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Recently Ciuchini, Pierini, and Silvestrini proposed a method for constraining CKM parameters in
B! K�� and Bs ! K�� through phase measurements of amplitudes involving I � 3=2 K�� final
states. We show that complementary information on CKM parameters may be obtained by studying the
phases of �I � 1 B! �K���I�1=2, Bs ! �K� �K�I�1 and Bs ! � �K�K�I�1 amplitudes. Hadronic uncer-
tainties in these constraints from electroweak penguin operators O9 and O10, studied using flavor SU(3),
are shown to be very small in B! K�� and Bs ! K�� and somewhat larger in Bs ! K �K�. The first
processes imply a precise linear relation between �� and ��, with a measurable slope and an intercept at
�� � 0 involving a theoretical error of 0.03. The decays Bs ! K�� permit a measurement of � involving
a theoretical error below a degree. We note that while time-dependence is required when studying B0

decays at the ��4S�, it may not be needed when studying Bs decays at hadronic colliders.
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I. INTRODUCTION

Recently a method has been proposed by Ciuchini,
Pierini, and Silvestrini [1,2] for determining Cabibbo-
Kobayashi-Maskawa (CKM) parameters in three body
B! K�� and Bs ! K�� decays. The proposed method
is reminiscent of early suggestions for determining � using
rates and asymmetries in two-body decays B! K� [3–6]
and Bs ! K� [7]. A unique feature of the new method is
being able to measure through interference in the Dalitz
plot relative phases between quasi two-body decay ampli-
tudes for B�s� ! K�� and �B�s� ! �K��. This is similar to a
proposal for measuring relative phases among B! ��
amplitudes by studying the Dalitz plot for B0 !
�����0 [8]. When neglecting electroweak penguin
(EWP) contributions, the relative phase between a combi-
nation of decay amplitudes describing B�s� ! �K���I�3=2

and a corresponding combination of �B�s� amplitudes deter-
mines the weak phase �. A small hadronic uncertainty
caused by EWP amplitudes was estimated, based on facto-
rization and assuming certain input values for B-to-light-
mesons form factors [1].

In the present paper we propose extending the method to
�I � 1, I�K��� � 1=2 amplitudes in the above decays
and to I � 1 amplitudes in Bs ! K� �K and Bs ! �K�K.
We use flavor SU(3) to study theoretical uncertainties
caused by EWP contributions, suggesting a way for reduc-
ing these uncertainties. The resulting theoretical precision
in determining CKM parameters in B! K�� and Bs !
K�� is shown to be very high, essentially at the level of
isospin breaking corrections. This happens because the
method is based primarily on isospin symmetry consider-
ations, while flavor SU(3) is used only to estimate uncer-
tainties from a subset of small EWP contributions.

In Sec. II we analyze B! K��, Bs ! K��, and Bs !
K� �K� �K�K� decays in terms of isospin amplitudes, select-
ing several ratios of �B�s� and B�s� isospin amplitudes which
can be used to determine � in the absence of EWP con-
tributions. Section III studies the effects of EWP ampli-
tudes, turning the determination of � into a generic
constraint on CKM parameters. The constraint involves
an uncertainty from a ratio of two hadronic matrix ele-
ments of (V � A) current-current operators. Flavor SU(3)
calculations show that this ratio is small for judiciously
chosen combinations of isospin amplitudes in B! K��,
vanishes approximately in Bs ! K�� in the isospin sym-
metry limit, and is larger in Bs ! K� �K� �K�K�. This implies
precise constraints on CKM parameters from knowledge of
amplitudes and their relative phases for B! K�� and
Bs ! K��.

Section IV discusses measurements of these quasi two-
body decay amplitudes and of B! K� �K� �K�K) in three
classes of three-body decays, B! K��, Bs ! K�� and
Bs ! K �K� decays, respectively. We point out that mea-
suring a relative phase between the amplitudes for B0 !
K���� and �B0 ! K���� in B0 ! KS���� produced in
e�e� collisions at the ��4S� requires time-dependence. In
contrast, no time-dependence may be needed for a similar
measurement in Bs ! KS�

��� performed at hadronic
colliders if a width difference in the Bs system is measured.
In order to obtain a most precise determination of CKM
parameters, we propose applying amplitude analyses to the
entire B! K�� class, using isospin amplitudes as varia-
bles. Section V concludes with several remarks about the
implementation of this method and its sensitivity to physics
beyond the standard model, comparing it with two other
methods for determining � in B and Bs decays.
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II. ISOSPIN DECOMPOSITIONS AND �WITHOUT
ELECTROWEAK PENGUIN TERMS

The cleanest method for extracting the weak phase � or
� in �S � 0 and �S � 1 charmless hadronic B decays
stems from applying isospin symmetry to these decays,
eliminating the effect of QCD penguin amplitudes which
transform in these processes as �I � 1=2 and �I � 0,
respectively [9]. We will now discuss separately the four
cases, B! K��, Bs ! K��, Bs ! K� �K and Bs ! �K�K
in terms of their isospin amplitudes.

A. B! K��

In strangeness changing decays of the type B! K� or
B! K��, where K� denotes any kaon resonance,
K��892�; K�0�1430�; K�2�1430�; . . . , the four physical ampli-
tudes for B0 and B� are decomposed into three isospin-
invariant amplitudes [3],
 

�A�K����� � B1=2 � A1=2 � A3=2;

A�K�0��� � B1=2 � A1=2 � A3=2;

�
���
2
p
A�K���0� � B1=2 � A1=2 � 2A3=2;���

2
p
A�K�0�0� � B1=2 � A1=2 � 2A3=2:

(1)

Here we use a phase convention [10] in which a minus sign
is associated with a �u quark in a meson. The amplitudes B
and A correspond to �I � 0 and �I � 1 parts of H eff ,
respectively. Their subscripts denote the isospin of the final
K�� state. Here and elsewhere we will denote by B isospin
amplitudes obtaining contributions from QCD penguin
operators, and by A other amplitudes. Our study will focus
on the latter.

The amplitude quadrangle relation

 3A3=2 � A�K����� �
���
2
p
A�K�0�0�

� A�K�0��� �
���
2
p
A�K���0� (2)

defines A3=2 as one diagonal of the quadrangle, while A1=2

is given by

 6A1=2 � A�K����� � 3A�K�0��� � 2
���
2
p
A�K�0�0�

� 3A�K����� � A�K�0��� � 2
���
2
p
A�K���0�:

(3)

The two �I � 1 amplitudes, A3=2 and A1=2, do not
contain a QCD penguin contribution and would carry a
single weak phase � if EWP contributions could be ne-
glected. Here we will proceed under this assumption, post-
poning a discussion of the effects of EWP amplitudes to the
next section. Denoting amplitudes for charge-conjugate
initial and final states by �A, and defining two ratios of
amplitudes,

 RI �
�AI
AI
; I � 1=2; 3=2; (4)

the phase � is determined by

 �I � �
1
2 arg�RI� � �: (5)

Note that although the ratios RI do not depend on the
magnitudes of AI in the limit of vanishing EWP contribu-
tions, an extraction of � requires measuring both the
magnitudes and the relative phases of physical B! K��
amplitudes and their charge conjugate.

The ratio R3=2 was studied in [1] (where it was denoted
by R0 � R�) while the ratio R1=2 studied here provides
independent information on CKM parameters.

B. Bs ! K��

The isospin decomposition of the two �S � 0 Bs !
K�� decay amplitudes is
 

As�K
����� � As3=2 �

���
2
p
Bs1=2;

As�K
�0�0� �

���
2
p
As3=2 � B

s
1=2;

(6)

where the superscript s denotes Bs instead of B0 and sub-
scripts denote the isospin of both the transition operator
and the final K�� state. Since in �S � 0 decays the QCD
penguin operator behaves as �I � 1=2 it is contained only
in Bs1=2. On the other hand, the amplitude

 3As3=2 � As�K����� �
���
2
p
As�K�0�0� (7)

is pure tree when neglecting EWP contributions, thus
providing information on �. Defining a ratio of �Bs and
Bs amplitudes (denoted Rd in [2]),

 Rs3=2 �
�As3=2

As3=2

; (8)

one now has

 �s
3=2 � �

1
2 arg�Rs3=2� � �: (9)

C. Bs ! K� �K and Bs ! �K�K

These �S � 1 decays involve two independent pairs of
isospin amplitudes,

 As�K��K�� � As1 � B
s
0; As�K�0 �K0� � As1 � B

s
0;

(10)

and

 As�K
��K�� � A0s1 � B

0s
0 ; As� �K�0K0� � A0s1 � B

0s
0 :

(11)

Thus, one has
 

2As1 � As�K
��K�� � As�K

�0 �K0�;

2A0s1 � As�K��K�� � As� �K�0K0�:
(12)

Defining for each of these processes a ratio of �Bs and Bs
amplitudes
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 Rs1 �
�As1
As1
; R0s1 �

�A0s1
A0s1

; (13)

one obtains two new independent equations for �,

 �s
1 � �

1
2 arg�Rs1� � �; �0s1 � �

1
2 arg�R0s1 � � �:

(14)

III. CKM CONSTRAINTS INCLUDING
ELECTROWEAK PENGUIN AMPLITUDES

In section II we have neglected �S � 1, �I � 1 and
�S � 0, �I � 3=2 EWP contributions. In this limit mea-
surements of the ratios R�s�I in (5), (9), and (14), determine
�. The inclusion of EWP operators modifies these relations
since these operators involve different weak phase than the
tree operators. These effects are important in the �S � 1
relations (5) and (14), where EWP contributions are CKM-
enhanced, and are negligible in the �S � 0 relation (9).
We will first obtain a general constraint in the � ��; ��� plane
[11] following from fixed values of ��s�I � �

1
2 arg�R�s�I �.

Let us study the effect of EWP operators on obtaining
CKM constraints in �S � 1 decays. The dominant (V �
A) EWP operators, Os

9 and Os
10, in the �S � 1 effective

Hamiltonian [12] are related to current-current operators,
Os

1 � 	�sb
V�A	 �uu
V�A and Os
2 � 	 �ub
V�A	�su
V�A,

through operator relations

 Os
9;10 �

3
2O

s
1;2 � 	operators with �I � 0
: (15)

Neglecting EWP operators, Os
7 and Os

8, involving small
Wilson coefficients, the �I � 1 part of the �S � 1 weak
Hamiltonian can be rewritten as
 

Hs
�I�1 � ��

s
uC� �

3
2�

s
tC

EWP
� �O�I�1

�

� ��suC� �
3
2�

s
tCEWP
� �O�I�1

� ; (16)

where �su�t� � V�u�t�bVu�t�s, O�I�1
� � 1

2 �O
s
1 �O

s
2�, and

C� � C1 � C2, CEWP
� � C9 � C10 are sums and differ-

ences of Wilson coefficients.
Terms in (16) involving CEWP

� introduce in �I � 1
amplitudes a weak phase different from �, with coeffi-
cients depending on hadronic matrix elements for O�I�1

�

and O�I�1
� . Using a relation between Wilson coefficients

which holds up to 1% corrections [12],

 

CEWP
�

C�
� �

CEWP
�

C�
; (17)

one obtains a generic expression for the four ratios R1=2,

R3=2, Rs1, and R0s1 in Eqs. (4) and (13),

 R�s�I � e�2i	��arg�1���
 1� c
�
�r
�s�
I

1� c�r
�s�
I

: (18)

Here we define

 c� �
1� �
1� �

; � � �
3

2

CEWP
�

C�

�st
�su
; (19)

 r�s�I �
hfIjC�O

�I�1
� jB�s�i

hfIjC�O�I�1
� jB�s�i

: (20)

The parameter � depends only on calculable Wilson
coefficients and on CKM parameters. In order to illustrate
the sizable shift in ��s�I � �

1
2 arg�R�s�I � caused by this

parameter alone, we use the central values for CKM pa-
rameters [13] and next to leading order (NLO) values for
Wilson coefficients at � � mb � 4:8 GeV, C1�mb� �
�0:178, C2�mb� � 1:079, C9�mb� � �0:0102, C10 �
0:0017. We find

 � �
�st
�su
�1:404� 0:038� � 10�2 � �0:35� 0:56i; (21)

where the error in the brackets corresponds to varying the
scale � in the NLO Wilson coefficients in the range
mb=2 � � � mb. On the right-hand side we give the result
for central values of Wilson coefficients and CKM ele-
ments. This value of � translates into arg�1� �� � 41
.

A nonzero value of the parameter r�s�I leads to an addi-
tional shift in ��s�I , given by � 1

2 arg	�1� c��r
�s�
I �=�1�

c�r
�s�
I 
. A given value of the observable ��s�I can be shown

to imply the following constraint in the � ��; ��� plane (we
use � � 0:227):

 

��� � ��� C�t
� ��� C� � ��t

� tan��s�I : (22)

Here we define

 C �
3

2

CEWP
�

C�

1� �2=2

�2 � �0:27; (23)

 t �
1� t�t� �

�����������������������������������
�1� t2���1� t

2
��

q
t� � t�

; (24)

 t� �
� ��2 � ��2 � C2� Im�r�s�I � � 2C ��Re�r�s�I �

� ��� C�2 � ��2 � � ��2 � ��2 � C2�Re�r�s�I � � 2C �� Im�r�s�I �
: (25)
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For a small value of r�s�I and for a given value of the
observable ��s�I , one obtains the following constraint,

 �� � tan��s�I 	 ��� C�1� 2 Re�r�s�I �� �O�r�s�2I �
: (26)

This describes a straight line in the � ��; ��� plane
(cf. Figure 1), with a slope tan��s�I and an intercept ��0 �
�C	1� 2 Re�r�s�I �
 at �� � 0. A theoretical error 	r�s�I in
r�s�I translates into an uncertainty of �2jCj	r�s�I in the
intercept ��0 but no uncertainty in the slope tan��s�I which
is measured through the ratio R�s�I . Assuming for illustra-
tion a negligible value of r�s�I , one may estimate the slope
required in the standard model by choosing central values
of � ��; ��� from a CKM fit [13], �� � 0:20, �� � 0:34. This
implies a slope tan��s�I � �5:0, which is quite sensitive to
the value of r�s�I .

A similar treatment of EWP contributions can be applied
to �S � 0 processes involving CKM factors �du�t�. In the
isospin symmetry limit the �S � 0 part of O� is pure
�I � 1=2, hence O�I�3=2

� � 0. Consequently, in Bs !
�K���I�3=2 one has rs3=2 � 0.1 This implies that there is
no hadronic uncertainty in the CKM constraint from the
ratio Rs3=2 in Bs ! K��, aside from tiny corrections from
the operators O7 and O8 which we have neglected. The
parameter �0 in �S � 0 decays, whose complex phase is
related to �, is of order a few percent [see Eqs. (19) and
(21)],

 j�0j � �
3CEWP
�

2C�

j�dt j

j�duj
� �1:40� 0:04� � 10�2 sin�

sin

:

(27)

Thus, the dependence of the shift arg�1� �0� on � is very
small and calculable in terms of �.

Another case where r � 0 holds in a symmetry limit is
B! �K��I�3=2, where the K and � mesons are in an S-
wave and must be in a symmetric SU(3) state [6,14]. This
SU(3) argument does not hold in B! �K���I�1=2;3=2 [15],
nor does it hold in Bs ! �K� �K�I�1 and Bs ! � �K�K�I�1.
We will study now the values of r�s�I for these decays within
flavor SU(3). Theoretical errors in these values lead to
uncertainties in the resulting CKM constraints.

A. Ratios rI and CKM constraints in B! K��

The two ratios RI in Eq. (4), providing independent
pieces of information on �, are given by Eq. (18) with r �
rI given by

 rI �
h�K���IjC�O�I�1

� jBi

h�K���IjC�O
�I�1
� jBi

; I � 1=2; 3=2: (28)

The ratio r3=2 was estimated in [1], based on factorization
and assuming certain input values for B-to-light-mesons
form factors. Here we wish to present a different approach
based on flavor SU(3) for calculating both r3=2 and r1=2.
Using flavor SU(3) rI may be calculated from tree-
dominated strangeness-conserving B decays, which are
CKM-enhanced relative to tree amplitudes in B! K��,
and which have already been measured. Furthermore, one
may apply Eqs. (18) and (28) to j�K���Xi, an arbitrary
superposition of I � 1=2 and I � 3=2 K�� states. The
corresponding ratio of hadronic matrix elements will be
denoted rX. One is searching for a linear superposition of
isospin states which leads to a small value of rX in order to
obtain a small uncertainty in CKM parameters.

The operators O�I�1
� and O�I�1

� transform as 15 and 6
representations of SU(3), respectively, while a general
K�� state is a combination of 8S, 8A, 10, 10, and 27
[16,17]. Thus, the numerator in rX involves in general a
linear combination of three reduced matrix elements,
h8Sj6j3i; h8Aj6j3i; h10j6j3i, and the denominator involves
a combination of four matrix elements, h8Sj15j3i;
h8Aj15j3i; h10j15j3i; h27j15j3i. The same reduced matrix
elements occur in �S � 0 amplitudes. One is seeking two
sums of �S � 0 amplitudes which are given by the same
two combinations in the numerator and denominator of rX.

The case of r3=2 is particularly simple since the state
�K���I�3=2 contains only two pieces transforming as 10
and 27 of SU(3). The transformation properties of the
operators imply that only the 10 and 27 pieces contribute
to the numerator and denominator, respectively. Thus, r3=2

is proportional to a ratio of corresponding reduced matrix
elements, h10j6j3i=h27j15j3i. The numerical coefficient
multiplying this ratio can be read off SU(3) Clebsch-
Gordan tables in Ref. [17] (after translating into our phase
convention). These tables can also be used to express
h10j6j3i and h27j15j3i in terms of �S � 0 amplitudes,
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FIG. 1 (color online). 1� constraint in the ��- �� plane (two
almost vertical parallel black lines) from a precisely measured
�3=2 in B! K��, taking values for r3=2 as in (30). All other
constraints are taken from Ref. [13].

1This observation has been overlooked in Ref. [2].
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 r3=2 �
	A����0� � A��0���
 �

���
2
p
	A�K�� �K0� � A� �K�0K��


A����0� � A��0���
: (29)

This expression can be simplified by neglecting the
�S � 0 QCD penguin amplitude given by the second
term in the numerator, and by assuming that the strong
phase difference between the two amplitudes in the re-
maining term is small, as this phase is expected to be
suppressed by 1=mb and �s�mb� [18–20]. This is sup-
ported by studies of QCD penguin amplitudes (including
charming penguins) in B! �� which have been found to
be small, with a penguin-to-tree ratio of about 0.2 [21].
Signs of color-allowed amplitudes are assumed to be given
by factorization. Using branching ratios given in Table I,
one finds

 r3=2 �
j
��������������������
B����0�

p
�

��������������������
B��0���

p
j��������������������

B����0�
p

�
��������������������
B��0���

p
� 0:054� 0:045� 0:023: (30)

The first error is caused by experimental errors in B! ��
branching ratios. The second error, due to SU(3) breaking,
is calculated by allowing an uncertainty of 30% in each of
the reduced matrix elements entering the physical
amplitudes.

The value (30), obtained by applying SU(3) to B! ��
branching ratios, may be compared with an estimate based
on naive factorization [1] in which we include a color
factor,

 r3=2 �
C�
C�

�1� 1=Nc�
�1� 1=Nc�

�f�A
BK�
0 � fK�F

B�
0 �

�f�A
BK�
0 � fK�F

B�
0 �

� 0:012� 0:083: (31)

We used the following values for decay constants and form
factors [19], f� � 131 MeV, fK� � 218� 4 MeV,
FB�0 � 0:28� 0:05, ABK

�

0 � 0:45� 0:07. Note that naive

factorization may be a reasonable approximation because
the ratio r3=2 defined in (28) does not involve QCD penguin
contributions.

A bound on the error in r3=2 caused by neglecting a
difference of two �S � 0 QCD penguin amplitudes in (29)
can be obtained in terms of upper bounds on branching
fractions for B� ! K�� �K0 and B� ! �K�0K�. Although
current upper bounds are not very useful (see Table I), we
expect the bounds to improve in the future, such that the
error caused by neglecting these terms will be at most at the
level of SU(3) breaking.

The error in r3=2 affects the CKM constraint (26)
through the term involving Re�r3=2�. The error from ne-
glecting a strong phase difference between A���0 and
A�0�� is expected to be very small, since Re�r3=2� depends
quadratically on this phase. This is gratifying since the size
of 1=mb suppressed strong phases cannot be reliably cal-
culated [18,25]. Information on the above phase is pro-
vided by the isospin pentagon relation [3]

 

A����0� � A��0��� �
1���
2
p �A������ � A�������

�
���
2
p
A��0�0�: (32)

Relative phases between amplitudes on the right-hand-side
can be measured through a Dalitz plot analysis of B0 !
�����0 [8,26]. Assuming that phases between B! ��
amplitudes can be neglected, and using branching ratios
from Table I and a lifetime ratio [22], ��=�0 � 1:076�
0:008, Eq. (32) reads 6:01� 0:27 � 6:69� 0:38. This
agreement shows that relative phases between B! ��
amplitudes are not large. Assuming in contrast a negative
sign for the color-suppressed amplitude A��0�0�, for
which factorization does not hold, would imply that 6:01�
0:27 � 2:86� 0:38 which is badly broken.

The value of r3=2 in (30) can now be substituted in
Eq. (26). The resulting linear constraint in ��- �� plane is
shown in Fig. 1, assuming a precisely measured value for
�3=2. The current error in r3=2 translates into a very small
error of 0.03 in the intercept where �� � 0, ��0 � 0:24�
0:03, but no theoretical error in the slope which is given by
a value measured for tan�3=2. The small error in the
intercept, partly from SU(3) breaking in r3=2, is linear in
the uncertainty in r3=2, and may be reduced only slightly by
measuring more precisely B! �� branching ratios.

The calculation of r1=2 proceeds in a similar manner to
the calculation of r3=2, leading to a larger value of order
one. Instead, one may search for a superposition of I �
1=2 and I � 3=2 K�� states for which rX is small. Using

TABLE I. Branching ratios for B! �� and B! K�K de-
cays, in units of 10�6, taken from Ref. [22] unless quoted
otherwise.

Mode Branching ratio

B� ! �0�� 8:7�1:0
�1:1

���0 10:8�1:4
�1:5

K�0K� <5:3

B0 ! ���� 24:0� 2:5
���� 16:0� 2:0a

���� 7:6� 1:3b

�0�0 1:83�0:56
�0:55

K�0K0 <1:9

aWe take an average of 19:5� 5:0 [23] and 15:3� 2:2 [24].
bWe take an average of 9:6� 3:4 [23] and 7:3� 1:4 [24].
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 j�K���Xi �
1���
5
p �jI � 1=2i � 2jI � 3=2i�; (33)

we find

 rX �
A����0� � 2A��0����

���
2
p
A��0�0� �NX�K

�K�

A����0� �
���
2
p
A�������

���
2
p
A��0�0� �DX�K

�K�
:

(34)

�S � 0 QCD penguin and annihilation amplitudes in the
numerator and denominator,

 NX�K�K� � 	2A� �K�0K�� � 3A�K�� �K0� � A�K�0 �K0�

� A�K��K��
=
���
2
p
;

DX�K
�K� � 	A�K�0 �K0� � A�K�� �K0� � A�K��K��
=

���
2
p
;

(35)

are expected to be no larger than SU(3) breaking correc-
tions and will be neglected. Assuming small strong phase
differences between B! �� amplitudes, and using mea-
sured branching ratios in Table I, we find

 rX � �0:068� 0:057� 0:044: (36)

The first error originates in experimental errors in B! ��
branching ratios, while the second error is calculated as-
suming 30% SU(3) breaking in reduced matrix elements.
The central value of rX and its error are comparable to r3=2.
As in the latter case, this translates to a very small error in
the intercept, but no error in the slope of the linear relation
(26) between �� and �� provided by a measurement of �X.
We define RX and �X as in Eqs. (4) and (5) using the K��
state defined in (33):

 RX �
�A1=2 � 2 �A3=2

A1=2 � 2A3=2
; �X � �

1

2
arg�RX�: (37)

The result (36) may be compared with an estimate based
on naive factorization,

 rX �
C�
C�

�1� 1=Nc�
�1� 1=Nc�

�2f�A
BK�
0 � fK�F

B�
0 �

�2f�A
BK�
0 � fK�F

B�
0 �

� �0:22� 0:07; (38)

where the error reflects only errors on the assumed form
factors. Our result (36) using flavor SU(3) agrees within
uncertainties with this more crude approximation which
gives a somewhat larger central value.

B. Ratio rs3=2 and determining � in Bs ! K��

As we have shown using isospin symmetry alone, the
parameter r in Bs ! K�� vanishes, rs3=2 � 0, because the

�S � 0 part ofO� is pure �I � 1=2. The small parameter
�0 introduces a small shift arg�1� �0� in �s

3=2 away from
�. Since the shift is calculable in terms of � [see Eq. (27)],
the theoretical error in determining � using these processes
is below 1
.

Note that measuring � in these processes, and using
B! K�� for constraining the point � ��; ��� to lie on a
straight line with measured slope and intercept, fixes the
apex of the unitarity triangle as the point where the two
straight lines intersect. Thus, in principle, B! K�� and
Bs ! K�� alone determine the shape of the unitarity
triangle.

C. Ratios rs1, r0s1 and CKM constraints in Bs ! K� �K,
�K�K

In the presence of EWP contributions the two ratios Rs1
and R0s1 defined in (13) are given by Eq. (18) with

 rs1 �
hK� �KjC�O�I�1

� jBsi

hK� �KjC�O
�I�1
� jBsi

;

r0s1 �
h �K�KjC�O�I�1

� jBsi

h �K�KjC�O
�I�1
� jBsi

:

(39)

We use SU(3) tables in Ref. [17] to express these ratios in
terms of �S � 0 decay amplitudes for nonstrange B me-
sons,

 rs1 �
A������ � A������ �

���
2
p
A��0��� � N1�K�K�

A������ � A������ �
���
2
p
A��0��� �D1�K�K�

;

r0s1 �
A������ � A������ �

���
2
p
A����0� � N01�K

�K�

A������ � A������ �
���
2
p
A����0� �D01�K

�K�
:

(40)

Penguin and annihilation terms in the numerators and
denominators,

 N1�D1� � �A� �K�0K�� � A�K��K�� � A� �K�0K0�;

N01�D
0
1� � �A�K

�� �K0� � A�K��K�� � A�K�0 �K0�;
(41)

will be assumed to be smaller than SU(3) breaking
corrections.

Disregarding phase differences between B! �� am-
plitudes which have a very small effect on rs1 and r0s1 [as we
argued in obtaining (30)], using measured branching ratios
in Table I, and estimating errors from SU(3) breaking as
explained above, we have

 rs1 � 0:52� 0:10� 0:18; r0s1 � 0:70� 0:21� 0:41:

(42)

Comparing these values with an estimate based on naive
factorization, we find agreement again:
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 rs1 � r0s1 � �
C�
C�

�1� 1=Nc�
�1� 1=Nc�

� 0:70: (43)

We do not expect the errors in (42) to improve by
reducing errors in B�B! ���, as SU(3) breaking intro-
duces a comparable uncertainty. The values of rs1 and r0s1
can be substituted in Eqs. (22)–(25) to obtain constraints in
the � ��; ��� plane, for measured values of �s

1 and �0s1 . The
larger errors in (42) in comparison with those in (30) and
(36) imply larger uncertainties in these constraints than in
those following from �3=2 and �X.

IV. MEASURING MAGNITUDES AND PHASES FOR
QUASI TWO-BODY DECAY AMPLITUDES

As shown in the previous two sections, new constraints
in the � ��; ��� plane can be obtained within each of the three
classes of quasi two-body decay processes, B! K��,
Bs ! K��, and Bs ! K� �K, �K�K and their charge-
conjugates. This requires measuring both the magnitudes
of the amplitudes in a given class and their relative phases.
This can be achieved through amplitude analyses of charm-
less three-body decays which we discuss now.

A three-body B (or Bs) decay amplitude into a final state
f, which is a function of two Dalitz variables, s12, s13, is
expressed as a sum of several Breit-Wigner resonant con-
tributions and a nonresonant term. Resonant contributions
are given by complex constant amplitudes Ai multiplying
Breit-Wigner functions fBW

i �s12; s13�, while the nonreso-
nant amplitude ANR may vary in the s12, s13 plane,

 A�s12; s13� � ANR�s12; s13� �
X
i

Aif
BW
i �s12; s13�: (44)

The corresponding amplitude �A�s12; s23�, for three-body �B
(or �Bs) decays into a charge-conjugate state �f, is given in
terms of an amplitude �ANR and a set �Ai corresponding to
charge-conjugate resonances. In general, one has �ANR �

ANR, �Ai � Ai as each amplitude may involve two weak
phases and two different strong phases. Direct CP viola-
tion in a particular resonant or nonresonant channel would
be implied by j �Aij � jAij or j �ANRj � jANRj.

Fitting the event distribution for three body B (or Bs)
decays to the squared amplitude (44) permits determining
the magnitudes of Ai and their relative phases. A relative
phase between two resonant amplitudes is directly mea-
surable when the two resonances overlap in the Dalitz plot.
This relative phase can also be measured when there is no
overlap between the two resonances, but each of the two
resonances overlaps with a third resonance. Alternatively, a
phase between two resonance amplitudes can be measured
through their interference with the nonresonant amplitude
ANR.

We will be interested primarily in relative phases be-
tween amplitudes associated with K meson resonant states.
Charmless three-body decays involving ���� or K�K�

obtain also contributions from c �c resonant states, which

involve relatively small rates and are expected to lead to
sizable CP asymmetries [27–29].

A. B! K��

We start this discussion with the decays B! K��
which are currently the most feasible ones among the three
classes studied in this paper. Amplitude analyses of B!
K��, for both charged and neutral B mesons, have been
performed by the Belle and BABAR collaborations. Decays
B� ! K����� have been studied by both Belle [30] and
BABAR [31]. An amplitude analysis was made by BABAR
[32] for B0 ! K����0 [33], and by Belle [34] for B0 !
KS����. The first two processes are self-tagging whereas
the third decay involves final state which is not flavor
specific. These measurements have already provided
some useful information which is relevant to our proposed
study. We note that these studies have averaged over the
above processes and their CP conjugates. The proposed
study requires separate amplitude analyses for B and �B
decays.

The process B� ! K����� gave information about
the magnitudes of amplitudes for B� ! K�0�892��� and
B� ! K�00 �1430��� and their relative phase [30,31]. The
statistical error in the measured relative phase is at a level
of 10
 which is encouraging. However, this three-body
decay provides no information on a relative phase between
two B! K��892�� amplitudes where pairs of K� and �
have different charges.

The decay B0 ! K����0 is more interesting in our
context, since it measures the magnitudes of A�B0 !
K����� and A�B0 ! K�0�0�, for both K��892� and
K�0�1430�, as well as the three relative phases among these
amplitudes. Errors in the measured phases are at a level of
40
 [32]. It would be useful to understand the origin of this
large error in order to reduce it in future studies of this
process, and to perform these measurements separately for
B0 and �B0. A study of B0 ! K����0 permits a measure-
ment of the magnitude of R3=2 but not its phase.
Equation (18) implies that jR3=2j � 1 is proportional to
Im�r3=2� and vanishes if r3=2 is real.

The study of B0 ! KS����, which is not flavor spe-
cific, is more challenging. In order to measure the relative
phase between A�K����� and �A�K�����, as required by
Eqs. (4) and (5), these amplitudes must interfere through
B0 � �B0 mixing leading to a common KS���� state.
Observing this interference in e�e� collisions at the
��4S� requires a time-dependent measurements using ini-
tially tagged B0 or �B0 mesons. The recent time-integrated
analysis by Belle [34] assumed no direct CP asymmetry in
B0 ! K����, summing over initial B0 and �B0. We note
that, in fact, an untagged amplitude analysis does not have
to make this assumption, permitting separate measure-
ments for the magnitudes of A�K����� and �A�K�����.
However, measuring the relative phase between these am-
plitudes requires a time-dependent measurement.
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A fourth process in this class, B� ! KS�
��0, which

has not yet been measured, determines the magnitudes of
the four amplitudes, A�K�0���, A�K���0�, A�K�00 �

��,
A�K��0 �0�, and their relative phases. Finally, a very diffi-
cult mode which is not needed is B0 ! KS�

0�0, where
measuring the phase difference between A�K�0�0� and
�A� �K�0�0� would require time-dependence.

In order to apply Eq. (26), the linear constraint in the
� ��; ��� plane, where r3=2 is given in (30), it is sufficient to
perform amplitude analyses for merely two processes in-
volving neutral B decays, B0 ! K����0 and B0 !
KS����. Time-dependence in the second process is cru-
cial. The first process measures the magnitudes of
A�K����� and A�K�0�0�, their relative phase, and the
corresponding CP-conjugate quantities, but not the phase
difference between B0 and �B0 decays. [Here and below K�

denotes both K��892� and K�0�1430�]. The second process
measures the magnitude of A�K����� and its CP conju-
gate, and the relative phase between these two amplitudes.
This set of measurements determining the complex ratio
R3=2 defined in Eqs. (2) and (4), is over-complete since
jA�K�����j and its CP-conjugate are measured both in
B0 ! K����0 and in B0 ! KS����.

Charged B decays, B� ! K����� and B� !
KS�

��0 provide further constraints on CKM parameters
using the measurable ratio RX (37) of B! K�� and �B!
K�� decay amplitudes. A measurement of the phase �X is
expected to involve a larger experimental error than �3=2

since RX depends on a larger number of amplitudes than
R3=2, including both neutral and charged B mesons. The
measurement ofRX, together with the constraint from R3=2,
leads to a highly constraining set of measurements for ��
and ��. Since the four physical B! K�� amplitudes are
not mutually independent [see the quadrangle relation
Eq. (2)], we propose studying B! K�� amplitudes in
terms of the isospin amplitudes B1=2, A3=2 and AX, where
X corresponds to the state defined in (33). In order to
demonstrate the extent to which these CKM constraints
are over-deterministic, thereby permitting a precise con-
straint on the point � ��; ���, we now count the number of
parameters and observables.

We have a total of eight parameters, the magnitudes of
B1=2 and its CP conjugate �B1=2, the magnitudes of A3=2 and
AX, the three relative phases among these four amplitudes,
and a CKM ratio ��=� ��� C�. [The CP conjugates �A3=2 and
�AX are not independent parameters and are given by
Eqs. (4), (5), and (26).] These eight parameters can be
used to fit 17 observables consisting of jA�K�0��j ob-
tained from B� ! K�����, magnitudes of A�K�0���
and A�K���0� and their relative phases obtained from
B� ! KS���0, magnitudes of A�K�����; A�K�0�0�,
their CP conjugates and their relative phases obtained
from B0 ! K����0, and magnitudes and relative phase
for A�B0 ! K����� and A� �B0 ! K����� obtained from
time-dependent B0 ! KS����. We have not included in

this counting the decay B0 ! KS�
0�0 which is most

challenging.

B. Bs ! K��

The weak phase � can be determined using Dalitz plot
analyses for Bs ! K����0 and Bs ! KS����. These
studies permit extracting the magnitudes As�K

�����,
As�K

�0�0�, their CP conjugates and relative phases be-
tween these amplitudes. This leads through Eqs. (7)–(9) to
a measurement of the phase �s

3=2, which gives � with high
theoretical precision, as has been discussed in Sec. III B.

In contrast to the case ofB0 ! KS�
��� produced at the

��4S�, the above measurements can be performed with
Bs ! KS���� produced at hadron colliders without the
need for flavor tagging and time-dependence. Because of
the lack of quantum coherence between Bs and �Bs pro-
duced in pairs, the charge-averaged time-integrated decay
rate for decays into a common state f � KS�

��� in-
volves an interference term proportional to the width dif-
ference ��s in the Bs system, for which one expects
ys � ��s=2�s � 0:12� 0:05 [35].

The untagged integrated decay distribution is given by

 

d2��Bs ! f�
ds12ds13

�
d2�� �Bs ! f�
ds12ds13

�
1

��1� y2
s�

�
�jAj2 � j �Aj2� � 2ysRe

�
q
p

�AA�
��
; (45)

where A � A�Bs ! f�, �A � A� �Bs ! f�, q=p ’ 1.
Assuming that a reasonably accurate measurement for ys
will exist by the time an amplitude analysis will be per-
formed for this decay, the relative phase between
As�K����� and �As�K����� can be measured through
the interference term involving ys. Otherwise, a time-
dependent measurements of this decay will be required.

In order to show that the above relative phase is mea-
surable using untagged Bs, consider the contributions of
As�K

����� and �As�K
����� to A and �A in (45). Using the

dependence of the Breit-Wigner functions fBWK�� and fBWK��
on s12 and s13, the untagged decay distribution (45) pro-
vides four observables (the real part of the interference
term provides two observables) which determine the mag-
nitudes of As�K����� and �As�K

����� and their relative
phase. While in reality this relative phase may be affected
by interference with other resonant or nonresonant terms in
the amplitude, this proves that, once ys is given, this phase
can be measured through an untagged amplitude analysis
of Bs ! KS����.

C. Bs ! K �K�

As noted above, the CKM constraints following from
amplitude analyses of Bs ! K �K� decays are less precise
than those following from studies of B! K�� and Bs !
K��. This is due to theoretical errors in the hadronic
electroweak penguin parameters, rs1 and r0s1 [Eq. (42)],
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which are larger than in r3=2 [Eq. (30)], rX [Eq. (36)] and
rs3=2 [see discussion in Sec. III B].

In order to obtain a CKM constraint related to the phase
�s

1, for instance, one must measure the amplitudes in (12),
for Bs ! K��K� and Bs ! K�0 �K0, their charge-
conjugates, and the three relative phases between these
amplitudes. This can be achieved by amplitude analyses
for a pair of processes belonging to this class. For
instance, using Bs ! K�K��0 one can measure the mag-
nitudes of A�Bs ! K��K��, A�Bs ! K��K��, their
charge-conjugates and the relative phases between these
amplitudes. A study of Bs ! K�KS�� permits measure-
ments of the magnitudes of A�Bs ! K�0 �K0�, A�Bs !
K��K��, A� �Bs ! K�0 �K0�, A� �Bs ! K��K��, and the re-
spective relative phases. This information suffices for fix-
ing �s

1.
Decay distributions in Bs ! K �K� involve twice as

many relevant quasi two-body amplitudes as in B!
K�� and Bs ! K��, because Bs and �Bs can decay to a
common nonflavor K� �K state. The large number of ampli-
tudes and relative phases which must be determined in
Bs ! K �K� requires at least as many observables. While
in principle possible, this seems to pose a serious challenge
to applying this method to Bs ! K �K� decays.

V. CONCLUSION

We have studied in great detail a method proposed in
Ref. [1,2] for obtaining new constraints on CKM parame-
ters using B�s� ! �K���I�3=2 amplitudes, extending the
method to B! �K���I�1=2 and to Bs ! K� �K� �K�K� am-
plitudes measured in B! K�� and Bs ! K �K�, respec-
tively. Two judiciously chosen isospin amplitudes in
B! K�� have been shown to be over-constrained by
several B! K�� amplitude analyses, providing a precise
linear constraint between the CKM parameters �� and ��.
The slope of the linear relation is a measurable quantity,
while the intercept ��0 where �� � 0 is a calculable quantity
involving a theoretical error of 0.03. A study of Bs ! K��
amplitudes in Bs ! K�� leads to a very accurate extrac-
tion of the weak phase � with a theoretical uncertainty
below 1
.

The resulting theoretical precision in determining CKM
parameters in B! K�� and Bs ! K�� has been shown
to be essentially at the level of isospin breaking corrections
since the method is based on isospin symmetry consider-
ations, while flavor SU(3) has been used to estimate un-
certainties from a subset of small EWP contributions. A
larger hadronic uncertainty from EWP contributions is
found in a CKM constraint obtained by studying B!
K� �K and B! �K�K amplitudes contributing to Bs !
K �K�.

There is one crucial theoretical difference between ap-
plying this method to �S � 1 B! K�� and Bs ! K �K�
and applying it to �S � 0 Bs ! K��. The first two
classes of processes are dominated by �I � 0 QCD pen-

guin amplitudes which are eliminated in the relevant iso-
spin amplitudes. In the standard model this implies a
delicate cancellation between physical amplitudes defining
the numerators and denominators of the �I � 1 observ-
ables RI and Rs1�R

0s
1 � on which the method relies. In con-

trast, in Bs ! K�� decays the method relies on measuring
the �I � 3=2 isospin amplitudes which involves dominant
tree contributions. This would seem like a disadvantage of
using B! K�� and Bs ! K �K� relative to Bs ! K��
for extracting CKM parameters. However, this cancellation
in the standard model turns into an advantage when one is
searching for new physics in �I � 1 operators.

While applications of the method to Bs decays can be
foreseen in future experiments at hadron colliders, data for
B! K�� are already available from e�e� collisions at
the ��4S�, and should be analyzed in the manner proposed
here. Amplitude analyses of a few processes in the class
B! K�� have already been performed, measuring am-
plitudes and relative phases for B! K��892�� and B!
K�0�1430�� [30–32,34]. Since the method is based on
�I � 1 amplitudes, a first important step toward its full
implementation is observing a violation of �I � 0 QCD
penguin dominance in these quasi two-body decays.

This question has been studied recently [36]. It was
shown that in all cases but one �I � 0 holds well within
current experimental errors. For instance, �I � 0 domi-
nance implies

 2B�B0 ! K�00 �
0� � B�B0 ! K��0 ���; (46)

which holds experimentally within large errors, in units of
10�6 [22],

 51:0� 19:8 � 46:6�5:6
�6:6: (47)

The exceptional case where �I � 0 seems to be violated is
the equality,

 2B�B0 ! K�0�0� � B�B0 ! K�����; (48)

where current experimental values [22]

 3:4� 1:6 � 9:8� 1:1; (49)

show a discrepancy of 3:3�. One would have to watch
carefully whether this discrepancy holds in future
measurements.

This method requires performing amplitude analyses of
B! K�� separately for B and �B, as one must measure the
ratio of �B! �K�� and B! K�� amplitudes. The method
does not require observing a direct CP asymmetry in Dalitz
plots for B! K�� or an asymmetry in B! K�� decay
rates. We recall that no time-dependence is needed in order
to observe direct CP violation in the Dalitz plot of B0 !
KS�

��� through an asymmetry with respect to exchang-
ing �� and �� [37]. We have stressed the importance of
performing a time-dependent Dalitz plot analysis of B0 !
KS����, which is required in order to measure separately
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amplitudes for B0 ! K���� and �B0 ! K���� and their
relative phase.

The method presented here for obtaining a linear rela-
tion between �� and �� in B! K��may be compared with
a study of � in B! DK [38]. The latter method involves
an extremely small theoretical uncertainty from D0 � �D0

mixing [39] when studying CP-eigenstates and flavor
states in D decays. Applying this method to non-CP and
nonflavor three-body D decays such as D0 ! KS����

introduces a theoretical error in � caused by modeling the
three-body decay amplitude in terms of a sum of resonant
and nonresonant contributions. Model-dependence in
amplitude analyses for B! K�� is expected to be larger
than in D0 ! KS���� because the former processes in-
volve lower statistics and higher combinatorial back-
grounds. Fortunately, the uncertainty of modeling
B! K�� is mainly in nonresonant amplitudes [30–
32,34], which spread over the entire phase space, but less
in K�� amplitudes which are used in the proposed study.

While measuring � from an interference of tree ampli-
tudes in B! DK is most likely to receive only small
corrections from new physics [39,40], the extraction of a
linear constraint between �� and �� in B! K�� may be
affected more significantly by such effects. Thus, values
for CKM parameters obtained in the two methods may
differ, indicating short distance b! s �qq operators beyond
the standard model. The study of B! K�� is insensitive
to new �I � 0 QCD penguinlike operators which cancel in
the ratios RI, but is affected by new �I � 1 operators.
Such operators are often referred to in the literature as
anomalous electroweak (or Trojan) penguin operators
[41]. The sensitivity to such contributions is high because
in the standard model �I � 1 terms in B! K�� are sup-
pressed relative to �I � 0 contributions. Other tests for

such �I � 1 operators have been proposed in terms of
isospin sum rules for rates [42] and CP asymmetries in
B! K� [43].

A somewhat similar situation occurs in Bs decays when
comparing the theoretically precise measurement of � in
charmless Bs ! K�� discussed here with the potentially
accurate measurement of this phase in Bs ! D�s K� [44].
Both methods require Bs � �Bs mixing, but no time-
dependent measurement is required in Bs ! K�� due to
additional phase information coming from Dalitz plot in-
terferences. In Bs ! K�� the measurement of � follows
from studying �I � 3=2 �b! �uu �d tree amplitudes, while
in Bs ! D�s K� the phase occurs in the interference of
�I � 1=2 �b! �cu�s and �b! �uc�s tree amplitudes.
Whereas new physics operators in the latter case are pos-
sible in principle, their effects on the determination of �
are less common and are expected to be much smaller than
the effects of potentially new �I � 3=2 operators contrib-
uting in Bs ! K��. Such �S � 0 operators are usually
expected in the same class of models where anomalous
�S � 1 electroweak penguin operators occur.
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