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Improved values for the two- and three-loop mass-dependent QED contributions to the anomalous
magnetic moments of the electron, muon, and � lepton are presented. The standard model prediction for
the electron (g� 2) is compared with its most precise recent measurement, providing a value of the fine-
structure constant in agreement with a recently published determination. For the � lepton, differences with
previously published results are found and discussed.
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I. INTRODUCTION

The QED part of the anomalous magnetic moment al �
�gl � 2�=2 of a charged lepton l � e,� or � arises from the
subset of standard model (SM) diagrams containing only
leptons and photons. For each of the three leptons l, of
mass ml, this dimensionless quantity can be cast in the
general form [1]

 aQED
l � A1 � A2

�
ml

mj

�
� A2

�
ml

mk

�
� A3

�
ml

mj
;
ml

mk

�
; (1)

where mj and mk are the masses of the other two leptons.
The term A1, arising from diagrams containing photons
and leptons of only one flavor, is mass and flavor indepen-
dent. In contrast, the terms A2 and A3 are functions of the
indicated mass ratios, and are generated by graphs con-
taining also leptons of flavors different from l. The con-
tribution of a lepton j to aQED

l is suppressed by (m2
l =m

2
j ) if

mj � ml, while it contains a logarithmic enhancement
factor ln�ml=mj� if mj � ml. The muon contribution to
aQED
e is thus power suppressed by a factor �m2

e=m2
�� �

10�5; nonetheless, as we will discuss in Sec. II, this effect
is much larger than the tiny uncertainty very recently
achieved in the measurement of ae [2]. On the contrary,
the QED parts of a�;� beyond one-loop are dominated by
the mass-dependent terms.

The functions Ai (i � 1, 2, 3) can be expanded as power
series in �=� and computed order-by-order

 Ai � A�2�i
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(2)

Only one diagram is involved in the evaluation of the
lowest-order (first-order in �, second-order in the electric
charge) contribution—it provides the famous result by
Schwinger A�2�1 � 1=2 [3]. The mass-dependent coeffi-
cients A2 and A3 are of higher order; the goal of this letter
is to provide precise numerical values for their O��2� and
O��3� terms. The relevance of the results and the improve-
ments with respect to earlier ones will be discussed sepa-
rately for each lepton. All results were derived using the

latest CODATA [4] recommended mass ratios: me=m� �

4:83633167�13� 
 10�3, me=m� � 2:87564�47� 
 10�4,
m�=me � 206:7682838�54�, m�=m� � 5:94592�97� 

10�2, m�=me � 3477:48�57�, m�=m� � 16:8183�27�.
(The value for m� adopted by CODATA in Ref. [4] (m� �
1776:99�29� MeV) is based on the 2002 PDG result [5].
This PDG result remains unchanged to date [6,7]).

II. ELECTRON

A. Two-loop contributions

Seven diagrams contribute to the fourth-order coeffi-
cient A�4�1 , one to A�4�2 �me=m�� and one to A�4�2 �me=m��.
As there are no two-loop diagrams contributing to aQED

e

that contain both virtual muons and taus,
A�4�3 �me=m�;me=m�� � 0. The mass-independent coeffi-
cient has been known for almost 50 years [8]:

 A�4�1 �
197

144
�
�2

12
�

3

4
��3� �

�2

2
ln2

� �0:32847896557919378 . . . ; (3)

where ��s� is the Riemann zeta function of argument s. The
coefficient of the two-loop mass-dependent contribution to
aQED
l , A�4�2 �1=x�, with x � mj=ml, is generated by the

diagram in Fig. 1, where j is the virtual lepton in the
vacuum polarization subgraph. This coefficient was first
computed in the late 1950s for the muon g� 2 with x �
me=m� � 1, neglecting terms of O�x� [9]. The exact

 

FIG. 1. The QED diagram generating the mass-dependent part
of aQED

l in order �2.
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expression for 0< x< 1 was reported by Elend in 1966
[10]. However, its numerical evaluation was considered
tricky because of large cancellations and difficulties in
the estimate of the accuracy of the results, so that common
practice was to use series expansions instead [11–13].
Taking advantage of the properties of the dilogarithm
Li2�z� � �

Rz
0�dt=t� ln�1� t� [14], the exact result was

cast in [15] in a very simple and compact analytic form,
valid, contrary to the one in [10], also for x � 1 (the case
relevant to aQED

e and part of aQED
� ):

 

A�4�2 �1=x� � �
25

36
�

lnx
3
� x2�4� 3 lnx� �

x
2
�1� 5x2�




�
�2

2
� lnx ln

�
1� x
1� x

�
� Li2�x� � Li2��x�

�

� x4

�
�2

3
� 2 lnx ln

�
1

x
� x

�
� Li2�x2�

�
: (4)

For x � 1, Eq. (4) gives A�4�2 �1� � 119=36� �2=3; of
course, this contribution is already part of A�4�1 in Eq. (3).
Numerical evaluation of Eq. (4) with the mass ratios given
in Sec. I yields

 A�4�2 �me=m�� � 5:19738670�28� 
 10�7 (5)

 

A�4�2 �me=m�� � 1:83762�60� 
 10�9; (6)

where the standard errors are only due to the uncertainties
of the mass ratios. The results of Eqs. (5) and (6) are equal
to those obtained with a series expansion in powers of y
and lny, with y� 1 [4].

Adding up Eqs. (3), (5), and (6) we get the two-loop
QED coefficient

 C�4�e � A�4�1 � A
�4�
2 �me=m�� � A

�4�
2 �me=m��

� �0:32847844400290�60�: (7)

The mass-dependent part ofC�4�e is small but not negligible,
giving a relative contribution to the theoretical prediction
of the electron g� 2 of 2.4 ppb (ppb). This value is much
larger than the fabulous 0.7 ppb relative uncertainty very
recently achieved in the measurement of ae [2]. The un-
certainties in A�4�2 �me=m�� and A�4�2 �me=m�� are dominated
by the latter and were added in quadrature. The resulting
error �C�4�e � 6
 10�13 leads to a totally negligible
O�10�18� uncertainty in the aQED

e prediction.

B. Three-loop contributions

More than 100 diagrams are involved in the evaluation
of the three-loop (sixth-order) QED contribution. Their
analytic computation required approximately three deca-
des, ending in the late 1990s. The coefficient A�6�1 arises
from 72 diagrams. Its exact expression, mainly due to
Remiddi and his collaborators, reads [16,17]:
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�2��3� �
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28259

5184

�
139
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9
�2 ln2�

17101

810
�2

�
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3

�
Li4�1=2� �

1

24
�ln22� �2�ln22

�

� 1:181241456587 . . . : (8)

This value is in very good agreement with previous results
obtained with numerical methods [18].

The calculation of the exact expression for the coeffi-
cient A�6�2 �ml=mj� for arbitrary values of the mass ratio
ml=mj was completed in 1993 by Laporta and Remiddi
[19,20] (earlier works include Refs. [21]). Let us focus on
aQED
e (l � e, j � �, �). This coefficient can be further split

into two parts: the first one, A�6�2 �ml=mj; vac�, receives
contributions from 36 diagrams containing either muon
or � vacuum polarization loops [19], whereas the second
one, A�6�2 �ml=mj; lbl�, is due to 12 light-by-light scattering
diagrams with either muon or � loops [20]. The exact
expressions for these coefficients are rather complicated,
containing hundreds of polylogarithmic functions up to
fifth degree (for the light-by-light diagrams) and complex
arguments (for the vacuum polarization ones). Indeed, they
were too long to be listed in [19,20] (but were kindly
provided by their authors), although series expansions
were given for the cases of physical relevance. The exact
expressions for the light-by-light contributions also contain
a few pentalogarithms in integral form. We expressed these
integrals in terms of harmonic polylogarithms (introduced
by Remiddi and Vermaseren in [22]), thus avoiding their
numerical integration.

The numerical evaluations of the exact expressions for
A�6�2 �ml=mj; vac� and A�6�2 �ml=mj; lbl� require some care, as
the presence of large cancellations makes them prone to
potentially large roundoff errors. For this reason, numerical
evaluations were carried out with Mathematica codes
employing exclusively arbitrary-precision numbers, keep-
ing track of precision at all points [23]. Harmonic poly-
logarithms were implemented via the Mathematica
package HPL [24]. Using the recommended mass ratios
given in Sec. I, we obtain the following values:

 A�6�2 �me=m�; vac� � �2:17684015�11� 
 10�5 (9)

 A�6�2 �me=m�; lbl� � 1:439445989�77� 
 10�5 (10)

 A�6�2 �me=m�; vac� � �1:16723�36� 
 10�7 (11)

 A�6�2 �me=m�; lbl� � 5:0905�17� 
 10�8: (12)

The sums of Eqs. (9) and (10) and Eqs. (11) and (12) are
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 A�6�2 �me=m�� � �7:37394164�29� 
 10�6 (13)

 

A�6�2 �me=m�� � �6:5819�19� 
 10�8: (14)

Eqs. (9)–(14) provide the first evaluation of the full ana-
lytic expressions for these coefficients with the CODATA
mass ratios of [4]; they are almost identical to the
results A�6�2 �me=m�� � �7:37394158�28� 
 10�6 and

A�6�2 �me=m�� � �6:5819�19� 
 10�8 obtained in [4] via
the approximate series expansions in the mass ratios. The
small difference between A�6�2 �me=m�� of [4] and Eq. (13)
mainly origins from the O��me=m��

6� term in the series

expansion of A�6�2 �me=m�; lbl�; indeed, due to its smallness,
this term was neglected in the expansions [20] used in [4].
Expanding the exact Laporta-Remiddi expression for the
sum of light-by-light and vacuum polarization contribu-
tions, for r � ml=mj � 1, we get

 A�6�2 �r� �
X4

i�1

r2if2i�r� �O�r
10ln2r�; (15)

 f2�r� �
23 lnr
135

�
3��3�

2
�

2�2

45
�

74957

97200
; (16)

 

f4�r� � �
4337ln2r

22680
�

209891 lnr
476280

�
1811��3�

2304
�

1919�2

68040

�
451205689

533433600
; (17)

 f6�r� � �
2807ln2r

21600
�

665641 lnr
2976750

�
3077��3�

5760

�
16967�2

907200
�

246800849221

480090240000
; (18)

 

f8�r� � �
55163ln2r

594000
�

24063509989 lnr
172889640000

�
9289��3�

23040

�
340019�2

24948000
�

896194260575549

2396250410400000
: (19)

The functions f2�r� and f4�r� coincide with the expansions
provided in [20], and f6�r� agrees with the combination of
parts from [19] (for the vacuum polarization contribution)
and [25] (heavy-mass expansions for the light-by-light
diagrams); f8�r� is new. The value of A�6�2 �me=m�� ob-
tained with Eq. (15) perfectly agrees with that in Eq. (13)
determined with the exact formulae. Indeed, their differ-
ence is of O�10�23�, to be compared with the O�10�13�

error �A�6�2 �me=m�� due to the present uncertainty of the
ratio me=m�. Therefore, it will be possible to compute

A�6�2 �me=m�� with the simple expansion in Eq. (15)—thus

avoiding the complexities of the exact expressions—even
if the precision of the ratio me=m� will improve in the
future by orders of magnitude.

The contribution of the three-loop diagrams with both�
and � loop insertions in the photon propagator can be
calculated numerically from the integral expressions of
Ref. [11]. We get

 A�6�3 �me=m�;me=m�� � 1:90945�62� 
 10�13; (20)

a totally negligible O�10�21� contribution to aQED
e . Adding

up Eqs. (8), (13), (14), and (20) we obtain the three-loop
QED coefficient

 C�6�e � 1:181234016827�19�: (21)

The relative contribution to aQED
e of the mass-dependent

part of this coefficient is�0:1 ppb. This is smaller than the
present �0:7 ppb experimental uncertainty [2]. The error
1:9
 10�11 in Eq. (21) leads to a totally negligible
O�10�19� uncertainty in aQED

e .

C. Determination of � from the electron g� 2

Very recently, a new measurement of the electron
anomalous magnetic moment by Gabrielse and his collab-
orators achieved the fabulous relative uncertainty of
0.66 ppb [2],

 aEXP
e � 115 965 218 0:85�76� 
 10�12: (22)

This uncertainty is nearly 6 times smaller than that of the
last measurement of ae reported back in 1987, aEXP

e �
1159652188:3�4:2� 
 10�12 [4,26]. These two measure-
ments differ by 1.7 standard deviations.

The fine-structure constant � can be determined equat-
ing the theoretical SM prediction of the electron g� 2 with
its measured value

 aSM
e ��� � aEXP

e : (23)

The SM prediction contains the QED contribution
aQED
e ��� �

P5
i�1 C

�2i�
e ��=��i (higher-order coefficients

are assumed to be negligible), plus small weak and had-
ronic loop effects: aSM

e ��� � aQED
e ��� � aEW

e � aHAD
e (the

dependence on � of any contribution other than aQED
e is

negligible). The electroweak contribution is [4]:

 aEW
e � 0:0297�5� 
 10�12; (24)

this precise value includes the two-loop contributions cal-
culated in Ref. [27]. The hadronic term is [4,28]:

 aHAD
e � 1:671�19� 
 10�12: (25)

The latest value for the four-loop QED coefficient isC�8�e �
�1:7283�35� [29]. Following the argument of [4], we
adopt the educated guess C�10�

e � 0:0�3:8� for the five-
loop coefficient. The errors �C�8�e � 0:0035 and �C�10�

e �
3:8 lead to an uncertainty of 0:1
 10�12 and 0:3
 10�12
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in aQED
e , respectively. Solving Eq. (23) with the new mea-

sured value of Eq. (22), we obtain

 ��1 � 137:035999709�12��30��2��90�

� 137:035999709�96��0:70 ppb: (26)

The first and second errors are due to the uncertainties of
the four- and five-loop QED coefficient �C�8�e and �C�10�

e ,
respectively; the third one is caused by the tiny �aHAD

e , and
the last one (90
 10�9) is from the experimental �aEXP

e in
Eq. (22). The uncertainty of the electroweak and two/three-
loop QED contributions are totally negligible at present.
The determination in Eq. (26) is in perfect agreement with
the new result of Ref. [30],

 ��1 � 137:035999710�96� (27)

(also based on the new measurement of Ref. [2]), whose
great precision represents the first significant improvement
of this fundamental constant in a decade. The totally
negligible difference between Eqs. (26) and (27) is due to
the rounded value aEW

e � 0:030�1� 
 10�12 [4] employed
by the authors of Ref. [30] instead of Eq. (24).

At present, the best determinations of � independent of
the electron g� 2 are

 ��1�Rb� � 137:03599878�91��6:7 ppb; (28)

 

��1�Cs� � 137:0360000�11��8:0 ppb (29)

they are less precise by roughly a factor of 10. The value
��1�Rb� was deduced from the measurement of the ratio
h=MRb based on Bloch oscillations of Rb atoms in an
optical lattice (h is the Planck constant and MRb is the
mass of the Rb atom) [31], while ��1�Cs� was determined
from the measurement of the ratio h=MCs (MCs is the mass
of the Cs atom) via cesium recoil measurement techniques
[32,33]. These two determinations of � also rely on the
precisely known Rydberg constant and relative atomic
masses of the electron, Rb and Cs atoms [4,34]. The values
of � in Eqs. (28) and (29) are in good agreement with the
result of Eq. (26), differing from the latter by �1:0 and
�0:3 standard deviations, respectively. This comparison
provides a beautiful test of the validity of QED. It also
probes for possible electron substructure [30].

III. TAU

The two-loop mass-dependent QED contributions to the
anomalous magnetic moment of the �, obtained by direct
evaluation of the exact formula in Eq. (4), are

 A�4�2 �m�=me� � 2:024284�55�; (30)

 A�4�2 �m�=m�� � 0:361652�38�: (31)

These two values are very similar to those computed via a
dispersive integral in Ref. [35] (which, however, contain no

estimates of the uncertainties). Eqs. (30) and (31) are also
in agreement (but more accurate) with those of Ref. [12].
Adding up Eqs. (3), (30), and (31) we get

 C�4�� � 2:057457�93� (32)

(note that the uncertainties in m�=me and m�=m� are
correlated). The resulting error 9:3
 10�5 leads to a 5

10�10 uncertainty in aQED

� .
We computed the three-loop mass-dependent contribu-

tions by direct numerical evaluation of the exact analytic
expressions (see Sec. II B). The results are:

 A�6�2 �m�=me; vac� � 7:25699�41� (33)

 A�6�2 �m�=me; lbl� � 39:1351�11� (34)

 A�6�2 �m�=m�; vac� � �0:023554�51� (35)

 A�6�2 �m�=m�; lbl� � 7:03376�71�: (36)

Employing the approximate series expansions (see
Sec. II B) we obtain almost identical values: 7.25699(41),
39.1351(11), �0:023564�51�, 7.03375(71). The estimates
of Ref. [35] were: 10.0002, 39.5217, 2.9340, and 4.4412
(no error estimates were provided), respectively; they are at
variance with our results, Eqs. (33)–(36), derived from the
exact analytic expressions. The estimates of Ref. [36]
compare slightly better: 7.2670, 39.6, �0:1222, 4.47 (no
errors provided). In the specific case of A�6�2 �m�=m�; lbl� it
is easy to check that the values of Refs. [35,36] differ from
Eq. (36) because their derivations did not include terms of
O�m�=m��, which turn out to be unexpectedly large. The
sums of Eqs. (33) and (34) and Eqs. (35) and (36) are

 A�6�2 �m�=me� � 46:3921�15�; (37)

 A�6�2 �m�=m�� � 7:01021�76�: (38)

The contribution of the three-loop diagrams with both
electron- and muon-loop insertions in the photon propa-
gator can be calculated numerically from the integral ex-
pressions of [11]. We get

 A�6�3 �m�=me;m�=m�� � 3:34797�41�: (39)

This value disagrees with the results of Refs. [36] (1.679)
and [35] (2.75316). Combining the three-loop results of
Eqs. (8) and (37)–(39) we find the sixth-order QED coef-
ficient

 C�6�� � 57:9315�27�: (40)

The error 2:7
 10�3 induces a 3
 10�11 uncertainty in
aQED
� . The order of magnitude of the three-loop contribu-

tion to aQED
� , dominated by the mass-dependent terms, is

comparable to that of electroweak and hadronic effects.
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Adding up all the above contributions and using the new
value ��1 � 137:035999710�96� [30] (or the value de-
rived in Eq. (26), ��1 � 137:035999709�96�—the differ-
ence is totally negligible) we obtain the total QED
contribution to the g� 2 of the �:

 aQED
� � 117324�2� 
 10�8: (41)

The error �aQED
� is the uncertainty �C�8�� ��=��4 �

�2ln2�m�=me���=��4 � 2
 10�8 which we assigned to
aQED
� for uncalculated four-loop contributions. As we men-

tioned earlier, the errors due to the uncertainties of the
O��2� and O��3� terms are negligible. The error induced
by the uncertainty of � is only 8
 10�13 (and thus totally
negligible).

The g� 2 of the � is a very interesting observable, even
if the short lifetime of this lepton makes its measurement
very difficult at present. The possibility to improve the
recent experimental bounds [7] is certainly not excluded.

IV. MUON

This final section reports the results relevant to aQED
� (see

[37] for recent reviews of the entire SM prediction). Some
of them were already presented in [15]. The two-loop
contributions are

 A�4�2 �m�=me� � 1:0942583111�84�; (42)

 

A�4�2 �m�=m�� � 0:000078064�25�: (43)

The sum of Eqs. (3), (42), and (43) provides the coefficient
C�4�� � 0:765857410�27�. The value �C�4�� � 2:7
 10�8

was obtained adding in quadrature the errors in Eqs. (42)
and (43). It produces a tiny 1:4
 10�13 uncertainty in
aQED
� . The three-loop contributions are

 

A�6�2 �m�=me; vac� � 1:920455130�33� (44)

 A�6�2 �m�=me; lbl� � 20:94792489�16� (45)

 A�6�2 �m�=m�; vac� � �0:00178233�48� (46)

 

A�6�2 �m�=m�; lbl� � 0:00214283�69� (47)

 A�6�2 �m�=me� � 22:86838002�20� (48)

 

A�6�2 �m�=m�� � 0:00036051�21�: (49)

The analytic calculation of the three-loop diagrams with
both electron and � loop insertions in the photon propa-
gator became available in 1999 [13] and was confirmed
more recently [38]. This analytic result yields the numeri-
cal value [15]

 A�6�3 �m�=me;m�=m�� � 0:00052766�17�; (50)

providing a small 0:7
 10�11 contribution to aQED
� . The

error 1:7
 10�7 is caused by the uncertainty of the ratio
m�=m�. Combining the three-loop results of Eqs. (8) and

(48)–(50) we get the three-loop coefficient C�6�� �
24:05050964�43�. The error 4:3
 10�7 induces a negli-
gible O�10�14� uncertainty in aQED

� .
Adding the four-loop and leading five-loop contribu-

tions computed by Kinoshita and Nio, C�8�� �
130:9916�80� [29,39] and C�10�

� � 663�20� [40] (estimates
obtained with the renormalization-group method agree
with this five-loop result [41]), and using the new value
��1 � 137:035999710�96� [30] (or the value derived in
Eq. (26), ��1 � 137:035999709�96�—the difference is
negligible) we get the new total QED contribution to the
muon g� 2,

 aQED
� � 116584718:09�14��08� 
 10�11: (51)

The first error is determined by the uncertainties of the
QED coefficients (dominated by the five-loop one,
�C�10�

� � 20), while the second is caused by the tiny un-
certainty ��. Equation (51) is in good agreement with the
recent value aQED

� � 116584717:62�14��85� 
 10�11 [40],
and the uncertainty due to �� is strongly reduced.
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