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We match the Hagedorn/deconfinement temperature of planar N � 4 super Yang-Mills (SYM) on
R� S3 to the Hagedorn temperature of string theory on AdS5 � S

5. The match is done in a near-critical
region where both gauge theory and string theory are weakly coupled. The near-critical region is near a
point with zero temperature and critical chemical potential. On the gauge-theory side we are taking a
decoupling limit found in Ref. [7] in which the physics of planar N � 4 SYM is given exactly by the
ferromagnetic XXX1=2 Heisenberg spin chain. We find moreover a general relation between the Hagedorn/
deconfinement temperature and the thermodynamics of the Heisenberg spin chain and we use this to
compute it in two distinct regimes. On the string-theory side, we identify the dual limit for which the string
tension and string coupling go to zero. This limit is taken of string theory on a maximally supersymmetric
pp-wave background with a flat direction, obtained from a Penrose limit of AdS5 � S

5. We compute the
Hagedorn temperature of the string theory and find agreement with the Hagedorn/deconfinement
temperature computed on the gauge-theory side.
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I. INTRODUCTION AND SUMMARY

The AdS/CFT correspondence states that SU�N�N �
4 super Yang-Mills (SYM) on R� S3 is equivalent to
string theory on AdS5 � S5 [1–3]. In particular, planar
N � 4 SYM on R� S3 with ’t Hooft coupling � is
conjectured to be equivalent to weakly-coupled string the-
ory on AdS5 � S

5 with string tension Tstr, with the rela-
tion1

 Tstr �
1

2

����
�
p

(1.1)

The most impressive checks on this correspondence have
involved computing physical quantities on the gauge-
theory side, such as the expectation value of Wilson loops
[4,5] or the anomalous dimensions of gauge-theory opera-
tors [6], and extrapolating the results to strong coupling in
order to compare with string theory.

In this paper we take a different route. We compute the
Hagedorn/deconfinement temperature for planar N � 4
SYM on R� S3 at weak coupling �� 1 in a certain near-
critical region found in [7]. We match then this to the
Hagedorn temperature computed in weakly-coupled string
theory on AdS5 � S

5, in the corresponding dual near-
critical region. Beyond this, we successfully match the
low energy spectra of the gauge theory and the string
theory in the near-critical region. The matching of the
spectra and Hagedorn temperature is possible since we
take a zero string tension limit on the string-theory side.

That the Hagedorn/deconfinement temperature of planar
N � 4 SYM on R� S3 is dual to the Hagedorn tempera-
ture of string theory on AdS5 � S

5 was conjectured in [8–

11]. This originated in the finding of a confinement/decon-
finement phase transition in planar N � 4 SYM on R�
S3 at weak coupling �� 1 [8]. For large energies the
theory has a Hagedorn density of states, with the
Hagedorn temperature being equal to the deconfinement
temperature [9–11].

On the string-theory side, it is unfortunately not possible
to compute the Hagedorn temperature for string theory on
AdS5 � S5 since we do not know how to make a first
quantization of string theory in this background. How-
ever, in certain Penrose limits, where the AdS5 � S5 back-
ground becomes a maximally supersymmetric pp-wave
background [6,12], one can find the string spectrum, and
the computation of the Hagedorn temperature has been
done [13–20].

From these facts it is clear that any successful matching
of the Hagedorn/deconfinement temperature for the gauge
theory with the Hagedorn temperature of string theory
should be to the Hagedorn temperature of the maximally
supersymmetric pp-wave background. Therefore, one
should make the match for large R-charges/angular
momenta.

However, if we consider the pp-wave/gauge-theory cor-
respondence of [6] we encounter a problem. In [6] the
gauge-theory states that are conjectured to correspond to
string states on the pp-wave side are only a small subset of
the possible gauge-theory states. But, at weak coupling
�� 1, all of these possible gauge-theory states are
present. The crucial step of [6], in order to resolve this
problem, is to consider a strong coupling limit �! 1 on
the gauge-theory side in which it is conjectured that most
of the gauge-theory states will decouple, and only a small
subset of the states, believed to be precisely the ones dual
to the string states, should remain in this limit. More
specifically, the ground state and zero modes of the pp-
wave string theory are mapped to chiral primary states in
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N � 4 SYM, and the surviving states in the large � limit
should then be the states that lie sufficiently close to the
chiral primary states with respect to their anomalous di-
mensions. Thus, seemingly, we cannot match the
Hagedorn/deconfinement temperature at weak coupling
�� 1 to the pp-wave Hagedorn temperature, since on
the gauge-theory side we have many more states than the
ones dual to the pp-wave string states.

In this paper we resolve this problem by employing a
recently found decoupling limit of thermal SU�N�N � 4
SYM on R� S3 [7]. Denoting the three R-charges for the
SU�4� R-symmetry as Ji, i � 1, 2, 3, and their correspond-
ing chemical potentials as �i, i � 1, 2, 3, and putting
��1;�2;�3� � ��;�; 0�, we can write the decoupling
limit as [7]
 

T ! 0; �! 1; �! 0;

~T �
T

1��
fixed; ~� �

�
1��

fixed; N fixed

(1.2)

where T is the temperature for N � 4 SYM. In this limit
only the states in the SU�2� sector survive, and SU�N�
N � 4 SYM on R� S3 reduces to a quantum mechanical
theory with temperature ~T and coupling ~�. In the planar
limit N � 1, we have furthermore that in the limit (1.2)
N � 4 SYM on R� S3 has the Hamiltonian D0 � ~�D2,
where D0 is the bare scaling dimension and D2 is the
Hamiltonian for the ferromagnetic XXX1=2 Heisenberg
spin chain (without magnetic field). We see that the limit
(1.2) includes taking a zero ’t Hooft coupling limit �! 0,
thus we are in weakly-coupled N � 4 SYM after the
limit.

The resolution to the above stated problem that there are
too many states for �� 1 is now as follows. Since ~� can
be finite even though �! 0 we can consider, in particular,
the ~�	 1 region. In this region the low energy states for
the D2 Hamiltonian are the dominant states. These states
are the vacua, plus the magnon states of the Heisenberg
spin chain. The vacua precisely consist of the chiral pri-
mary sector of the SU�2� sector. Therefore, by considering
~�	 1 we can circumvent the apparent problem with
matching the pp-wave spectrum to the spectrum of
weakly-coupled gauge theory.

For planar N � 4 SYM on R� S3 in the decoupling
limit (1.2) we find a direct connection between the
Hagedorn/deconfinement temperature for finite ~� and the
thermodynamics of the Heisenberg spin chain. If we de-
note t as the temperature and�tV�t� as the thermodynamic
limit of the free energy per site for the ferromagnetic
Heisenberg chain with Hamiltonian D2, then the
Hagedorn temperature ~T � ~TH is given by

 

~T H �
1

V�~��1 ~TH�
(1.3)

We use this to compute the Hagedorn temperature for small
~�, in which case it corresponds to the high temperature
limit of the Heisenberg chain. For large ~� the Hagedorn
temperature is instead mapped to the low temperature limit
of the Heisenberg chain, and we obtain in this limit the
Hagedorn temperature

 

~T H � �2��
1=3

�
�
�
3

2

��
��2=3�

~�1=3 (1.4)

where ��x� is the Riemann zeta function. Note that we have
that the low energy behavior of the Heisenberg chain is tied
to the large ~� limit, as we also stated above. In fact, the low
energy spectrum consisting of the chiral primary vacua
with the magnon spectrum gives rise to the Hagedorn
temperature (1.4).

On the string-theory side, we find using the AdS/CFT
duality the following decoupling limit of string theory on
AdS5 � S

5, dual to the limit (1.2),
 

�! 0; ~H �
E� J
�

fixed; ~Tstr �
Tstr���
�
p fixed;

~gs �
gs
�

fixed; Ji fixed (1.5)

Here E is the energy of the strings, Ji, i � 1, 2, 3, are the
angular momenta for the five-sphere, J � J1 � J2, and gs
is the string coupling. ~H is the effective Hamiltonian for
the strings in the decoupling limit. We see that both the
string tension Tstr and the string coupling gs go to zero in
this limit.

The next step is to consider a Penrose limit of the
AdS5 � S5 background, and to consider the string theory
on the resulting pp-wave background. We note that the
Penrose limit of [6] does not result in the right light-cone
quantized string theory spectrum for our purposes. We
need a pp-wave spectrum for which all states with E �
J, J � J1 � J2, correspond to the string vacua. This is
precisely what the Penrose limit of [12] provides. In
more detail, on the gauge theory/spin chain side, J1 � J2

measures the total spin, and we have a vacuum for each
value of the total spin. The dual manifestation of this is that
in the pp-wave background that is obtained using the
Penrose limit of [12] we have a flat direction, such that
there is a vacuum for each value of the momentum along
that direction, and that momentum is moreover dual to
J1 � J2.

We implement then the decoupling limit (1.5) for the pp-
wave background. This corresponds to a large � limit of
the pp-wave, with � being a parameter in front of the
square-well potential terms for six of the eight bosonic
directions. We show that we get the same spectrum as that
of the spectrum for large ~� and J of planar N � 4 SYM
on R� S3 in the decoupling limit (1.2). Thus, we can
match the spectrum of weakly-coupled string theory with
weakly-coupled gauge theory in the decoupling limits.
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We proceed to compute the Hagedorn temperature for
string theory on the pp-wave background in the large �
limit in two different ways. The first way is to compute the
Hagedorn temperature from the spectrum obtained by tak-
ing the large � limit directly on the spectrum. The second
way is to take the Hagedorn temperature for the full pp-
wave spectrum, which was computed in [17], and take the
large � limit of that. The two ways of computing the
Hagedorn temperature agree, which is a good check on
the fact that most of the string states really do decouple in
the large � limit. Moreover, the resulting Hagedorn tem-
perature can, via the AdS/CFT duality, be compared to the
Hagedorn/deconfinement temperature (1.4) computed in
weakly-coupled gauge theory, and they are shown to agree.

In summary, we match the Hagedorn/deconfinement
temperature computed in weakly-coupled planar N � 4
SYM on R� S3, in the decoupling limit (1.2), to the
Hagedorn temperature computed on a maximally super-
symmetric pp-wave background in the dual decoupling
limit (1.5). The fact that we are in a pp-wave background
corresponds to being in the large J sector of string theory
on AdS5 � S5. Moreover, we show that the low energy
spectra of gauge theory and string theory in the decoupling
limit are the same, which can be seen as the underlying
reason for the matching of the Hagedorn temperature. In
the Conclusions in Sec. VIII we discuss the matching in the
larger framework of a decoupled sector of the AdS/CFT
correspondence for which we have a spin chain/gauge-
theory/string theory triality.

II. THE SU�2� DECOUPLING LIMIT OF N � 4
SYM ON R� S3

In this section we review the decoupling limit of N � 4
SYM on R� S3 found in [7] in which N � 4 SYM
reduces to a quantum mechanical theory on the SU�2�
sector which becomes the ferromagnetic XXX1=2

Heisenberg spin chain in the planar limit.

A. Thermal N � 4 SYM on R� S3 and the Hagedorn
temperature

In [7] the thermal partition function of SU�N� N � 4
SYM on R� S3 with nonzero chemical potentials is con-
sidered. We can write this in general as follows. Let D
denote the dilatation operator giving the scaling dimension
for a given operator (or energy of the corresponding state).
Let Ji, i � 1, 2, 3, denote the three R-charges associated
with the SU�4�R-symmetry of N � 4 SYM, and let �i be
the three chemical potentials corresponding to these
charges. Then we can write the full partition function as

 Z��;�i� � Tr�e��D��
P

3
i�1

�iJi� (2.1)

where � � 1=T is the inverse temperature. Here the trace
is taken over all gauge-invariant states, corresponding to all
the multitrace operators. When N � 4 SYM is weakly

coupled, we can expand the dilatation operator in powers
of the ’t Hooft coupling as follows [21,22]

 D � D0 �
X1
n�2

�n=2Dn (2.2)

where we have defined for our convenience the ’t Hooft
coupling as

 � �
g2

YMN

4�2 (2.3)

gYM being the Yang-Mills coupling of N � 4 SYM.
For free SU�N� N � 4 SYM on R� S3 in the planar

limit N � 1 the partition function exhibits a singularity at
a certain temperature TH [9–11]. The temperature TH is a
Hagedorn temperature for planar N � 4 SYM on R� S3

since the density of states goes like eE=TH for high energies
E	 1 (we work in units with radius of the S3 set to one).
Moreover, we have that for T < TH the partition function is
of order one, while for T > TH the partition function is of
order N2, and for large temperatures the partition function
is like for free SU�N�N � 4 SYM on R4. Therefore we
have a transition at TH resembling the confinement/decon-
finement phase transition in QCD, thus in this sense we can
regard TH as a deconfinement temperature for planar N �
4 SYM on R� S3.2

Turning on the coupling � and the chemical potentials
�i the Hagedorn singularity for planar N � 4 SYM on
R� S3 persists, at least for �� 1 [7,24,25]. The
Hagedorn temperature TH is a function of � and �i, and
it is known in certain limits. The first order correction in �
for �i � 0 was found in [24]. For � � 0 and nonzero
chemical potentials �i the Hagedorn temperature was
found in [7,25] while the one-loop correction was found
in [7]. E.g. for weak coupling and small chemical poten-
tials it is found that [7]
 

TH �
1

�0

�
1�

�
2

�
�

1

6
���
3
p

�
1�

�
2
�11� �0

���
3
p
�

�X3

i�1

�2
i

�O��2� �O��4
i � (2.4)

with �0 � � log�7� 4
���
3
p
�. See [7] for the fourth order

correction in the chemical potentials.

B. The SU�2� decoupling limit

It was found in [7] that near the critical point
�T;�1;�2;�3� � �0; 1; 1; 0� most of the states of N �
4 SYM decouple and we end up with a much simpler
theory that we can regard as quantum mechanical. In order
to write the decoupling limit we define the charge J �

2In [23] it was found for weakly-coupled large N pure Yang-
Mills theory on R� S3 that the deconfinement temperature is
lower than the Hagedorn temperature, which means that this
theory has a first order phase transition at the deconfinement
temperature.
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J1 � J2 and we define � as the corresponding chemical
potential. In the following we are interested in the situation
for which �1 � �2 � �. We consider then the decou-
pling limit [7]
 

T ! 0; �! 1; �! 0;

~T �
T

1��
fixed; ~� �

�
1��

fixed
(2.5)

In this limit most of the states of N � 4 SYM decouple.
This is due to the fact that only the states withD� J being
of order 1�� survive. Therefore the states that survive
are the ones with D0 � J, i.e. with the bare scaling dimen-
sion equal to J. From this one can see that the total Hilbert
space of the theory consists of all states corresponding to
all the multitrace operators that one can write down from
the two complex scalars Z and X, where Z and X have the
R-charge weights �1; 0; 0� and �0; 1; 0�, respectively. Thus,
we have that our Hilbert space H consists of all possible
linear combinations of the multitrace operators3

 

Tr�A�1�1 A
�1�
2 
 
 
A

�1�
L1
�Tr�A�2�1 A

�2�
2 
 
 
A

�2�
L2
� 
 
 


� Tr�A�k�1 A
�k�
2 
 
 
A

�k�
Lk
�; A�i�j � Z; X (2.6)

This is in fact the so-called SU�2� sector of recent interest
in the study of integrability of N � 4 SYM [21,26–29].
We can view this as a quantum mechanical subset of N �
4 SYM in the sense that all the states with covariant
derivatives are decoupled, which can be interpreted to
mean that the modes corresponding to moving around on
the S3 disappear, leaving us with only one point.

Furthermore, as we show in [7], the partition function
(2.1) reduces in the decoupling limit (2.5) to the partition
function

 Z� ~�� � TrH �e
� ~�H� (2.7)

with H being the Hamiltonian

 H � D0 � ~�D2 (2.8)

Here ~� � 1= ~T, thus we see that SU�N�N � 4 SYM on
R� S3 in the limit (2.5) reduces to a quantum mechanical
theory with Hilbert space H given by (2.6) and with
Hamiltonian (2.8), with effective temperature ~T. More-
over, ~� can be regarded as the coupling of the theory, being
a remnant of the ’t Hooft coupling of N � 4 SYM. It is
very interesting to observe that we thus end up with a
theory with two coupling constants: ~� and 1=N, both of
which we can choose freely. Indeed, since the D2 term in

(2.8) origins in the one-loop correction to the scaling
dimension, we have full knowledge of the Hamiltonian
(2.8) and we can in principle compute Z� ~�� for any value
of ~� and N.

We can view the decoupling limit (2.5) from the alter-
native view point as a decoupling limit of nonthermal
SU�N� N � 4 SYM on R� S3. Then the decoupling
limit is instead4

 

�! 0;
D� J
�

fixed; ~� �
�
�

fixed;

Ji fixed; N fixed
(2.9)

Note then that the effective Hamiltonian is lim�!0
D�J
� �

~�D2. We see that this is in accordance with the
Hamiltonian (2.8) since we are restricting ourselves to be
in a certain sector of fixed J. We see that this limit is
remarkably different from pp-wave limits of N � 4
SYM [6] in which one takes J and N to go to infinity
and instead fixes D� J. However, as we shall see below
we have an overlap between the two types of limits for a
particular pp-wave limit found in [12].

C. The planar limit and the Heisenberg spin chain

If we consider the planar limit N ! 1 of SU�N�N �
4 SYM on R� S3, we know from large N factorization
that the single-trace operators are decoupled from the
multitrace operators. Therefore, in the planar limit, we
can regard single-trace operators of a certain length as
states for a spin chain where the letters correspond to the
value of the spin [26]. In the SU�2� sector, the single-trace
operators are linear combinations of

 Tr �A1A2 
 
 
AL�; Ai � Z; X (2.10)

If we write Sz � �J1 � J2�=2 we see that each Z has Sz �
1=2 and each X has Sz � �1=2, thus we get an SU�2� spin
chain. Furthermore, in the planar limit the D2 term in (2.8)
is given by [21,26]

 D2 �
1

2

XL
i�1

�Ii;i�1 � Pi;i�1� (2.11)

for a chain of length L, where Pi;i�1 is the permutation
operator acting on letters at position i and i� 1. From this
one can see that ~�D2 precisely is the Hamiltonian for a
ferromagnetic XXX1=2 Heisenberg spin chain of length L
[26]. We can therefore write the single-trace partition
function as [7]

 ZST� ~�� �
X1
L�1

e� ~�LZ�XXX�
L � ~�� (2.12)

where

3Here we will loosely refer to the single-trace or multitrace
operators as states in a Hilbert space, the precise meaning being
that any single-trace or multitrace operator O for N � 4 SYM
on R4 has a corresponding gauge-invariant state jOi �
limr!0Oj0i for N � 4 SYM on R� S3 (r being the radial
coordinate of R4), and vice versa, by the state/operator
correspondence.

4When we write that Ji is fixed we mean that all three
R-charges J1, J2 and J3 are fixed.
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 Z�XXX�
L � ~�� � TrL�e

� ~� ~�D2� (2.13)

is the partition function for the ferromagnetic XXX1=2

Heisenberg spin chain of length L with Hamiltonian
~�D2. Note that TrL here refers to the trace over single-
trace operators with J � L in the SU�2� sector. The spin
chain is required to be periodic and translationally invari-
ant in accordance with the cyclic symmetry of single-trace
operators. Using the standard relation between the single-
trace and multitrace partition functions, we get that the full
partition function of planar N � 4 SYM on R� S3 in the
limit (2.5) is [7]

 logZ� ~�� �
X1
n�1

X1
L�1

1

n
e� ~�nLZ�XXX�

L �n ~�� (2.14)

Therefore, the partition function of planar N � 4 SYM on
R� S3 in the decoupling limit (2.5) is given exactly by
(2.14) from the partition function Z�XXX�

L � ~�� of the ferro-
magnetic XXX1=2 Heisenberg spin chain [7].

III. GAUGE-THEORY SPECTRUM IN
DECOUPLING LIMIT

In this section we find the large ~� and large L limit of the
spectrum of planar N � 4 SYM on R� S3 in the decou-
pling limit (2.5).

From (2.8) we know that planar N � 4 SYM on R�

S3 in the limit (2.5) has the Hamiltonian L� ~�D2, for
single-traces of length L. Therefore, finding the spectrum
of planar N � 4 SYM in this decoupling limit is identical
to the problem of finding the spectrum of the Heisenberg
chain Hamiltonian ~�D2. The solution to this for low en-
ergies is well-known. Nevertheless, we rederive the spec-
trum in the following since we are interested in the case
where we have a degeneracy of the vacuum with respect to
the total spin. In our approach we employ a new way of
putting in impurities which seems more natural for this
situation. It also makes a direct construction of the eigen-
states corresponding to the spectrum possible.

We begin by noting that the large ~� limit of the spectrum
alternatively can be viewed as the low energy part of the
spectrum for finite ~�, since the interacting term in the
Hamiltonian is ~�D2.

The low energy part of the spectrum of the ferromag-
netic Heisenberg chain consists of the ferromagnetic vac-
uum states plus magnon excitations. The ferromagnetic
vacua consist of all the states for which Pi;i�1 has eigen-
value one for any neighboring sites of the spin chain. One
can make such a state for each possible value of the total
spin Sz, here given by

 Sz �
1

2
�J1 � J2� (3.1)

In detail we have that the vacuum state for a given length L
and total spin Sz is the totally symmetrized state [7]

 jSziL � Tr�sym�ZJ1XJ2�� (3.2)

with J1 �
1
2L� Sz and J2 �

1
2L� Sz. We see thus that we

have L� 1 ferromagnetic vacua for a given length L. As
observed in [7], the vacua (3.2) are precisely the chiral
primary states with D0 � J.

It will be useful below to have a more specific way of
describing the vacuum states. To this end, define A1=2 � Z
and A�1=2 � X. Then we can write the basis of the SU�2�
sector as

 Tr �As�1� 
 
 
As�L�� (3.3)

where s�i� � �1=2 corresponds to having spin up or spin
down. Write

 Q �
�
s � �s�1�; . . . ; s�L��j

XL
i�1

s�i� � Sz

�
(3.4)

Then we have that the vacuum for a given value of Sz and L
is

 jSziL �
X
s2Q

Tr�As�1� 
 
 
As�L�� (3.5)

Turning to the magnons, which are the low energy
excitations of the ferromagnetic vacua, we see that we
cannot employ the usual Bethe ansatz technique of putting
X impurities into a sea of Z’s. This is due to the fact that we
want to work in the limit in which the number of excita-
tions is much less than L, and clearly it would take of order
L impurities to describe excitations around vacua with
J1 � J2. This difference to the usual approach basically
comes in because the J1 � L vacuum Tr�ZL� is not special,
instead we have L� 1 vacua which are equally important.

Thus, we need a new way to put in impurities that does
not change the value of Sz. The way to do this becomes
clearer if we think of an impurity as the action of an
operator on a particular site. In particular changing a Z at
site number l into an X can be thought of as the action of
S� at site l. We instead want an operator in the SU�2�
group that commutes with the total spin Sz. Therefore, we
propose that inserting an impurity corresponds to the ac-
tion of Sz at a particular site l.5

Consider the insertion of two impurities. Define Sz;l as
the action of 1

2 �Z@Z � X@X� on the site number l. We can
then write the insertion of two impurities at sites l1 and l2
in the vacuum state jSziL as

 jl1; l2; SziL � Sz;l1Sz;l2 jSziL (3.6)

Using the form (3.5) for the vacuum states, we see that this
corresponds to

 jl1; l2; SziL �
X
s2Q

s�l1�s�l2�Tr�As�1� 
 
 
As�L�� (3.7)

5This way of constructing magnons is inspired from the
construction of gauge-theory states in [12].
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We now want to find an eigenstate of the Hamiltonian ~�D2

with two impurities. Write

 j�i �
X

1l1l2L

��l1; l2�jl1; l2; SziL (3.8)

The task is then to find ��l1; l2� such that

 

~�D2j�i � ~�Ej�i (3.9)

To this end, we employ the Bethe ansatz

 ��l1; l2� � eip1l1�ip2l2A12 � eip2l1�ip1l2A21 (3.10)

It is not hard to see that the eigenvalue Eq. (3.9) then gives
 

E � 2
X2

k�1

sin2

�
pk
2

�
;

S�p1; p2� �
A12

A21
� �

1� ei�p1�p2� � 2eip1

1� ei�p1�p2� � 2eip2

(3.11)

Periodicity of the spin chain instead requires

 eip1L � S�p1; p2�; eip2L � S�p2; p1� (3.12)

Furthermore, the cyclicity of the trace requires p1 � p2 �
0. Using these conditions, one can easily determine the
spectrum for two impurities.

Considering the general case of inserting q impurities,
we can use the integrability of the Heisenberg chain to find
the spectrum, giving

 E � 2
Xq
i�1

sin2

�
pi
2

�
(3.13)

 

eipkL �
Yq

j�1;j�k

S�pk; pj�;

S�pk; pj� � �
1� ei�pk�pj� � 2eipk

1� ei�pk�pj� � 2eipj

(3.14)

 

Xq
i�1

pi � 0 (3.15)

where (3.15) is due to the cyclicity of the trace. Taking the
logarithm of (3.14) we have

 pk �
2�nk
L
� �

i
L

Xq
j�1;j�k

logS�pk; pj� (3.16)

where nk is an integer. The leading order solution for large
L is

 pk �
2�nk
L
�O�L�2� (3.17)

giving the spectrum

 E �
2�2

L2

Xq
i�1

n2
i ;

Xq
i�1

ni � 0 (3.18)

Denoting the number of ni which are equal to a particular
integer k as Mk, we can write this spectrum as

 E �
2�2

L2

X
n�0

n2Mn;
X
n�0

nMn � 0 (3.19)

This is the low energy spectrum of the Heisenberg spin
chain with spin chain HamiltonianD2. Using now that for a
single-trace operator of length L, the eigenvalue of the
Hamiltonian H � D0 � ~�D2 is L� ~�E, we see that the
Hamiltonian H has the spectrum

 H � L �
2�2 ~�

L2

X
n�0

n2Mn;
X
n�0

nMn � 0 (3.20)

This is the large ~� and large L limit of the spectrum of
single-trace operators in planar N � 4 SYM on R� S3 in
the decoupling limit (2.5).

We see that the spectrum (3.20) is stringlike, even
though we are in weakly-coupled gauge theory. This is in
contrast with previous approaches to find a stringlike spec-
trum in N � 4 SYM on R� S3, since those approaches
rely on having � large in order to decouple gauge-theory
states which are not near the chiral primary states. Thus, in
this sense, the spectrum (3.19) is the first example of a
stringlike spectrum found in weakly-coupled N � 4
SYM. As we shall see in Sec. VI, the resemblance to a
string-spectrum is not accidental, and we can in fact map it
to a spectrum of string states in a decoupling limit of
strings on a pp-wave.

IV. GAUGE-THEORY HAGEDORN
TEMPERATURE FROM THE HEISENBERG

CHAIN

In this section we consider the Hagedorn temperature of
planar N � 4 SYM on R� S3 in the decoupling limit
(2.5) from a general perspective, and we find a relation
between the Hagedorn temperature as function of ~� and the
thermodynamics of the Heisenberg chain in the thermody-
namic limit. We use this general connection to find the
Hagedorn temperature for small and large ~�.

A. General considerations

From (2.13) and (2.14) we have that the full partition
function of planar N � 4 SYM on R� S3 in the decou-
pling limit (2.5) is

 logZ� ~�� �
X1
n�1

X1
L�1

1

n
e� ~�nL TrL�e�n

~� ~�D2� (4.1)

Define now the function V�t� by

 V�t� � lim
L!1

1

L
log�TrL�e

�t�1D2�� (4.2)

This limit is well-defined since the thermodynamic limit of
the free energy per site f�t� at temperature t for the
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Heisenberg chain is related to V�t� by

 f�t� � �tV�t� (4.3)

Note that here the Hamiltonian of the ferromagnetic
Heisenberg chain is D2. We notice now that for large L

 e� ~�nL TrL�e�n
~� ~�D2� ’ exp��nL ~�� LV��n ~� ~���1��

(4.4)

Therefore, for n � 1 we see that we reach a singularity if ~�
decreases to ~�H given by6

 

~�H � V�� ~�H ~���1� (4.5)

This is the Hagedorn temperature for general ~�. Thus, we
have obtained a direct connection between the thermody-
namics of the Heisenberg chain in the thermodynamic limit
and the Hagedorn temperature.

We see now immediately from Eq. (4.5) that the
Hagedorn temperature for ~�� 1 is obtained from the
high temperature limit t	 1 of the Heisenberg chain,
while for ~�	 1 the Hagedorn temperature is obtained
from the low temperature limit t� 1. In the following
we use this to obtain the Hagedorn temperature in these
two regimes.

B. Hagedorn temperature for small ~�

If we consider t! 1 in (4.2) we see that we can find the
Hagedorn temperature from TrL�1�. This corresponds to
counting the number of independent single-trace operators
of length L. This is less than 2L but also bigger than 2L=L
since the cyclic symmetry of the trace can at most relate L
states to each other. For large L we have therefore to
leading order TrL�1� ’ 2L. Inserting that in (4.2) we see
that V�t� ! log2 for t! 1. This corresponds to ~�H �
log2 which is the correct Hagedorn temperature for the free
SU�2� sector.

We can also find the first correction to the Hagedorn
temperature for small ~� in this fashion. For large t we see
that

 V�t� � lim
L!1

1

L

�
log TrL�1� � t

�1 TrL�D2�

TrL�1�

�
(4.6)

It is not hard to see that for large L

 

TrL�D2�

TrL�1�
’
L
4

(4.7)

Therefore, we get

 V�t� � log2�
1

4t
�O�t�2� (4.8)

for large t. We see from (4.8) that �tV�t� indeed is the
previously computed high temperature limit of the free
energy per site for the Heisenberg chain [30]. Inserting
(4.8) into (4.5) we get

 

~T H �
1

log2
�

1

4 log2
~��O�~�2� (4.9)

which precisely matches the Hagedorn temperature found
previously in [7,24]. Note that the above computation of
the Hagedorn temperature completely circumvents the
somewhat complicated computation of the full single-trace
partition function.

A much more powerful method of obtaining the high
temperature behavior of the Heisenberg chain has been
found in [31]. The result is that V�t� as defined in (4.2)
can be found from the integral equation
 

u�x� � 2�
I
C

dy
2�i

�
1

x� y� 2i
exp

�
�

2t�1

y�y� 2i�

�

�
1

x� y� 2i
exp

�
�

2t�1

y�y� 2i�

��
1

u�y�
(4.10)

where C is a loop around the origin directed counterclock-
wise. V�t� is then determined as

 V�t� � log�u�0�� (4.11)

One can then make a systematic high energy expansion of
u�x� in powers of t�1 as

 log�u�x�� �
X1
k�0

uk�x�t�k (4.12)

Using (4.10) we can now determine u�x� order by order in
t�1. This gives the high temperature expansion of V�t� to
order t�5

 

V�t� � log2�
1

4t
�

3

32t2
�

1

64t3
�

5

1024t4
�

3

1024t5

�O�t�6� (4.13)

for large t. Inserting (4.13) into (4.5) we get7

 

~TH �
1

log2
�

1

4 log2
~��

3

32
~�2 �

�
3

128
�

log2

64

�
~�3

�

�
�

3

512
�

17 log2

1024
�

5�log2�2

1024

�
~�4

�

�
3

2048
�

39 log2

4096
�

3�log2�2

4096
�

3�log2�3

1024

�
~�5

�O�~�6� (4.14)

for small ~�. It is straightforward to extend this to higher
6Note that there is a singularity for each value of n, but the

n � 1 singularity is the first one that is reached as one decreases
~� from infinity. This is seen using that V�t� is a monotonically
increasing function of t.

7Note that the ~�2 term matches the D2
2 contribution to the �2

correction for the Hagedorn temperature in the SU�2� sector
found in [32].
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orders in ~�, e.g. from the results of [31] one can find V�t� to
order t�50 and thereby ~TH to order ~�50.

C. Hagedorn temperature for large ~�

As stated above, we see from (4.5) that the Hagedorn
temperature for large ~� is given from low temperature limit
of the ferromagnetic Heisenberg chain. Therefore, to com-
pute the Hagedorn temperature in this limit, we should use
the low energy spectrum (3.19) of the Heisenberg chain to
compute V�t� for small t. Inserting the spectrum (3.19) in
the partition function for the Heisenberg chain, we see that
for large L and small t we have
 

TrL�e
�t�1D2� � L

X
fMng

Z 1=2

�1=2
du exp

�
�

2�2

tL2

X
n�0

n2Mn

� 2�iu
X
n�0

nMn

�
(4.15)

where the integration over u is introduced to impose the
cyclicity constraint in the spectrum (3.19). The L factor is
due to the L� 1 different vacua for a given L. Evaluating
the sums over the Mn’s (the sum range being from zero to
infinity) we get
 

TrL�e�t
�1D2� � L

Z 1=2

�1=2
du
Y
n�0

�
1� exp

�
�

2�2

tL2 n
2

� 2�iun
��
�1

� L
Z 1=2

�1=2
du
��������G

�
2�

tL2 ; 2�u
���������2

(4.16)

where G�a; b� is the generating function defined by
Eq. (A1) in the Appendix. We want to extract from (4.16)
the part that diverges for L! 1. Using the analysis of the
Appendix we get that the leading contribution to this
divergence is from u � 0, which using Eq. (A9) is seen
to give

 Tr L�e�t
�1D2� � exp

�
L�
�
3

2

� �������
t

2�

r �
(4.17)

for L! 1. Here ��x� is the Riemann zeta function.
Inserting (4.17) into (4.2) and (4.16) we get

 V�t� � �
�
3

2

� �������
t

2�

r
(4.18)

for t� 1. This result is the same as the analytically
obtained result [30,33] for the low energy limit of the
free energy�tV�t� for the Heisenberg chain. As we discuss
further below, it is also consistent with numerical calcu-
lations [34–37].

Applying now the result (4.18) to Eq. (4.5), we get the
Hagedorn temperature

 

~T H � �2��1=3

�
�
�
3

2

��
��2=3�

~�1=3 (4.19)

for ~�	 1. This is the Hagedorn temperature of planar
N � 4 SYM on R� S3 in the decoupling limit (2.5) for
large ~�. We see that the Hagedorn temperature (4.19) goes
to infinity for ~�! 1. This is consistent with the fact that
for ~�! 1 all other states except the chiral primary states
decouple, and the partition function ends up being a sum
only over the chiral primaries, which means that we should
not expect the presence of a Hagedorn singularity in this
limit.

As stated above, the result (4.18) obtained for the low
temperature limit of V�t� is the same as that obtained for
the ferromagnetic Heisenberg chain in [30,33], where also
the next order of V�t� has been computed

 V�t� � �
�
3

2

� �������
t

2�

r
� t�O�t3=2� (4.20)

for t� 1. This result is consistent with numerical calcu-
lations, which reveals [34–37]

 V�t� � 1:042
��
t
p
� 1:00t�O�t3=2� (4.21)

for t� 1. Using now (4.20) in (4.5) we find the following
correction to the Hagedorn temperature

 

~T H �
�2��1=3

��32�
2=3

~�1=3 �
4�

3��32�
2
�O�~��1=3� (4.22)

for large ~�.

V. DECOUPLING LIMIT OF STRING THEORY ON
AdS5 � S

5

As reviewed in Sec. II, thermal N � 4 SYM on R� S3

decouples to SU�2� sector in the decoupling limit (2.5) [7].
We consider in this section the corresponding limit that one
obtains for type IIB string theory on AdS5 � S

5 by em-
ploying the AdS/CFT duality [1–3].

We consider type IIB string theory on the AdS5 � S
5

background given by the metric
 

ds2 � R2��cosh2�dt2 � d�2 � sinh2�d�023 � d�
2

� sin2�d	2 � cos2�d�2
3� (5.1)

and the fiveform Ramond-Ramond field strength

 F�5� � 2R4�cosh�sinh3�dtd�d�03

� sin�cos3�d�d	d�3� (5.2)

The AdS/CFT correspondence then fixes that R4 �
4�gsl

4
sN and g2

YM � 4�gs, where gs is the string coupling
and ls is the string length. g2

YM and N are the gauge
coupling and rank of SU�N� as defined in Sec. II. With
this, we see that we have the following dictionary between
the gauge-theory quantities � and N, and the string theory
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quantities gs, ls and the AdS radius R

 Tstr �
R2

4�l2s
�

1

2

����
�
p
; gs �

��
N

(5.3)

where Tstr is the string tension for a fundamental string in
the AdS5 � S5 background (5.1) and (5.2).

A. Decoupling limit for strings on AdS5 � S
5 and

induced gauge/string duality

We can now translate the decoupling limit reviewed in
Sec. II. We consider first the nonthermal version of the
decoupling limit given by (2.9). This limit translates into
the following limit of type IIB string theory on the AdS5 �
S5 background (5.1) and (5.2)
 

�! 0; ~H �
E� J
�

fixed; ~Tstr �
Tstr���
�
p fixed;

~gs �
gs
�

fixed; Ji fixed (5.4)

Here E is the energy of the string while Ji, i � 1, 2, 3, are
the three angular momenta for the five-sphere correspond-
ing to the three R-charges of N � 4 SYM. The energy E
for a string state is equal to the scaling dimension D of a
gauge-theory state of N � 4 SYM on R� S3 since we set
the radius of the three-sphere to one. Note furthermore that
we have defined J � J1 � J2.

We see that in this limit we scale the energies in such a
way that in free string theory (gs � 0) only string states for
which E� J� T2

str as Tstr ! 0 can survive. As in the
gauge theory, we can regard this as a limit in which we
look at small excitations near the BPS states with E � J.
Note that even for gs � 0 the obtained tree-level string
theory is nontrivial since we have an effective string ten-
sion ~Tstr.

It is interesting to observe that in the limit (5.4) the string
coupling goes to zero. From this and the corresponding
gauge-theory limit (2.9), we see that the AdS/CFT corre-
spondence in this limit necessarily becomes a duality
between weakly-coupled N � 4 SYM and weakly-
coupled string theory.

After taking the limit (2.9) of N � 4 SYM and the limit
(5.4) of string theory on AdS5 � S

5, the AdS/CFT duality
induces a duality between the decoupled sectors on the
gauge-theory and string-theory sides. From the two limits
(2.9) and (5.4) we see that we obtain a dictionary for this
induced duality relating the quantities we keep finite in the
limits:

 

~T str �
1

2

����
~�

p
; ~gs �

�~�
N

(5.5)

We see that this induced dictionary perfectly mirrors the
original AdS/CFT dictionary (5.3).

Finally, we note also that the string tension Tstr goes to
zero. Zero tension limits of string theory on AdS5 � S5

have previously been connected to higher-spin theories.

However, here we know from the gauge-theory side that
only a particular sector of the theory survives the limit.

B. Decoupling limit of thermal partition function for
strings on AdS5 � S

5

If we consider instead a gas of strings in the AdS5 � S5

background (5.1) and (5.2) we can write the general parti-
tion function as

 Z��;�i� � Tr�e��E��
P

3
i�1

�iJi� (5.6)

where Ji, i � 1, 2, 3, are the angular momenta and �i, i �
1, 2, 3, are the corresponding angular velocities. Here we
trace over all the multistring states. Just like on the gauge-
theory side we consider here the only special case
��1;�2;�3� � ��;�; 0�. Therefore, the partition func-
tion can be written

 Z��;�i� � Tr�e��E���J� (5.7)

where J � J1 � J2. We now want to consider the region
close to the critical point �T;�� � �0; 1�. We notice first
that we can rewrite the weight factor in (5.7) as

 e��E���J � e���1���J���1���E�J=1�� (5.8)

From the gauge-theory decoupling limit (2.5) and the string
theory decoupling limit (5.4) it is then clear that the ap-
propriate limit for a string gas is

 T ! 0; �! 1; ~T �
T

1��
fixed;

~H �
E� J
1��

fixed ~Tstr �
Tstr��������������

1��
p fixed;

~gs �
gs

1��
fixed; Ji fixed

(5.9)

Using (5.7) and (5.8) the partition function for the string
gas becomes

 Z� ~�� � TrMs
�e� ~��J� ~H�� (5.10)

where Ms is defined as the set of all multistring states that
survive the limit (5.9). We see that in the limit (5.9) we
effectively end up with a theory for a string gas of tem-
perature ~T and energies given by J� ~H, and with a re-
duced set of string states compared to the full string theory
on AdS5 � S5.

VI. CONNECTION TO PP-WAVE WITH FLAT
DIRECTION

In Sec. V we found a decoupling limit of string theory on
AdS5 � S5 which is dual to the SU�2� decoupling limit of
N � 4 SYM reviewed in Sec. II. We do not know a first
quantization of string theory on AdS5 � S5. Therefore, we
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consider instead taking the decoupling limit (5.4) for string
theory on a particular pp-wave background, obtained from
AdS5 � S5 by a Penrose limit. As we explain in the follow-
ing, this pp-wave background is particularly well-suited for
this limit, and we find indeed a successful match of the
string theory and gauge-theory spectra.

A. Penrose limit for pp-wave with flat direction

We begin this section by employing a Penrose limit of
AdS5 � S5 found in [12] giving rise to a maximally super-
symmetric pp-wave background with a flat direction. It is
important to note that the Penrose limit is implemented in a
slightly different manner here than in [12] in order to be
consistent with the decoupling limit (5.4) for strings on
AdS5 � S5. We explain in Sec. VI B why the Penrose limit
of [12] has the right features for the decoupling limit (5.4)
that we are going to implement.

We begin by considering the AdS5 � S5 background
(5.1) and (5.2). We see from the decoupling limit (5.4)
that the AdS radius R goes to zero like �1=4 in the limit.
We define therefore a rescaled AdS radius ~R as follows

 

~R 4 �
R4

�
(6.1)

Consider now the three-sphere �3 part of the metric (5.1).
Following [12], we can parameterize the three-sphere em-
bedded in the five-sphere as

 d�2
3 � d 2 � sin2 d
2 � cos2 d�2

� d 2 � d
2
� � d


2
� � 2 cos�2 �d
�d
� (6.2)

where we defined the angles 
� as

 
� �
��


2
(6.3)

Define now the coordinates x�, x�, x1, x2, r, ~r by

 x� �
1

2
� ~R2�t�
��; x� �

1

2�
�t�
�� (6.4)

 

x1 � ~R
�; x2 � ~R
�
 �

�
4

�
;

r � ~R�; ~r � ~R�
(6.5)

Note that these coordinates are defined in terms of the
rescaled AdS radius ~R. We then take the Penrose limit of
the AdS5 � S

5 background (5.1) and (5.2) given by [12]

 

~R! 1; x�; x�; x1; x2; r; ~r; 	 fixed (6.6)

This gives the following pp-wave background with 32
supersymmetries
 

ds2���
�
p � �4dx�dx� ��2

X8

I�3

xIxI�dx��2 �
X8

i�1

dxidxi

� 4�x2dx1dx� (6.7)

 

F�5�
�
� 2�dx��dx1dx2dx3dx4 � dx5dx6dx7dx8� (6.8)

This background was first found in [38].8 Here x3, x4 are
defined by x3 � ix4 � ~rei	 and x5; . . . ; x8 are defined by
r2 �

P8
I�5�x

I�2 and dr2 � r2d�023 �
P8
I�5�dx

I�2. We see
that the fact that we employed the rescaled AdS radius in
the Penrose limit give rise to factors of � in the metric and
fiveform field strength. This will be important below.

It is important to note that the pp-wave background (6.7)
and (6.8) has the special feature that x1 is an explicit
isometry of the pp-wave [12,38], hence we call this back-
ground a pp-wave with a flat direction.

In terms of the generators, we see that in the Penrose
limit (6.6) we have

 Hlc �
���
�
p
��E� J�; p� �

E� J

2�R2 ; p1 �
2Sz

~R
(6.9)

where Hlc is the light-cone Hamiltonian, p� is the light-
cone momentum and p1 is the momentum along the x1

direction. Here J1 �
1
2 J� Sz and J2 �

1
2 J� Sz are the

angular momenta of the strings on the three-sphere (6.2).
From [12,38] we have that the strings can be quantized

in the light-cone gauge with the following spectrum of the
light-cone Hamiltonian Hlc
 

l2sp
����
�
p Hlc � 2fN0 �

X
n�0

��!n � f�Nn � �!n � f�Mn�

�
X
n2Z

X8

I�3

!nN
�I�
n �

X
n2Z

�X4

b�1

�
!n �

1

2
f
�
F�b�n

�
X8

b�5

�
!n �

1

2
f
�
F�b�n

�
(6.10)

with level matching condition

 

X
n�0

n
�
Nn �Mn �

X8

I�3

N�I�n �
X8

b�1

F�b�n

�
� 0 (6.11)

and where we have defined

 f � �l2sp
�; !n �

�����������������
n2 � f2

q
(6.12)

Here N�I�n , I � 3; . . . ; 8 and n 2 Z, are the number opera-
tors for bosonic excitations for the six directions x3; . . . ; x8,
while Nn, n 2 Z, andMn, n � 0, are the number operators
for the two directions x1 and x2. F�b�n , b � 1; . . . ; 8 and n 2

8The pp-wave background (6.7) and (6.8) is related to the
maximally supersymmetric pp-wave background of [6,39] by a
coordinate transformation [12,38]. Even so, as we shall see in the
following, the physics of this pp-wave is rather different, which
basically origins in the fact that the coordinate transformation
between them depends on x�, i.e. it is time-dependent. See [12]
for more comments on this.
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Z, are the number operators for the fermions. Note that the
presence of the flat direction x1 of the pp-wave is respon-
sible for the fact that we only have seven bosonic zero
modes N0 and N�3�0 ; . . . ; N�8�0 .

It is important to note that the vacua for the string
spectrum are degenerate with respect to the eigenvalues
of the momentum p1 along the flat direction. I.e. we have a
vacuum j0; p1; p�i for each value of p1, and given any
particular vacuum j0; p1; p�i we have the spectrum (6.10)
of string excitations.

B. Decoupling limit of pp-wave spectrum and matching
of spectra

We can now explain why the pp-wave background (6.7)
and (6.8) is relevant for our decoupling limit (5.4) for
strings on AdS5 � S5. We see from (6.9) that the Penrose
limit (6.6) corresponds to a limit in which J � J1 � J2 !
1 while E� J is fixed. Thus, we keep all excitations that
have a finite value of E� J. In particular, we keep any
excitation which has a small E� J and which is still
present for large J.

Another argument why the pp-wave background (6.7)
and (6.8) is suitable for our considerations is that the light-
cone vacua Hlc � 0 correspond to 1=2 BPS states with
E � J. These 1=2 BPS states are mapped to the chiral
primary states of N � 4 SYM with D � J, which pre-
cisely correspond to the vacua on the gauge-theory side.

We now implement the decoupling limit (5.4) on the pp-
wave background (6.7) and (6.8). Notice first that we want
to keep p� fixed in the decoupling limit. This gives us that
�

���
�
p

should be held fixed. Using (6.9) we find that the
decoupling limit (5.4) translates to the following decou-
pling limit on the pp-wave background (6.7) and (6.8)
 

�! 0; �! 1; ~� � �
���
�
p

fixed;

~Hlc �
Hlc

�
fixed; ~gs �

gs
�

fixed;

ls; p� fixed

(6.13)

Clearly this can be seen as a large � limit of the pp-wave.
It is important to remark that the limit (6.13) is consis-

tent with the Penrose limit (6.6) since the limit relies on
having large ~R and large J and these are both kept fixed in
the limit (6.13). Furthermore, we see from (6.9) and (6.13)
that we have

 p� �
J

~� ~R2
(6.14)

so having p� fixed is consistent with having large J and
large ~R.

We consider now the spectrum of the light-cone
Hamiltonian (6.10) and (6.11) in the limit (6.13). First we
notice that f ! 1, so f�1!n ’ 1� n2=�2f2� �O�f�4�.
Therefore, most of the excitations have ���1=2�l2sp�Hlc of
order f. Such excitations do not survive the limit (6.13). It

is easy to see that this means that Nn � 0, N�I� � 0 and
F�b�n � 0 for n 2 Z. Only the excitations connected to the
number operator Mn have a chance of surviving since
!n � f is not of order f when f ! 1. Focusing on these
excitations, we have

 

l2sp����
�
p Hlc �

X
n�0

�!n � f�Mn ’
X
n�0

n2

2f
Mn (6.15)

We get therefore in the limit (6.13) the spectrum

 

~H lc �
1

2 ~��l2sp��2
X
n�0

n2Mn;
X
n�0

nMn � 0 (6.16)

where we also included the level matching condition ob-
tained from (6.11).

We now want to show that this spectrum indeed matches
the spectrum (3.19) obtained in weakly-coupled N � 4
SYM. First we notice that the fact that the string vacua are
degenerate with respect to the momentum p1 precisely fits
with the fact that the gauge-theory vacua (3.5) are degen-
erate with respect to Sz, as one can see explicitly from
(6.9).

As a next step, we see from (6.1) and (6.14) that

 � ~�l2sp��2 �
J2

4�2 ~�
(6.17)

Thus, the Penrose limit (6.6) corresponds, in terms of the
gauge theory, to the limit

 

~�! 1; J !1;
~�

J2 fixed (6.18)

This fits perfectly with the fact that we want to match the
spectrum (6.16) to the spectrum of planar N � 4 SYM in
the decoupling limit (2.5) for large ~� and large J � L.
Employing now (6.18) we see that we can rewrite (6.16) as

 

1

~�
~Hlc �

2�2 ~�

J2

X
n�0

n2Mn;
X
n�0

nMn � 0 (6.19)

This precisely matches the spectrum (3.19) of ~�D2 on the
gauge-theory side, since we have J � L. Notice that the
1= ~� in (6.19) origins from (6.9), thus it is ~Hlc= ~� and ~�D2

that one should match.
In conclusion, we have found that we can match the

spectrum of weakly-coupled string theory in the pp-wave
regime and in the pp-wave decoupling limit (6.13), with the
spectrum of weakly-coupled planar N � 4 SYM in the
decoupling limit (2.5) for large ~� and large J � L. This
gives a strong indication that the induced AdS/CFT corre-
spondence suggested in Sec. V, between N � 4 SYM in
the decoupling limit (2.9) and string theory on AdS5 � S

5

in the dual decoupling limit (5.4), indeed is correct.
We note that there is a geometric picture of the large �

limit (6.13). Since the x3; . . . ; x8 directions have a square-
well potential with � as coefficient, it is clear that these
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directions decouple. Moreover, since only x1 is a flat
direction, while the other seven transverse directions are
not, it is intuitively clear that only modes connected to the
flat direction survive. Thus, we can see on a purely geo-
metric level that it is the presence of a flat direction that
enables us to perform a nontrivial large � limit in which
we have finite decoupled modes left. This is a more in-
tuitive way to see why we are employing the pp-wave
background with a flat direction (6.7) and (6.8) rather
than the usual pp-wave background used in [6] in which
there are no flat transverse directions.

Finally, we note that the limit (6.13) easily can be turned
in to a decoupling limit for a gas of strings on the pp-wave
background (6.7) and (6.8), implementing the limit (5.9) on
the pp-wave. This is done by supplementing the limit
(6.13) with

 T ! 0; �! 1; � � 1��;

~T �
T

1��
fixed

(6.20)

in accordance with the limits (5.4) and (5.9).

C. Comments on matching of spectra

The result of Sec. VI B of the matching of the spectra of
weakly-coupled gauge theory and string theory in their
respective decoupling limits is a highly nontrivial result:
We have matched the spectrum of gauge-theory states in
weakly-coupled gauge-theory with the spectrum of free
strings on a pp-wave. It is interesting to consider how it
is possible that the spectra indeed can match. There are
several underlying reasons for this:

(i) We can consider large ~� on the gauge-theory side
even though we have �! 0 in the decoupling limit
(2.5). This ensures that only the magnon states of the
Heisenberg spin chain contribute. For �� 1 with
fixed chemical potentials there would be many more
states present than the ones dual to pp-wave strings
states, since this merely is a perturbation of the
spectrum of free N � 4 SYM.

(ii) That the limit involves E� J ! 0 means that we are
expanding around the chiral primary states (3.2).
Thus, we are matching states of the gauge theory
and string theory which lie close to the chiral
primaries.

(iii) On the gauge-theory side, the Hamiltonian truncates
to H � D0 � ~�D2. This enables us to compute the
spectrum for large ~�.

(iv) We have a pp-wave, being the pp-wave background
(6.7) and (6.8), with the same vacuum structure as
that of N � 4 SYM in the decoupling limit (2.5).

Furthermore, the pp-wave is a good approximation
for large ~� and J, which precisely is the regime that
we can match to the gauge-theory side.

(v) The pp-wave background (6.7) and (6.8) is a maxi-
mally supersymmetric background of type IIB su-
pergravity, and is furthermore an 	0 exact
background of type IIB string theory (see e.g.
[40]). This makes the pp-wave spectrum (6.10) reli-
able in the decoupling limit (6.13).

In Sec. VII we match furthermore the Hagedorn tempera-
ture of gauge theory and string theory, in their respective
decoupling limits. That this works can be seen as a direct
consequence of the matching of the spectra.

VII. STRING THEORY HAGEDORN
TEMPERATURE

In this section we compute the Hagedorn temperature
for strings on the pp-wave background (6.7) and (6.8) in the
decoupling limit (6.13) and (6.20) in two different ways. In
Sec. VII A we compute the Hagedorn temperature directly
from the reduced pp-wave spectrum (6.16). In Sec. VII B
we instead take the decoupling limit (6.13) and (6.20) of
the Hagedorn temperature for the full pp-wave spectrum
(6.10). Both of these computations give the same result,
which we show can be matched with the Hagedorn tem-
perature (4.19) computed in weakly-coupled N � 4
SYM.

A. Hagedorn temperature for reduced pp-wave
spectrum

In this section we compute the Hagedorn temperature
for the reduced pp-wave spectrum (6.16). This is the spec-
trum obtained for type IIB superstring theory in the pp-
wave background (6.7) and (6.8) in the decoupling limit
(6.13). We show that the result for the Hagedorn tempera-
ture coincides with the one of the dual gauge theory (4.19).

We consider first the multistring partition function

 logZ�~a; ~b; ~�� �
X1
n�1

1

n
Tr�e�~an ~Hl:c:�~bnp�� (7.1)

where the trace is taken over single-string states with
spectrum (6.16). The parameters ~a and ~b can be viewed
as inverse temperature and chemical potential, respec-
tively, for the pp-wave strings. We find the values for ~a
and ~b in terms of the AdS5 � S

5 parameters below. Note
that we do not have fermions in the spectrum. The measure
for the trace over p� is l

2�

R
1
0 dp

�, where l is the (infinite)
length of the 9’th dimension. We get

 logZ � �
X1
n�1

l ~�

8�2l2s

Z 1
0

d�2

�2
2

Z 1=2

��1=2�
d�1

X1
Mm�0

e
��~bn2 ~�=4�l2s�2���2�~a�2= ~� ~f�

P
m�0

m2Mm�2�i�1

P
m�0

mMm

(7.2)
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where the level matching condition is imposed by intro-
ducing an integration over the Lagrange multiplier �1 and
we introduced the quantities

 �2 �
n ~�

4�l2sp�
; ~f � l2sp

� ~� �
n ~� ~�
4��2

(7.3)

Summing over the occupation number we get

 logZ � �
X1
n�1

l ~�

8�2l2s

Z 1
0

d�2

�2
2

�
Z 1=2

��1=2�
d�1e��

~bn2 ~�=4�l2s�2�jG��1; �2; ~f�j2 (7.4)

where the generating function G is given by

 G��1; �2; ~f� �
Y1
m�1

�
1

1� e��2�~a�2= ~� ~f�m2�2�i�1m

�
(7.5)

To see where the partition function diverges we need to
estimate the asymptotic behavior of the function G. This is
done in the Appendix were we show that it diverges in the
limit �2 ! 0. More precisely, one can show that for �2 that
goes to zero, there is a divergence only if �1 � 0 and the
leading contribution is given by

 G�0; �2; ~f� � exp
�
�
�
3

2

� ����������
~� ~f

8~a�2

s �
� exp

�
�
�
3

2

� ~�
4�2

���������
n ~�
2�~a

s �
(7.6)

After substituting this result in the expression for the
partition function (7.4) in the limit �2 ! 0 we find that
we have a Hagedorn singularity for9

 

~b
���
~a
p
� l2s�

�
3

2

� �����������
2� ~�

p
(7.7)

where the relevant contribution is given by the n � 1
mode.

In order to compare (7.7) with the gauge-theory result
(4.19) we have to express the parameters ~a and ~b in terms
of the gauge-theory quantities [16]. Using Eqs. (5.5) and
(6.9) it is not difficult to see that ~a and ~b should be
identified in the following way

 ~a �
~�
~�
; ~b � 4�l2s ~� ~� ~Tstr � 2�l2s ~� ~�

����
~�

p
(7.8)

With these identifications Eq. (7.7) gives

 

~T H � �8��
1=3

�
�
�
3

2

��
��2=3�

~T2=3
str

� �2��1=3

�
�
�
3

2

��
��2=3�

~�1=3 (7.9)

which precisely coincides with the result (4.19) obtained
on the gauge-theory side.

We have thus shown that the Hagedorn temperature of
type IIB string theory on AdS5 � S

5 in the decoupling limit
(5.9) matches with the Hagedorn/deconfinement tempera-
ture (4.19) computed in weakly-coupled N � 4 SYM in
the dual decoupling limit (2.5). This is done in the regime
of large ~�. On the string side we obtained the Hagedorn
temperature by considering the large ~� and J limit corre-
sponding to strings on the pp-wave background (6.7) and
(6.8) in the decoupling limit (6.13). The result means that
in the sector of AdS/CFT defined by the decoupling limits
(5.9) and (2.5) we can indeed show that the Hagedorn
temperature for type IIB string theory on the AdS5 � S

5

background is mapped to the Hagedorn/deconfinement
temperature of weakly-coupled planar N � 4 SYM on
R� S3. Thus we have direct evidence that the confine-
ment/deconfinement transition found in weakly-coupled
planar N � 4 SYM on R� S3 is linked to a Hagedorn
transition of string theory on AdS5 � S

5, as conjectured in
[8–11].

Note that the matching of the Hagedorn temperature
made above to some extent follows directly from the
matching of the spectra made in Sec. VI. However, to
check that the computation of the Hagedorn temperature
indeed is consistent with taking the decoupling limit (6.13)
and (6.20) of strings on the pp-wave background (6.7) and
(6.8) we check in the following section that one can find the
same Hagedorn temperature directly by taking the decou-
pling limit on the Hagedorn singularity for the full pp-wave
spectrum (6.10).

B. Limit of Hagedorn temperature for full pp-wave
spectrum

In this section we show that by computing the Hagedorn
temperature using the full spectrum (6.10) and subse-
quently taking the limit (6.13) and (6.20) we obtain again
the result (7.9) for the Hagedorn temperature.

We consider the multistring partition function

 logZ�a; b;�� �
X1
n�1

1

n
Tr���1��n�1�Fe�anHl:c:�bnp��

(7.10)

where the trace is over single-string states with the spec-
trum (6.10), and F is the space-time fermion number. The
computation of the partition function (7.10) is similar to
that of the reduced spectrum done in Sec. VII A and it has

9We note that to gain a better understanding of the behavior of
the partition function (7.4) one should perform the integral over
�1. This however would just produce a different power of �2 in
the prefactor of the partition function and it would not modify
the result (7.7) for the Hagedorn temperature.
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been done in Ref. [17] for b � 0.10 Generalizing the
computation to nonzero b, we get that the Hagedorn sin-
gularity occurs for

 

b � 4l2s�
X1
p�1

1

p

�
3� cosh��ap� � 4��1�p cosh

�
1

2
�ap

��

� K1��ap� (7.11)

where K�x� is the modified Bessel function of the second
kind. Using (6.9) we see that we should identify

 a �
� ~�

~�2 ; b � 4��l2sTstr
~� (7.12)

We now take the limit (6.13) and (6.20). The Bessel func-
tion can be approximated by its behavior for large values of
the argument

 K1�x� � e
�x

����
�
2

r � ���
1

x

s
�O�x�3=2�

�
(7.13)

It is easy to see that in this limit only the 1
2 e

�ap term inside
the �
 
 
� paranthesis in (7.11) survives. We note that this is
precisely the contribution from theMn oscillators in (6.10).
To see that the other terms in (7.11) vanish it is enough to
consider p � 1 since the higher p terms are exponentially
suppressed. From the surviving term it is then straightfor-
ward to show that we again get the Hagedorn temperature
(7.9), which matches the gauge-theory result (4.19).

We can conclude from the above that taking the decou-
pling limit (6.13) and (6.20) on the spectrum (6.10) on the
pp-wave (6.7) and (6.8) is consistent with taking the de-
coupling limit of the Hagedorn singularity on the pp-wave.
I.e. taking the decoupling limit before computing the
Hagedorn temperature commutes with computing the
Hagedorn temperature and then subsequently taking the
decoupling limit. This is a good check on the consistency
of the decoupling limit (6.13) and (6.20).

VIII. DISCUSSION AND CONCLUSIONS

The general idea of this paper is that by taking a certain
decoupling limit we get a self-consistent decoupled sector
of the AdS/CFT correspondence. On the gauge-theory side,
we take the decoupling limit (2.5) of SU�N�N � 4 SYM
on R� S3. On the string-theory side, we take the decou-
pling limit (5.4) (see also (5.9)) of type IIB strings on
AdS5 � S

5. In [7] it was shown that the sector of planar
N � 4 SYM on R� S3 obtained in the decoupling limit
(2.5) also is described by the ferromagnetic Heisenberg

spin chain, as reviewed in Sec. II. On the string-theory side,
the planar limit of N � 4 SYM corresponds to free strings
propagating on AdS5 � S

5. We have thus the spin chain/
gauge theory/string theory triality depicted in Fig. 1. Since
the Heisenberg chain is integrable, we get that both the
gauge theory and the string theory should be integrable. In
this sense we have found a solvable sector of AdS/CFT.
One of the important features of the triality of Fig. 1 is that
we are considering small ’t Hooft coupling �! 0 on the
gauge-theory side. On the string-theory side this corre-
sponds to having a small string tension Tstr.

We have succeeded in this paper to show that the low
energy spectrum (3.19) obtained on the spin chain/gauge-
theory side matches the spectrum of free strings on a
maximally supersymmetric pp-wave background. With
this, we have shown that the low energy part of the spec-
trum of the gauge-theory and string-theory sides of the
triality of Fig. 1 matches. This is a rather nontrivial result in
that we have obtained a string theory spectrum, which is
calculable on the string-theory side, directly in weakly-
coupled gauge theory. Indeed, to our knowledge, this is the
first nontrivial matching in AdS/CFT done between gauge
theory and string theory in the �� 1 regime.

Related to this result, we have shown that the Hagedorn/
deconfinement temperature in weakly-coupled planar
N � 4 SYM on R� S3 in the limit (2.5) matches the
Hagedorn temperature of weakly-coupled string theory on
a maximally supersymmetric pp-wave background (6.7)
and (6.8) in the decoupling limit (6.13) and (6.20). This
shows that the confinement/deconfinement transition
found in weakly-coupled planar N � 4 SYM on R� S3

is linked to a Hagedorn transition of string theory on
AdS5 � S

5, as conjectured in [8–11].
The mechanism behind these successful matches be-

tween string theory and gauge theory is the SU�2� decou-
pling limit found in [7]. In this decoupling limit we
consider the gauge-theory states lying very close to a
certain chiral primary sector (defined by D � J). This
enables us to decouple most of the gauge-theory states
leaving only the SU�2� sector, and the Hamiltonian trun-
cates to (2.8), which has the consequence that we can study
the decoupled sector for finite ~�. On the string-theory side,
we find that the Penrose limit [12] of AdS5 � S5 leading to
the pp-wave background (6.7) and (6.8) with a flat direction
gives a pp-wave string spectrum for which the vacua
precisely are dual to the chiral primary states expanded
around on the gauge-theory side. Translating the dual
decoupling limit for string on AdS5 � S

5 into a decoupling
limit for the pp-wave enables us to study the decoupled

 

planar on AdS5 × S5

Ferromagnetic
Heisenberg

FIG. 1 (color online). A spin chain/gauge theory/string theory
triality.

10In [17] the direction x1 is compactified and it is shown that
only the sector with zero winding number contributes to the
partition function.
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sector from the string-theory side. Unlike the usual gauge-
theory/pp-wave correspondence we can match the gauge-
theory and string-theory spectra for small ’t Hooft coupling
�! 0 since for finite ~� only the gauge-theory states in the
SU�2� sector close to the chiral primary states contribute at
low energies.

Future directions

One of the most interesting extensions of the matching
of the Hagedorn temperature between gauge theory and
string theory of this paper would be to reproduce the ~��1=3

correction from string-theory side. From the thermody-
namics of the Heisenberg chain, we found the correction
(4.22). On the string-theory side, computing this correction
would involve going away from the large J limit. More
generally, it would be highly interesting to match finite size
corrections to the spectrum of the Heisenberg chain, to 1=J
corrections to the pp-wave spectrum.

Another interesting class of corrections to consider
would be to look at corrections coming from terms of order
~�� in the Hamiltonian. I.e. in [7] we have that the leading
correction for small � to the Hamiltonian for the SU�2�
sector is

 H � D0 � ~�D2 � ~��D4 �O�~��2� (8.1)

In this regime one could be worried about corrections
coming from the fact that states outside the SU�2� sector
are not completely decoupled. However, we do not expect
that to be important, since such corrections appear non-
perturbatively in terms of the expansion parameter 1��
[7].

Considering � corrections could be very important for a
better understanding of the three-loop discrepancy
[29,41,42] between anomalous dimensions computed in
N � 4 SYM and string energies for strings on AdS5 �
S5. The reason for the three-loop discrepancy could very
well be that there are interpolating functions in � that one
does not see when doing a naive large � extrapolation of
the gauge-theory results. For our decoupled sector we do
not have any need for interpolating functions, since we are
not extrapolating the anomalous dimensions to infinite �.
Therefore, it would be rather interesting in this light to see
if there is a discrepancy for � corrections to our decoupled
sector.

One could furthermore consider other decoupling limits.
In [7] we found a decoupling limit of planar N � 4 SYM
on R� S3 in which it decouples to the SU�2j3� spin chain,
in a very similar way as that of the SU�2� decoupling limit
considered in this paper. We expect similar results for this
sector. This could be interesting to work out since the
spectrum is more complicated due to the presence of
fermions. As mentioned in [7] it is moreover conceivable
that there are other interesting decoupling limits of super-
symmetric gauge theories with less supersymmetry, hence

one could hope to match the spectrum and Hagedorn
temperatures for such cases as well. In particular, it would
be interesting to consider generalizing the SU�2� decou-
pling limit of [7] used in this paper to N � 2 quiver gauge
theories dual to the pp-wave background (6.7) and (6.8)
with x1 compactified, following [12].

Finally, we note it would be very interesting to consider
nonplanar corrections to the partition function on the
gauge-theory side. In [7] the decoupling limit also works
for finite N, thus it should be possible to gain more infor-
mation about the Hagedorn/deconfinement phase transi-
tion, for example, whether it is a first order phase
transition or not.11

ACKNOWLEDGMENTS

We thank Gianluca Grignani for many nice discussions
and useful suggestions. We thank Jaume Gomis and Peter
Orland for useful discussions. We thank Konstantin
Zarembo for useful discussions and, in particular, for
pointing out to us the paper [31]. The work of M. O. is
supported in part by the European Community’s Human
Potential Programme under contract No. MRTN-CT-2004-
005104 ‘Constituents, fundamental forces and symmetries
of the universe’.

APPENDIX: ASYMPTOTIC BEHAVIOR OF THE
GENERATING FUNCTION

In this appendix we will show how to estimate the
asymptotic behavior of the function

 G�a; b� �
Y1
n�1

1

1� e�an
2�ibn

(A1)

with a and b real and a > 0. The previous expression can
be written as

 G�a; b� � exp
�X1
n�1

X1
p�1

e�apn
2�ibpn

p

�
(A2)

We are interested in studying the a! 0 limit.
Consider first the case b � 0. In the limit a! 0 the sum

over n in (A2) can be replaced by an integral and we have
 

G�a; b� � exp
�X1
p�1

Z 1
1
dx
e�apx

2�ibpx

p

�

� exp
�X1
p�1

����
�
a

r
e�b

2p=4a

2p
Erfc

� ������
pa
p

� i
b

����
p
p

2
���
a
p

��

(A3)

11In this connection one could also hope to get a better under-
standing of the small black hole in AdS5 � S

5 from the gauge-
theory point of view [43–45].
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where Erfc�x� is the complementary error function
(Erfc�x� � 1� erf�x� where erf�x� is the error function).
For a! 0 and b � 0 the complementary error function
can be approximated as

 Erfc
� ������
pa
p

� i
b

����
p
p

2
���
a
p

�
� 2i

������������
a

�pb2

s
eb

2p=4a (A4)

so that the generating function becomes

 G�a; b� � exp
�
i
b
�
�
3

2

��
(A5)

where ��x� is the Riemann zeta function. We thus see that
for b � 0 there is no divergent contribution.

To extract the divergent contribution we set b � 0 in
(A1) so that

 G�a; 0� �
Y1
n�1

1

1� e�an
2 � exp�F�a�� (A6)

where we defined

 F�a� � �
Z 1

1
dx log�1� e�ax

2
� (A7)

Here we have again approximated the sum over n by an
integral. Introducing the new variable y � x

���
a
p

we have
that

 lim
a!0

���
a
p

F�a� � �
Z 1

0
dy log�1� e�y

2
�

�
X1
p�1

Z 1
0
dy
e�y

2p

p
�

����
�
p

2
�
�

3

2

�
(A8)

Thus, we see from this that for b � 0 there is a divergent
contribution in (A1) in the a! 0 limit, giving

 G�a; 0� � exp
�
�
�
3

2

� ������
�
4a

r �
(A9)

This is the leading asymptotic behavior of G�a; 0� for
a! 0.
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