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We discuss the amplitudes describing N-gluon scattering in type I superstring theory, on a disk world
sheet. After reviewing the general structure of amplitudes and the complications created by the presence
of a large number of vertices at the boundary, we focus on the most promising case of maximally helicity
violating (MHV) configurations because in this case, the zero Regge slope limit (�0 ! 0) is particularly
simple. We obtain the full-fledged MHV disk amplitudes for N � 4, 5, and N � 6 gluons, expressed in
terms of one, two and six functions of kinematic invariants, respectively. These functions represent certain
boundary integrals—generalized Euler integrals—which for N � 6 correspond to multiple hypergeo-
metric series (generalized Kampé de Fériet functions). Their �0 expansions lead to Euler-Zagier sums. For
arbitrary N, we show that the leading string corrections to the Yang-Mills amplitude, of order O��02�,
originate from the well-known �02 TrF4 effective interactions of four gauge field strength tensors. By
using iteration based on the soft gluon limit, we derive a simple formula valid to that order for arbitrary N.
We argue that such a procedure can be extended to all orders in �0. If nature gracefully picked a
sufficiently low string mass scale, our results would be important for studying string effects in multijet
production at the Large Hadron Collider (LHC).
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I. INTRODUCTION AND REVIEW

Since Rutherford’s times, elementary particle physics
relies on scattering experiments. The physical cross sec-
tions, determined by the scattering amplitudes, reflect the
properties of underlying interactions. In the framework of
the standard model, high energy scattering experiments
allow probing inside hadrons, into the gauge interactions
of quarks and gluons. Because of the asymptotic freedom
of quantum chromodynamics (QCD), the corresponding
amplitudes can be computed perturbatively, order by order
in the QCD coupling constant. Already at the tree level,
such computations can be quite complicated, especially
when a large number of external particles is involved,
like in the scattering processes describing multijet produc-
tion at hadron colliders. After more than 30 years of steady
progress in perturbative QCD, we have a very good under-
standing of the tree-level scattering, completely sufficient
for studying jet physics in the upcoming Large Hadron
Collider (LHC) experiments at CERN. Hopefully, LHC
will reach beyond the standard model, and the signals of
new physics will rise above the QCD background.

Although many scenarios have been proposed beyond
the standard model, there is no clear prediction for the
energy scale of new physics. Even if no spectacular effect
like, say, a direct production of Kaluza-Klein particles, is
discovered at LHC, some subthreshold effects could be
observed, due to the presence of contact interactions in-
duced by virtual particles too heavy to be produced on-
shell. In this paper, we investigate such effects in
superstring-based scenarios, where the scale of new phys-

ics is determined by the Regge slope �0 of mass dimension
�2. Massless gauge bosons are separated by a mass gap of
1=

�����
�0
p

from the massive string modes. Traditionally, the
Regge slope and the respective string mass scale had been
tied to the Planck mass, however more recently, some
serious consideration was given to D-brane models with
much lower string mass scale, possibly even within the
reach of LHC [1,2]. The full-fledged string amplitudes
depend on �0, resulting in large corrections to Yang-
Mills (YM) amplitudes once some kinematic invariants
characterizing energy scales involved in the scattering
process become comparable to 1=

�����
�0
p

.
We work in the framework of open type I superstring

theory compactified to four dimensions, with gluons being
open string excitations. In the tree approximation, the
multigluon amplitudes are computed on a disk world sheet,
with the vertices inserted at the boundary. They do not
depend on the compactification manifold because they are
completely determined by two-dimensional superconfor-
mal field theory describing four space-time string coordi-
nates of the world sheet. In particular, it does not matter
whether supersymmetry is broken or not by compactifica-
tion. Note that the �0 ! 0 limit is completely determined
by pure Yang-Mills theory.

An important feature of open string (disk) computations
is that they yield gluon amplitudes in a very particular,
color-decomposed form:
 

Adisk�fki; �i; aig� � gN�2
X

�2SN=ZN

Tr�Ta��1� � � �Ta��N� �

� A���1�1�; . . . ; ��N�N ��; (1)
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where g is the gauge coupling ( g
2

4� � �s), ki, �i are the
gluon momenta and helicities, and Tai are matrices in the
fundamental representation of the gauge group [3], de-
scribing the color states of N gluons. We consider ampli-
tudes with all momenta directed inward. Each color trace
factor is associated by Chan-Paton rules to one partial
amplitude A���1�1�; . . . ; ��N�N �� containing all the kine-
matical information. SN is the set of all permutations of N
objects, while ZN is the subgroup of cyclic permutations
that preserve the trace; one sums over the coset SN=ZN in
order to include all orderings of gluon vertices, sweeping
out all distinct cyclic orderings in the trace. A similar color
decomposition is routinely used for multigluon amplitudes
in QCD [4,5].

In QCD, there exists a subclass of amplitudes that are
described, at the tree-level, by a simple analytic formula
valid for arbitrary number N of gluons. Assume that two
gluons, with the momenta k1 and k2, in the color states
described by the matrices Ta1 and Ta2 , respectively, carry
negative helicities while the rest of gluons, with the mo-

menta and color charges �k3; T
a3�; . . . ; �kN; T

aN �, respec-
tively, carry positive helicities. Then the partial amplitude
for such a ‘‘maximally helicity violating’’ (MHV) configu-
ration, associated to the Tr�Ta1 � � �TaN � Chan-Paton factor,
is given by [6,7]

 AYM�1
�; 2�; 3�; . . . ; N�� � i

h12i4

h12ih23ih34i � � � hN1i

	M�N�
YM: (2)

where hiji are the standard spinor products associated to
the momenta ki, kj, in the notation of [4,5]. Other partial
amplitudes can be obtained from Eq. (2) by applying
appropriate permutations to the cyclic denominator h12i�
h23ih34i � � � hN1i. For example,

 AYM�1
�; 3�; 2�; . . . ; N�� � i

h12i4

h13ih32ih24i � � � hN1i
: (3)

Thus the full MHV amplitude is

 A tree
YM�1

�; 2�; 3�; . . . ; N�� � igN�2h12i4
X

�2SN=ZN

Tr�Ta1� � � �TaN� �
h1�2�ih2�3�ih3�4�i � � � hN�1�i

; (4)

where i� 	 ��i�. The origin of the striking simplicity of
MHV amplitudes is not clear. Most likely, it is related to
some (partial) integrability properties of QCD. There is
also an interesting duality between Yang-Mills theory and
twistor strings [8] that led to a new interpretation of Eq. (2)
and turned out very useful for developing more efficient
computational techniques in perturbative QCD [9,10]. The
amplitudes describing non-MHV helicity configurations
are known to be more complicated. Thus when studying
multigluon scattering in string theory, it is natural to use
MHV configurations as a starting point, in order to find out
if the full-fledged string amplitudes can also be described
by some simple analytic formulas valid to all orders in �0.
Our results show that this is indeed the case.

In order to write down the amplitudes in a concise way, it
is convenient to introduce the following notation for the
kinematic invariants characterizing N-particle scattering:

 

i��n � �0�ki � ki�1 � . . .� ki�n�2; (5)

 ��i; j; m; n� � �02�����k
�
i k

�
j k

�
mk�n; (6)

where ki denotes the momentum of i-th particle, with the
cyclic identification i� N 	 i, and ����� is the four-
dimensional Levi-Civita symbol. The factors of �0 render
the above invariants dimensionless. Note that the momenta
are always subject to the momentum conservation con-
straint,

PN
i�1 ki � 0, and all gluons are on-shell, k2

i �


i��0 � 0. It is also convenient to introduce

 sij � 2�0kikj: (7)

By using momentum conservation, these scalar products
can be always expressed in terms ofN�N � 3�=2 invariants
(5). This is done for N � 6 in Appendix A. Note however,
that for N � 6, the number of independent invariants of
type (5) is smaller than N�N � 3�=2, as explained in
Sec. V.

The amplitude for four-gluon scattering has been known
for a long time [11–13]. All string effects are summarized
in one Beta function (Veneziano amplitude)

 V�4��k1; k2; k3; k4� � V�4��s1; s2� �
��1� s1���1� s2�

��1� s1 � s2�
;

(8)

where s1 	 

1��1 � s12, s2 	 

2��1 � s23, as the form-
factor of Yang-Mills amplitude:

 A�1�; 2�; 3�; 4�� � V�4��s1; s2�M
�4�
YM; (9)

with M�N�
YM defined in Eq. (2). An obvious but very impor-

tant property of the Veneziano formfactor V�4��k1; k2;
k3; k4� is its invariance under the cyclic permutations of
the momenta. All other partial amplitudes can be obtained
by applying the coset permutations � to the right hand side
of Eq. (9), c.f. Eq. (4), now including also the cyclic
formfactor. Thus the full four-point amplitude is
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 A disk�1�; 2�; 3�; 4�� � ig2h12i4
X

�2S4=Z4

Tr�Ta1� Ta2� Ta3� Ta4� �V�4��k1� ; k2� ; k3�; k4��

h1�2�ih2�3�ih3�4�ih4�1�i
: (10)

In fact, for four (and five) gluons, all non-MHVamplitudes
are vanishing [6,14], therefore the above expression cap-
tures the full amplitude. It can be expanded in powers of �0

by using

 V�4��s1; s2�  1�
�2

6
s1s2 � 	�3�s1s2�s1 � s2� �O��04�:

(11)

The leading string correction to the Yang-Mills amplitude,
which originates from the second term in the above expan-
sion, of order O��02�, has been extensively discussed in the
literature [11–13]. It is due to the following contact inter-
action term of four gauge field strength tensors:

 I F4 � �
�02�2

6
Tr
�
F�1�2

F�2�3
F�3�4

F�4�1

� 2F�1�2
F�3�4

F�2�3
F�4�1

�
1

4
F�1�2

F�1�2
F�2�1

F�2�1

�
1

2
F�1�2

F�2�1
F�1�2

F�2�1

�
; (12)

where the color trace is taken with the tensors F�� in the
fundamental representation. This interaction term will play
an important role in the further discussion of N-point
amplitudes. Formally, it can be obtained from the
O��02F4� term appearing in the low-energy expansion of
the Born-Infeld Lagrangian of nonlinear electrodynamics,
by applying to it Tseytlin’s ‘‘symmetrized trace’’ prescrip-
tion [15]. Note that for Abelian gauge bosons, the pure
Yang-Mills part of the amplitude (10) cancels after sum-
ming over all coset permutations and the low-energy ex-
pansion begins with the Born-Infeld contribution.

The paper is organized as follows. In Sec. II, we give a
brief description of the formalism used for calculating
multigluon amplitudes on a disk world sheet. Integrations
over the vertex positions yield certain generalized hyper-
geometric functions, their number increasing dramatically
with the number of gluons, therefore in addition to han-
dling a cumbersome algebra, one has to figure out how to
construct a proper basis of the boundary integrals. In
Sec. III, we rewrite the five-gluon amplitude in an MHV
form similar to four gluons, c.f. Eq. (9), in terms of two
independent (hypergeometric) functions of kinematic in-
variants. One of them plays the role of the Veneziano
formfactor, while the second is associated to the IF4 con-
tact term (12). In Sec. IV, we extract the MHV part of the
six-gluon amplitude. Here, all kinematic information is
contained in six ‘‘triple’’ generalized hypergeometric func-
tions. We discuss the low-energy behavior of the amplitude
and check that it satisfies all constraints based on permu-

tation symmetries and soft/collinear limits. We show that it
is possible to reconstruct the result, obtained from tedious
calculations, by imposing these constraints on a general
ansatz. In Sec. V, we proceed to the general N-gluon case.
We show that all O��02� order string corrections to MHV
Yang-Mills amplitudes originate from the interactions as-
sociated to the IF4 effective action term. By iteration, we
obtain a simple N-gluon formula valid to that order and
outline a recursive procedure that could make possible a
complete determination of all MHV amplitudes, to all
orders in �0. In the conclusions, we discuss our results in
a broader context of QCD and superstring theory. The
paper contains three appendices. In Appendix A we sum-
marize some aspects of the scattering kinematics for N �
4, 5, and 6 gluons. In Appendices B and C we discuss
various properties of the generalized (triple) hypergeomet-
ric functions describing the six-gluon amplitude.

Some results of this work have been already reported in
our paper [16].

II. MULTI-GLUON SCATTERING ON THE DISK

In this section, we review the general structure of multi-
gluon string amplitudes, focusing on the computational
problems related to a large number of vertices at the
boundary. It can be skipped by readers who are not inter-
ested in technical details.

We are interested in superstring theory with gluons
coming from open strings. A variety of four-dimensional
models can be constructed, each of them described by a
two-dimensional superconformal field theory (SCFT). At
the disk (tree) level, the details of the ‘‘internal’’ part of
SCFT associated to the compactification space do not
affect the scattering amplitudes of four-dimensional gauge
bosons. Furthermore, the entire disk boundary is attached
to a single stack of D branes. Thus without losing general-
ity, we can consider type I theory with D9 branes and 16
supercharges. Nevertheless, our discussion holds for both
type I or type IIA/B theories with Dp branes and any gauge
group. Space-time supersymmetry can be preserved or
broken by the internal space or by D-brane configurations.

Gluons originate from the excitations of string space-
time coordinates X� and their SCFT partners  �, satisfy-
ing Neumann boundary conditions on the world sheet.
From all other SCFT fields, only the reparametrization
ghost c and the scalar 
 bosonizing the superghost system
will enter explicitly into our computations. In the
��1�-ghost picture, the vertex operator for a gluon with
momentum k, polarization � (or helicity �) and color state
a is given by

 V��1��z; fk; �; ag� � Ta��e�
�z� ��z�eik�X
��z�; (13)
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where z is the vertex position at the disk boundary. Note that the color state a is represented by the matrix Ta in the
fundamental representation of the gauge group. In the zero-ghost picture, this vertex operator is given by

 V�0��z; fk; �; ag� � Ta��
@X
��z� � i�k � ��z��eik�X

��z�: (14)

The disk may be conformally mapped to the upper half plane Imz � 0 with the real axis as its boundary. Hence all vertex
positions are located on the real axis. The N-gluon disk amplitude is

 A disk�fki; �i; aig� �
X

�2SN=ZN

Tr�Ta1� � � �TaN� �V�1
CKG

Z 1
�1

dz1�

Z 1
z1�

dz2� . . .
Z 1
z�N�1��

dzN�

� hV��1��z1�V��1��z2�V�0��z3� . . .V�0��zN�i; (15)

where the color part of the vertices has been factored out by
following the Chan-Paton rule. In the above expression,
VCKG is the volume of the conformal Killing group
PSL�2;R� which leaves the boundary [Im�z� � 0] of the
disk fixed. It will be canceled by fixing three positions and
introducing the respective c-ghost correlator. Note that two
vertices are inserted in the (� 1)-ghost picture in order to
cancel the background ghost charge.

By comparing Eq. (15) with the color-decomposed form
of Adisk, see Eq. (1), we see that the partial amplitude
A���1�1�; . . . ; ��N�N �� is obtained by integrating the cor-
relator of the vertex operators over the region f�1<
z1� < z2� < . . .< zN� <1g. In the following, we shall
concentrate on the Chan-Paton factor Tr�Ta1 � � �TaN �, i.e.
in Eq. (15) we pick up the integration region R 	 f�1<
z1 < z2 < . . .< zN <1g and compute
 

A�1�1 ; . . . ; N�N � � V�1
CKG

Z
R

�YN
r�1

dzr

�
hV��1��z1�V

��1��z2�

� V�0��z3� . . .V�0��zN�i: (16)

Because of the PSL�2;R� invariance on the disk, we can fix
three positions of the vertex operators. A convenient choice
is

 z1 � �z1 � �1; z2 � 0; z3 � 1; (17)

which implies the ghost factor hc�z1�c�z2�c�z3�i � �z2
1.

The remaining N � 3 vertex positions z4; . . . ; zN take ar-
bitrary values inside the integration domain R. It is con-
venient to use the following parameterization:

 

z4 � x�1
1 ; z5 � �x1x2�

�1; z6 � �x1x2x3�
�1; . . . ;

zN �
YN�3

i�1

x�1
i ; (18)

with 0< xi < 1. The corresponding Jacobian is
j@zi=@xjj �

QN�3
r�1 x

1�r�N
r .

The correlator of vertex operators in Eq. (15) is eval-
uated by performing all possible Wick contractions. It
decomposes into products of two-point functions, intro-
ducing kinematic factors consisting of the scalar products
of momentum and polarization vectors, of the form kikj,
�ikj and �i�j. Schematically, one obtains

 A�1�1 ; . . . ; N�N � �
X
I

KIF
nIa
nIab

" #
; (19)

where each KI consists of products of such kinematic
factors while the respective integrals can be written as

 F
na
nab

� �
	
Z 1

0
dx1 . . .

Z 1

0
dxN�3

YN�3

a�1

x1�a�N�na
a

YN�3

b�a

x
2�0kb�3�k1�

P
b�2
j�a�3

kj�
a

�
1�

Yb
j�a

xj

�
2�0k2�ak3�b�nab

(20)

with the indices b � a � 1; 2; . . . ; N � 3, and the integers
na, nab taking values 0,�1 or�2. By convention, the sum
in the exponent is zero for b � a. The integral involves
N�N � 3�=2 different Laurent polynomials in xa. Their
integer powers na, nab control the physical poles of the
amplitude, in N�N � 3�=2 invariant masses of dual reso-
nance channels involving 2; 3; . . . ; E�N2� external particles
(E denotes the integer part).

For N � 4, the integral (20) yields the Beta function

 F
n1

n11

� �
�
Z 1

0
dx1 x

�2�s23�n1
1 �1� x1�

s12�n11

�
2F1


s23�n1�1;�s12�n11
s23�n1

; 1�

s23 � n1 � 1
: (21)

For N � 5, one obtains the hypergeometric function 3F2
[17]:
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F
n1; n2

n11; n12; n22

� �
�
Z 1

0
dx1

Z 1

0
dx2 x

�3�s23�n1
1 x�2�s15�n2

2 �1� x1�
s34�n11�1� x2�

s45�n22�1� x1x2�
s35�n12

�
��s23 � n1 � 2���s15 � n2 � 1���s34 � n11 � 1���s45 � n22 � 1�

��s23 � s34 � n1 � n11 � 1���s15 � s45 � n2 � n22�

� 3F2

s23 � n1 � 2; s15 � n2 � 1;�s35 � n12

s23 � s34 � n1 � n11 � 1; s15 � s45 � n2 � n22
; 1

" #
: (22)

Both integrals (21) and (22) boil down to hypergeometric functions of one variable, i.e. some pFq

a1;...;ap
b1;...;bq

; u � 1�.

However, this pattern does not persist beyond N � 5, due to the form of the integrand (20) that does not fit into any
hypergeometric function of one variable u. In general, one obtains multiple Gaussian hypergeometric series, more
precisely certain generalized Kampé de Fériet functions [18]. For example, for N � 6, the integral
 

F
n1; n2; n3

n11; n12; n22; n13; n23; n33

" #
�
Z 1

0
dx1

Z 1

0
dx2

Z 1

0
dx3 x

�4�s23�n1
1 x�3��0�k2�k3�k4�

2�n2
2 x�2�s16�n3

3 �1� x1�
s34�n11

� �1� x2�
s45�n22�1� x3�

s56�n33�1� x1x2�
s35�n12�1� x2x3�

s46�n23�1� x1x2x3�
s36�n13

(23)

can be expressed in terms of the triple hypergeometric
function F�3� [19].

A very important part of the discussion of scattering
amplitudes is the examination of their low-energy behav-
ior. To that end, the integrals (20) must be expanded in
powers of �0. One can first expand the integrand and then
integrate the series term after term. A typical, but by far not
the most general, class of integrals that appear in this way
are
 

	�s1; . . . ; sk� �
�Yk
j�1

��1�sj�1

��sj�

�Z 1

0
dx1 . . .

Z 1

0
dxk

Yk
j�1

xk�jj

�
�lnxj�sj�1

1�
Qj
i�1 xi

: (24)

They integrate to multiple zeta values of length k [20]:

 	�s1; . . . ; sk� �
X

n1>...>nk>0

Yk
j�1

1

n
sj
j

�
X1

n1;...;nk�1

Yk
j�1

�Xk
i�j

ni

�
�sj
; (25)

with s1 � 2, s2; . . . ; sk � 1. Such integer series are com-
pletely sufficient for discussing the expansions of ampli-
tudes involving four and five gluons however, as mentioned
before, starting at N � 6, more general classes of integrals
appear. Their expansions involve multiple harmonic series
and generalized Euler-Zagier sums. We refer interested
readers to Ref. [19] for a detailed account on the relation
between multiple Gaussian hypergeometric functions and
Euler-Zagier sums. Actually, the integer sums that appear
in the context of multigluon string scattering play an
important role in modern number theory [21].

The number of independent (with respect to the momen-
tum conservation constraint) kinematic factors KI and of

the associated functions F
 n
I
a

nIab
� entering into the N-gluon

partial amplitude (19) grows with N. In our analysis, we
encountered 77 functions forN � 5 and 1270 functions for
N � 6, although these numbers may vary depending on the
implementation of momentum conservation constraints
etc. In fact, many functions are related by means of poly-
nomial relations of their integrands or by partial integra-
tion. The only systematic way of handling them for
arbitrary N is to find a basis, consisting of an a priori
unknown number �N of functions, and to express all other
functions as linear combinations of the basis elements with
the coefficients given by some rational (homogeneous)
functions of the kinematic invariants (5). This program
has been successfully implemented in [17,22] for N � 5
and in [19] for N � 6 and will be continued in [23]. For a
given N, an efficient way of generating systems of equa-
tions relating the integrals (20), that can be used to find a
minimal set of independent functions, is based on world-
sheet supersymmetry [19]. It works in the following way.
In Eq. (15), the two vertices in the (�1)-ghost picture were
inserted, for convenience, at z1 and z2. However, due to
world-sheet supersymmetry, they could be inserted at any
other two points, hence there are �N2�ways of computing the
same amplitude that should give the same answer for the
coefficients of all (independent) kinematic factors KI in
Eq. (19). By comparing these coefficients, one obtains
many relations among the integrals (20). The correspond-
ing set of equations is always under-determined and may
be solved by expressing all functions (20) in terms of a
�N-dimensional basis. Of course, the dimension of the
space of functions grows with the number of gluons: �4 �
1, �5 � 2, �6 � 6; . . .

Although only one partial amplitude A�1�1 ; . . . ; N�N � has
been discussed here explicitly, all other partial amplitudes
A���1�1�; . . . ; ��N�N �� can be obtained in exactly the same
way. As we shall see in the following, a convenient choice
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of �N basis functions is dictated by various physical prop-
erties of the amplitude (1).

III. FIVE GLUONS

The purpose of this section is to summarize the results of
five-gluon computations [17,22] and to rewrite the five-
gluon amplitude in the four-dimensional helicity basis.
Recall that up to five gluons, the amplitudes are purely
MHV. Here, five invariants are necessary to specify the
kinematics. They can be chosen as si 	 

i��1, i � 1; . . . ; 5,
i.e. as the cyclic orbit of 

1��1 obtained by the action of Z5

subgroup of cyclic permutations, generated by i! i� 1
mod 5 [24].

The integrals over two vertex positions have the form
(22), specified by five integers n1, n2, n11, n12, n22. One
finds [19,22] that all integrals can be expressed in terms of
just two functions:

 f1 � F
2; 1

0; 0; 0

� �
and f2 � F

3; 2
0;�1; 0

� �
: (26)

By means of simple algebraic operations and partial inte-
grations it is easy to see that these functions transform in
the following way under the Z5 generator i! i� 1 mod 5:

 f1 ! F
4; 2

�1;�1; 0

� �

�
1

s1s3

s2s5f1 � �s2s3 � s3s4 � s1s5 � s4s5�f2�;

(27)

 f2 ! f2: (28)

In the notation of [22], the partial amplitude
 

A�1�1 ;2�2 ;3�3 ;4�4 ;5�5� � T �AYM�1
�1 ;2�2 ;3�3 ;4�4 ;5�5�

�K3 �AF4�1�1 ;2�2 ;3�3 ;4�4 ;5�5�;

(29)

where
 

T�si� � s2s5f1 � �s2s3 � s4s5�f2 and

K3�si� � f2: (30)

In Eq. (29), AYM is the tree-level Yang-Mills amplitude
while AF4 is generated by the IF4 interaction term (12)
discussed in the introduction. There are two Feynman
diagrams, shown in Fig. 1, that combine to AF4 : the dia-
gram with IF4 four-gluon vertex including one off-shell
gluon decaying into two external gluons via the standard
three-gluon Yang-Mills interaction, and the diagram with
IF4 five-gluon vertex. The function K3 in Eq. (29) can
then be interpreted as a string ‘‘form factor’’ of �02 TrF4

interactions, playing role similar to the Yang-Mills form-
factor T.

The amplitudes AYM and AF4 , as well as the functions
T�si� and K3�si� are invariant under cyclic permutations,
therefore the amplitude (29) is cyclic invariant.
Furthermore, it has the correct factorization properties
into four-gluon amplitudes, in the limit of zero (soft)
momentum of one gluon and in the limit of two parallel
momenta [22]. The low-energy behavior of the amplitude
is determined, up to the order O��03�, by the following
expansions:
 

f1 �
1

s2s5
�
�2

6

�
s4

s2
�
s3

s5

�

� 	�3�
�
�s1 � s3 � s4 �

s2
4

s2
�
s2s3

s5
�
s2

3

s5
�
s4s5

s2

�
� . . . ; (31)

 f2 �
�2

6
� 	�3��s1 � s2 � s3 � s4 � s5� � . . . : (32)

In order to rewrite the amplitude (29) in the MHV form,
we evaluate it for the specific configuration of the polar-
ization vectors, choosing a gauge with the most convenient
‘‘reference momenta’’ [4,5]. We choose the reference mo-
menta k5 for ���1; 2� and k1 for ���3; 4; 5�:
 

����i� � �
hk�5 j�jk

�
i i���

2
p

5i�

for i � 1; 2 and

����j� �
hk�1 j�jk

�
j i���

2
p
h1ji

for j � 3; 4; 5: (33)

Indeed, with such a choice, the only nonvanishing scalar
products of the polarization vectors are

 ���2� � ���3� � �
h12i
35�

h13i
25�
and

���2� � ���4� � �
h12i
45�

h14i
25�
:

(34)

In this gauge, the respective kinematic factors KI, see
Eq. (19), contain only one �i�j factor while the remaining
three polarization vectors are contracted with the momenta.

 

FIG. 1. Feynman diagrams contributing to the AF4 part of the
five-gluon amplitude involve a single four- or five-gluon vertex
due to the IF4 effective interaction, represented here by the blob.

STEPHAN STIEBERGER AND TOMASZ R. TAYLOR PHYSICAL REVIEW D 74, 126007 (2006)

126007-6



The computation consists of manipulations with spinor
products, involving a repeated use of the momentum con-
servation law and of Schouten identity [4,5]. A very useful
check is provided by the cancellation of unphysical poles

5i��1 and h1ji�1 introduced by the choice (33) of the
reference momenta. After factorizing out the Yang-Mills
MHV amplitude M�5�

YM, c.f. Eq. (2), the remaining spinor
products can be either expressed in terms of kinematic
invariants si or they form the products [4,5]

 �02T
i; j; l; m� 	 �02hiji
jl�hlmi
mi�

� �02 tr�12�1� 5�k6 ik6 jk6 lk6 m� (35)

 � 1
2
sijslm � silsjm � simsjl � 4i��i; j; l; m��: (36)

The new feature, as compared to four gluons, is the appear-
ance of Levi-Civita pseudoscalars. They originate from the
AF4 part of the amplitude only. For five gluons, the mo-
mentum conservation law allows expressing all such pseu-
doscalars in terms of one of them, that can be chosen to be
��1; 2; 3; 4�. The final result is

 A�1�; 2�; 3�; 4�; 5�� � 
V�5��sj�

� 2iP�5��sj���1; 2; 3; 4��M
�5�
YM;

(37)

where
 

V�5��si� � s2s5f1

� 1
2�s2s3 � s4s5 � s1s2 � s3s4 � s1s5�f2 and

P�5��si� � f2: (38)

The above functions, as well as the pseudoscalar
��1; 2; 3; 4�, are invariant under cyclic permutations [25],
thus the factor multiplying the Yang-Mills amplitude in
Eq. (37) is cyclic invariant.

The low-energy behavior of the amplitude (37) is deter-
mined by the expansions (31):

 V�5��si� � 1�
�2

12
fs1s2g �

	�3�
2
�fs2

1s2g � fs1s
2
2g

� fs1s3s5g� � . . . ;

P�5��si� �
�2

6
� 	�3�fs1g � . . . ;

(39)

where the curly brackets enclosing kinematic invariants
imply the summation over all distinct elements of the
respective cyclic orbit [26].

The connection to the four-gluon amplitude (9) can be
established by considering the soft limit, say one ki ! 0,
see Appendix A. Then the pseudoscalar part of the factor
disappears due to the momentum conservation while the
function

 V�5��si� ���!
ki�0

��1� s1���1� s2�

��1� s1 � s2�
(40)

reproduces the Veneziano formfactor in Eq. (8).
All other partial amplitudes A���1��; ��2��;

��3��; ��4��; ��5���, which according to Eq. (1) are nec-
essary for constructing the full MHV amplitude
Adisk�1�; 2�; 3�; 4�; 5�� are obtained from A�1�; 2�; 3�;
4�; 5�� by simply applying the coset permutations � to the
right hand side of Eq. (37).

IV. SIX GLUONS

The step from five to six gluons is highly nontrivial.
Even in QCD, the original calculation [27] used some of
the most advanced tools available at that time, like ex-
tended supersymmetry [14], a special choice of the color
factor basis etc. In addition to algebraic complications due
to large numbers of Wick contractions and of the associ-
ated kinematic factors, there is a new physics element
appearing at the six-gluon level: the scattering amplitudes
allow also some non-MHV helicity configurations. Fur-
thermore, each kinematic factor brings an integral over
three vertex positions. The new challenge is to find rela-
tions between more than 1000 of such integrals and to
express them in a suitable basis. Before discussing this
problem, we review the six-particle kinematics (see also
Appendix A), which also exhibits some new features as
compared to the five-particle case.

A. Six-particle kinematics

In five and more dimensions, the number of independent
kinematic invariants in a six-particle scattering process can
be counted by using the momentum conservation law.
There are nine invariants that can be grouped into two
irreducible representations of the Z6 cyclic group gener-
ated by i! i� 1 mod 6:
 

si 	 

i��1; i � 1; . . . ; 6;

tj 	 

j��2; j � 1; 2; 3;
(41)

i.e. the Z6 orbits of 

1��1 and 

1��2 [24]. In four dimen-
sions, however, these variables are subject to a fifth-order
polynomial constraint [28] that reduces the number of
independent invariants from nine to eight. This is due to
the trivial fact that in four dimensions, at most four-
momentum vectors can be linearly independent. Then the
columns of the five by five Gram matrix s built of the
elements sij, 1 � i, j � 5, cannot be linearly independent,
therefore dets � 0.

The vanishing of the Gram determinant is closely related
to the following identity involving the metric tensor g��
and the Levi-Civita tensor ����:
 

2g������ � g������ � g������ � g������

� g������ � ��$ ��: (42)
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One can eliminate one four-momentum, say k6, by using momentum conservation, and define the following pseudoscalars:

 �1 � ��2; 3; 4; 5�; �2 � ��1; 3; 4; 5�; �3 � ��1; 2; 4; 5�; �4 � ��1; 2; 3; 5�; �5 � ��1; 2; 3; 4�; (43)

and further define the five-component vector � � ��1;��2; �3;��4; �5�. Then the identity (42) implies

 v 	 � � s �

�s1�2 � �s1 � s2 � t1��3 � �s2 � s5 � t1 � t2��4 � �s5 � s6 � t2��5

s1�1 � s2�3 � �s2 � s3 � t2��4 � �s3 � s6 � t2 � t3��5

��s1 � s2 � t1��1 � s2�2 � s3�4 � �s3 � s4 � t3��5

�s2 � s5 � t1 � t2��1 � �s2 � s3 � t2��2 � s3�3 � s4�5

��s5 � s6 � t2��1 � �s3 � s6 � t2 � t3��2 � �s3 � s4 � t3��3 � s4�4

0BBBBB@
1CCCCCA � 0; (44)

where we introduced the vector v � �v1; v2; v3; v4; v5�
with all components vanishing due to � � s � 0. Thus the
vanishing of the Gram determinant, dets � 0, ensures self-
consistency of the above identity. Although Eq. (44) will be
important for understanding how six-gluon amplitudes
transform under cyclic permutations, it is convenient to
keep as many scalars and pseudoscalars as allowed by
momentum conservation, without using the Gram determi-
nant constraint or Eq. (44) explicitly to eliminate the
redundant invariants.

B. Integrals and their six-element basis

The integrals (20) over three vertex positions have the
form (23), with nine integers n1, n2, n3, n11, n12, n22, n13,
n23, n33. Now six functions are necessary to form the
integral basis. A convenient basis to start with is

 

F1 � F
3; 2; 1

0; 0; 0; 0; 0; 0

� �
;

F3 � F
4; 3; 2

0; 0; 0;�1; 0; 0

� �
;

F5 � F
4; 3; 2

0;�1; 0;�1; 0; 0

� �
;

F2 � F
4; 3; 1

0;�1; 0; 0; 0; 0

� �
;

F4 � F
4; 4; 2

0;�1; 0; 0;�1; 0

� �
;

F6 � F
4; 3; 2

0; 0; 0;�1;�1; 0

� �
:

(45)

In choosing the above functions, we were guided by their
low-energy power expansions in �0, by their soft limits and
by their transformation properties under cyclic permuta-
tions. The �0 expansion of F1, derived in Appendix B, is

 

F1 �
1

s2s6t2
�
�2

6

�
s4

s2s6
�

s5

s2t2
�

s3

s6t2

�

� 	�3�
�
s4 � s5 � t1

s2
�
s3 � s4 � t3

s6
�
s2

4 � s4t2
s2s6

�
s2

5 � s5s6

s2t2
�
s2s3 � s

2
3

s6t2

�
� . . . ; (46)

while the expansion of F2, see also Appendix B, starts with
a single pole:

 F2 �
�2

6

1

s6
� 	�3�

s2 � s3 � s4 � t2 � t3
s6

� . . . : (47)

These functions are related by the soft limit k6 ! 0 [29] to
the five-gluon functions f1 and f2 of Eq. (26):

 s2s6t2F1 ���!
k6�0

s2s5f1; s6F2 ���!
k6�0

f2: (48)

In fact, the expansions (46) and (47) are very similar to (31)
and (32), respectively. The remaining four functions have
no poles. In particular, the low-energy expansion of F3

begins with the constant 	�3�:

 

F3 � 	�3� � 1
4	�4��s1 � 4s2 � 3s3 � 2s4 � 3s5 � 4s6

� t1 � 4t2 � t3� � . . . : (49)

This function is not cyclic invariant; three additional func-
tions, F4, F5, and F6, are necessary in order to form a
closed representation of Z6. Under the generator i! i� 1
mod 6, they transform in the following way:

 

F3 ! �F3 � F5; F6 ! F5;

F5 ! F4; F4 ! F6:
(50)
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The low-energy expansions of the functions F4, F5, and F6

also begin with 	�3�:

 

F4 � 2	�3� � 1
4	�4��7s1 � 5s2 � 5s3 � 7s4 � 5s5 � 5s6

� 5t1 � 2t2 � 5t3� � . . . ;

F5 � 2	�3� � 1
4	�4��5s1 � 5s2 � 7s3 � 5s4 � 5s5 � 7s6

� 2t1 � 5t2 � 5t3� � . . . ;

F6 � 2	�3� � 1
4	�4��5s1 � 7s2 � 5s3 � 5s4 � 7s5 � 5s6

� 5t1 � 5t2 � 2t3� � . . . : (51)

For completeness, we list here also the cyclic trans-
formations of F1 and F2:

 

s2s6t2F1 ! s2s6t2F1 � s6�s2s3 � s3s4 � s1s6 � s5s6

� s4t2 � s5t3�F2 � s3s6�s4 � s5 � t1�

� �F4 � F6� � s3t3�s2 � s5 � t1 � t2�

� �F3 � F5� � s6t2�s1 � s4 � t1 � t3�F3

� �s1s6 � s5s6 � s5t3 � t2t3�

� 
�s4 � s5 � t1��F4 � F6�

� �s1 � s3 � s5 � t1��F3 � F5�

� �s2 � s4 � s6 � t1�F3�; (52)

 

s6F2 ! s6F2 � s6�F4 � F6� � �s2 � t1��F3 � F4 � F5�

� �s5 � t2��F3 � F4 � F5 � F6�: (53)

Although all six-gluon integrals can be expressed in terms
of the basis (45), we will see that the actual amplitude
involves certain combinations that assume a simpler form
when written in the original notation of Eq. (23). In
Appendix C, we will express the relevant integrals in terms
of Fk, k � 1; . . . ; 6.

C. MHV amplitude

The results of [19] allow expressing the full six-gluon
string amplitude in terms of six generalized hypergeomet-
ric functions (45), with each function multiplying a long
combination of kinematic factors involving all possible
contractions among the momentum and polarization vec-
tors. Unlike in the five-gluon case, the amplitude cannot
be simply separated into parts associated to some
functions like T and K3 that can be attributed to distinct
effective interactions, see Eq. (29). Experience with QCD
suggests that the complications are related to the existence
of the non-MHV part, with �������� helicity con-
figurations. It is reasonable, however, to expect that the
�������� MHV amplitude can be simplified. To that
end, we substitute to the general expression [19] the fol-
lowing polarization vectors:

 ����i� � �
hk�6 j�jk

�
i i���

2
p

6i�

for i � 1; 2 and

����j� �
hk�1 j�jk

�
j i���

2
p
h1ji

for j � 3; 4; 5; 6:

(54)

The kinematic terms surviving in such a configuration
contain only one �i�j factor, and the remaining four po-
larization vectors are contracted with the momenta. A
generic term has the form
 

h12ih1jih1kih1mih1ni
h13ih14ih15ih16i


j6�
k6�
�6�
�m�
n�

16�
26�

; with

� � � �  � 3; 4; 5; j; k;m; n � 2; 3; 4; 5 (55)

times a linear combination of the six basis functions, with
the coefficients being rational functions of scalar invari-
ants. There are more than 1000 of such terms, so it is quite
a tedious task to simplify the answer. The final result can be
written as
 

A�1�; 2�; 3�; 4�; 5�; 6��

�

�
V�6��si; ti� � 2i

Xk�5

k�1

�kP
�6�
k �si; ti�

�
M�6�

YM; (56)

with the functions:

 

P�6�1 � s1F
4; 3; 2

0;�1; 0;�1;�1; 0

� �
� �s2 � s5 � t1 � t2�F

4; 3; 2
0;�1; 0;�1; 0; 0

� �
� �s5 � s6 � s1 � t2�F

4; 4; 3
0; 0; 0;�1;�1; 0

� �
;

P�6�2 � s2F
3; 3; 2

0;�1; 0; 0;�1; 0

� �
� �s3 � s6 � t2 � t3�F

4; 4; 2
0;�1; 0; 0;�1; 0

� �
;

P�6�3 � s3F
4; 3; 2

�1; 0; 0; 0;�1; 0

� �
� �s1 � s4 � t1 � t3�F

4; 4; 3
0; 0; 0;�1;�1; 0

� �
;

P�6�4 � s4F
4; 3; 2

0; 0;�1;�1; 0; 0

� �
� �s2 � s3 � s4 � t2�F

4; 3; 2
0; 0; 0;�1; 0; 0

� �
;

P�6�5 � s5F
4; 3; 2

0;�1; 0; 0; 0;�1

� �
� �s3 � s4 � s5 � t3�F

4; 3; 2
0;�1; 0;�1; 0; 0

� �
; (57)
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V�6� � s2s5t2F
3; 2; 2

0; 0; 0; 0; 0;�1

� �
�

1

2
�s2s3 � s3s4 � s3s6 � s4t2 � s2t3 � t2t3�P

�6�
1

�
1

2
��s2s3 � s1s4 � s4s5 � s3s6 � s3t1 � s4t2 � s2t3 � s5t3 � t1t3 � t2t3�P

�6�
2

�
1

2
�s2s3 � s1s4 � s2s5 � s3s6 � s5s6 � s3t1 � s6t1 � s2t3 � s5t3 � t1t2 � t1t3 � t2t3�P

�6�
3

�
1

2
��s2s3 � s1s4 � s2s5 � s1s6 � s3t1 � s6t1 � s1t2 � s2t3 � t1t2 � t1t3�P

�6�
4

�
1

2
��s1s2 � s2s3 � s2s5 � s3t1 � s1t2 � t1t2�P

�6�
5 � s5s3P

�6�
2 � s5�s3 � t2�P

�6�
3 : (58)

The result can be expressed in the basis of functions
introduced in Sec. IV B by using the formulas written in
Appendix C.

Although the six-gluon V and P functions appear com-
plicated, they have very simple transformation properties
under cyclic permutations. After expressing them in terms
of the basis functions Fk, k � 1; . . . ; 6, see Appendix C,
and using the transformation properties (50), (52), and
(53), it is easy to see that V�6��si; ti� is cyclic invariant.
Furthermore, the functions P�6��si; ti� transform among

themselves in such a way that the imaginary part of the
Yang-Mills formfactor in Eq. (56) is also invariant. This
can be seen in the following way. Let us put the five
functions P�6�i into the vector P�6� � �P�6�1 ;�P

�6�
2 ; P

�6�
3 ;

�P�6�4 ; P
�6�
5 �. Then the action of i! i� 1 mod 6 on �

and P�6� can be written as

 � ���! �M; P�6� ���! P�6��Mt��1 � �F3; (59)

with the unimodular matrix M and the vector �:

 M �

1 1 1 1 1
�1 0 0 0 0
0 �1 0 0 0
0 0 �1 0 0
0 0 0 �1 0

0BBBBB@
1CCCCCA; �t �

�s1 � s2 � s6 � t1
�s1 � s2 � s6 � t3
s1 � s4 � t1 � t3
s3 � s4 � s5 � t1
�s3 � s4 � s5 � t3

0BBBBB@
1CCCCCA: (60)

However, with Eq. (44), we find:

 ��t � v1 � v2 � v4 � v5 � 0; (61)

thus P�6��t ! P�6��t. As a result, similarly to the case of four and five gluons, the full string formfactor of the MHV six-
gluon amplitude (56) is cyclic invariant. It also has the correct soft limits [29] when any momentum goes to zero:

 V�6��si; ti� ���!
kj�0

V�5��sj�
X5

l�1

��1�l�1P�6�l �si; ti� ���!k6�0
P�5��sj�; P�6�l �si; ti� ���!kl�0

P�5��sj� for l � 5: (62)

Furthermore, it has the right collinear limits [29], when the momenta of adjoining gluons, ki and ki�1, with i� 1 mod 6,
become parallel:

 V�6��si; ti� ���!
kijjki�1

V�5��sj�;
X5

k�1

�kP
�6�
k �si; ti� ���!

kijjki�1

��1; 2; 3; 4�P�5��sj�: (63)

The low-energy behavior of the amplitude (56) is determined, up to the order O��03�, by the following expansions:
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 V�6��si; ti�  1�
�2

12
�fs1s2g � fs1s4g � ft1t2g� �

	�3�
2
�fs1s

2
2g � fs

2
1s2g � fs

2
1s4g � fs1s2t1g � fs1s4t1g � fs2s5t1g

� 3fs1s4t2g � fs1t1t3g � ft1t22g � ft
2
1t2g � 3t1t2t3�;

P�6�1 �si; ti� 
�2

6
� 	�3��s1 � 2s2 � s3 � s4 � 2s5 � s6 � 3t1 � 3t2 � t3�;

P�6�2 �si; ti� 
�2

6
� 	�3��2s2 � 2s3 � s4 � s5 � s6 � t1 � 3t2 � 2t3�;

P�6�3 �si; ti� 
�2

6
� 	�3��2s3 � s4 � s5 � s6 � t1 � t2 � 2t3�;

P�6�4 �si; ti� 
�2

6
� 	�3���s1 � s3 � s4 � s6 � t1 � t2 � t3�;

P�6�5 �si; ti� 
�2

6
� 	�3���s1 � s2 � s3 � 2s4 � t1 � t2 � 2t3�:

(64)

All other partial amplitudes A���1��; ��2��; ��3��;
��4��; ��5��; ��6��� can be obtained from A�1�; 2�;
3�; 4�; 5�; 6�� by simply applying the S6=Z6 coset per-
mutations � to the right hand side of Eq. (56).

D. Reconstructing the amplitude from first principles

After checking that the amplitude (56) satisfies all self-
consistency conditions following from cyclic symmetry
and soft/collinear limits, we would like to proceed in
reverse, in order to understand to what extent the form of
the string factor is determined by these conditions. To that
end, we make the following ansatz for the function
V�6��si; ti�:

 

~V �6��si; ti� � s2s6t2F1 � �s6F2�
X

1�i�j�9

�ijsisj

�
X6

l�3

Fl
X

1�i�j�k�9

�lijksisjsk; (65)

in the basis of six functions (45), with 45 and 660 real
constant coefficients �ij and �lijk, respectively. We will try
to fix these constants by imposing the above self-
consistency conditions. For convenience, we use the nota-
tion s7 	 t1, s8 	 t2, s9 	 t3. The leading term in the �0

expansion of the ansatz (65) which, according to Eq. (46),
is equal to 1, is dictated by the zero slope (Yang-Mills)
limit, V�6��si; ti�  1. The next-to-leading order O��02�,
with the common 	�2� � �2

6 factor, is governed by the
constants �ij. They are completely determined by the
cyclic symmetry and soft limits. Finally, after imposing
the right collinear limits, all remaining constants �lijk can
be expressed in terms of one of them, �4

789. In this way, the
ansatz (65) becomes
 

~V�6��si; ti� � V�6��si; ti� � �
4
789�t1t2t3 � fs1s4t2g�

� �F4 � F5 � F6�; (66)

thus the real part of the string factor is completely deter-
mined by the self-consistency conditions, up to one con-
stant. The respective term is cyclic invariant and vanishes
in both soft and collinear limits.

In order to examine the imaginary part of the
string factor, we assume that it has the formP5
m�1 �m ~P�6�m �si; tj�, with the following ansatz

 

~P �6�m �si; ti� � s6F2 �
X6

l�3

Fl
X9

k�1

�l
mksk (67)

for the five functions P�6�m �si; ti�. Here again, we try to fix
180 real constants �l

mk by demanding that the sumP5
m�1 �m ~P�6�m be cyclic invariant and that it has the correct

soft/collinear limits. The latter requirement fixes 156 of
180 constants. By further imposing cyclic invariance, one
ends up with only four arbitrary constants, �4

56, �4
57, �4

58,
and �3

58. Finally, after using the relations between pseudo-
scalar invariants, written as v � 0 in Eq. (44), one finds
 X5

m�1

�m ~P�6�m �si; ti� �
X5

m�1

�mP
�6�
m �si; ti� � �3�

3
58 � 1�

� 
�s6 � t2��5 � �s2 � t2��4 � s2�3�

� �F6 � F5 � F4 � 2F3�;

thus also the imaginary part of the string factor is deter-
mined up to one constant.

There is one more constraint available. In the Abelian
case, the leading term in the �0 expansion must vanish
because it is entirely due to Yang-Mills gluon self-
interactions. The next-to-leading term, which is associated
to the IF4 interaction, must also vanish: while four Abelian
gauge bosons interact via the corresponding Born-Infeld
term, they cannot spread via Yang-Mills interactions, like
in the left diagram on Fig. 1. By requiring that the �0

expansion of the Abelian amplitude starts at order higher
than O��03�, we obtain �4

789 � 0 and �3
58 � �1=3 [23].
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With this constraint, the Abelian amplitude starts at order
O��04� [with the common factor of 	�4�]. We conclude that
the six-gluon MHV amplitude can be uniquely determined
from first principles. It is worth mentioning that in the
simpler five-gluon case, the cyclic symmetry and soft limit
are completely sufficient to determine the amplitude, simi-
larly to the constants �ij that govern the next-to-leading
O��02� contribution to the six-gluon amplitude. The rea-
son, to be elaborated in the next section, is that all O��02�
terms originate from IF4 interactions.

V. N GLUONS

It is clear from the discussion of N � 5, and especially
of N � 6, that the computational complexity increases
steeply with N. The integrals (20) become more compli-
cated and the number of independent functions grows. The
functions emerging in the step from N � 1 to N have low-
energy expansions starting at O��0N�3� [with a common
factor of 	�N � 3�]. On the other hand, the simple, factor-
ized forms of Eqs. (9), (37), and (56), strongly suggest that
MHV configurations enjoy a special status. The fact that
N � 5 as well as N � 6 MHV amplitudes can be recon-
structed from first principles, by using very simple physical
constraints, is very encouraging because it opens way to an
iterative procedure suitable for larger numbers of gluons. It
also indicates the existence of some recursion relations
similar to those in QCD [7]. A recursive construction of
the amplitudes requires however a better understanding of
the space of generalized hypergeometric integrals (20).
This ingredient will have to wait until completion of
Ref. [23]. Nevertheless, already at this point, we can
determine the leading O��02� string corrections.

An N-gluon scattering process can be parameterized in
terms of N�N � 3�=2 kinematic invariants which can be
chosen as the cyclic orbits of 

1��k, k � 1; . . . ; E�N2 � 1�,
where E denotes the integer part. Recall that the cyclic ZN
group is generated by the shift of indices labeling gluons
from i! i� 1 mod N. Note that for N odd, the last orbit
contains N elements, while for N even their number is
reduced by the momentum conservation to N=2. As in the
case of N � 6, we can ignore the four-dimensional Gram
determinant constraints [28] that reduce the number of
independent invariants to 3N � 10. We also keep the pseu-
doscalars ��k; l;m; n�, with k < l < m< n< N, which are
independent as far as the momentum conservation is con-
cerned but are related by equations similar to (44).

Let us first collect all known O��02� terms and rewrite
the leading and next-to-leading terms in the low-energy
expansions of N � 4, 5, 6 MHV amplitudes as

 A�1�; 2�; 3�; 4�; � � � ; N�� �
�

1�
�2

12
Q�N�

�
M�N�

YM

�O��03�; (68)

where Q�N� are the following Lorentz-invariant, homoge-

nous of degree four, functions of the momenta:
 

Q�4� � s1s2;

Q�5� � s1s2 � s2s3 � s3s4 � s4s5 � s5s1 � 4i��1; 2; 3; 4�;

Q�6� � s1s2 � s2s3 � s3s4 � s4s5 � s5s6 � s6s1

� t1t2 � t2t3 � t3t1 � s1s4 � s2s5 � s3s6

� 4i
��1; 2; 3; 4� � ��1; 2; 3; 5� � ��1; 2; 4; 5�

� ��1; 3; 4; 5� � ��2; 3; 4; 5��: (69)

At this order, the corrections are generated by gluonic tree
diagrams involving only one IF4 vertex, c.f. Eq. (12), and a
number of standard Yang-Mills interactions. A typical
diagram contributing to N-gluon scattering is shown in
Fig. 2. In order to determine Q�N� for arbitrary N one can
either calculate the sum of such Feynman diagrams or
apply iteration utilizing the soft limit and ZN symmetry.
Although it is possible to formulate the latter as a formal
recursion relation, we prefer to apply the iterative proce-
dure explicitly, step by step, starting fromQ�7�. Here again,
it will be very convenient to use the notation introduced in
Sec. III: an expression enclosed inside curly brackets f� � �g
denotes the sum over all distinct elements of its ZN cyclic
permutation group orbit. Thus, for example,

 Q�6� � fs1s2g � ft1t2g � fs1s4g

� 4i
X

k<l<m<n<6

��k; l;m; n�: (70)

For N � 7, the 14 invariants are si 	 

i��1, i � 1; . . . ; 7
and tj 	 

j��2, j � 1; . . . ; 7. The real part ofQ�7� must be a
cyclic invariant, quadratic form in si, tj. There are 15

 

FIG. 2. Feynman diagrams contributing the leading O��02�
string corrections to N-gluon YM amplitudes involve one IF4

effective interaction vertex, while the remaining vertices are due
to the tree-level YM interactions.
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quadratic cyclic invariants, but there exists only one linear
combination,

 ReQ�7� � fs1s2g � ft1t2g � fs1t4g (71)

that gives ReQ�6� in the soft limit
 

k7 ! 0: s6 ! 0; s7 ! 0; t4 ! t1; t5 ! s5;

t6 ! s6; t7 ! s1: (72)

In order to determine the imaginary part, we first note that
although there are 15 linearly independent pseudoscalars,
there are only 3 Z7-invariant combinations. We list them
below, together with their k7 ! 0 limits:

 ��1; 2; 3; 4� � ��1; 2; 3; 6� � ��1; 2; 5; 6� � ��1; 4; 5; 6� � ��3; 4; 5; 6� ! ��2; 3; 4; 5�;

��1; 2; 3; 5� � ��1; 2; 4; 6� � ��1; 3; 5; 6� � ��2; 3; 4; 5� � ��2; 4; 5; 6� ! ��1; 3; 4; 5� � ��1; 2; 3; 4�;

��1; 2; 4; 5� � ��1; 3; 4; 5� � ��1; 3; 4; 6� � ��2; 3; 4; 6� � ��2; 3; 5; 6� ! ��1; 2; 3; 5� � ��1; 2; 4; 5�:

Thus the imaginary part of Q�7� is also uniquely determined to be

 ImQ�7� � 4
X

k<l<m<n<7

��k; l; m; n�: (73)

The above iteration can be continued to a larger number of gluons, with the unique answer:
 

Q�N� �
XE��N=2��1�

k�1

f

1��k

2��kg �
XE��N=2��1�

k�3

f

1��k

2��k�2g � C�N� � 4i
X

k<l<m<n<N

��k; l;m; n�;

C�N� �

(
�f

1����N=2��1�



N
2 � 1����N=2��1�g N > 4; even

�f

1��N�5=2


N�1

2 ��N�3=2g N > 5; odd:

(74)

It is very interesting that Eq. (74) bears a striking
resemblance to the one-loop all positive helicity ampli-
tudes of QCD [30]. The resemblance originates at the five-
gluon level, c.f.�2 terms in our Eq. (39) vis-à-vis Eq. (5) of
Ref. [30], and then propagates to N gluons because in both
cases the multigluon results are uniquely determined by the
permutation symmetry and soft limits.

Work on the recursive construction of MHV amplitudes
to all orders in �0 is in progress [23].

VI. CONCLUSIONS

The main result of this paper, in addition to the specific
formulas for scattering amplitudes, is the demonstration of
a striking simplicity hidden in multigluon scattering, per-
sisting at the full-fledged string level. The maximally
helicity violating configurations retain their special status
even after the tree diagrams are replaced by a disk world
sheet. The string effects are succinctly summarized in a
number of kinematic functions, extending the well-known
result for four gluons to an arbitrary number of gluons. We
argued that the soft and collinear factorization properties,
combined with the Abelian limit, are completely sufficient
to determine all N-gluon MHV amplitudes, however a
completely recursive construction requires a better under-
standing of the boundary integrals determining the kine-
matic functions. Work in this direction is in progress [23].

In superstring theory, it is often possible to describe a
single physical process in several ways, by using various
dualities. We believe that the simplicity of MHV ampli-
tudes reflects the existence of an underlying integrable
structure not only in QCD, but also in type I string theory.
Hence it would be very interesting to understand if there is
any room in the twistor formulation of string theory [8] that
would allow accommodating open string corrections to
YM scattering amplitudes.

Another duality relevant to the present work is the
type I-heterotic duality [31,32]. Here, the disk-level inter-
actions of 2n gauge field strength tensors in type I theory
are dual to the heterotic (n� 1)-loop interactions. In this
context, it would be interesting to investigate a possible
relation of our results to Ref. [30] and to the recent com-
putations of all one-loop MHV amplitudes in QCD [33].
Our results should also help in explaining why the heterotic
six-gluon amplitudes are not compatible at the two-loop
level with a semiclassical type I description in terms of a
naı̈ve extension of Born-Infeld electrodynamics [34,35].
With some more work, the six-gluon amplitudes presented
here could be used to extract the complete type I effective
action and could shed more light on the long-standing
problem how to construct a non-Abelian generalization
of the Born-Infeld Lagrangian.

When looking at the simple formulas describing multi-
gluon superstring scattering, incorporating infinitely many
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interactions among infinite number of particles, one cannot
stop wondering if the effective field theory is really the
right framework for describing low-energy string physics.
For instance, the five-gluon amplitude (37) was used in
[22] to determine the complete O��03� string corrections.
The effective action consists of hundreds of terms and does
not give justice to Eq. (37). The advantage of using the
effective field theoretical description is that, in principle, it
allows going off-shell and studying the modifications of
classical field equations. However, it is certainly not the
most efficient way of recording the S-matrix. Historically,
string theory grew out from S-matrix theory but its formal-
ism has evolved more and more towards Lagrangian quan-
tum field theory. We need a better formalism, somewhere
halfway between S-matrix and Lagrangian theory.
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APPENDIX A: KINEMATIC INVARIANTS, SOFT
LIMITS AND COLLINEAR LIMITS

1. Kinematic invariants

The tables below contain the scalar products sij 	
2�0kikj, with i and j labeling rows and columns, expressed
in terms of the kinematic invariants of type (5), used in the
paper to describe multigluon scattering processes, for N �
4, 5, and 6 gluons.

N � 4

2 3 4
1 s1 �s1 � s2 s2 1
2 s2 �s1 � s2 2
3 s1 3

N � 5

2 3 4 5
1 s1 �s1 � s2 � s4 s2 � s4 � s5 s5 1
2 s2 �s2 � s3 � s5 �s1 � s3 � s5 2
3 s3 s1 � s3 � s4 3
4 s4 4

N � 6

2 3 4 5 6
1 s1 �s1 � s2 � t1 s2 � s5 � t1 � t2 �s5 � s6 � t2 s6 1
2 s2 �s2 � s3 � t2 s3 � s6 � t2 � t3 �s1 � s6 � t3 2
3 s3 �s3 � s4 � t3 s1 � s4 � t1 � t3 3
4 s4 �s4 � s5 � t1 4
5 s5 5
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2. Soft limits

The soft limit is defined as ki ! 0 for some i. For a
cyclic invariant function of the momenta, it is sufficient to
consider only one soft momentum, say kN ! 0. Then the
scalar invariants describing N-gluon kinematics have the
following limits in terms of the invariants describingN � 1
gluons, for N � 5 and 6:

N � 5

s1 s2 s3 s4 s5

k5 ! 0 s1 s2 s1 0 0

N � 6

s1 s2 s3 s4 s5 s6 t1 t2 t3
k6 ! 0 s1 s2 s3 s4 0 0 s4 s5 s1

As k5 ! 0, the five-gluon Levi-Civita pseudoscalar invariant
��1; 2; 3; 4� 	 "! 0. For N � 6, the soft limits of pseudo-
scalar invariants defined in Eq. (43) are written below:

N � 6

�1 �2 �3 �4 �5

k6 ! 0 " �" " �" "

3. Collinear limits

The collinear limit is defined as two adjoining momenta
ki and ki�1, with i� 1 mod N, becoming parallel. Because
of cyclic symmetry, these can be chosen as kN�1 and kN,
with kN�1 carrying the fraction x of the combined momen-
tum kN�1 � kN ! kN�1. Formally,

 kN�1 ! xkN�1; kN ! �1� x�kN�1;

where the momenta appearing in the limits describe the
scattering of N � 1 gluons. For N � 6, the collinear limits
of scalar invariants, written in terms of the invariants
describing N � 5 scattering, are

N � 6

s1 s2 s3 s4 s5 s6 t1 t2 t3
k5 ! xk5, k6 ! �1� x�k5 s1 s2 s3 xs4 0 �1� x�s5 s4 s5 xs1 � �1� x�s3

The collinear limits of pseudoscalar invariants are written below:

N � 6

�1 �2 �3 �4 �5

k5 ! xk5, k6 ! �1� x�k5 " �x" x" �x" x"

APPENDIX B: �0 EXPANSIONS OF TRIPLE HYPERGEOMETRIC FUNCTIONS

Most of the �0 expansions of triple hypergeometric functions (23) presented in Ref. [19] apply to nonsingular functions
without poles, like F3, see Eq. (49). In that case, the expansions of the integrals (23) can be directly mapped to convergent
Euler-Zagier sums. In this appendix we derive the expansions (46) and (47) for the singular functions F1 and F2,
respectively.

1. F1: Triple hypergeometric function with a triple pole

Let us divide the integral defining F1 into two parts, I1 and I2:

 

F
3; 2; 1

0; 0; 0; 0; 0; 0

� �
�
Z 1

0
dx
Z 1

0
dy
Z 1

0
dz xs2�1yt2�1zs6�1�1� x�s3�1� y�s4�1� z�s5�1� xy�t3�s3�s4�1� yz�t1�s4�s5

� �1� xyz�s1�s4�t1�t3 � I1 � I2; (B1)

with
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 I1 �

�Z 1

0
dx xs2�1�1� x�s3

�
|�������������������{z�������������������}

�
��s2���1�s3�
��1�s2�s3�

�Z 1

0
dy
Z 1

0
dz yt2�1zs6�1�1� y�s4�1� z�s5�1� yz�t1�s4�s5

�
|�������������������������������������������������������{z�������������������������������������������������������}

�
��s6���t2���1�s4���1�s5�
��1�s4�t2���1�s5�s6� 3F2


s6 ;t2 ;s4�s5�t1
1�s5�s6 ;1�s4�t2

;1�

;

I2 �
Z 1

0
dx
Z 1

0
dy
Z 1

0
dz xs2�1yt2�1zs6�1�1� x�s3�1� y�s4�1� z�s5�1� yz�t1�s4�s5

� 
�1� xy�t3�s3�s4�1� xyz�s1�s4�t1�t3 � 1�:

(B2)

The first integral I1 involves the Beta function (21) and the hypergeometric function 3F2 (22). In fact, the latter integral is
f1 of Eq. (26) with appropriate arguments and its �0 expansion can be found in Eq. (31). On the other hand, expanding the
Beta function is straightforward, so altogether we obtain

 

��s2���1� s3�

��1� s2 � s3�
�

1

s2
� 	�2�s3 � 	�3�s3�s2 � s3� � . . . ;

��s6���t2���1� s4���1� s5�

��1� s4 � t2���1� s5 � s6�
3F2

s6; t2; s4 � s5 � t1
1� s5 � s6; 1� s4 � t2

; 1

" #

�
1

s6t2
� 	�2�

�
s4

s6
�
s5

t2

�
� 	�3�

�
s4 � s5 � t1 �

s4�s4 � t2�
s6

�
s5�s5 � s6�

t2

�
� . . . :

(B3)

Hence, we obtain the following �0—expansion for the integral I1:

 I1 �
1

s2s6t2
� 	�2�

�
s4

s2s6
�

s5

s2t2
�

s3

s6t2

�
� 	�3�

�
s4 � s5 � t1

s2
�
s2

4 � s4t2
s2s6

�
s2

5 � s5s6

s2t2
�
s2s3 � s

2
3

s6t2

�
� . . . : (B4)

The second integral I2 has a single pole in s6 originating from z! 0 in the integrand. Its expansion in �0 amounts to
expanding it in powers of s6:
 

s�1
6 : � �s3 � s4 � t3�

Z 1

0
dx
Z 1

0
dy
Z 1

0
dz zs6�1 ln�1� xy�

xy
�
�s3 � s4 � t3�

s6
	�3�;

�
s3 � s4 � t3

s6

Z 1

0
dx
Z 1

0
dy

ln�1� xy�
xy


s3 ln�1� x� � s2 ln�x� � s4 ln�1� y� � t2 ln�y��

�
�s3 � s4 � t3�2

2s6

Z 1

0
dx
Z 1

0
dy

ln�1� xy�2

xy
� �

	�4�
4

�s3 � s4 � t3�
s6


4�s2 � s3 � s4 � t2� � t3�;

s0
6: �s1 � s4 � t1 � t3�

Z 1

0
dx
Z 1

0
dy
Z 1

0
dz

ln�1� xyz�
xyz

� ��s1 � s4 � t1 � t3�	�4�:

(B5)

Here, we have applied the following basic Euler integrals of the type (24):

 

Z 1

0
dx
Z 1

0
dy

lnx ln�1� xy�
xy

� 	�4�;
Z 1

0
dx
Z 1

0
dy

ln�1� x� ln�1� xy�
xy

�
5

4
	�4�;

Z 1

0
dx
Z 1

0
dy

ln�1� xy�2

xy
�

1

2
	�4�;

Z 1

0
dx
Z 1

0
dy

ln�1� xy�
xy

� �	�3�;

Z 1

0
dx
Z 1

0
dy
Z 1

0
dz

ln�1� xyz�
xyz

� �	�4�:

(B6)

In this way, we obtain

 I2 �
�s3 � s4 � t3�

s6
	�3� �

	�4�
4

�s3 � s4 � t3�
s6


4�s2 � s3 � s4 � t2� � t3� � �s1 � s4 � t1 � t3�	�4� � . . . (B7)

Finally, after putting together (B4) and (B7), we obtain Eq. (46).

2. F2: Triple hypergeometric function with a single pole

Here again, we divide the integral defining F2 into two parts, I1 and I2:
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F
4; 3; 1

0;�1; 0; 0; 0; 0

� �
�
Z 1

0
dx
Z 1

0
dy
Z 1

0
dz xs2yt2zs6�1�1� x�s3�1� y�s4�1� z�s5�1� xy�t3�s3�s4�1�1� yz�t1�s4�s5

� �1� xyz�s1�s4�t1�t3 � I1 � I2 (B8)

with

 

I1 �

�Z 1

0
dx zs6�1�1� z�s5

�
|�������������������{z�������������������}

�
��1�s5���s6�
��1�s5�s6�

�Z 1

0
dx
Z 1

0
dy xs2yt2�1� x�s3�1� y�s4�1� xy�t3�s3�s4�1

�
|�����������������������������������������������������{z�����������������������������������������������������}

�
��1�s2���1�s3���1�s4���1�t2�

��2�s2�s3���2�s4�t2� 3F2

1�s2 ;1�t2 ;1�s3�s4�t3

2�s2�s3 ;2�s4�t2
;1�

;

I2 �
Z 1

0
dx
Z 1

0
dy
Z 1

0
dz xs2yt2zs6�1�1� x�s3�1� y�s4�1� z�s5�1� xy�t3�s3�s4�1
�1� yz�t1�s4�s5�1� xyz�s1�s4�t1�t3 � 1�:

(B9)

The first integral I1 involves the Beta function (21) and the hypergeometric function 3F2 (22). In fact, the latter integral is
f2 of Eq. (26) with appropriate arguments and its �0 expansion can be found in Eq. (31). On the other hand, expanding the
Beta function is straightforward, so altogether we obtain:

 

��s6���1� s5�

��1� s5 � s6�
�

1

s6
� 	�2�s5 � 	�3�s5�s5 � s6� � . . . ;

��1� s2���1� s3���1� s4���1� t2�
��2� s2 � s3���2� s4 � t2�

3F2

1� s2; 1� t2; 1� s3 � s4 � t3
2� s2 � s3; 2� s4 � t2

; 1

" #

� 	�2� � 	�3��s2 � s3 � s4 � t2 � t3� � . . . :

(B10)

Hence, we obtain the following �0 expansion for the in-
tegral I1:

 I1 �
	�2�
s6
� 	�3�

s2 � s3 � s4 � t2 � t3
s6

� . . . : (B11)

The integrand of the second integral I2 remains finite for
z! 0. Up to the first leading order, it involves the follow-
ing finite subintegrals:
 Z 1

0
dx
Z 1

0
dy
Z 1

0
dz

ln�1� yz�
z�1� xy�

� �
5

4
	�4�;

Z 1

0
dx
Z 1

0
dy
Z 1

0
dz

ln�1� xyz�
�1� xy�z

� �
3

4
	�4�:

With this information we obtain

 

I2 �
5
4�s4 � s5 � t1�	�4� �

3
4�s1 � s4 � t1 � t3�	�4� � . . . :

(B12)

After putting together (B11) and (B12) we obtain Eq. (47).

Finally, the four functions F3, F4, F5, and F6 do not
contain any poles in the kinematic invariants (5). Hence
their �0 expansions can be obtained by the methods de-
scribed in [19], i.e. by evaluating the relevant Euler-Zagier
sums.

APPENDIX C. FUNCTIONS V�6� AND P�6�i
EXPRESSED IN THE BASIS Fk, k � 1; . . . ; 6

The functions P�6�i and V�6� governing the six-gluon
MHV amplitude (56) are expressed in Eqs. (57) and (58)
in terms of certain generalized hypergeometric integrals, in
the notation of Eq. (23). In Sec. IV B, we introduced a basis
of six functions, see Eq. (45), which is very convenient
for studying cyclic properties and low-energy limits.
The integrals appearing in Eqs. (57) and (58) can be ex-
pressed in this basis by using the relations obtained in
Ref. [19] as a combined result of partial integrations, use
of world-sheet supersymmetry etc. The functions that enter
Eq. (57) are:
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F
4; 4; 3

0; 0; 0;�1;�1; 0

� �
� �F3 � F6;

s1F
4; 3; 2

0;�1; 0;�1;�1; 0

� �
� s6�F2 � F4� � �s2 � s5 � t1 � t2��F3 � F4 � F5� � �s1 � s5 � s6 � t2�F6;

s2F
3; 3; 2

0;�1; 0; 0;�1; 0

� �
� s6�F2 � F3� � �s2 � s3 � s5 � t1 � t3��F3 � F4 � F6� � �s1 � s3 � s5 � t1�F5

� �s1 � s2 � t1�F6;

s3F
4; 3; 2

�1; 0; 0; 0;�1; 0

� �
� s6�F2 � F3� � �s1 � s2 � t1�F3 � s3�F3 � F6� � �s1 � s3 � s5 � t1�F5

� �s4 � s5 � t1��F3 � F4 � F6�;

s4F
4; 3; 2

0; 0;�1;�1; 0; 0

� �
� s6F2 � �s4 � s5 � s6 � t2�F3 � �s4 � s5 � t1�F4 � �s1 � s3 � s5 � t1��F3 � F5�;

s5F
4; 3; 2

0;�1; 0; 0; 0;�1

� �
� s6F2 � �s1 � s4 � t1 � t3��F3 � F5� � �s4 � s5 � t1�F4:

The additional function that enters Eq. (58) is

 s2s5F
3; 2; 2

0; 0; 0; 0; 0;�1

� �
� s2s6F1 � s2�s1 � s5 � t3�F3 � �s4 � s5 � t1�
s6�F2 � F3� � �s3 � s5 � t1 � t3��F3 � F4�

� �s1 � s3 � s5 � t1�F5 � �s1 � s3 � s5 � t3�F6�:
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