;

(4.1)

where � � 1
2P
�b� is the boost-invariant longitudinal dis-

tance on the light cone. The spatial properties of deep
inelastic scattering obtained from a Fourier transform of
structure functions from x � k�=P� to b� space have
been discussed by Hoyer [27]. In Fig. 1 we show the
handbag diagram of the DVCS amplitude in coordinate
space, which is similar to Fig. 10 of the above reference.

Both real and imaginary parts of the DVCS amplitude
are obtained separately. The real part of the amplitude
depends on the cutoffs. Since the off-forward matrix ele-
ments are continuous at x � � , the DVCS amplitude is
independent of the cutoff 	1. The cutoffs have to be chosen
such that 	2 � 	1 � 	, 	2 � 	1 < 1� 	, in order to have
the correct principal value integration. In our numerical
analysis, we have taken 	 � 	1 � 	2=2 � 0:001. As stated
before, the cutoff at x � 0 is imposed for the numerical
calculation and has a small effect on the result. If, instead
of imposing a cutoff on transverse momentum, �, we
imposed a cutoff on the invariant mass [15], then the
divergences at x � 1 would have been regulated by a
nonzero photon mass [28]. The DVCS amplitude at x �
1 also receives a contribution from the single-particle

sector of the Fock space [4,16,17,21], which we did not
take into account. A detailed discussion about the cutoff
scheme is provided in Appendix B.

All Fourier transforms have been performed by numeri-
cally calculating the Fourier sine and cosine transforms
and then calculating the resultant by squaring them, adding
and taking the square root, thereby yielding the Fourier
spectrum (FS). The amplitude is divided by the normaliza-
tion factor e4

16
3 . In Fig. 2, we have shown the two-particle
LFWFs of the electron as a function of x for different k?.
We have taken m � 0:5 MeV, M � 0:51 MeV, and � �
0:02 MeV. The wave functions are similar for a slight
change of parameter values; however, for m<M, there
will be a node in  �1=2�1�x; k

?� at m � xM, which is seen
in Fig. 2(c). The effect of the node is almost negligible for
these parameter values.

In Fig. 3 we have shown the FS of the two-particle
LFWFs given by Eqs. (3.7), for the same mass parameters
as in Fig. 2. The FT has been taken with respect to x for
fixed values of transverse momentum k?. The wave func-
tions 
1=2�1, 
�1=2�1, and 
1=2�1 are obtained as

 

3

0

γ∗

γ

N

N

x

x

FIG. 1. The handbag diagram for the DVCS amplitude viewed
in coordinate space. The position of the struck quark differs by
x� in the two wave functions (whereas x� � x? � 0).
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"1=2�1��; k
?� �

1

2
��k1 � ik2�



Z 1

0
dxei��x�x̂k� "1=2�1�x; k

?�;


"1=2�1��; k
?� �

1

2
�k1 � ik2�



Z 1

0
dxei��x�x̂k� "1=2�1�x; k

?�;


"
�1=2�1��; k

?� �
1

2


Z 1

0
dxei��x�x̂k� "

�1=2�1�x; k
?�;

(4.2)

where x̂k �
������������
m2�k2

?

pP
i

�������������
m2
i�k

2
?i

p is the peak of the distribution—

where all the constituents in the n-particle Fock state have
equal rapidity.

All helicity components of the wave function show
peaks at � � 0; the height of the peak sharply increases
as k? decreases and decays away from� � 0. In Fig. 4, we
have shown the complete Fourier transforms of the two-
particle LFWF for k � 0:2 corresponding to the FS pre-

sented in Figs. 3(b) and 3(c) to illustrate the difference.
Though the real and imaginary parts of the FT (i.e., the
cosine and sine transforms, respectively) individually ex-
hibit a diffraction pattern, in Fig. 4(a) they are just out of
phase to produce any diffraction pattern in the FS. It is well
known in the theory of the Fourier representation of signals
[29] that the amplitude and phase play different roles and,
in some cases, many of the important features of a signal
are preserved only if the phase is retained.

The plots of the DVCS amplitude have been done by
fixing�t and varying both � and �?. In Fig. 5(a) we have
shown the imaginary part of the helicity-flip DVCS ampli-
tude M�� as a function of � for different values of �t.
Im�M��
 is zero as � ! 0, increases continually with � ,
and then falls down sharply at the end. It increases for
higher t for the same � . Figure 5(b) shows the helicity-
nonflip part of the corresponding amplitude Im�M��
 vs � .
Unlike Im�M��
, Im�M��
 is nonvanishing at � � 0; it
decreases for higher �t. The largest allowed value of � is
given by Eq. (2.8) for fixed t. Figure 6(a) shows the plot of
the real part of the helicity-flip DVCS amplitude for the
same values of the parameters. Re�M��
 is nonvanishing
at � ! 0. For small � , it is almost flat for a fixed �t and
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FIG. 2 (color online). Two-particle LFWFs of the electron vs x for M � 0:51 MeV, m � 0:5 MeV, � � 0:02 MeV and fixed values
of jk?j � k in units of MeV. In (b) and (c) we have divided the LFWFs by the factors �k1 � ik2� and ��k1 � ik2�, respectively.
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FIG. 4 (color online). FT of the two-particle LFWFs of the electron vs � for M � 0:51 MeV, m � 0:5 MeV, � � 0:02 MeV and
fixed values of jk?j � k in MeV. Re and Im denote the real and imaginary parts of the FT, and FS denotes the Fourier spectrum
presented in Figs. 3(b) and 3(c).

 

-20 -10 0 10 20
σ

0

2

4

6

8

|η
1/

2+
1|

k=0.6
k=0.4
k=0.2

(a)

-20 -10 0 10 20
σ

0

1

2

3

4

5

6

|η
1/

2−
1|

k=0.6
k=0.4
k=0.2

(b)

-20 -10 0 10 20
σ

0

0.1

0.2

0.3

0.4
|η

−1
/2

+1
|

k=0.6
k=0.4
k=0.2

(c)

FIG. 3 (color online). Fourier spectrum of the two-particle LFWFs of the electron vs � for M � 0:51 MeV, m � 0:5 MeV, � �
0:02 MeV and fixed values of jk?j � k in MeV. In (b) and (c) we have divided the LFWFs by the factors �k1 � ik2� and ��k1 � ik2�,
respectively.
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then falls down at large � . Figure 6(b) shows the plot of the
real part of the corresponding helicity-nonflip amplitude
M�� vs � . It shows a different functional behavior as it
increases both for small and large � .

Figure 7(a) shows the FS of the imaginary part of the
helicity-flip amplitude vs � for M � 0:51 MeV, m �
0:5 MeV, and � � 0:02 MeV. The peak of the FS of
Im�M��
 (i.e.,jIm�A��
j) increases with jtj. The increas-
ing behavior of the helicity-flip amplitude ��e"�Sez �
1=2� ! �e#�Sez � �1=2� at small jtj reflects the fact that
one needs to transfer one unit of orbital angular momentum
�Lz � �1 to the electron to conserve Jz. Note that the
initial and final photons are taken to have transverse po-
larization. A similar behavior is expected for the
��p"�Spz � 1=2� ! �p#�Spz � �1=2� amplitude. The FS
of Im�M��
 does not show a diffraction pattern in �. In
Figs. 7(b) and 7(c) we have shown the FS of the imaginary
part of the helicity-nonflip DVCS amplitude vs � for the
same parameter values. The helicity nonflip amplitude

depends on the scale �. We have taken � � Q.
Figure 7(b) shows the plot for Q � 10 MeV; Fig. 7(c) is
forQ � 50 MeV. Im�A��
 shows a diffraction pattern; the
peak becomes narrower as jtj increases. In Fig. 8 we have
shown the complete Fourier transform of the imaginary
part of the DVCS amplitude corresponding to the FS
presented in Fig. 7(a). It again shows that the real (cosine
transform) and the imaginary (sine transform) of the
Fourier transform individually show a diffraction pattern,
but they are out of phase and thus the FS does not show the
diffraction pattern.

The number of minima in the diffraction pattern in-
creases with jtj for fixed Q or, in other words, the first
minima move in with an increase of jtj. For Q � 50 MeV,
the behavior is the same; the number of minima are higher
for higher t for the same � range. The number and the
positions of the minima are independent of Q. Only the
magnitude of the peak changes with Q. Some of the plots
of the FS of the DVCS amplitude show similarities with the
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FIG. 6 (color online). Real part of the DVCS amplitude for an electron vs � for different values of t: (a) helicity-flip part, (b) helicity-
nonflip part. We have taken M � 0:51 MeV, m � 0:5 MeV, � � 0:02 MeV. The parameter t is given in MeV.
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FIG. 5 (color online). Imaginary part of the DVCS amplitude for an electron vs � for different values of t: (a) helicity-flip part,
(b) helicity-nonflip part. We have taken M � 0:51 MeV, m � 0:5 MeV, � � 0:02 MeV. The parameter t is given in MeV.
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FS of the LFWFs themselves. The generalized parton
distributions are related to the form factors, and the form
factors can be written as overlaps of LFWFs. In fact, for a
meson in 1� 1-dimensional QCD, the form factor be-
comes an overlap of the LFWFs with different longitudinal
momentum fractions, x [30], and the contribution is similar
to the 2! 2 part of the DVCS amplitude.

Figure 9(a) shows the FS of the real part of the helicity-
flip amplitude vs �, where we chose the same values
of the parameters, M � 0:51 MeV, m � 0:5 MeV, and
� � 0:02 MeV. The FS, i.e., jRe�A��
j, shows a
diffraction pattern in �. With the increase of �t, the
central peak increases and its width decreases. The
helicity-flip part of the DVCS amplitude does not depend
on Q.

The nonexistence of the diffraction pattern in the FS of
the imaginary part of the helicity-flip amplitude in � is due
to its different behavior in � , as seen from Figs. 5 and 6.
Im�M��
 decreases smoothly as � decreases to vanish at
� � 0 which is distinctly different from all other ampli-
tudes including Re�M��
. All other amplitudes show some
flatness or a plateau in � and their FS in � space shows a
diffraction pattern.
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FIG. 8 (color online). FT of the imaginary part of the helicity-
flip DVCS amplitude for an electron vs � for t � �5:0. Re and
Im denote the real and imaginary parts of the FT. The mass
parameters are M � 0:51 MeV, m � 0:5 MeV, � � 0:02 MeV.
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FIG. 7 (color online). Fourier spectrum of the imaginary part of the DVCS amplitude for an electron vs � for different values of t:
(a) when the electron helicity is flipped; (b) and (c) when the helicity is not flipped. In (b)Q � 10 MeV; in (c)Q � 50 MeV. The mass
parameters are M � 0:51 MeV, m � 0:5 MeV, � � 0:02 MeV. The parameter t is given in MeV.
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In Figs. 9(b) and 9(c), we have plotted the FS of the real
part of the helicity-nonflip DVCS amplitude vs �. One can
see the diffraction pattern here as well. Figure 9(b) is for
Q � 10 MeV and Fig. 9(c) is forQ � 50 MeV. As before,
the qualitative behaviors of the diffraction pattern do not
change withQ. For the same jtj, the number of minima and
their positions are independent of Q for any fixed jtj; only
the height changes with Q. For each Q, the peak at � � 0
is sharper and higher as jtj increases.

Instead of using the � and t variables, we can define
another set of variables � and T, where T is defined as T �

� �?

1���
2. The arguments of the final-state LFWF are then

x0 � x��
1�� and k0? � k? � �1� x�

����
T
p

; in other words, the
transverse momenta become decoupled from � . We can
now take � and T as independent variables, and the GPDs
as well as the DVCS amplitude can be expressed in terms
of them. They are, however, connected through

 t � �
�2M2

1� �
� �1� ��T: (4.3)

This relation determines the range of allowed values of �
and T, such that t� Q2. In practice, � can never become
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FIG. 9 (color online). Fourier spectrum of the real part of the DVCS amplitude for an electron vs � for different values of t: (a) when
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very close to 1. The � dependence of the DVCS amplitude
now comes purely from x0 for fixed T. Figure 10 shows a
plot of the imaginary part of the helicity-nonflip amplitude
for fixed T vs �. For very small �, the slope of the �
distribution is given by

 

d
d�

ImA�� !
Z 1�	

	
dxx�F22

���x; x; T� � F
31
���x; x; T��:

(4.4)

Thus the slope and therefore the width of the � distribution
depend on the second moment of the GPDs at x � � .

V. SIMULATED BOUND STATES

For the dressed electron state, the real part of the DVCS
amplitude depends on the cutoffs at x � 0 and x � 1. We
have chosen the cutoff scheme discussed earlier. The cutoff
at x � 0 is taken for the numerical calculation and its effect
on the result is small. However, starting from this QED
pointlike model where the electron fluctuates to spin-half
plus spin-one constituents, one can construct LFWFs for
the hadrons. In the two- and three-particle LFWFs for the
electron, the bound-state mass M appears in the energy
denominators. A differentiation of the QED LFWFs with
respect to M2 improves the convergence at the end points,
x � 0, 1, as well as at high k2

?, thus simulating a bound-
state valence wave function. Differentiating once with

respect to M2 will generate a mesonlike behavior of the
LFWF. Thus we write the hadron two-particle LFWFs as

 

~ s1s2
�x; k?� � M2 @

@M2  s1s2
�x; k?�; (5.1)

where  s1s2
�x; k?� are the electron LFWFs. Taking the

Fourier transform in k? also, we can write the wave
functions in � and the transverse impact parameter b? as
 

�s1s2
��; b?� �

1

�2
�3
Z 1

0
dx
Z
d2k?e

i��x�x̂k�eik?�b?


 ~ s1s2
�x; k?�; (5.2)

where the peak of the distribution appears at x̂k �������������
m2�k2

?

pP
i

�������������
m2
i�k

2
?i

p . Writing k? � b? � kb cos�, where b � jb?j

and k � jk?j, and performing the integration over �, we
obtain
 

�s1s2
��; b?� �

1

�2
�3
Z 1

0
dx
Z
kdkei��x�x̂k��2
�J0�bk�


 ~ s1s2
�x; k?�; (5.3)

where J0�bk� is the Bessel function. For the wave functions
�1=2�1 we have the explicit momentum components �k1 �

ik2� present in the numerators. We use

 

Z
d2k?�k1 � ik2�e

ik?�b? � ��i�
Z
d2k?

�
@
@b1
� i

@
@b2

�
eik?�b? � ��i�

Z
kdkd�

k�b1 � ib2�

b
@

@�kb�
eikb cos�

� ��i�
Z
k2dk

�b1 � ib2�

b
@

@�kb�
�2
�J0�kb� � 2
i

Z
k2dk

�b1 � ib2�

b
J1�kb�: (5.4)

For the plot of the wave functions, we set b2 � 0 in the above expression,

 ��1=2�1��; b� �
e

�2
�2
���
2
p
M2i

Z
dx
Z
k2dk

x�1� x�1=2J1�kb�ei��x�x̂k�

�M2x�1� x� � k2 �m2�1� x� � �2x�2
;

��1=2�1��; b� �
e

�2
�2
���
2
p
M2i

Z
dx
Z
k2dk

x2�1� x�1=2J1�kb�e
i��x�x̂k�

�M2x�1� x� � k2 �m2�1� x� � �2x�2
;

��1=2�1��; b� �
e

�2
�2
���
2
p
M2

Z
dx
Z
kdk

x2�1� x�3=2J0�kb�e
i��x�x̂k�

�M2x�1� x� � k2 �m2�1� x� � �2x�2
:

(5.5)

For computational purpose, we use

 Jn�kb� �
1




Z 


0
d� cos�n�� kb sin��: (5.6)

This procedure does not provide an actual model for a
‘‘meson’’ wave function since the two constituents have
spin-half and spin-one. However, if we differentiate once
more we can simulate the falloff at short distances which
matches the falloff wave function of a baryon, in the sense
that the form factor F1�Q2� computed from the Drell-Yan-

West formula will fall off like 1
Q4 . In this case, we obtain a

quark plus spin-one diquark model of a baryon.
Convolution of these wave functions in the same way as
we have done for the dressed electron wave functions will
simulate the corresponding DVCS amplitudes for bound-
state hadrons. Note that the differentiation of the single-
particle LFWF will give a vanishing result and, as a result,
the 3! 1 contribution to the DVCS amplitude vanishes in
this model. The resulting ��p! �p DVCS amplitude has
both real [2] and imaginary parts [3].
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If we consider a dressed electron, the imaginary part
from the pole at x � � survives because of the numerator

1
x�� factor in the electron’s LFWF. This numerator behavior
reflects the spin-1 nature of the constituent boson. The x�
� ! 0 singularity is shielded when we differentiate the
final-state n � 2 and n � 3 LFWFs with respect to M2

and, as a result, the imaginary part of the amplitude van-
ishes in this model. We thus have constructed a model
where the DVCS amplitude is purely real. However, the
forward virtual Compton amplitude ��p! ��p (whose
imaginary part gives the structure function) does not have
this property. The pole at x � � is not shielded since the
initial and final n � 2 LFWFs are functions of x. It is
worthwhile to point out that, in general, the LFWFs for a
hadron may be nonvanishing at the end points [31], and
recent measurements of single-spin asymmetries suggest
that the GPDs are nonvanishing at x � � [32]. A more
realistic estimate would require nonvalence Fock states
[33]. An equivalent but easier way to construct the had-
ronic model is to differentiate the DVCS amplitudes with
respect to the invariant mass squared (M2) of the initial and
final bound states. Thus one can calculate the quantity

M2
F

d
dM2

F
M2
I

d
dM2

I
Aij�MI;MF�, where MI;MF are the initial

and final bound-state masses.
For numerical computation we use the discrete (in the

sense that the denominator is finite) version of the differ-
entiation:

 M2 dA

dM2 �
�M2 A�M

2
1� � A�M

2
2�

�M2 ; (5.7)

where �M2 � �M2
1 �M

2
2�=2 and �M2 � �M2

1 �M
2
2�. Then

we have

 M2
F

d

dM2
F

M2
I
d

dM2
I

Aij�MI;MF�

�
�M2
I

�M2
F

�M2
I �M

2
F

�Aij�MI1;MF1� � Aij�MI1;MF2�

� Aij�MI2;MF1� � Aij�MI2;MF2�
; (5.8)

Aij�MI;MF� is the DVCS amplitude for an electron. The
differentiation with respect to M2

F of the amplitudes (he-
licity flip and nonflip) brings in an extra factor of x� � and
thus the imaginary parts of the DVCS amplitudes vanish in
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this model, as discussed before. The real parts of the DVCS
amplitudes survive and show diffraction patterns. We take
MI1,MF1 � 150� 1:0 andMI2,MF2 � 150� 1:0 and the
fixed parameters M � 150, m � � � 300 MeV. In
Figs. 11 and 12 we have shown the FS of the two-particle
LFWFs for this model. The parameter values are scaled in

Fig. 11, but the qualitative behaviors are the same. Since
the wave function now vanishes at x � 0, 1, the FS is
localized, and it decays sharply beyond j�j � 10. The
peak decreases more sharply for higher k? or lower jb?j.
In Figs. 13(a) and 13(b) we have shown the helicity-flip
DVCS amplitude for the hadron model as a function of �
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FIG. 13 (color online). Real part of the DVCS amplitude for the simulated hadron state. The parameters are M � 150, m � � �
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and its FS as a function of �, respectively. In Figs. 14(a)
and 14(b) we have shown the real part of the helicity-
nonflip amplitudes of the same model as a function of �
and its FS as a function of �, respectively. Notice that the
helicity-nonflip part of the amplitude no longer depends on
the scale. The amplitude decreases as � increases, in con-
trast to the behavior for the electron. The FS of both the
helicity-flip and nonflip DVCS amplitudes shows a diffrac-
tion pattern in �. Figure 14(c) illustrates the structure
function F2�x� for this model as a function of x.

An optical analog

We propose an optics analog of the behavior of the FT of
DVCS amplitude in �. The similarity of optics and quan-
tum fields on the light cone was first explored long ago by
Sudarshan, Simon, and Mukunda. They established the
similarity of paraxial-wave optics and light-cone dynamics
of scalar [34] and Maxwell equations [35]. In our case, we
are effectively looking at the interference between the
initial and final waves of the scattered proton. The final-
state proton wave function is modified relative to the
incident proton wave function because of the momentum
transferred to the quark in the hard Compton scattering.

The change in quark momentum along the longitudinal
direction can be Fourier transformed to a shift in the light-
front position of the struck quark; thus one can simulate a
change in the quark’s longitudinal LF coordinate by an
amount � � 1

2b
�P�. This is analogous to diffractive scat-

tering of a wave in optics where � plays the role of the
physical size of the scattering center in a one-dimensional
system. We are using t to register the change in the trans-
verse momentum of the quark in the scattering. The posi-
tion of the first minimum moves in with increasing jtj.

Notice that the integrals over x and � are of finite range.
More importantly, the upper limit of the � integral is �max,
which in turn is determined by the value of �t. The finite-
ness of the slit width is a necessary condition for the
occurrence of a diffraction pattern in optics. Thus,
when the integration is performed over the range 0 to
�max, the finite range acts as a slit of finite width and
provides a necessary condition for the occurrence of a
diffraction pattern in the Fourier transform of the DVCS
amplitude.

When a diffraction pattern is produced, in analogy with
single slit diffraction, we expect the position of the first
minimum to be inversely proportional to �max. Since �max
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FIG. 14 (color online). Real part of the DVCS amplitude for the simulated hadron bound state. The parameters are M � 150, m �
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increases with �t, we expect the position of the first
minimum to move to a smaller value of �, in analogy
with optical diffraction. In the case of the Fourier spectrum
of DVCS on the quantum fluctuations of a lepton target in
QED, and also in the corresponding hadronic model, one
sees that the diffractive patterns in � sharpen and the
position of the first minimum moves in with increasing
momentum transfer. Thus the invariant longitudinal size of
the parton distribution becomes longer and the shape of the
conjugate light-cone momentum distribution becomes nar-
rower with increasing jtj.

From Table I, we can see that, for a fixed (� t), higher
minima appear at positions which are integral multiples of
the lowest minima. This is consistent with the single slit
diffraction law for nth minima: sin�n � n�=w, where � is
the wavelength of the light and w is the slit width. Here �
plays the role of sin�n [for large separation (L) between the
slit and the detector in a single slit experiment, one can
write sin�n �

�n
L ] and the ratio �=w is determined by the

value of �t. Positions of the minima do not depend on the
helicity. The minima appear at the same places for both
helicity-flip and nonflip processes.

We also observe a relation between the invariant mo-
mentum transfer squared �t and the distribution in �: the
first minimum in a diffraction pattern is determined by

 sin�1 �
�1������������������

L2 � �2
1

q �
�
w
; (5.9)

where �1 is the position of the first minimum measured
from the center of the diffraction pattern. Introducing
another parameter t0, with �t >�t0, we write the right-
hand side, i.e., the ratio �

w , as 1
log��t�t0�

where we have
chosen �t0 � 2
 104 MeV2. Once t0 is fixed, the other
parameter L can be found;�1 � 8:5 MeV�1 for�t � 5

104 MeV2 gives

 

8:5���������������������
L2 � 8:52
p �

1

log�3
 104�
� 0:2234

which gives L2 � 1376 MeV�2. Using this value of L, we
can compare with the other data.

Table II shows that our parametrization of �
w in terms of

�t is quite accurate.
If one Fourier transforms the change in transverse mo-

mentum �? to impact space b? [6,7], then one would have
the analog of a three-dimensional scattering center. In this
sense, studying the FT of the DVCS is very much like
studying the Lorentz-invariant optics of the proton. In our
analysis we have computed DVCS on an electron at O���
and its FT. Thus we have obtained the diffractive optics of
the quantum fluctuations of an electron.

It is interesting to recall that the scattering amplitude
corresponding to an absorptive (i.e., negative imaginary)
potential which is confined to a sphere of finite radius
exhibits a diffraction pattern. For a classic treatment, see
R. J. Glauber’s lectures [36]. For another example of dif-
fraction patterns in the angular distribution of elastic
proton-nucleus scattering using a multiple-scattering ap-
proach, see Ref. [37]. It is worthwhile to remember that in
these examples the optical potential is complex. In our
case, we observe diffraction patterns when we perform
Fourier transforms of real functions.

TABLE I. Positions of minima in the diffraction pattern for
different �t for the simulated hadron model DVCS amplitudes.

� (MeV�1)������
�t
p

(MeV) 1st min 2nd min 3rd min

100 13.5
141 10.5 21.0
223 8.5 17.0 25.5
264 8.0 16.0 24.0
316 7.5 15.0 22.5
707 7.0 13.5 20.0

TABLE II. Comparison of our proposed formula with the data.������
�t
p

is in MeV and the lengths are in MeV�1.������
�t
p

�1
�1�����������
L2��2

1

p 1
log��t�t0�

264 8.0 0.211 0.213
316 7.5 0.198 0.204
707 7.0 0.185 0.176
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FIG. 15 (color online). The ground state �L � 0; k � 1� of the
two-parton holographic light-front wave function in 3D space.
We have taken �QCD � 0:32 GeV. Here jb?j runs from 0.001 to
6:0 GeV�1 and � from �25 to 25.
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VI. LFWF FOR MESONS IN HOLOGRAPHIC QCD
AND THE DVCS AMPLITUDE

The normalized holographic QCD LFWF for the meson
�q �q� from AdS/CFT derived in Ref. [24] is

 �L;k�x; b?� � BL;k
������������������
x�1� x�

p
JL���L;k�QCD�; (6.1)

where BL;k � �QCD���1�L
J1�L��L;k�J1�L��L;k�
�1=2,

� �
����������������
x�1� x

p
jb?j, and �L;k is the kth zero of the Bessel

function JL. For the ground state L � 0, k � 1 and we
have

 ��x; b?� � �0;1�x; b?�

� �QCD

������������������
x�1� x�

p J0���0;1�QCD�����


p

J1��0;1�
: (6.2)

The corresponding momentum space LFWF is [24]

  �x; �?� �
���������
4
2

p Z
d2b1?e�ib1?��?��x; b1?�: (6.3)

In Fig. 15, we have plotted the two-parton bound-state
holographic LFWF from the AdS/CFT correspondence in
3D coordinate space after taking the FT of Eq. (6.2) with
respect to x. The ADS/CFT correspondence gives only the
wave function for the q �q sector. So, when we consider the
DVCS amplitude with this wave function, we can have
contribution only from the 2! 2 process. Then the DVCS
amplitude can be written as

 M��?; �� � �e2
q

X
�1;�2

Z 1

�
dx
�

1

x� � � i	
�

1

x� i	

�Z
d2�?

�
 ��1;�2

�
x� �
1� �

; �? �
1� x
1� �

�?

�
 �1;�2

�x; �?�

�  ��1;�2

�
1� x
1� �

; �? �
1� x
1� �

�?

�
 �1;�2

�1� x; �?�
�
: (6.4)

The transverse Fourier transform of the DVCS amplitude gives the DVCS amplitude in the transverse impact parameter
space b?,

 

~A�b?; �� �
1

�2
�2
Z
d2�?eib?��?M��?; ��: (6.5)
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FIG. 16 (color online). (a) The DVCS amplitude vs � and (b) the Fourier spectrum of the DVCS amplitude in the � space using the
light-front wave function for mesons obtained from holographic QCD [24]. We have taken �QCD � 0:32 GeV. Plots are in units of e2
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b? is given in units of GeV�1.
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Then
 

~A�b?; �� � �2
�
4
Z
dxF�x; ��

1� �
1� x




�
��
�
x� �
1� �
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b?
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�
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1� x
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�

���
�

1� x
1� �

;�
1� �
1� x

b?

�


�
�

1� x;�
1� �
1� x

b?

��
; (6.6)

where F�x; �� � �e2
q�

1
x�

1
x���. Taking the FT of this

DVCS amplitude with respect to � , we obtain the ampli-
tude in the three-dimensional impact parameter space �,
b?. Substituting the wave functions given in Eq. (6.2), we
obtain
 

A��; b?� �
1

2


Z
d�ei�� ~A�b?; ��

� 2�2
�4
�2
QCD

2
2J1��0;1�
2

Z 1

0
d�ei��



Z 1

�
dxF�x; ��

������������������
x�x� ��

p
�J0�X1�J0�X2�
;

(6.7)

where

 X1 �
������������������
x�1� x�

p 1� �
1� x

jb?j�0;1�QCD;

X2 �
������������������������������
�1� x��x� ��

p 1

1� x
jb?j�0;1�QCD:

In Fig. 16 we show the FS of the DVCS amplitude in �
space for different fixed values of jb?j. Again we see the
diffraction pattern in the � space.

VII. SUMMARY AND CONCLUSIONS

The deeply virtual Compton scattering process ��p!
�p provides a direct window into the hadron substructure
which goes well beyond inclusive measurements. The
DVCS amplitude factorizes into the convolution of a
hard perturbative amplitude, corresponding to Compton
scattering on a quark current, with the initial- and final-
state light-front wave functions of the target hadron. The
LFWFs provide a general frame-independent representa-
tion of relativistic composite hadrons, and they are univer-
sal and process independent.

In this paper, we have shown that the Fourier transform
of the DVCS amplitude with respect to the skewness
variable � gives information of the proton structure in
longitudinal impact parameter space � � 1

2P
�b�.

As an illustration of our general framework, we have
worked with a simple relativistic spin 1=2 system, namely,
the quantum fluctuations of a lepton at one loop in QED.
The different Fock components of the LFWFs in this case

can be obtained from perturbation theory. Our calculation
is exact to O���. This one-loop model provides a transpar-
ent basis for understanding the structure of more general
bound-state systems. By differentiating the wave functions
for the electron with respect to the square of the bound-
state mass M2, we have simulated bound-state valence
wave functions.

We have noted that there are two different types of
overlaps contributing to DVCS when � is nonzero, namely,
a parton number conserving diagonal 2! 2 overlap and a
3! 1 overlap when an electron-positron pair of the initial
state is annihilated. In fact, both these contributions are
necessary in order to obtain � independent form factors by
taking the xmoment of the GPDs. This invariance is due to
the Lorentz frame independence of the light-front Fock
representations of spacelike local operator matrix ele-
ments, and it reflects the underlying connections of Fock
states with different parton numbers implied by the equa-
tion of motion. The Fourier transform of the amplitude
with respect to � involves both types of contributions in
different kinematical regions.

We have introduced the light-cone longitudinal distance
� � P�b�=2 and have shown the � dependence of the
real and imaginary parts of the DVCS amplitude. The
DVCS amplitude in � space represents an interference of
the initial- and final-state LFWFs. We have also shown the
� dependence of the LFWFs themselves.

We have exhibited the light-front coordinate space struc-
ture of our model wave functions by performing the
Fourier transform in the longitudinal and transverse mo-
mentum space. The wave functions exhibit diffraction
patterns in the longitudinal coordinate space. We have
presented the FS of the real part of the DVCS amplitude
as well as the structure function in the models. The corre-
sponding imaginary part of the model DVCS amplitudes
vanishes.

Very recently, valence parton bound-state holographic
LFWFs from the AdS/CFT correspondence have been
given [24]. We have presented these wave functions for
the meson in full three-dimensional light-front coordinate
space. We have also calculated the real part of the DVCS
amplitude in the holographic model in light-front longitu-
dinal space for specific choices of the impact parameter
(b?). Again one observes diffraction patterns. Note that the
imaginary part of the DVCS amplitudes vanishes also in
this model.

Our analysis is the first to examine the longitudinal light-
cone coordinate � � b�P�=2 dependence of LFWFs and
DVCS amplitudes. Our results for the DVCS amplitude in
� are analogous to diffractive scattering of a wave in optics
where the � distribution senses the size of the one-
dimensional scattering center. Thus studying DVCS
��p! �p in light-front longitudinal coordinate space is
very much like studying the Lorentz-invariant optics of the
proton.
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APPENDIX A: RELATION BETWEEN BURKARDT
AND SOPER DENSITIES

The off-forward parton distribution appropriate for a
spin-zero meson in the valence approximation is defined by
 

H�x;�; t� �
Z dy�

8

eixP

�y�=2hP0j � �0��� �y��jPiy��0

�
Z 1

0
dz��x� z���z� ��



Z
d2k? 

�

�
z� �
1� �

; k?�
1� z
1� �

�?

�
 �z;k?�:

(A1)

For skewness � � 0,
 

H�x; � � 0; t� � H�x;�?�

�
Z
d2k? ��x; k? � �1� x��?� �x; k?�

�
Z d2b?
�2
�2

e�i�1�x�b?��?���x; b?���x; b?�;

(A2)

where the FT of the wave function is defined as

  �x; k?� �
Z d2b?
�2
�2

e�ib?�k?��x; b?�: (A3)

The transverse Fourier transform of the zero skewness off-
forward parton distribution H [6] yields the impact pa-
rameter density function
 Z d2�?
�2
�2

ei
?��?H�x;�?� �
Z
d2b?�2��1� x�b? � 
?



���x; b?���x; b?�

�
��x; 
?1�x�

1� x
; (A4)

where ��x; b?� is the Soper density defined in Eq. (5) of

Ref. [8]. We thus find that the density obtained by Burkardt
is the same as the Soper density.

APPENDIX B: REGULATORS

Let us consider the real part of the DVCS amplitude for
electrons in one-loop QED given by

 Re M��;�?� � �e2
Z �

0
dxF31�x; �;�?�

�
1

x
�

1

x� �

�

� e2
Z 1

�
dxF22�x; �;�?�

�
1

x
�

1

x� �

�
(B1)

which results after performing the transverse momentum
integration. As described in the text, we use an ultraviolet
cutoff � on the transverse momentum.

The integrands for various DVCS amplitudes may ex-
hibit singular behavior when x is near the end points. We
also have a potential singularity when x! � , which can be
regulated by using the principal value prescription. In the
numerical work we implement the principal value prescrip-
tion by employing suitable regulators and ensuring regu-
lator independence in the limit where the regulator
vanishes. We also note that we eventually integrate over
� which ranges between �min, which is close to zero, and
�max, which is determined by �t and approaches 1 in the
limit �t! 1.

The light-cone momentum fractions must remain posi-
tive. Let �min � � � 	=2 for the second integral. Since
�max � 1� 	, to make sure that x remains greater than �
in the second integral, we choose xmax in the second
integral to be 1� 	=2. Thus the regulated integral is
 

ReM��;�?� � �e
2
Z ��	=2

	=2
dxF31�x; �;�?�

�
1

x
�

1

x� �

�

� e2
Z 1�	=2

��	=2
dxF22�x; �;�?�

�
1

x
�

1

x� �

�
:

(B2)

It is important to note that, when � is small, a significant
contribution to the integral comes from the second term
that involves F22 and, when � is large, a significant con-
tribution to the integral comes from F31. For the helicity-
flip case, both F22 and F31 vanish as x! 0. For the
helicity-nonflip amplitude, F31 vanishes as x! 0, but
F22 is finite as x! 0. Thus the only potential problem at
small x occurs in Eq. (B2) for the second term involving
F22 when � is small, and we obtain a logarithmic diver-
gence due to this problem. This is directly related to the
nonvanishing of the electron wave function as x! 0. For
helicity nonflip, the function F22 also diverges as x! 1. In
this region, the DVCS amplitude also receives contribu-
tions from the single-particle sector of the Fock space
which we do not take into account in the present calcula-
tion. If one uses an invariant mass cutoff, the divergences at
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x � 0 and x � 1 would have been regulated by nonzero
electron and photon masses, respectively. These regulators
are not mandatory in our present calculations, and we have
employed the simpler regulators as described above.

APPENDIX C: AN ILLUSTRATIVE MODEL

Let us start from the expression for the Fourier trans-
form,

 A��� �
1

2


Z
d�ei��M���: (C1)

The function A��� is in coordinate space and the function
M��� is in momentum space.

Let us approximate M by the following function:
 

M��� � M0 for 0< � < �max

� 0 for � > �max: (C2)

One can use this step function to approximate a DVCS
amplitude in which the dependence of the DVCS ampli-
tude in � is almost flat; in such a case we can take M0 �
�M�� � 0� �M�� � �max
=2.

We have

 A��� �
M0

2


Z �max

0
d�ei��

�
M0�max

2

sin���max=2�

��max=2
ei��max=2: (C3)

In this case, note that the cosine and sine transforms are
completely in phase, and the phase of the Fourier transform
does not contain any extra information. The amplitude
(i.e., the Fourier spectrum) is given by

 jA���j �
M0�max

2

j sin���max=2�j

��max=2
: (C4)

The magnitude of the peak of the diffraction pattern

 A���max �
M0�max

2

(C5)

and the first diffraction minimum occurs at

 �1 �
2

�max

: (C6)

In the case of the DVCS amplitude whose functional
dependence on � is very weak, we can further predict the
position of the minima as follows. The extension of the
function �max is given by

 �max �
�t

2M2

� �������������������
1�

4M2

�t

s
� 1

�
: (C7)

Thus we find a precise relation between the minima of the
diffraction pattern and �t. Since �1 is inversely propor-
tional to �max, which in turn increases with �t, the inward
movement of the first minimum with increasing �t is

readily explained. On the other hand, the peak height is a
product of M0 and �max. The amplitude M0 decreases
monotonically with increasing �t. On the other hand,
�max increases with increasing �t. Thus the peak height
has nonmonotonic behavior with respect to �t.

In Table III we compare the numbers with the case of the
real part of the helicity-nonflip amplitude presented in
Figs. 14(a) and 14(b). Similarly, one can also obtain esti-
mates for the helicity-flip amplitudes.

The essential ingredients for the diffraction pattern in
the Fourier spectrum are two characteristics of the DVCS
amplitudes in the variable � :

(i) A step (i.e., a sharp rise) and
(ii) a plateau.

These are the essential characteristics of a function which
is almost a constant that seems to be shared by the DVCS
amplitudes which produce a diffraction pattern in the FS.
The imaginary part of the helicity-flip DVCS amplitude for
the electron state [Fig. 5(a)] lacks these properties and we
do not observe any diffraction pattern in the corresponding
Fourier spectrum [Fig. 7(a)].

It is interesting to note that the simple model we have
discussed in this appendix appears in antenna theory [38].
In the case of an aperture for which a uniform electric field
is maintained over a finite distance, outside of which the
field is zero, the angular spectrum which is the Fourier
spectrum of the aperture field distribution exhibits the
diffraction pattern discussed in this appendix.

APPENDIX D: DVCS AMPLITUDE IN THREE
DIMENSIONS

The significance of the amplitude in the boost-invariant
� space can also be explained in the following way. The
Dirac and Pauli form factors F1�t� and F2�t�, respectively,
can be expressed in terms of the helicity-nonflip part of the
off-forward matrix element.

Let us consider the dressed electron in the frame � � 0.
The form factor can be written as [8]

 F�t� �
Z 1

0
dx
Z
d2b?e�i�

?�b?j ~ 2�x; b
?�j2: (D1)

The LFWFs in the mixed representation x; b? are given by

TABLE III. Simplified approximation for the real part of the
helicity-nonflip DVCS amplitude shown in Figs. 14(a) and 14(b).
The energy quantities are given in MeV and lengths are in
MeV�1.

������
�t
p

�max M0

Peak
(M0�max

2
 )
1st minimum
(�1 �

2

�max

)

100 0.48 0.04 3
 10�3 13.09
316 0.84 0.03 4
 10�3 7.48
707 0.96 0.0175 2:7
 10�3 6.54
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Eq. (1) of [24]. Note that the LFWFs are zero outside the
region 0< x< 1. We denote
 

�2�x; b
?� � ~ 2�x; b

?���x���1� x�;

�3�x1; x2; b?1 ; b
?
2 � �

~ 3�x1; x2; b?1 ; b
?
2 ���x1���x2�


 ��1� x1���1� x2� (D2)

for the two-particle LFWF, and similarly �2 for the three-
particle wave function. We take FT of the LFWFs � with

respect to x, and define

 �n��i; b?i � �
�
�n�1
i�1

Z �1
�1

d�ie�i�ixi
�
�n�xi; b?i �; (D3)

where �i are the boost-invariant longitudinal distances on
the light cone, conjugate to xi � k�i =P

�. There are n� 1
independent �i as well as b?i . In terms of these, we can
write

 F�t� �
Z
dx
Z
d2b?e�i�

?�b?
Z
d�1

Z
d�2ei�1xe�i�2x��2��1; b?��2��2; b?� � 2


Z
d2b?e�i�

?�b?
Z
d�j�2��; b?�j2:

(D4)

Note that, as �n are the FT of the wave functions �n rather than ~ n, it is mathematically correct to take the x integrals from
�1 to �1. When � is nonzero, the form factor receives contributions from 2� 2 and 3� 1 components of the GPDs H
and E. They can be obtained from
 Z
dx�F22

���x; �; t���x� �� � F
31
���x; �; t���� � x�
 �

������������
1� �

p
F1�t� �

�2

4
������������
1� �
p F2�t�

�
Z 1

0
dx
Z
d2b?e�i�

?�b?
� ������������

1� �
p

~ "3�x; 1� �; � � x;�b
?���� � x�

� ~ �;"2

�
x0;

b?

1� x0

�
~ "2

�
x;

b?

1� x0

�
�1� ��2

�1� x�2
��x� ��

�
; (D5)

 Z 1

0
dx�F22

���x; �; t���x� �� � F
31
���x; �; t���� � x�
 �

1������������
1� �
p

��1 � i�2��1� �=2�

2M
F2�t�

�
Z 1

0
dx
Z
d2b?e�i�

?�b?
� ������������

1� �
p

~ #3�x; 1� �; � � x;�b
?���� � x�

� ~ �;"2

�
x0;
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1� x0

�
~ #2

�
x;
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1� x0

�
�1� ��2

�1� x�2
��x� ��
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: (D6)

x0 � x��
1�� . Here we have suppressed the explicit helicity indices and used

 F1�t� �
Z 1

0

H�x; �; t�

1� �
2

; F2�t� �
Z 1

0

E�x; �; t�

1� �
2

: (D7)

The form factors F1�t� and F2�t� can be obtained in terms of overlaps of LFWFs in the mixed representation ~ n from
Eqs. (D5) and (D6). Note that, as the arguments of the wave functions are b?

1�x0 , these equations cannot be expressed as an
overlap of the FT wave functions �n��i; b?i � in position space.

However, in the mixed representation, one can write

 F1�t� �
Z
d2b?ei�

?�b?
�Z �

0
dxR31�x; �; b?� �

Z 1

�
dxR22�x; �; b?�

�
�
Z 1

0
dx
Z
d2b?ei�

?�b?R�x; �; b?�

�
Z 1

0
dx
Z
d2b0?ei�

0?�b0?��x; b0?�; (D8)

 F2�t� �
Z
d2b?ei�

?�b?
�Z �

0
dx ~R31�x; �; b

?� �
Z 1

�
dx ~R22�x; �; b

?�

�
�
Z 1

0
dx
Z
d2b?ei�

?�b? ~R�x; �; b?�

�
Z 1

0
dx
Z
d2b0?ei�

0?�b0? ~��x; b0?�: (D9)

R�x; �; b?� and ~R�x; �; b?� can be obtained in terms of off-diagonal overlaps of LFWFs ~ n�xi; b?i � which in turn can be
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obtained from the above equations. ��x; b0?� and ~��x; b0?� are Soper’s distributions in the frame � � 0. It can be shown
that

 ~��x; b?� � �2iM
@
@b
�b1 � ib2�

b
��x; b?�: (D10)

Equations (D8) and (D9) show the relation between the generalized correlation functions R and ~Rwith Soper’s distribution
due to covariance of the form factor. However, the functions R and ~R do not have a probability interpretation, unlike
Soper’s distribution.

In the imaginary part of the DVCS amplitude, we have the GPDs integrated with a delta function,

 Im �M��
 � N
Z 1

0
dx
�
��x� ��

������������
1� �
p

1� �
2

H�2!2��x; �; t� �
�2

4�1� �
2�

������������
1� �
p E�2!2��x; �; t���� � x�

�
: (D11)

In terms of the correlation functions defined above, this can be written as
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d2b?ei�

?�b?
Z 1
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p

R�x; �; b?���x� �� �
�2

4
������������
1� �
p ~R�x; �; b?���x� ��
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N is the normalization constant. Integrating over x we obtain

 Im �M��
 � N
Z
d2b?ei�

?�b?
� ������������

1� �
p

R�x � �; b?� �
�2

4
������������
1� �
p ~R�x � �; b?�

�
: (D13)

Thus, the FT of the imaginary part of the DVCS amplitude with respect to �? gives both R�x; �; b?� and ~R�x; �; b?�, where
x of the struck parton is now fixed at x � � . These, in turn, are related to Soper’s distributions ��x; b?� through Eqs. (D8)
and (D9). This is a mixed coordinate and momentum space representation. The above relation can be generalized to a
hadron in a model independent way. Introducing the complete 3D spatial amplitude ����; b?� at fixed light-front time �, we
can write

 Im �M��
 � N
Z
d�e�i��

Z
d2b?e�i�

?�b? ����; b?�: (D14)

Here � is conjugate to � . Note that, as we are at fixed � rather than at fixed time, there is no conceptual problem due to
Lorentz boosts.

The physics of the real part of the DVCS amplitude is more involved. However, it is related to the imaginary part by a
dispersion relation in x. The real part can be expressed in terms of the densities � and ~� as well; however, it contains a
principal value (PV) integral over x. We can call the result of the PV integral ���; b?�. Again, after taking a FT in � , we
obtain the amplitude in full 3D coordinate space.
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