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Quark contribution to the small-x evolution of color dipole
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The small-x deep inelastic scattering in the saturation region is governed by the nonlinear evolution of
Wilson-lines operators. In the leading logarithmic approximation it is given by the Balitsky-Kovchegov
(BK) equation for the evolution of color dipoles. In the next-to-leading order (NLO) the nonlinear
equation gets contributions from quark and gluon loops. In this paper I calculate the quark-loop
contribution to small-x evolution of Wilson lines in the NLO. It turns out that there are no new operators
at the one-loop level—just as at the tree level, the high-energy scattering can be described in terms of
Wilson lines. In addition, from the analysis of quark loops I find that the argument of coupling constant in
the BK equation is determined by the size of the parent dipole rather than by the size of produced dipoles.
These results are to be supported by future calculation of gluon loops.
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L. INTRODUCTION

At high energies the particles move very fast along
straight lines, hence they can be described by Wilson lines
U"(x, )—gauge factors ordered along straight-line classi-
cal trajectory of the particle moving with rapidity 7 at the
transverse impact parameter x ;| (for a review, see Ref. [1]).
For deep inelastic scattering, the propagation of a quark-
antiquark pair moving along straight lines and separated by
a distance in the transverse direction can be approximated
by the color dipole U(x,;)U*(y, )—two Wilson lines or-
dered along the direction collinear to quarks’ velocity. The
structure function of a hadron is then proportional to a
matrix element of the color dipole operator

1
U(xp,y) =1~ N TH{U(x )UT™(y )} (D)
switched between the target’s states (N, = 3 for QCD).
Approximately, the gluon parton density is

xBG(-xB’ Mz = QZ) = <p|,u7](xj_) 0)|p>|xi=Q’2> (2)

where 1 = lné and xz = % is the Bjorken variable.
The small-x behavior of the structure functions is gov-
erned by the small-x evolution of color dipoles [2,3]. For
sufficiently small dipoles x3 ~ Q7% s0 a,(Q) < 1 and we
can use pQCD. At high (but not asymptotic) energies we
can use the leading logarithmic approximation (LLA)
where a; < 1, a;Inxg ~ 1. In the LLA, the high-energy
amplitudes in pQCD are described by the BFKL equation
[4] leading to the power behavior F,(xz) ~ x;m(a‘/ min2,
However, the example of DIS from very large nuclei shows
that the BFKL equation is not sufficient to describe the
small-x behavoir of structure functions even in the LLA.
Indeed, at sufficiently large atomic number A we get an
additional parameter at,A'/® ~ 1 which must be taken into
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account exactly to all orders of the expansion in this
parameter. The situation is essentially semiclassical: we
have o, < 1 and aSFlL,,/m2 ~ 1 where F,,, is the strong
field of the nucleus gluon cloud and m? is the characteristic
momentum scale. Thus we need the LLA in the semiclas-
sical QCD (sQCD): oy < 1, aInxpg ~ 1, aF,,, /m* ~ 1.
This situation appears to be general for sufficiently low xp:
even for the proton, where we do not have the large
parameter A to start with, the power behavior of gluon
parton density will lead to the huge number of partons in
the target leading to the state of saturation [5] described by
color glass condensate in sQCD [6,7].

The LLA evolution equation for the color dipoles is
nonlinear [8,9]:

d _ ach (x - )’)2
7 U9 = 3 [ P gl
+ U(y’ Z) - U(X, )’) - U(X, Z)U(Z’ y)]

3)

The first three terms correspond to the linear BFKL evo-
lution and describe the parton emission while the last term
is responsible for the parton annihilation. For sufficiently
high xj the parton emission balances the parton annihila-
tion so the partons reach the state of saturation with the
characteristic transverse momentum Q, growing with xz as
e¢™™s The argument of the coupling constant in Eq. (3) is
left undetermined in the LLA, and usually it is set by hand
to be Q,. Careful analysis of this argument is very impor-
tant from both theoretical and experimental points of view.
From the theoretical viewpoint, we need to know whether
the coupling constant is determined by the size of the
original dipole |x — y| or of the size of the produced di-
poles |x — z| and/or |z — y| since we may get a very differ-
ent behavior of the solutions of Eq. (3) (although first
numerical simulations indicate a slow dependence of the
cross section on the choice of the scale [10]). On the
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experimental side, the cross section is proportional to some
power of the coupling constant so the argument determines
how big (or how small) is the cross section. The typical
argument of «; is the characteristic transverse momenta of
the process. For high enough energies, they are believed to
be of order of the saturation scale Q,; whichis ~2 + 3 GeV
for the LHC collider. Thus, we see that even the difference
|

(x —y)?

d
an U, U} = 2_ fd2z<as [T p——
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between a(Q,) and a(2Q,) can make a huge impact on the
cross section.

The argument of the coupling constant cannot be deter-
mined in the LLA so the next-to-leading order (NLO)
calculation is in order. In the next-to-leading order the
nonlinear Eq. (3) looks as follows (x, y, z. .. are the trans-
verse coordinates)

+ a2Kyo(x, v, z))[Tr{Ux UhTHU, U - N THUL U

a? f dzd?Z (Ky(x, y, 2, 2{U, UL U, USY + Ko(x,y, 2 UL UL, U UL UL USD, @)

where Ky is the next-to-leading-order correction to the
dipole kernel and K, and K¢ are the coefficients in front of
the (tree) four- and six-Wilson-line operators with arbitrary
white arrangements of color indices. Note that Ky o must
describe the nonforward NLO BFKL contribution found
recently in Ref. [11]. (The contribution ~ Ky proportional
to six Wilson-line operators the was obtained in Ref. [12]).
The calculation of the quark part of the kernel is performed
in the present paper and the last remaining part of Eq. (4)—
the calculation of the gluon part of Kyjo and K;—is in
progress.

It should be mentioned that NLO result does not lead
automatically to the argument of coupling constant in front
of the leading term in Eq. (4). In order to get this argument,
we can use the renormalon-based approach [13]: first we
get the quark part of the running coupling constant coming
from the bubble chain of quark loops and then make a
conjecture that the gluon part of the S-function will follow
that pattern (see the discussion in Refs. [14,15]).

As we demonstrate below, the result is that the value of
coupling constant is determined by the size of the original
dipole rather than the size of the produced dipoles:

4 i a((x—y) N [ (x—y)?
dnu(’y) /d - 2%z — )
X ['U(x, z) + U@y, z) — U, y)

- Ulx, 2)Uz, y)] + ... (5)

(Actually, following the BLM procedure [14], it is more
natural to choose argument of a, as (x — y)3 e”/3, see the
discussion in Sec. IV).

The paper is organized as follows. In Sec. II I recall the
derivation of the Balitsky-Kovchegov (BK) equation in the
leading order in a;. In Sec. III, which is central to the
paper, I calculate the quark contribution to the small-x
evolution kernel of Wilson-line operators. In Sec. IV 1
present the arguments that the coupling constant in the
BK equation is determined by the size (x — y); of the

[

parent dipole. The light-cone expansion of the quark-loop
propagator is performed in the Appendix A. Appendix B is
devoted to the comparison of our result with the interpre-
tation of the NLO BK equation in terms of three coupling
constants suggested in the recent preprint [16].

I1. DERIVATION OF THE BK EQUATION

Before discussion of the small-x evolution of color
dipole in the next-to-leading approximation it is instructive
to recall the derivation of the leading-order (BK) evolution
equation. As discussed in the Introduction, the dependence
of the structure functions on xz comes from the depen-
dence of Wilson-line operators

U'x)) = Pexp{lgf duplA*(up™ + xl)} ©)

pT=p tep,

on the slope of the supporting line. Here p; and p, are the
lightlike vectors such that ¢ = p; — xgpp, and p = p, +
% p1 where p is the momentum of the target and m is the
mass. Throughout the paper, we use the Sudakov variables
p = ap; + Bp, + p, and the notations x, = x,p} and
Xe =X, pé‘ related to the light-cone coordinates: x, =

$/2, xe = X \/—

To ﬁnd the evolution of the color dipole (1) with respect
to the slope of the Wilson lines in the leading log approxi-
mation, we consider the matrix element of the color dipole
between (arbitrary) target states and integrate over the
gluons with rapidities 1, > n > 1, = n; — An leaving
the gluons with 1 < 7, as the background field (to be
integrated over later). In the frame of gluons with n ~
7, the fields with n < 7, shrink to a pancake and we
obtain the four diagrams shown in Fig. 1

The (background-Feynman) gluon propagator in a
shock-wave external field has the form [9,17]
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() (b) (©) (d

FIG. 1 (color online). Leading-order diagrams for the small-x evolution of color dipole.

“ g Vaab 00 e—ia(x—y). iy ws)e
ALALO) = 0y x| B8 |v) = oeaty) || d‘aT<xl emit/en ] 2ag,,U
2 ' AP2uPrv 5 117 (07 fa)y. el
_(la/.LPZVU - pz,lLlaVU) - 78 U |e"’L yJ_ - 0( x*)g(y*) da P
s as? da

ab
« (xJ_ u) ™)

where 83 = —9,0". Hereafter use Schwinger’s notations (x|F(p)ly) = fdpF(p)e 6=y and (x |[F(p)ly) =

e’(”i/“‘y)x*[Zagw,UT — _(iaMU’rpzv — leul'ayUJr) — Pzﬂpzy 92 U‘r:| el(P/as)y.
s as?

[d pelPiyL (the scalar product of the four-dimensional vectors in our notations is x * y = 2(x,y, + x.y.) — (x, y) 1)
We obtain
o0 0 © da 1
du dvAi(up™ + x, )AL (vpm + = 2« —(x 2 yab
{/0 f*oo (up VA wp yl)}Fig.la sje’”Z a ( + pzl + a2e tmg +
: (8)
pi +ate s yl)

Formally, the integral over « diverges at the lower limit, but since we integrate over the rapidities 1 > 7, we get in the
LLA

0 0
{[Fau [* avaztup, + xpabwp, +y0) = ~2a8m(x,
0 —00

Fig.1a
= 2« AnfdzzJ_(xJ_

1 1
7(92 Uab yj_>
p PL

o)

X QU. — U, ~ UQ“”(ZL bi yi> ©)
P
and therefore
a, x—zy—2).
U, ® U = — 5 An{iU, ® P U} vzfcﬂz 207 — U — UP)™. 10
{ }Flg la 2 n{ V) 1 (x — Z)i()’ — Z)ﬁ_ 2U:; V) (10)

The contribution of the diagram in Fig. 1(b) is obtained from Eq. (10) by the replacement *U, ® t* U;r —Ud’® U)T 4,
x + y and the two remaining diagrams are obtained from Eq. (9) by taking y = x [Fig. 1(c)] and x = y [Fig. 1(d)]. Finally,
one obtains

a A x—zy—2) , ) ) aA
{u,® U;r}mgl -5 ;7 {*U, @ UL + U, t? ® U t yre}m deZJ. = 2)2)()y — 52 QU - Uy - U + —277
d?
X (U " ® U} i, ]( _Zl)z T2 yT)ab 4 ’7{[, ® th) 4y f( (U —UP),
(11)

For the color dipole (1) one easily gets the BK Eq. (3).
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III. QUARK CONTRIBUTION TO THE NLO BK
KERNEL

A. Quark loop in the momentum representation

There are two types of quark contribution in the NLO:
with quarks in the loop interacting with the shock wave
|

lﬁ(x)lﬁ(y) = G(X*Y*)<x

p* +ie

PHYSICAL REVIEW D 75, 014001 (2007)

[see Fig. 2(a)] or without [Fig. 2(b)]. (In principle, there
could have been the contribution coming from the quark
loop which lies entirely in the shock wave, but we will
demonstrate below that it vanishes).

The quark propagator in a shock-wave background has
the form [9]:

o d ; ; .
[9) # 00 [T e ey + pu)e I U

R 0 da oy R R 2 R (12 ! o R
+pu)lyL) — 0(—x*)0(y*)f T D (x ) [(@py + poe ' Pi/esw p UtePL/a (ap, + p)lyy)

(12)
Multiplying two propagators one gets at xi >0, y,. <0
T(+ +a AWASAY) ! © da L dv —ia(x'—y") ! —i(p? /avs)x. i(p? /avs)y. !
YNt prp(X )Y prp(y') = . Tona? . z’)zvze Y. trTf(Xﬂlﬁe 1 *Ue"l1 ’*Ifﬂyl)
X th(yllmlei(pi/avs)yL UTei(pi/avS).vi[fﬂxll)’ (13)

where tr stands for the trace over spinor indices and v is the part of the gluon’s longitudinal momentum « carried by the
quark (hereafter we use the notation ¥ = 1 — v). The quark-loop contribution to the gluon propagator is

—7 — —ia (v —v
e~ iax=x) ,=ig'(y'=y)

(AS(DAL(y)) = [ dxdyd gd' o

g> +ie q” +ie

WD PPN 1)

Performing the integration over the coordinates of quark-quark-gluon vertices x’ and y’ one obtains

8L = 2ainy [ @ads! [P Ehodyet oy ik, [

o da
= Tr{rru Ut
0 a3 { < z}

(ky, k) (K}, k3) + (ky, k) (ky, k3) — (ky, k3) (K], &s)

1
X dv
ﬁ) [(k, + k))?vv — k3D — k2v][(ky + kb)?Dv — K30 — kPv]
X [e~ Mtk Jask =il /0)+ (2 /0)x/as) ][ g =illat K Jaslio — p=il(/0)+ (K3 /D)y as)] (14)

so the contribution of the diagram in Fig. 2(a) takes the form

00 0 0
{fo du f_oo dvA¢(up, + x )AL (vp, + yl)} = —8a§nf/0 ;a jdzdz//JZkldzk’ldzkdek’z

Fig.2a

X eilkix=2) L +ilkyx=2) 1 —ilkyy=2) 1 ~ilkyy=2) L Trfsa U, U;F/}

1
dev
0

where n; is a number of light quarks (ny =3 for the
momenta Q; ~ 1 +2 GeV) and Tr stands for the trace
over color indices. The variable v is the fraction of the
gluon’s momentum « carried by the quark.

To calculate this diagram we use the dimensional regu-
larization and change the dimension of the transverse space
to d = 2 — 2e. The calculation yields

(ky, ko) (kY Ky) + (ky, k) (Ko, K5) — (ky, K5) (K, ko)

T
(ks + K2k + K20 + K)o + KZD) © )

y y y

) T Q.

Ky k
W 0. -

X X X

(a) (b) ©)

FIG. 2 (color online). First set of diagrams for the quark-loop
contribution to the evolution of the color dipole.
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2
Tr{Ux U)T}Fig.Za =

(1 + e)u*
(P*ov + Q%au)'*e

eipX)1—ilp=q—q'.y)L
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aul'(e) €

4
—&annTr{t"Uxth;r}fddedqddql YY)
T r’p—q—4)

/0 : dvdu[—(q )

(P2vv + Q%iiu)¢

{Pvv(q, ') — auQ?* + 2auvv(q* + ¢"*)] — 2iauvv(P, q)(P, ¢') + au(l — 2u)

X [vv(g, ¢) P, q + ¢') + 54*(P, ¢') + vg"*(P, ¢)] + @?u*Q*(q + q’)z}} T U(g)t* Ut (¢}, (16)

where P = p — (¢ + ¢")u, 0> = ¢4 ¥ + ¢}v and we use

I+ eu*

[

where B(a, b) = I'(a)I'()/T'(a + b). The contribution of
diagrams in Fig. 3 is obtained from the sum of Eq. (16) and
(17) by the x < y replacement in the coefficient in front of
tr{r*U,t* U1} and the contribution of the diagram in Fig. 4
by taking y — x in this coefficient and changing the sign.
Similarly, the diagram in Fig. 5 is obtained by taking x —
y. The sum of all diagrams has the form

(e!PI1 — i(PY)L)(e~ilP=a7d' X)L — o=iP=q=4")1)

the notation [d‘p, = %.
The contribution of two diagrams in Fig. 2(b) and 2(c) is
2e€
2nfa§Antr{t“Uxth;f}M7B(2 —€e2—¢)
1 [(I'(e) 1
% (x1 —{—5,02 U“”}— yl), (17)
< i LV A 1
|
2 dd dd dd i
Te{U, U} = — A Tr{teU, ¢ bUJ}(/%
T p(p—q—4q)
1 4iaul (€) u>e
X | dud +4)? -4
/o . v[(q 7) (P2vv + Q%iiu)¢

(P2ov + Q%iiu)' e

{P[vv(q, ') — auQ?* + 2auvv(g* + ¢'*)]

— 2iauvv(P, q)(P, ¢') + au(l — 2u)[ov(q, ¢')(P. q + ¢') + 94*(P, ¢') + vq"(P, )] + @ u*Q*(q + q’)z}}

X Te Ul )P UT(q))} — 2u2B2 — .2 — e)[2<xl

1
,aiU“b}—z
Pi

(el )~
— X 51 2e X — |y
1 pi pi L 1
n 1 ) 1 1

e

—zaanb— yJ_> - ()CJ_
1

pi i
where the last term ~ e is a counterterm calculated in the
Appendix A.

B. Quark-loop inside the shock wave

Let us consider the diagram in Fig. 6 with the quark loop
inside the shock wave of width A = Az, ~ m% e~ 7 where

m? is some characteristic mass scale of order of Q2. From
the form of the perturbative propagator

z 7= 5
8mx.

X eiae=2).—ille=2) /@4e=2))as

1
p* +ie

o da

0 «

y y y

1
pPi

/Cj/ wﬁ MO“M

X X X

FIG. 3 (color online).
loop contribution.

Second set of diagrams for the quark-

1 (T'(e) 1
pi{ R
I'(e) 1
{pT L0 p3
L aye L xl)—(yl Ly L yl)D (18)
Pl i Pl

{
we see that the characteristic transverse scale inside the
shock wave is

67772

=B~ 2w e (19)
as
and therefore the contribution of the diagram in Fig. 6
reduces to the contribution of some operator local in the
transverse space. By dimensional arguments, this local
operator must have the same twist as the operator describ-
ing the interaction of the gluon with the shock wave at the
tree level. In the leading order in «, the vertex of interac-
tion of gluon with the shock-wave field is proportional to

93 U = —ig[DG] + 2¢’[GG], (20)

y y y

D N O,

FIG. 4 (color online). Third set of diagrams for the quark-loop
contribution.
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Y. Yy y

T o o

X X X

FIG. 5 (color online).
loop contribution.

Fourth set of diagrams for the quark-

where

[DG] = f du[oopy, up;1,D'Gra(upy + x))
—oopy],

[GG] = j dudvd(u — v)[eopy, up,1,Guilup, + x))

—oopi],. (21)

These operators have twist 2 so a possible local operator
describing the gluon interaction with the shock wave at the

one-loop level must also be of twist 2. To find this local
|

X [up;,

X [upy, vp1,Gi(vp, + x)[vpy,

4
Tr{&iUxaiU;r} =2 01 AnU“b[3 w? 4Bl — €1 — 6)()6_]_

PHYSICAL REVIEW D 75, 014001 (2007)

FIG. 6 (color online). Quark loop inside the shock wave.

operator, we consider (the quark-loop contribution to) the
color dipole tr{UxU;r } at small at (x — y)3 — 0 and com-
pare the expansion of the contribution of the diagrams in
Fig. 2 to the exact calculation of the light-cone expansion
of tr{U, U1} in QCD (up to twist-2 level), see Fig. 7.

The first step is the light-cone expansion of the sum of
the diagrams in the in Figs. 2—5 in the shock-wave back-
ground. The light-cone expansion of Eq. (18) at x; — y
starts with terms quadratic in g (g'). They lead to the
operators 92U, and a,»Uxal-U;f (in the leading order we
do not distinguish between U, and U,):

(3£ -2 s

_ I'(e) . 1 1 .
+4u* B2 — €2 — €)<XL e )’L)aiUxb - 3—€<xl 5 yL>6iUx”}
a? 1 1 2¢  AAT(—2e)
=—n;A 2B(1 — €1 — —=3+——); + ) Tr{o.U.0, Ul
2" ”7{61\70“ (1-e G)KG ST +e)> it T A2 }(Ai)ze w0:U:0;U:}
2e
M I'(—2e¢) 1 I'(—e) 5 b
2 — _ an a : 22
€ €) B3 126 (Ai)‘f}Ux 07 U} (22)

The expression (22) should be compared to the light-cone expansion of the quark-loop part of the gluon propagator in an
external field (see Fig. 7) performed in the Appendix A. A typical term of the light-cone expansion has the form:

XWY _

FIG. 7 (color online).

A possible local contibution coming from the quark loop inside the shock wave.
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d= z*—[(x —2)¢

Vs

+ (2= D100 21D G (200 % ) 21200 72 1) + 862 ] d>z, j d- z*<[x*,z*]xG (2o x1)

X [z 211G uil2h x [Z, y*mab{;[(x — )+ (@ — Y]+ (- z'>:H. (23)

In our “external” field the characteristic distances z.(z}) are of the order of width of the shock wave: z., 7. ~ e™/s/m?.
As we shall see below, the characteristic distances x, and y, are ~e"\/s/m? so we can neglect z, and 7, in comparison to

x, and/or y,. The formula (23) simplifies to

A%(xs, x1)A (v y1) =

e[ 5

] 1—€ .
s > e[(Ai/4A*)aS|:_iglf d Z*[x* +( y) ]

16 16725 47A.,
. X D
X ([Xsr 2 e D G o (24, X1 N 2s 2 ]i[ 200 Y1) + 2 d;z* “aZ z*([x*, 2y GL (24, X 1)
Y Vi
1
X [20, 221, G izl 22 y*]mb{; L6 + (—)5] + (2 — z’)iH- (24)

A very important observation is that the contributions
proportional to

gin, [ dz. f dz6(z = )z = )G uz)Gulzh) (25)

present in the individual diagrams in Fig. 11, cancel their
sum. If it were not true, there would be an addtional
contribution to the gluon propagator (7) at the g* level
coming from the small-size (large-momenta) quark loop.
Indeed, the calculations of Feynman diagrams with the
propagators (7) and (12) imply that we first take limit z,,
7k — 0 and limit d | — 2 afterwards. With such order of
limits, the contribution (25) vanishes. However, the proper
order of these limits is to first take d | — 2 (which will give

|

AL ¥ )AL y1) = € B~ €2 €) f

162

+ (GG~ [x +(=y)e ]}

The light-cone expansion of gluon propagator contains
only Wilson lines and their derivatives as should be ex-
pected after cancellation of the ‘‘contaminating’ terms
(29).

We have demonstrated in the Appendix A that the light-
cone expansion of the quark-loop contribution to the gluon
propagator coincides with Eq. (22) as should be expected
once we established the commutativity of the limits d| —
2 and z.(z}) — 0.

{
finite expressions after adding the counterterms) and then
try to impose condition that the external field is very
narrow by taking the limit z,., zk — 0. In this case,
Eq. (25) reduces to g*n;[GG]. The noncommutatwlty of
these limits would mean that the contribution - [GG]-,
should be added to the gluon propagator (7) to restore the
correct result. Fortunately, the terms ~ (25) cancel which
means that there are no additional contributions to the
gluon propagator coming from the quark loop inside the
shock wave ( = quark loop with large momenta).

Since there is no external field outside the shock wave,
after cancellation of the terms ~(z — z/)€ we see that at
Xy« > 0 Eq. (24) vanishes, and at x, >0 >y, one can
extend the limits of integration in the gluon operators to
*o00 and obtain

€ ] I—e . ., 1
< ) <_£> ez(Al/4A*)as|:_l‘g_[fo + (=)< ][DG]*
as €

4 A,

€ 1 l-e ., 1
T () (o) e e ot e6)
as €

47 A,

[

C. Quark loop in the coordinate representation

To calculate the integrals over momenta in Eq. (18) it is
convenient to subtract (and add) Tr{r*U,r* N from
Tr{r*U P UL}

Tr{rU Ut} = Te{r*U UL — U P UTY
+ Tr{r* U, Ut (27)
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Let us start with the last term in the right-hand side of E(} (27). In the momentum representation, this term corresponds to
T =2728(¢")U(g) so we get

Tr{r*U(q)t* Ut (¢")} — 4726(q) fdzel(q 2L Tr{ U.ttu

2e
—2a2n;Ant°U, ® UL ,41,7 fd‘dpd q

qiuvl(1 + €)
[(p — qu)’vv + qg*viiu]'te

o + elPX)1=ilp=q.y)L
= Z;Sannt“Ux ® t”Uy fddpddq—

p*(p = q)
where we have used integration by parts to transform the
second term in the left-hand side of this equation.
Alternatively, this result can be obtained directly from
Eq. (15) after the substitution (27).

For future use we need to rewrite it in Schwinger’s
representation:

2
—2&/L27dann{t"Ux®th}L}
a
1/ I'(e) 1
X{x|— 92U ) — |y|B2—¢€2—¢).
(| pe(ameriv )z | Jpe-e2-0

(29)

The contribution coming from the first term in Eq. (27) is
UV-finite. To calculate it in coordinate representation it is
convenient to return back to the original expression

— 8aln AU, ® U} f Pl @K, 2k d? k)
X elitkix—2) ik, x—=2") —ilk y—=z2) —ilky,y=2') 1
X T U U — U P UTY

% ]1 du (kl’ kZ)(klr kl2) + (kl: kl])(kz’ k/z) - (kl’ k/z)(k/) kZ)
0 (ky + K} (ky + Ky (kju + ki) (K3u + K2 i)
and use the formulas

eipX)1—ilp=q.y)L

p*(p — 97
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iug®T(e)
[(p — qu)’vv + ¢*viiul€

U*(q) ] dvdu[

{(p — qu(—1+2v) + auqz}}

r
U (q)q> /(6)) B2-e2—e), (28)
[
i(ky,xp)+i(ky,x;)
fddk1ddk2 (k1>k2)e2 - :
(kl + kz) (kll/l + kzl/{)
1 (.XI, xz)
- - +0(d-2
4% (x; — x,)? [ x%u + x%it} ( )
_ _ 30)
kliij -l

eilki,x)) ilky,xz)

] dik,d'k,

(ki + kp)?(k}ii + k3u)
X1iX2j — ]

+ 0(d — 2).
412 (x; — x)*(xFu + x3ii) ( )

After some algebra, one obtains:

2
a
Uxez;Uj,z—2 s

fdzde 'f duTr{1*U U} — 12U 1 UT}

An{rU, ® U}

1 (X, X')
o= z’)4|:1 CXPu+XPa Yu+ Y7
(X XY Y)+ X NXY)— (X Y)X,Y)

(¥, Y")

(X2u + X2a)(Y?u + Y'%i)
(31)

where X=x—2z, X' =x—-7,Y=y—z, y=y—-7.
Note that the singularity at z’ = z is integrable.

Performing the integation over u and adding the
UV-divergent term (29) one obtains the total contribution
of the diagram in Fig. 2(a) in the form:

t\Fig.2a — ag a byt 22 dmefsarr byt _ ayr byt 1 (X, X)
(U, ® U )Fig2e = —27T4An{t U, ®t°Uy} | d°zd* Te{t' U 1°U), — 17Ut Uz}( — ,)4{1 " xn lnF
(Y, Y X, X, YY)+ X YXY)- X Y)NX,Y) . X?Y?
o Y2 _ YIZ YIZ + XIZYZ _ Y12x2 In Y/ZXZ}
a; 1 / T(e) ab 1
— 22 u*B2 - €2 — e)An{t*U, ® th;}<xL < e 02 U) — yL>. (32)
T pi\(—d%) P
Sum of the UV-divergent contributions takes the form
we 1 (T 1 1 r 1 ab
~ 62— e)AntU, @szT(xL { e U}—z——2< 1@, 2U> yL> (33)
pi l(p1) Pt pi\(=d3)

The counterterm is calculated in the Appendix A (we use the MS scheme):
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LaZ Uab 1

1
— 2npaAntU, ® 1 US —<xL
: 3me pl pl

i) (34)
Adding the counterterm, one gets after some algebra

1 2 2 5 1 ab
Hln“— 0?2 U}—(ln £ aiu)+—aiu} yl>
pJ_ pJ_ _aj_ 3 p

2
1
a; a it [ [ = y)? 2,249 1 202,

nf—Ant“U ® Ul (xL

Yl [mxz 2 4 }}(w U, - U, (35)

The calculation is simplified if one notes that 62 U. in the Lh.s. can be repaced by 93 1, -
for the sum of the diagrams in Fig. 2 has the form

177 1
3 U, — 5 U,). Our final result

t a; a byrt 1 Icolfsarr byt arr byt 1 (X, X)
a&®L5h@2=__méAnWﬁlg@tl”}fd{n;[dzTr{IUJIG”_[UJLth—jﬁ{I e XQIX”
(Y, Y') X, XY, Y)+ X VXY) - (X Y)X,Y) X?Y?
- Y2 _ Y/2 ]nﬁ X/2Y2 _ Y/sz ny/2x2}
(x — y)? 5 1 5 1 5 .
4 12{ — [ln(x —Rul + ﬂ » [1ny2 2 4 3} > [mxhﬁ + ﬂ}@UZ ~U,-U,) b}

(36)

[

As we mentioned above, the contribution of diagrams in ~ Similarly, the contribution of the diagram in Fig. 5 is
Fig. 3 is obtamed from Eq. (36) by replacement t“U, ® obtained by the replacement x — y:

Ul — U1* ® Ul1* and the contribution of the diagram

in Fig. 4 can be obtained from Eq. (36) by taking y = x in

2
the integrand (and changing the sign) U, ® U;)Fig. s = a_g AnniU, ® tb U;f 19} f dz[l
T T
2
t _ & a b t 1
(WU, ® Usigs = 3 Ann1*Ust” ® Uy} f dZ[; X f dZ TN U U — 12U P UTY
X ]dz’ T U, UY — U P U} o | 1— v, y) r*
: z—2) Y2 — y2 yn
1 (X, X) 1 5
Ay F— (1 ~ Y%7 1“@) — e [myz 2 4 3}(UZ - U),)“”} (38)
1
- —z[ln)(z,u,2 + é}(UZ - Ux)’”’}
6X 3 Summing the contributions of the diagrams in Fig. 2-5

(37) and taking Tr over the color indices, one obtains

Tr{U, U }——AnnfTr{t“U th*}]d2 [ ]dzz’Tr{t“U Ul — U Uty

(z— z)
Xl2y2 + Y12x2 _ (.X _ y)Z(Z _ Z) X/2y2
X {1 - 2(X/2y2 — Y12x2) lnyl2x2}
1 (x—y)? 51, -1 X )
"] | e 3 [ S wpfeu. ~ U - v | )

Let us present the total result for the sum of the leading-order BK equation and the quark NLO correction

014001-9
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agng X2-v? Xx?

ATHU, U THU, UL} — N, THU,U }][(x v (1 - asnf[l“(’“ R éD

2
In— }+ a—jnf Tr{r U, P U} ] d2zd?Z T U, UT, — 1ou Uty
T oz (z
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X2y? 6 3

6w XY2 Y2 — )
X/Zy2 + Y/2X2 _ (X _ )Z(Z _ Z/)2 X/2y2
Xql = nya2 /zyz 0S| (40)
2(X"?Y? — Y"”X?) Y X

We see the first term proportional to In(...)? u? (we will call it the “UV” term) has the same structure as the zero-order
contribution (3). In the next section we will use it to determine the argument of the running coupling constant in Eq. (3).

D. Comparison to NLO BFKL
To compare with the NLO BFKL equation we need to linearize Eq. (40) which gives

— v)2
Uy = S [t + U ) - Ui (1 T [t = ypwr +3))
any X2 - ¥ lnX_Z} _agng ] Ladr L&D { XA YPX - (=P =) 11qlx'zlvz}'
6w XY> Y?] 4N - ) 2(X"y? — Y"2X?) Y2 x>
(41)

This should be compared to the quark part of the nonforward BFKL kernel [18] but the Fourier transformation from the
momentum space to the dipole-type representation appears to be rather difficult.
To simplify the comparison, let us consider the case of forward scattering and write down the Mellin representation of

U(x, y)
Ur(x—y) =

where we have displayed the dependence on the rapidity 1 explicitly. Using the integrals (x(y) = [—(y) —

2¢(D)])

fdv(x —y)2ru;,

1
'yEE—i-iV, (42)

b1 —y) +

]dz (xzyz [(X2) + (Y2 = ((x — )2)"] = 2mx(y)((x — y)?),

2 2 2 2
[ dzz[mXY{ r_mn Joer v =y = eyl ) = W - )+ i),

(x — »)?,

(43)

d*zd*7 _XPY? 4+ YPX?E — (x — y)2(z — 2)? 11qX’zYz _ mcosmy 2+ 3y(1 — 1)
(z =) 2(X2y? — Y"2X?) y2x? sinfry (1 —4y%)(3 —2y)
[
we obtain term in braces should correspond to the quark part of
B-function contribution to the eigenvalue 8(y). We expect
d— Ul = [1 - 6—n n(x —y)’u 2}(}(@) -— to study the relation to NLO BFKL in detail after complet-
] T

X {[ww — (=) + x(y) - fxm}
Y
37%cosmy 2+3y(1—1)
N2sin’my (1—-4y*)(3 — 27)Du;’,
(44)

10
"‘?X(Y) +

where y = % + iv. This expression should be be compared
to the NLO BFKL result [19]. Unfortunately, there is no
explicit expression for the coordinate-space NLO BFKL
kernel yet. However, the last two terms in braces in right-
hand side of this Equation coincide with the expression for
the ny part of the eigenvalue 6(y) of Ref. [19]. The first

ing the calculation of the gluon loop.

IV. BUBBLE CHAIN AND THE ARGUMENT OF
COUPLING CONSTANT

To get an argument of coupling constant we can trace the
quark part of the B-function (proportional to ns). In the
leading log approximation the quark part of the S-function
comes from the bubble chain of quark loops in the shock-
wave background (cf. Ref. [20]). We can either have no
intersection of quark loop with the shock wave (see Fig. 8)
or we may have one of the loops in the shock-wave
background. (See Fig. 9.)
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FIG. 8 (color online). Bubble chain without the quark-loop
intersection with the shock wave.

It is easy to see that the sum of these diagrams yields

% Tr{U, U} = 2a, Tr{ Uxth;f}]d2pd2q[ei(p,m
— elPV1L e iP=a0L — =ilp=gy)1]
1 2 ( _ang lnq—2>
p*(1 + 5= Ins) 6
1
(p— (1 + g2 In s

X aiU“b(q)

)
(43)

where we have left only the UV part (29) of the quark loop.
(In principle, one should also include the dressing of the
UV-finite 1/N,. term in Eq. (41) by bubble chain, but I
think that it is a separate contribution which has nothing to
do with the argument of the BK equation). Replacing the

quark part of the B-function — g‘—; ny an—i by the total con-
2
%bln% (where b — % -

(r—q

tribution

d )
yi U, Ul = 2Tr{ U, 2 U f d*pd’qleiPos
n

Iny), we get

— P [~ iP=a0L — o=ilp=a))1]

as(pz) _1 2 rrab s((P_Q)2)
= (@100 (r—a?

(46)
|

— zasfd2pd2qei(p,x)l*i(p*q,yh

p2a2/ |In? L Int ln” 1
= - X
872 <

P~ a2 p 2
0 U—+—-97
2 LT T

p

Again, it is convenient to replace 0 U, by 03 U, where U, = U, — % —

Using the formulas

1 ba, u?
— (1 - ln—>82 U (q)
pA(1 — b ln“—2)< 4 @)t

In~ 1 1 2
+—82U—2"2— ’;2<ln'u282U> 2——2<n 5
P’ p d p- P —0d7

FIG. 9 (color online).
the shock wave.

Bubble chain with quark loop crossing

To go to the coordinate space, let us expand the coupling
constants in Eq. (46) in powers of a, = a,(u?), i.e. return
back to Eq. (45) with gxn, — —b 7= . In the first order we
get the UV part of the NLO BK Eq. (40)

d
— Tr{U, U] [ Tr{u, Uy Tr{U, U}

dn

— N, Tr{U, U}

(.X B y)2 Ay
X [ 7 <1 + bE In(x — y)2M2>

a, X>—Y? X?

i xyr Mal “7)

In this section, we perform the calculations in the leading
log approximation

a,In=~1, a, <1 (48)

[hence we omit the constant term ( ~ %) from the Eq. (40)].
In the second order in the expansion we obtain

1
— \2(1 — bas
(p—@)2(1 = 2% In k)

2 2 2

)2
M U) Inz
1 2

p

y)-

U,V .
7.
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2 1 - 2 2 2 1 1 2 2 2 ln’u“—z In&: ’ 2
<x —1n2“—2U—2——2U1n2“—2+1n”‘—2<1n at U>—2+—2<1n ~ U)ln'u—z—ln'u—zU T T )
popt o pr U )t Ul )t

lnlu‘_ 2 5 2 -
F (e 2570), (o 2570) ]
p =031 Jx —ad1 Iy

1 X?
sz[lan,u,2 InY?u? — lnw InAZu? — ln2A2M2:|

b X2 1o
4772Y? |:lnX2,u,2 Iny?p? + IHF InAZp? = lnzAZMZ}KUz - EUx ) UY>

Di ln'u_z2 ,u,z Di Di ,u,z Pi 111#_22
2 d <1n U>—1—2—£<ln Fo U> -
P P —o

= 1Y)

dz 1o 1o A 24, rY2 — (Y, Y,
= = — _ I + In2A2u2 + —1n2A2u2 + i i ’ i —X)?
f47rz<UZ PR R >{[X2 Yz} mew X2Y2[ P A fdr[ ST

rX* — (X, nX;
_ i " In Y)? ||, 49
- T ’ﬂ} “49)
we obtain
4 3 U Uuh = ba\! [ o ey oty Ter. vt — N, e, oD S T e — 2t + L
dn I'{ )’} 277_2 477_ Z[ I'{ x Z} I'{ b4 }'} c I'{ x y}] X2Y2 n (X y) M F nY2
) 2.2 1 X 22 2.2

X (InX?*w? + In(x — y)*u )—Wlnﬁ(lnY u” + In(x — y)*u?) | (50)

We have omitted the contribution of the last integral in right-hand side of Eq. (49) since it is negligible in the limits X > Y,
Y > X and X, Y > x — y, and therefore can be dropped in the leading log approximation (48). Adding the first-order

contribution [first line in the Eq. (40)], we get

d
% Tr{Uny

z[Tr{UxUJ}Tr{UZUJ} — N, Tr{UxU;f}]{(x —y)? [

2

ba ’
X2y2 G MmN

ba\2 ba, ba ba
+ (=) In*(x — y)?pu? | + . 2u? + —— InX*u?
(477) =Y :| 47 x2 " [ 47 YV m 4 M :H
ba, 1 X? ba ba
—— —In5|1+—"In(x —y)?u?+-——InY?u? (L. 51
47 Y? nYZ[ 41 n(x = y)w 4 M }} D

Our guess for the argument of the coupling constant in
all orders in Inp?/u? is [21]

Ay (()C - y)z)
272

% f & TH{U, U TeH{U, U}

d
— Tr{U, U} =
dnm

~ N, T{U, U} }][(xxzyyz)z e
() v )]

(52)

We see now that the argument of the coupling constant in

{
the BK equation is size of the original dipole (x — y)? as it
was advertised in Eq. (5).

Actually, since the each of the quark loops gives
In(x, ) u commg from B(2 — €, 2 — €) in Eq. (17),
it is natural [14] to include this 5/3 correction in the
argument of coupling constant which will give
ag(e’3(x — )2 ) in the right-hand side of Eq. (52).

V. CONCLUSIONS AND OUTLOOK

First, there are no new operators at the one-loop level —
just as at the tree level, the high-energy scattering can be
described in terms of Wilson lines. The fact that there are
no new operators at the one-loop level is rather remarkable.
In the case of the usual light-cone operator expansion this
is not true; for example, if we have the operator
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[GG] — f dudvd(u — v)[oopy, up: 1, Guiup, +x1)

X [upy, vpi1,G. (vpy + x1)[vpy, —opy],
(53)

in the leading order, one should expect the operator

a f dudvd(u — v)In(u — v)[0opy, upy 1 Guilupy + x1)

X [upy, vp1,G'(vp; + x)[vpy, —oop], (54

in the NLO (in general, any new loop brings an additional
factor a,In(u — v)). This does not happen here, and in
addition the operator [GG] appears only in the combina-
tion —i[DG] + [GG] = 93 U, exactly as at the tree level. I
have checked this by the explicit calculation of the quark-
loop contribution and expect to confirm it by the calcula-
tion of the gluon loop.

Second conclusion of the paper is that the argument of
the coupling constant in the BK equation (obtained from
the renormalon-based arguments) appears to be the size of
the parent dipole rather than the size of produced dipoles.

It should be mentioned that in the recent paper [16] the
NLO BK equation is rewritten in terms of three effective
coupling constants. This is a different extrapolation of In?
result (51) to all orders, see the discussion in the
Appendix B.

I have obtained the result for the argument of the cou-
pling constant in the nonlinear evolution of dipoles using
the quark part of the S-function. It is necessary to confirm
this result by calculating the diagrams with gluon loops.
Also, it would be extremely interesting to check how (and
if) this argument of the coupling constant arises from the
correlation function of the original dipole and the “dia-
mond” high-energy effective action [22] formulated in
terms of the (renorm-invariant) Wilson lines. The study is
in progress.
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APPENDIX A: LIGHT-CONE EXPANSION OF THE
QUARK-LOOP CONTRIBUTION TO GLUON
PROPAGATOR IN THE BACKGROUND FIELD

The expression (22) should be compared to the light-
cone expansion of the quark-loop part of the gluon propa-
gator in an external field. The quark-loop contribution to
the propagator of a gluon in the external field has the form:

1 ma
AT(ALY) = | dx'dy’ /
(V)AL (y) fx y<x Pg,, +2iG,, +0,, x)

1 1

XTrltdy (x| = ’)tb ,,< ’l— x’)}

{ ”( L)
x (y' ! " AD
(y Plg,.+2iG,.+0O,. y) :
where
1 . 2p2 .

0, =0,,=—-DG,;, =—DG,. A2
M L M as (A2)

An additional term in the gluon propagator is due to the
fact that the external gluon field of the target satisfies the
Yang-Mills equation with a source DG4, = —giby, 1.
From the viewpoint of Feynman diagrams in the bF gauge,
this term comes from the diagrams with the quark inser-
tions shown in Fig. 10 (in the lightlike gauge this term
arises automatically, see Ref. [9]). For the contribution
~0,,. the quark propagator reduces to

o1 By + Bb+ (b +B)L
o (a, + a@)(B, T Bs — (p + )
e By, =Bl + (6 =K1
(ap - ak)(ﬁp —B)s —(p— k)i

As explained in Ref. [1] at @y < a,, one can shift the
contour of integration over 3, away from the pole in the

1’ b,

y,. (A3)

2
denominators in the above equation. After that 8, ~ % SO
P

one can neglect the terms proportional to transverse mo-
menta in the denominator and in the numerator. One ob-
tains

1 1 s £aDc 4C
ayﬂﬁzﬁlf‘ll‘b — P p by, zalf by, (Ad)

which corresponds to the vertex of the insertion of O,,
operator.

We need to expand the Eq. (A1) near the near the light
cone x — y and compare it to the light-cone expansion of
the same propagator in the shock-wave background (re-
fvesvkladlikone). The technique for the light-cone expan-

FIG. 10 (color online). “Target” contribution to the gluon
propagator in the external field.
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sion of propagators in external fields was developed in Refs. [23,24]). The expansion of the tree-level quark propagator has
the form [24]:

(x’ 1

, AT(2—€) I'(1—e) . i
Y ) B 2772(—A2)62‘f * 16772(—A§)1_5 ﬁ) du{mac(x") Fuo Gk 2D G
I'(—e)

16 2( AZ) €

u . i R
+44Xf0 dvﬁvGi(xu)GAg(xv)} fdu{l(i—uu>D"G,\pyp +—uu(1—2u)DD’\G,\A

- uu(l _ZU)YP[G (x ) pr(xu)] uueA/.LV/\D DfGérV’y/\’YS + l_([GAf(xu) G (x )]
#[Gas(5). G5 Dy s+ [ ao] (200 =3)Gus0) Gy + (v =200 =3)6H(5,) G,
#5120~ 20)Gag ) G, 7475 ~ 5 Cae)GH (e yays || + 0w (A5)

where A =x' —y ande =1 — dTL. Hereafter, we use the notations x, = ux’ + iy’ and G, = G,, A* for brevity [25].

We need to multiply this by similar expansion for the antiquark propagator. The product of the two quark propagators
has the form:

Trt“y“(x’ — y> yﬁ< -~ >=(T + (Tl + (T3)d, (A6)
where
1ty = 22O (¢ | Peas — pare) oo )+ 2 e [} dutx)
X (2070 4G s (1) — 2iud gGoa (5,) + iA2G ()i ¥ D, (A7)
(i = P2 = O [ 28,8 82,94, 5D )5y

St (—AZ)32e
B(2 —¢—€)I'2—2¢)
167T4 (AZ)Z 2e

1 i ab
tae Bi| + l(i - L_tu)gaBD/\G/\A(xu) + 51’_”’!(1 - 2u)gaﬁ(A : D)D)LG)\A(xu)}[-xw yl]> ’ (A8)
B2—€1—¢€) I'3—2¢)
277.4 (_A2)3—25
X [-xwx ]G f(-)C )[-xv: yl] + uﬁ@(v - u)ta[-xl: yl]tb[yl’ -xu]GA.f(xu)[xu’xv]GAf(-xv)[xwxl]}

B(2—e —e) I'2—¢)
16774 ( A2)2 €

x| (a —2av—E)Gmxu)[xu,xv]cﬂx»+ (v-2a0 —%)Gﬂxu)[xwxu]GM(xU)}[xv,y/]

u([x’, xu]H[—l(% - ﬁu)D)‘G)\a(xu)AB - %ﬁu(l —2u)D,D*G 5 (x,)Ap

. 1
(T3)g”ﬁ =—(2A,A5 —A%g,p) . dudv Tr{iv(u — v)t[y, x'1[x', x,1G a £(x,,)

d dvTr{ Z(Aac?% +Ag8) — gaﬁA’\)(ﬁ(u —u)t’[y, ¥ 1t x, x,,]

#0001, 10D, (= 25— %)Gmxu)[xwxv]cﬂxv) # (5200 3)0, e 5,1 )

B(l—¢1—€)T'(2—2¢
x[xwxl]}_ ( 167T4 ) ((AZ)Z 26)
tae ﬁ) + 2(’/_“—’ + ﬁu)ta(gaﬁ[x/) xu]GAf(-xu)[xw )’]tb[)’ )xv]GAf(xv)[xv’ .X]

- [)C/, xu](GAa(xu)[xw Y]tb[y/: xv]GAﬂx(v) tae B)[xv) xl])
=24 1°[¥, 2, 1G £ (0 )x Y I TY, %, G g (3, )y, X' T = 20801 [, x, ]G g (x,) [, Y11V, 3, 1G € (), X']

- 2MABta[~x/» xu]GAf(xu)[xw yl]tb[y/r xv]Gaé(xv)[xv:x/] - ZUABtu[xlr xu]Gaf(xu)[xw y/]tb[y/’ xv]GAg(xv)[xwxl]}r

(A9)

, u dv TrA? ([, %, ]G o ()0, ¥ 1 [, 6, 1G5 (x, ), ']
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where we have omitted terms ~e€,p,,A%(...)" a
[Gas G, ¢] which do not contribute to Eq. (A1) with our
accuracy.

Next we need to substitute the product (A6) into the
expression (Al). Since we will integrate the expression
(Al) over x, and y, (to get UxU; ) we can neglect the
terms proportional to P,(...) and (...),Pg. Indeed, using
the identity
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As explained in Ref. [1], one can drop the terms propor-
tional to P, since they lead to the terms proportional to the
integral of total derivative, namely

2 2
jdx*[oopl, X*Pl} |:SX*P1:_OOP1:|
<D <I)< x*pl,...>>
ab
d 2 A2
= [dx*d H:ooply_x*pl:|t |:_x*le —00p1i|
X s s
2
X<®(—x*p1,...>> }=o. (A12)
N ab

Using this property one can rewrite Eq. (A6) in the form

(| 5] )

(T1) + (1) +(T3),1,3,

1
Trfy( x' | =
7( Z

(A13)

where

1 1 1
P,———— = — Py +— DG
“Plgap t+2iG,g P2P T prT e
1
N G — Al0
P2g,p + 2iGp (A10)
we get
P ! _L1p
“P’g,e +2iGye + 0, P>
(A11)
1 . — b, 1
P2g., +2iG., + 0., *pr
22 —e I'(e)
T a P2
(Tt = ises g =20 (* ‘ (—P)F

ig T'G—el'(l1—¢) I'(e)p,
872 T(4—2¢) < ‘ (-

ab _ gr2(2 - 6) F(G)
) 47T (3 — 2¢) <x

1
(_pZ)e y)]() du([xI’ xu]GaB(xu)[xw y/])ab

y) [ Ldu(l, x, (780G ap(x,) — 485G an(x,)]x, YD

2(n —
(T)% = gap(l — 2¢€) 4i£F((i — 3)6) (x (F_(;;)_li)e )f du([x', x ]D“G”A(x Wx,, v D + (Tz)fj;;
212(n — u
(1t = itap(t =20 5580 (x| SO [ [ ool 6 6setw ) )G Gl ')
+ (T, (A14)

and < means “equal up to the contributions ~P,(...)g and (...),Pg.”
Next we expand the propagator (A1) near the light cone. The first contribution comes from the 7, term which represents
diagrams in Fig. 11(a)—11(g). The calculation yields

+O 7O~ Oy Oy
O O G -~

FIG. 11 (color online). Quark-loop contribution to the gluon propagator in an external field.
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1 ma 1 bn
d ld / / Tab /
f e <x P’g., +2iG., + 0., x) ‘“B<y P’g,. +2iG,. + O,. y)
1 1 82 U T 1 j 1 (DG T
=—B(2—62—e)< { (62)6}2 y)—LgZB(Z—e,Z—e)(x 2{ (¢) } 5 y)
8 PPl oa T(=p)Elp 4 PPl oa T(=pH)p

212
g’ (1 —e) wda [x 2 2 €
+ —— — d— % d- i w0y K xGOi ) D :k xGo' i) {k: * x ab
32727 (4 — 2¢) ,/;) a’ j; SZ ,[y SZ (Lo 2] (2w x 1)z 22] "(Z xUlz .l (as)

X 18ij l[(2 - -2 —(x—2f - (z— 5]+ l[(2 —€)z—yi— (@ —yf—(z2— 2]+ 2z — )¢
€ €

(z =2 (z — 2)3 (z— 2. (z—2)F [ 20—-¢,
—22-€ )( - ct(—e )W_Z(Z_G)W"‘(l_6)(Z_l.)£,e+ 3¢ (z — )}
X [A 2+e 4 (Z _ Z) 2+e ()C _ Z)* 2+€ (Z _ )))* 2+e]i| ( j_ E) |:()C _ Z)i+€ + (Z _ Z/)}F+e _ (X _ Z/)i-#e

(x — 2)s(z — )

+(1+ e —— (@ =TT =D - it (It e i Z/)*(le*_ i)*}<(3 T
(x—2)ie (e =27 As
4A2 "M% gy - A,.A,.]) + %(1 B 202z —E+ (x—DE+ (= W) — 200 — )E -2 - y%f]}
% (_ 4;C-Vg >l_eei(Ai/4A*)as' (A15)

In our external field the characteristic distances z,(z%) are of the order of width of the shock wave: z,, z, ~ e™/s/m>. As
we shall see below, the characteristic distances x.. and y, are ~e"4/s/ m? so we can neglect z.. and zJ in comparison to x,
and/or y,. The formula (A15) simplifies to

1 bn
P’g,. +2iG,, + O,, y)

fdxldy(x Pg., + 2i1G.M + 0., xl) Tf“‘*(
3(2_62_6)< y>+1l687723(2_62_6)jda<4l>[ (=]
g Tl —eT'(2 — ¢)

1 {aiU“b I'(e) }
pz
ias \l—€ . ., ) ' ot
G Bl R O VLN R IR A da
* Vi

1
8w

a (=p)F|p?
1672T(4 — 2¢) 0o o’

X 2 * 2 . 4 € 1 €
X f d;z* [Z d;zi([x*, 2 kG (2o X 1 2> 221G 0i(2h, x 1 )[ 25, y*]x)“b<a—;> {— [x§ + (—y)§ — 2(z — 2)¢]
Vs Vi

1 javs \l—€ .

The term ~7, coming from the diagram in Fig. 11(h) has the form

1 i oda /i \€ ias \!- 2 Ire—era—e
! g,/ _ ! Tab ! — _ 1(A J4A)as
f wedy (x x) 2"<y y) 3247 f 3(as>< 47TA*> T3 - 2¢)

; 2
><{(4—6)(1—6) 22 — 2€ + €2)

p2

['x: + (_)’)5 - A: - €x*y*A§72] -

e22—-€e)(3—¢) e —¢€)(1 — €Y
« 1—e+iasA2l e 4 (= )HE_AHE_(l-i-e)x*y*
[ A AN }[ e AT }
3 1 2 - 6)(21 —€) N i2 — e)as A% - a2si At
e(l—€)2+¢€) A2 2A3 16A%
X [x2T€ + (—y)ite — AZte — (2 + E)x*y*A,f]}
X 2
X f 4= 2[5 21D a2 ¥ )20 31, (A17)
¥

where we have neglected z.. in comparison to x,., y. as discussed above. Since there is no field outside the shock wave [26],
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at x,y, > 0 the contribution (A17) vanishes and at x, > 0, y.. < 0 one can extend the limits of integration over z, to *oo

and get
1 0>0>y, i oda /i \€ ias \1=€ .\, I'2—-eI'(l —e)
! g~/ - ! \ab /A fhds _ =1 _ i(A% /4A)as
fdx dy <x p? x)Tz._<y p? y> 327 ﬁ) a’ (as) ( 47TA*> e el'(3 — 2¢)
(4—-e—e _ 22 —2e+ €?)
le=ag gt + R e s ey
1—€ iasA? (1 + e)x.y
% 1 1+e —y)lte _ Al+e i
R T e e -t - S |
B 1 2—¢€)(1—¢) N i2— eas A2 a’st
(1—e)Q2+e A2 2A3 Lo16A?H
X [x27€ + (—y)2te — AZFe — (2 + e)x*y*A:]}[DG]zb, (A18)

where [DG] is defined by Eq. (21). Similarly, the integral f vd %Z*([x*, 2. yD*G 4 (24, x| ) in the second term in the right-
hand side of Eq. (A16) can be reduced to [ DG],. The case x, < 0, y, > 0 is obtained from (A18) by the substitution x < y.
The contribution of diagrams in Fig. 11(i) and 11(j) is

1 g’ wda (diNe/ Qas \l=€ o X 2
dx'dy' 1\Tab ! — B(l —¢2— el BRAS _ i(A /4A*)as/ d=z,
Jeteas s gz )5 ) = g —e 2 UG () () e [ s

2
w 2 (éd—-—el—-—€ .
X f) d;Z*({e(z — 6)(_3 — 6) [X* + ( y)* Ax (Z Z )*]

s

1
P2

(=) -l —-—exy. [l—-e€ N iasA] 7 2(2 — 2¢ + €?)
2-eB3—€ (2-€B—eAi [ A, 4A3 L(l — )2 —¢)
2—-¢e —¢)
Az
2= Qs ;a2 | A E ()T~ AT 2+ OryAl]
2A3 L 16A¢ l} (1 — )2+ e) }

XL ()= AL (1 s - |

X ([x*y Z*]xGoi(Z*; xJ_)[Z*, ZL]XG[. (Z;, xl)[pr, y*])ab + {_gll —AZ}iE

B 2[1 —€ iasAi} 2-2+¢€ [xl*€ 4+ (—y)lte — Al+e

A, 402 Pl — 2 — e

—(1+ e)x,y. A — [(2 —el—¢) + i2 ~ e)as A2 a’s® A4 }

A2 203 TL o 1eAiTH
% e+ (—y)ite— A — Q2+ ex,y.Af] [l1—€ N iasA?
cd—o2+e 8ij [ A, | 4AZ }
X>1-<+E + (—y)i+f _ A>lk+e gii ias
X gii— — (282 - AA;
8ij el + e [ A, A2 J}
ot (—y )T — Al — (1 + e)x,y. AL
X — : o Ze /T2 TG o (24,
(1- 62)(2 —€) }[x < ] I‘{ (z )CL)
X (24 241" G o j(2h x )2k 24)y + m < n}{z., y*]ﬁ”) (A19)

The final expression for the light-cone expansion of the quark-loop contribution to gluon propagator in the sum of the
expressions (A16), (A17), and (A19). A very important observation is that the contributions proportional to

g“nffdz* ]dziﬁ(z =)z = 2)G.i(2.)G.i(2) (A20)

present in the Egs. (A16) and (A19) cancel in their sum. If it were not true, there would be an addtional contribution to the
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gluon propagator (7) at the g* level coming from the small-  mean that the contribution -5,[GG]-; should be added to
size (large-momenta) quark loop. Indeed, the calculations  the gluon propagator (7) to restore the correct result.
of Feynman diagrams with the propagators (7) and (12)  Fortunately, the terms ~ (A20) cancel which means that
implies that we first take limit z,, z. — O and limitd; — 2  there are no additional contributions to the gluon propa-
afterwards. With such order of limits, the contribution  gator coming from the quark loop inside the shock wave
(A20) vanishes. However, the proper order of these limits ( = quark loop with large momenta).

is to take at first d| — 2 (which will give finite expressions Since there is no external field outside the shock wave,
after adding the counterterms) and then try to impose the  after cancellation of the terms ~(z — z')€ we see that at
condition that the external field is very narrow by taking  x.y. > 0 the sum of Eq. (A16) and (A19) vanishes, and at
the limit z,, zi — 0. In this case, Eq. (A20) reduces to X, > 0>y, one can extend the limits of integration in the
g*n +GG]. The noncommutativity of these limits would  gluon operators to *oo and obtain

J

f dz*f dZ* [.X*, Z*] G.,(Z*, XJ_)[Z*, Z*] G.I(Z*, xJ_)[Z*) y*] )ub [GG]ah
Yo .

(A21)
X pes

f dz*f Az X, 2] THE" G o (2e X 2o 210G aj(2h X[k 2], + m > 1Yz, y. 12 — Tr{t90,U, 17, UL,
: "

We get
fdx’dy’(x L x’) (Tl +Tb, + TS )( ! y o
P2gey +2iGy, + O,, fap  Tap + Tiap P’gg. +2iGg. + Op,
X, >0>y, 1 (95U T(e) | 1 g’ o da (4i\e ias \l-¢
e 1 po-ea- )+ - da (SN
(e I DA 9, o) (“ams)
) 1 4 1-
x etstise (oSS (o)) ¢ T+ () — AT~ eny AT
€3 e2—e)(3—¢)
l—€e  iasAi722-2e+€) |,
_ 1+e 4 (— i+e_Ai+e_ 1+ **Ai—l
[ A, 4A? L(l —oe—g T (1+ e)xey. AL
2- e)(l —€  i2—€as,, a’s? 3T (=i -AF - Q2+ Oxy AN L L
AL - S 82 U
2A3 16A? e(l—e€)2+ ¢
XeVs l—€  iasAi7] 2-2e+€& _ |, - _
+ - + e+ (—y)lte — AlTe — (1 4 e)x.y.AS7!
| [ T el o B 1+ Ory A
(2- 6)(1 —€) + i2— €)as A2 — a’s? A [x}Fe+ (=y)ite — A" — (2 + e)x.y.Af]
[ 2A3 L 16A4 } e(l—e)2+ e
1—€ lasAﬁ_ xite+ (—y)lte —Alte 2 xlte 4 (—y)tte — AlTe — (1 + €)x,y, A} .
3 N . : LK * * 2 ATH0,U 109 U
[ A, | 4A2 } el + e A, 1-)2—e } {0, Uy )
las xlte+ (—y)ite — AlTe — (1 + €)x,y, AST!

4Tr{t*0,;U, 129U A22
A2 1—-€e)2—¢ { }> (A22)
We see that the light-cone expansion of gluon propagator contains only Wilson lines and their derivatives as should be
expected after cancellation of the contaminating terms (A20).

Next, to get the expansion of [0, 0], ® [0, —o0], near the light cone we integrate the expression (A22) over x, from 0 to
oo and over y, from —oo to 0. It is easy to demonstrate that

ias \1-e i(Ai/4A*)as (4 — 6)(1 B 6) € € _ A€ _ €—
] dx*f dy*< > e {—6(2 sy [x€ + (=) — AS — ex,y.A7?]
202 -2e+ 62) 1 — € iasA} v o te  atre (T FExy.] 1
e2—-e( - 62)[ 4A3 }[xi o A Al7e } e(l —e)2+e)
[(2 —e)l—€) i2—¢€as A2 a’s?

= T AL ek AL I - A - @ aryan) =0

(in particular, it means that the term (A18) coming from the diagram in Fig. 11(h) does not contribute). The result of the
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integration of Eq. (A22) has the form

x 20?2
[00,0], ® [0, —00], "— 5 =iA7]B(2—6,2— e)(xl
T

» Lo 1
A" G

PHYSICAL REVIEW D 75, 014001 (2007)

a?
yJ_> +8—7;2AnB(1 —€l—¢)

(PJ_)

N(-1-2¢)(( 4-a1—¢  T+e 1
8 B - Tr{t*0,U, 1" 9, U}
(Ai)71*26 <{ 66(1 + 6) 6(1 + 6) 3(1 + 6)(2 + E)} r{ 1Ux zU }
201 +2¢)  AA,
- I Te{r20,U 129, UL A2
30+ a2t e A7 AU Us }> (A23)
[
and therefore Adding the counterterm (A26) to Eq. (A25) we get
9¥[ o0, 0], ® 97[0, —oo]y
| l oveaing  TBQ2—€2— € (-2
xi—y, a2An B2 —€) I'(=2¢) , . Tr{Bfoaly»U;} 1L zfA”’][ 2—-€ €) (2 _52)5
- 2 2 —ZeaLUx T € (AJ_)
T € (AJ_)
2A7’ F(_Zf) 2 1 — L F(—Ze) UubaZ Uab
+ B(1 — e 12€ (A2)2¢ |- x “L7x
47T ( )(Ai)—25<{ 36 3(1 + 6)} ) ( J_)
asn
4e AA. +s—fA773(1—6,1—6)
X 2Tr{taaiUxtbaiU)-cr} - - 477'2Nc

3(1+e A%

X 2Tr{t9;U, "9, UL }), (A24)

SO we obtain

B2—¢€2—¢€)I'(—2¢)
€ (A7) 2

2
—y, agn
Tr{o*U, 0} ULy = ;Tzf An

2
X U2 yeb + S ApB(1—e1—e)
L Ty 2T :

4e  AA;
3(1+e) A3

}T {9,;U,0;Ul}.  (A25)

Last, we need to write down the sum of 1/€ counter-
terms to diagrams in Fig. 11(a)—11(g). It can be read from
the first term in the r.h.s. of Eq. (A16):

agny I'(—2¢)

— A UabaQ Uab.
127%€ T](Ai)_25 r oL

(A26)

|

d Tr{U
dn SRRy 3

(Bt ] 2 L
47

4 X2
— In
41 Y? Y2 4
d*zd?*z
(z—2)

ba, 1 X? ba
-2 [1+

Tr{t” U.tul -

[ Tr{U, Uy TH{U,U}} — N, Tr{U, U} }]{( — ) [1 4 bas <ln(x — )2l + §>
X2 ba
iy

ba
> In(x — y)?u? +—
n(x =y ut + o -

UzrbUJ}{1 -

4e A "
e }Tr{a U.a,Ut}, (A27)

which coincides with Eq. (22).

APPENDIX B: COMPARISON WITH THE
TRIUMVIRATE OF COUPLING CONSTANTS

It is instructive to compare our result to the recent paper
[16] where the NLO BK equation is rewritten in terms of
three effective coupling constants.

In the momentum space, there are three coupling con-
stants as seen from the bubble-chain picture, see Eq. (46).
Unfortunately, the Fourier transformation to the coordinate
space can be performed explicitly only for a couple of first
terms of the expansion a,(p?) = a, — 2% Inp?/u> +
(5% Inp?/u?)?. The result of the corresponding Fourier
transformatlon is given by the sum of Egs. (40) and (51):

X2y? 4ar 3

ba
(x —y)Pu*+-— e * InX?> 2H

2
S InY? 2}} + %nf Tr{r U, 2 U}

XIZyZ + Y/2X2 _ (X _ y)Z(Z _ Z/)2
Z(XIZYz _ Y/ZxZ)

477'

X/2 Y2
1ny,2X2} (B1)

This result coincides with the calculation of Kovchegov and Weigert, but the interpretation is different. I extrapolate the

In+1n? terms in the above equation as follows:
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a,((x — y)*e)

% TI‘{UxU;} = d’*z[Tr{U, UT}Tr{U U)} N, Tr{U, U;r}][ — y)? n %(as(xz) B 1)

277.2 X2Y2 CYS(Yz)
1 fay(¥? 2 dzd’?
RGP nfTr{z“Uthi}j ‘ T{zaUth’r “U Ul
a(X?)
X2y2 + y2x2 — — V)2(r — X’2Y2
L (x — y)*(z — 2)? In ’ (B2)
2(X12Y2 _ Yl2x2) Y/2X2

and interpret it as the a,(e>3|x — y|?) times BK kernel plus two O(a?) corrections with different functional form of the
kernel and a more complicated argument of coupling constant (in the case of the last term, I have not calculated that
argument even in the leading order). The authors of Ref. [16] extrapolate Eq. (B1) in a different way

d 1
e Tr{U, U{} = 5= fdzz[Tr{U viyt{u,uty — N, TH{U, U} }][ a (X2e53) + —ZaS(YZeSB)
2(x — 7,y — 2) a,(X2e)a,(Y2e?) ; i [ 4z d2 / . b +
- a2 «. (B }r—nfTr{z U, U, }f ; Tr{r*U U, — U U}
X/2y2 + Y/2x2 _ _ 2 _ X/2y2
1 (x — y)2(z — 2')? In ’ (B3)
Z(X/2Y2 _ Y/2x2) YIZxZ

where R? is some scale interpolating between X2 and Y? (the explicit form can be found in Ref. [16]). Theoretically, until
the Fourier transformations in all orders in Inp?/u? are performed, both of these interpretations are models of the high-
order behavior of running coupling constant. I have a more simple model plus two corrections and Ref. [16] has a more
complicated model plus only one correction. The convenience of these models can be checked by the numerical estimates
of the size of the neglected term(s) in comparison to terms taken into account by the model.
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antisymmetrized y-matrices. However, for the particular
contributions which we are interested in the product of
two quark propagators at d; # 2 is the same as the
product of two expressions (AS5).

Up to a possible pure gauge field which does not change
the result of the analysis, see the discussion in Ref. [1]).



