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We consider noncanonical embeddings of the MSSM in high-dimensional orbifold grand unified
theories (GUTs) based on the gauge symmetry SU�N�, N � 5, 6, 7, 8. The hypercharge normalization
factor kY can either have unique noncanonical values, such as 23=21 in a six-dimensional SU�7�model, or
may lie in a (continuous) interval. Gauge coupling unification and gauge-Yukawa unification can be
realized in these models by introducing new particles with masses in the TeV range which may be found at
the LHC. In one such example there exist color singlet fractionally charged states.
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I. INTRODUCTION

High-dimensional orbifold grand unified theories
(GUTs) [1,2] provide the elegant solutions to the well-
known problems encountered in four-dimensional (4D)
GUTs such as SU�5� and SO�10�, especially the doublet-
triplet splitting problem and the proton decay problem. The
nonsupersymmetric version has, in particular, been ex-
ploited to show that unification of the standard model
(SM) gauge couplings can be realized with a noncanonical
embedding of U�1�Y , the hypercharge component of the
SM gauge group [3]. The couplings unify at MGUT ’ 4�
1016 GeV, which is also the scale at which the 4D N � 1
supersymmetry (SUSY) is broken, without introducing
additional new particles. This approach has been taken a
step further along two different directions. In [4] it was
shown that by implementing additional gauge-Yukawa
unification, the SM Higgs mass can be predicted. The
mass turns out to be 135� 6�144� 4� GeV with gauge-
top (bottom/tau) Yukawa unification. This is encouraging
because it is different from the prediction of & 130 GeV in
the minimal supersymmetric standard model (MSSM). In
[5] these ideas were extended to the case of split super-
symmetry, with similar predictions for the Higgs mass.

The orbifold scenario for the GUT breakings assume the
supersymmetric GUT models exist in high dimensions and
are broken to 4D N � 1 supersymmetric standard-like
models for the zero modes due to the discrete symmetries
on the extra space manifolds [1,2]. The zero modes can be
identified with the low-energy SM fermions and Higgs
fields, allowing gauge-Higgs unification [6] and gauge-
Yukawa unification [7]. For the canonical U�1�Y normal-
ization, the unification of the gauge couplings, top and

bottom quark Yukawa couplings, and � lepton Yukawa
coupling can be realized in the 6D orbifold SU�8� and
SU�9� models, and cannot be obtained in the orbifold
SU�N� models with N < 8. Therefore, it is interesting to
construct the minimal orbifold SU�N� model with gauge-
Yukawa unification.

In this paper, we show that the minimal model with the
unification of the gauge couplings and third-family
Yukawa couplings is the 6D orbifold SU�7� model with
noncanonical U�1�Y normalization kY � 23=21 where kY
is defined in Eqs. (1) and (2). Moreover, we construct the
7D SU�8� models with gauge-Yukawa unification and
kY > 23=21. And for completeness, we consider the 6D
orbifold SU�5� and SU�6� models with gauge-fermion and
gauge-fermion-Higgs unification first as warm-up exercise.

The 4D gauge group in these models is SU�3�C �
SU�2�L �U�1�Y accompanied by one or several extra
U�1� factors assumed to be broken at MGUT. We define
the unified gauge couplings at the GUT scale (MGUT) as

 g2
1 � g2

2 � g2
3; (1)

where

 g2
1 � kYg2

Y; (2)

where kY is the U�1�Y normalization factor, and the gY , g2,
and g3 are the gauge couplings for U�1�Y , SU�2�L, and
SU�3�C gauge groups, respectively. For the canonical
U�1�Y normalization, we have kY � 5=3.

For orbifold GUTs where all of the SM fermions and
Higgs fields are placed on a 3-brane at an orbifold fixed
point, we can have any positive normalization for U�1�Y ,
i.e., kY is an arbitrary positive real number. However, in
this case charge quantization cannot be realized. We wish
to consider the more interesting orbifold GUTs in which at
least one of the SM fermions and Higgs fields arise from
the zero modes of the bulk vector multiplet and their U�1�Y
charges can be determined. The charge quantization can be

*On a leave of absence from: Andronikashvili Institute of
Physics, GAS, 380077 Tbilisi, Georgia.
Electronic address: ilia@physics.udel.edu

†Electronic address: tjli@physics.rutgers.edu
‡Electronic address: nefer@udel.edu
xElectronic address: shafi@bartol.udel.edu

PHYSICAL REVIEW D 74, 126006 (2006)

1550-7998=2006=74(12)=126006(13) 126006-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.74.126006


achieved due to the gauge invariance of Yukawa couplings
and anomaly free conditions. In the orbifold models we
consider, kY is then either uniquely determined to have a
noncanonical value or lies in a continuous interval. For the
latter case kY � 5=3 is possible, but there is no apparent
reason why this value would be realized.

Since the three SM gauge couplings unify quite nicely
with the canonical hypercharge normalization, it can be
argued that we should simply discard the models which do
not predict kY � 5=3. However, unification in MSSM with
kY � 5=3 may well be accidental, and as the example of
nonsupersymmetric unification shows there are different
possibilities. In this paper we assume a noncanonical hy-
percharge normalization as the models under consideration
generally predict. We then discuss how gauge coupling
unification and gauge-Yukawa unification can be obtained
by adding a minimal set of vectorlike particles to the
MSSM spectrum. It is certainly our hope that these vector-
like particles will be found at the Large Hadron Collider
(LHC).

The paper is organized as follows. In Secs. II and III we
consider SU�5� and SU�6� models. In the SU�5� model the
only zero mode that can be introduced in the bulk is a quark
doublet and kY is predicted to be 1=15. The model can be
extended to SU�6�, with kY � 1=15. We construct two
SU�6� models with gauge-top and gauge-bottom Yukawa
coupling unification, with kY � 2=3 and 1=3, respectively.
We discuss SU�7� and SU�8�models in Secs. IVand V. We
can have gauge-Yukawa unification for the third family in
an SU�7� model, with kY � 23=21. This model can be
extended to SU�8�, with kY � 23=21. Sections VI and
VII concern gauge coupling unification and gauge-
Yukawa unification with new particles in these models.
We briefly remark on the Higgs mass in Sec. VIII and
conclude in Sec. IX. Some details of the 6D and 7D
orbifold models are provided in the two appendices.

II. SU�5� MODELS

We consider a 6D N � �1; 1� supersymmetric SU�5�
gauge theory compactified on the orbifold M4 � T2=Z6

(for some details see Appendix A). The N � �1; 1� su-
persymmetry in 6D has 16 supercharges and corresponds
to N � 4 supersymmetry in 4D, and thus only the gauge
multiplet can be introduced in the bulk. This multiplet can
be decomposed under the 4D N � 1 supersymmetry into
a vector multiplet V and three chiral multiplets �1, �2, and
�3 in the adjoint representation, where the fifth and sixth
components of the gauge field, A5 and A6, are contained in
the lowest component of �1.

To break the SU�5� gauge symmetry, we choose the
following 5� 5 matrix representation for R�T ,

 R�T � diag��1;�1;�1; !n1 ; !n1�; (3)

where w � ei�=3 and n1 � 0. Then, we obtain1

 SU�5�=R�T � SU�3�C � SU�2�L �U�1�Y: (5)

So, for the zero modes, the 6D N � �1; 1� supersymmet-
ric SU�5� gauge symmetry is broken down to 4D N � 1
supersymmetric SU�3�C � SU�2�L �U�1�Y gauge sym-
metry [2].

We define the generator for U�1�Y as follows:

 TU�1�Y �
1
30 diag�2; 2; 2;	3;	3�: (6)

Because tr
T2
U�1�Y
� � 1=30, we obtain kY � 1=15.

Under SU�3�C � SU�2�L �U�1�Y , the adjoint represen-
tation 24 of SU�5� decomposes as

 24 �
�8; 1�Q00 �3; �2�Q12

��3; 2�Q21 �1; 3�Q00

 !
� �1; 1�Q00

; (7)

where the last term �1; 1�Q00
denotes the gauge field asso-

ciated with U�1�Y . The subscripts Qij, with Qij � 	Qji,
denote the charges under U�1�Y , and

 Q00 � 0; Q12 � 1
6: (8)

The Z6 transformation properties for the decomposed
components of V, �1, �2, and �3 are given by the first 2�
2 submatrices in Eqs. (A9)–(A12) in Appendix A. We
choose

 k � 1; n1 � 5; (9)

where k is given in Eqs. (A7) and (A8) in Appendix A.
There are no zero modes from the chiral multiplets �2 and
�3, and only one zero mode, �3; �2�Q12, from the chiral
multiplet �1, which can be identified as the third-family
quark doublet Q3. The remaining MSSM matter fields and
the two MSSM Higgs doublets can be put on the 3-brane at
z � 0, where only the SM gauge symmetry is preserved.

III. SU�6� MODELS

For the SU�6� models where at least one of the SM
fermions and Higgs fields arise from the zero modes of
the chiral multiplets �1, �2, and �3, we can show that the
minimal normalization kY for U�1�Y is 1=15, and the
corresponding zero mode is quark doublet because it has
the smallest U�1�Y quantum number. Moreover, we can
only have the gauge-top or gauge-bottom quark Yukawa
coupling unification, and we cannot obtain the right-
handed leptons from the zero modes of the bulk vector
multiplet.

In the following subsections, we present three SU�6�
models. In the first, the third-family quark doubletQ3 is the

1Suppose G is a Lie group and H is a subgoup of G, we denote
the commutant of H in G as G=H, i.e.,

 G=H � fg 2 Gjgh � hg; for any h 2 Hg: (4)
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only zero mode from the bulk vector multiplet, and kY is an
arbitrary positive real number that is larger than or equal to
1=15. In the second and third SU�6� models, we have
gauge-top and gauge-bottom quark Yukawa coupling uni-
fication, respectively. We consider 7D N � 1 supersym-
metric SU�6� compactified on the orbifold
M4 � T2=Z6 � S

1=Z2 (for some details see Appendix B),
and 6D N � �1; 1� supersymmetric SU�6� compactified
on the orbifold M4 � T2=Z6. The compactification process
yields 4D N � 1 supersymmetric SU�3�C � SU�2�L �
U�1�Y �U�1��.

The generators for U�1�Y �U�1�� are defined as fol-
lows:

 TU�1�Y �
1

30
diag�2; 2; 2;	3;	3; 0�

� a diag�1; 1; 1; 1; 1;	5�;

TU�1�� � diag�2; 2; 2;	3;	3; 0�

	
1

30a
diag�1; 1; 1; 1; 1;	5�;

(10)

where a is a real number. Because tr
T2
U�1�Y
� �

1=30� 30a2, we obtain

 kY �
1

15� 60a2 � 1
15: (11)

The adjoint representation 35 of SU�6� is decomposed
under SU�3�C � SU�2�L �U�1�Y �U�1�� as

 35 �
�8; 1�Q00 �3; �2�Q12 �3; 1�Q13

��3; 2�Q21 �1; 3�Q00 �1; 2�Q23

��3; 1�Q31 �1; �2�Q32 �1; 1�Q00

0B@
1CA� �1; 1�Q00

;

(12)

where �1; 1�Q00 in the third diagonal entry of the matrix and
the last term �1; 1�Q00

denote gauge fields associated with
U�1�Y �U�1��. The subscriptsQij, withQij � 	Qji, are
the charges under U�1�Y �U�1��. The subscript Q00 �
�0; 0�, and the other subscripts Qij with i � j are

 Q12 �
�

1
6
; 5
�
; Q13 �

�
1
15
� 6a; 2	

1
5a

�
;

Q23 �
�
	

1
10
� 6a;	3	

1
5a

�
:

(13)

We will consider the following three models.

A. SU�6� model I

Here the third-family quark doublet Q3 is the only zero
mode from the bulk vector multiplet, a is an arbitrary real
number, and we have

 kY �
1

15: (14)

To project out all the unwanted components in the chiral
multiplets, we consider the 7D N � 1 supersymmetric
SU�6�. The N � 1 supersymmetry in 7D has 16 super-

charges corresponding to N � 4 supersymmetry in 4D,
and only the gauge supermultiplet can be introduced in the
bulk. This multiplet can be decomposed under 4D N � 1
supersymmetry into a gauge vector multiplet V and three
chiral multiplets �1, �2, and �3 all in the adjoint repre-
sentation, where the fifth and sixth components of the
gauge field, A5 and A6, are contained in the lowest compo-
nent of �1, and the seventh component of the gauge field
A7 is contained in the lowest component of �2.

To break the SU�6� gauge symmetry, we choose the
following 6� 6 matrix representations for R�T and R�S

 R�T � diag��1;�1;�1; !n1 ; !n1 ; !n2�; (15)

 R�S � diag��1;�1;�1;�1;�1;�1�; (16)

where n1 � n2 � 0.
Then, we obtain

 SU�6�=R�T � SU�3� � SU�2� �U�1�Y �U�1��; (17)

 SU�6�=R�S � SU�6�; (18)

 SU�6�=fR�T [ R�Sg � SU�3� � SU�2� �U�1�Y �U�1��:

(19)

Note that R�S only breaks the additional supersymmetry.
The Z6 � Z2 transformation properties for the decom-

posed components of V, �1, �2, and �3 are the 3� 3
submatrices in Eqs. (B12)–(B15) in Appendix B where the
third and fourth rows and columns are crossed out. We
choose

 n1 � 5; n2 � 2; or 3: (20)

Then, we obtain that there is no zero mode from the chiral
multiplets �2 and �3, and only one zero mode, �3; �2�Q12,
from the chiral multiplet �1, which can be identified with
the third-family quark doublet Q3.

B. SU�6� model II and SU�6� model III

In this subsection, we will construct SU�6� models with
gauge-top and gauge-bottom quark Yukawa coupling uni-
fication. We consider 6D N � �1; 1� supersymmetric
SU�6� compactified on the orbifold M4 � T2=Z6. To break
the SU�6� gauge symmetry, we choose the following 6� 6
matrix representation for R�T

 R�T � diag��1;�1;�1; !n1 ; !n1 ; !n2�; (21)

where n1 � n2 � 0. Then, we obtain

 SU�6�=R�T � SU�3�C � SU�2�L �U�1�Y �U�1��:

(22)

The Z6 transformation properties for the decomposed
components of V, �1, �2, and �3 are given by the first 3�
3 submatrices in Eqs. (A9)–(A12) in Appendix A. We
choose
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 k � 1; n1 � 5; n2 � 2; (23)

and consider the following two models:
(A) SU�6� model II (gauge-top quark Yukawa coupling

unification)
With

 a � 1
10; (24)

we have

 kY �
2
3: (25)

The zero modes from the chiral multiplets �1, �2,
and �3 are presented in Table I. We can identify
them as the third-family quark doublet, the right-
handed top quark, and the MSSM Higgs doublets.
From the trilinear term in the 6D bulk action, we
obtain the top quark Yukawa term

 

Z
d6x

�Z
d2�g6Q3tcHu � H:c:

�
: (26)

Thus, at MGUT, we have

 g1 � g2 � g3 � yt � g6=
����
V
p

; (27)

where yt is the top quark Yukawa coupling, and V is
the physical volume of extra dimensions.

(B) SU�6� model III (gauge-bottom quark Yukawa cou-
pling unification)
For this case we set

 a � 	 1
15; (28)

in which case

 kY �
1
3: (29)

The zero modes arise from the chiral multiplets �1,
�2, and �3, and are presented in Table II. We can
identify them as the third-family quark doublet, the
right-handed bottom quark, and the MSSM Higgs

doublets.
From the trilinear term in the 6D bulk action, we
obtain the bottom quark Yukawa term

 

Z
d6x

�Z
d2�g6Q3bcHd � H:c:

�
: (30)

Thus, at MGUT, we have

 g1 � g2 � g3 � yb � g6=
����
V
p

; (31)

where yb is the bottom quark Yukawa coupling.

IV. SU�7� MODELS

As we discussed above, to achieve gauge-fermion-Higgs
unification, the minimal gauge group is SU�7�, with U�1�Y
normalization kY � 23=21 which is uniquely determined.
This can be seen as follows. The U�1�Y generator in SU�7�
belongs to its Cartan subalgebra, and can be parametrized
as

 TU�1�Y � diag�r3; r3; r3; r2; r2; r1; r
0
1�: (32)

The traceless condition yields

 3r3 � 2r2 � r1 � r
0
1 � 0; (33)

and gauge-fermion-Higgs unification requires that

 r3 	 r2 �
1
6; r3 	 r1 �

2
3; r3 	 r

0
1 � 	

1
3: (34)

Thus, we have the unique solution

 r3 �
2
21; r2 � 	

1
14; r1 � 	

4
7; r01 �

3
7; (35)

for which tr
T2
U�1�Y
� � 23=42. With a canonical normaliza-

tion tr
T2
i � � 1=2 of non-Abelian generators, we obtain

kY � 23=21.
We consider a 6D N � �1; 1� supersymmetric SU�7�

gauge theory compactified on the orbifold M4 � T2=Z6

(for some details see Appendix A). To break SU�7�, we
select the following 7� 7 matrix representation for R�T

 R�T � diag��1;�1;�1; !n1 ; !n1 ; !n2 ; !n3�; (36)

where n1 � n2 � n3 � 0. Thus,

 SU�7�=R�T � SU�3�C � SU�2�L �U�1�Y �U�1��

�U�1��: (37)

So, for the zero modes, the 6D N � �1; 1� supersymmet-
ric SU�7� gauge symmetry is broken down to 4D N � 1
supersymmetric SU�3�C � SU�2�L �U�1�Y �U�1�� �
U�1�� gauge symmetry [2]. We assume that the two addi-
tional U�1� symmetries can be spontaneously broken at
MGUT by the usual Higgs mechanism. It is conceivable that
these two symmetries can play some useful role as flavor
symmetries [8], but we will not pursue this any further
here.

We define the generators for the U�1�Y �U�1�� �
U�1�� gauge symmetry as follows

TABLE I. Zero modes from the chiral multiplets �1, �2, and
�3 in SU�6� (Model II).

Chiral fields Zero modes

�1 Q3: �3; �2�Q12

�2 tc: ��3; 1�Q31

�3 Hu: �1; 2�Q23; Hd: �1; �2�Q32

TABLE II. Zero modes from the chiral multiplets �1, �2, and
�3 in SU�6� (Model III).

Chiral fields Zero modes

�1 Q3: �3; �2�Q12

�2 bc: ��3; 1�Q31

�3 Hd: �1; 2�Q23; Hu: �1; �2�Q32
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 TU�1�Y �
1
42 diag�4; 4; 4;	3;	3;	24; 18�;

TU�1�� � diag�1; 1; 1; 0; 0;	1;	2�;

TU�1�� � diag�3; 3; 3;	8;	8; 5; 2�:

(38)

The SU�7� adjoint representation 48 decomposes under
the SU�3�C � SU�2�L �U�1�Y �U�1�� �U�1�� gauge
symmetry as
 

48 �

�8; 1�Q00 �3; �2�Q12 �3; 1�Q13 �3; 1�Q14

��3; 2�Q21 �1; 3�Q00 �1; 2�Q23 �1; 2�Q24

��3; 1�Q31 �1; �2�Q32 �1; 1�Q00 �1; 1�Q34

��3; 1�Q41 �1; �2�Q42 �1; 1�Q43 �1; 1�Q00

0BBBBBB@

1CCCCCCA
� �1; 1�Q00

; (39)

where �1; 1�Q00 in the third and fourth diagonal entries of
the matrix and the last term �1; 1�Q00

denote the gauge fields
associated with U�1�Y �U�1�� �U�1��. The subscripts
Qij, which are antisymmetric (Qij � 	Qji), are the
charges under U�1�Y �U�1�� �U�1��. The subscript
Q00 � �0; 0; 0�, and the other subscriptsQijwith i � j are

 Q12 � �16; 1; 11�; Q13 � �23; 2;	2�;

Q14 � �	1
3; 3; 1�; Q23 � �12; 1;	13�;

Q24 � �	1
2; 2;	10�; Q34 � �	1; 1; 3�:

(40)

The Z6 transformation properties for the decomposed
components of V, �1, �2, and �3 are given by Eqs. (A9)–
(A12). We will consider two concrete models.

A. SU�7� model I

We choose

 k � 1; n1 � 4; n2 � 1; n3 � 2; (41)

where k is given in Eqs. (A7) and (A8) in Appendix A. The
zero modes from the chiral multiplets �1, �2, and �3 are
presented in Table III. We can identify them as the third-
family SM fermions, and one pair of Higgs doublets.
Interestingly, we do not have any exotic particle from the
zero modes of the chiral multiplets.

From the trilinear term in the 6D bulk action, we obtain
the top quark and tau lepton Yukawa terms

 

Z
d6x

�Z
d2�g7�Q3t

cHu � L3�
cHd� � H:c:

�
: (42)

Thus, at MGUT, we have

 g1 � g2 � g3 � yt � y� � g7=
����
V
p

; (43)

where y� is the tau lepton Yukawa coupling. However, we
do not have the bottom quark Yukawa term from 6D bulk
action.

B. SU�7� model II

We choose

 k � 1; n1 � 4; n2 � 1; n3 � 3: (44)

The zero modes from the chiral multiplets �1, �2, and �3

are given in Table IV. We can identify them as the third-
family SM fermions, the MSSM Higgs doublets, and an
exotic (left-handed singlet) quark bX.

From the trilinear term in the 6D bulk action, we obtain
the top quark, bottom quark, and tau lepton Yukawa terms

 

Z
d6x

�Z
d2�g7�Q3t

cHu �Q3b
cHd � L3�

cHd� � H:c:
�
:

(45)

Thus, at MGUT, we have

 g1 � g2 � g3 � yt � yb � y� � g7=
����
V
p

: (46)

Thus, we have unification of the SM gauge couplings and
the third-family SM fermion Yukawa couplings.

We can give GUT-scale mass to the exotic quark bX by
introducing an additional exotic quark �bX with quantum
number ��3; 1�QX on the observable 3-brane at z � 0, where
QX � �13 ;	3; 0�. Suppose we introduce one pair of SM
singlets S0 and �S0 with charges 1 and 	1, respectively,
whose VEVs break U�1�� at MGUT. The exotic quarks bX
and �bX can pair up and acquire MGUT mass via the brane-
localized superpotential term �S0bX �bX.

V. SU�8� MODELS

We are unable to construct orbifold models of gauge-
fermion-Higgs unification with kY < 23=21. To construct
models with kY � 23=21, we consider a 7D N � 1 super-
symmetric SU�8� gauge theory compactified on the orbi-
fold M4 � T2=Z6 � S1=Z2 (for some details see
Appendix B). To break the SU�8� gauge symmetry, we
choose the following 8� 8 matrix representations for R�T
and R�S

TABLE III. Zero modes from the chiral multiplets �1, �2, and
�3 in SU�7� (Model I).

Chiral fields Zero modes

�1 tc: ��3; 1�Q31; �c: �1; 1�Q43

�2 Q3: �3; �2�Q12; Hd: �1; 2�Q24; bc: ��3; 1�Q41

�3 Hu: �1; 2�Q23; L3: �1; �2�Q32

TABLE IV. Zero modes from the chiral multiplets �1, �2, and
�3 in SU�7� (Model II).

Chiral
fields

Zero modes

�1 Hd: �1; 2�Q24; tc: ��3; 1�Q31

�2 Q3: �3; �2�Q12; �c: �1; 1�Q43

�3 Hu: �1; 2�Q23; L3: �1; �2�Q32; bc: ��3; 1�Q41; bX: �3; 1�Q14
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 R�T � diag��1;�1;�1; !n1 ; !n1 ; !n1 ;�1; !n2�; (47)

 R�S � diag��1;�1;�1;�1;�1;	1;	1;�1�; (48)

where n1 � n2 � 0. We obtain

 SU�8�=R�T � SU�4� � SU�3� �U�1�2; (49)

 SU�8�=R�S � SU�6� � SU�2� �U�1�; (50)

 SU�8�=fR�T [ R�Sg � SU�3�C � SU�2�L �U�1�Y

�U�1�� �U�1�� �U�1��: (51)

Thus, for the zero modes, the 7D N � 1 supersymmetric
SU�8� gauge symmetry is broken down to a 4D N � 1
supersymmetric SU�3�C � SU�2�L �U�1�Y �U�1�� �
U�1�� �U�1�� gauge symmetry [2].

We define the generators for the U�1�Y �U�1�� �
U�1�� �U�1�� gauge symmetry as follows:

 TU�1�Y �
1

42
diag�4; 4; 4;	3;	3;	24; 18; 0�

� a diag�1; 1; 1; 1; 1; 1; 1;	7�;

TU�1�� � diag�4; 4; 4;	3;	3;	24; 18; 0�

	
23

56a
diag�1; 1; 1; 1; 1; 1; 1;	7�;

TU�1�� � diag�1; 1; 1; 0; 0;	1;	2; 0�;

TU�1�� � diag�3; 3; 3;	8;	8; 5; 2; 0�;

(52)

where a is a real number. Because tr
T2
U�1�Y
� � 23=42�

56a2, we obtain

 kY �
23

21
� 112a2 �

23

21
: (53)

Incidentally, for the canonical U�1�Y normalization (kY �
5=3), we have a � 1=14, and U�1�Y coincides with U�1�Y
in the Pati-Salam or Pati-Salam-like models when we
break SU�8� down to SU�4�C � SU�2�L � SU�2�R �
U�1�2 or SU�3�C � SU�2�L �U�1�B	L �U�1�I3R �
U�1�2 by orbifold projections.

The SU�8� adjoint representation 63 decomposes under
SU�3�C � SU�2�L �U�1�Y �U�1�� �U�1�� �U�1��
gauge symmetry as:

 

63�

�8;1�Q00 �3; �2�Q12 �3;1�Q13 �3;1�Q14 �3;1�Q15

��3;2�Q21 �1;3�Q00 �1;2�Q23 �1;2�Q24 �1;2�Q25

��3;1�Q31 �1; �2�Q32 �1;1�Q00 �1;1�Q34 �1;1�Q35

��3;1�Q41 �1; �2�Q42 �1;1�Q43 �1;1�Q00 �1;1�Q45

��3;1�Q51 �1; �2�Q52 �1;1�Q53 �1;1�Q54 �1;1�Q00

0BBBBBBBBB@

1CCCCCCCCCA
��1;1�Q00; (54)

where �1; 1�Q00 in the third, fourth, and fifth diagonal
entries of the matrix, and the last term �1; 1�Q00 denote
the gauge fields for U�1�Y �U�1�� �U�1�� �U�1��.
Moreover, the subscripts Qij, with Qij � 	Qji, are the
charges under U�1�Y �U�1�� �U�1�� �U�1��. The sub-
script Q00 � �0; 0; 0; 0�, and the other subscripts Qij with
i � j are

 

Q12�
�
1
6
;7;1;11

�
; Q13�

�
2
3
;28;2;	2

�
; Q14�

�
	

1
3
;	14;3;1

�
; Q23�

�
1
2
;21;1;	13

�
;

Q24�
�
	

1
2
;	21;2;	10

�
; Q34� �	1;	42;1;3�; Q15�

�
2
21
� 8a;4	

23
7a
;1;3

�
;

Q25�
�
	

1
14
� 8a;	3	

23
7a
;0;	8

�
; Q35�

�
	

4
7
� 8a;	24	

23
7a
;	1;5

�
; Q45�

�
3
7
� 8a;18	

23
7a
;	2;2

�
:

(55)

The Z6 � Z2 transformation properties for the decom-
posed components of V, �1, �2, and �3 are given by
Eqs. (B12)–(B15) in Appendix B. And we choose

 n1 � 5; n2 � 2; or 3: (56)

The zero modes from the chiral multiplets �1, �2, and �3

are presented in Table V. We can identify them as the third-
family SM fermions, the MSSM Higgs doublets, and the
exotic quark bX.

From the trilinear term in the 7D bulk action, we obtain
the top quark, bottom quark, and tau lepton Yukawa terms

 

Z
d7x

�Z
d2�g8�Q3t

cHu �Q3b
cHd � L3�

cHd� � H:c:
�
:

(57)

Thus, at MGUT, we have

 g1 � g2 � g3 � yt � yb � y� � g8=
����
V
p

: (58)

TABLE V. Zero modes from the chiral multiplets �1, �2, and
�3 in the SU�8� model.

Chiral
fields

Zero modes

�1 Q3: �3; �2�Q12; �c: �1; 1�Q43;
�2 Hu: �1; 2�Q23; L3: �1; �2�Q32; bc: ��3; 1�Q41; bX: �3; 1�Q14

�3 Hd: �1; 2�Q24; tc: ��3; 1�Q31
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VI. NEW PARTICLES AND GAUGE COUPLING
UNIFICATION

For noncanonical U�1�Y normalization, it is necessary to
introduce new particles to achieve unification. Here, as an
example, we consider restoring gauge coupling unification
by adding a minimal set of vectorlike particles with SM
quantum numbers. These particles can be put on the 3-
brane at z � 0, and their masses can be the order of the
weak scale due to the Giudice-Masiero mechanism [9].

We denote these particles as ux and so on, where ux
stands for the vectorlike pair with the same quantum
numbers as these for u� uc. Although we employ two-
loop renormalization group equations (RGEs) for the
gauge couplings in the numerical calculations, for the
discussions below we will consider one-loop
�-coefficients which, for the MSSM and vectorlike parti-
cles, are as follows:

 bMSSM �

�
11

kY
; 1;	3

�
; bQx

�

�
1

3kY
; 3; 2

�
;

bux �
�

8

3kY
; 0; 1

�
; bdx �

�
2

3kY
; 0; 1

�
;

bLx �
�

1

kY
; 1; 0

�
; bex �

�
2

kY
; 0; 0

�
:

(59)

From the one-loop RGEs, it is straightforward to obtain the
following relations:

 log
MGUT

mZ
�

2���	1
s �	 s2

W�

��b3 	 b2�
; (60)

 �	1
s �

�
s2
W �

1	 �1� kY�s
2
W

kY

�
b3 	 b2

b1 	 b2

��
�	1; (61)

 �GUT �
kY��b1 	 b2�

kYs2
Wb1 	 �1	 s2

W�b2

; (62)

where sW stands for sin�W , and � and �s are the electro-
magnetic and strong couplings at mZ. From Eq. (59), we
see that b3 	 b2 is an integer. For the GUT scale to be
smaller than the Planck scale and large enough to avoid the
bounds on proton decay, Eq. (60) requires the contribution
�b3 	 b2�x from vectorlike particles to vanish, assuming
the latter have masses close to the weak scale. From
Eq. (61), the range of �b1 	 b2�x allowing gauge coupling
unification can be obtained depending on the value of kY .
Also, �GUT � 1 is required for perturbative unification.

Simple examples that satisfy the above conditions are as
follows. For kY � 1=15 as in the SU�5� model, gauge
coupling unification can be restored by adding two sets
of Lx � ux. Unification can also be restored by adding
Lx � ux � 2ex or by adding 4ex. For kY � 1=3 as in the
SU�6� model with gauge-bottom quark Yukawa coupling
unification, one can again add two sets of Lx � ux, or 3ex.
And for kY � 2=3 as in the SU�6� model with gauge-top

quark Yukawa coupling unification, one can add Lx �
ux � ex or 3�Lx � dx� � ex. Finally, for kY � 23=21 as
in the SU�7� model with the unification of the gauge
couplings and third-family Yukawa couplings, one can
add Lx � ux. Because such additional vectorlike particles
can be observed at the LHC and ILC, we can distinguish
these models with these future experiments.

VII. NEW PARTICLES AND GAUGE-YUKAWA
UNIFICATION

In this section we probe gauge-Yukawa unification fol-
lowing the analysis in Ref. [10] (see also Ref. [11] for
details and references). In our analysis, we use a dimen-
sional reduction (DR) renormalization scheme, which is
known to be consistent with SUSY. DR Yukawa couplings
(yt;b;�) and gauge couplings (gi) in the MSSM at Z-boson
mass scale are written as follows:

 yt�mZ� �

���
2
p

�mMSSM
t �mZ�

�v�mZ� sin�
�

���
2
p

�mSM
t �mZ�

�v�mZ� sin�
�1� �t�; (63)

 yb;��mZ� �

���
2
p

�mMSSM
b;� �mZ�

�v�mZ� cos�
�

���
2
p

�mSM
b;� �mZ�

�v�mZ� cos�
�1� �b;��;

(64)

 gi�mZ� � �gSM
i �mZ��1� �gi�; �i � 1–3�; (65)

where �mSM
i and �gSM

i are DR quantities defined in the SM,
and �v and tan� are DR values in the MSSM. They are
determined following the analysis in Ref. [11]. We adopt
top pole mass (mt � 172:5 GeV) [12], tau pole mass
(m� � 1777 MeV), MS bottom mass ( �mMS

b � �mMS
b � �

4:26 GeV), and �MS
s �mZ� � 0:119 [13]. The quantities

�t;b;�;gi represent SUSY threshold corrections. In our analy-
sis, we treat them as free parameters without specifying
any particular SUSY breaking scenario. When all parame-
ters �t;b;�;gi are specified, all DR couplings in the MSSM
are determined at mZ. Then we use the two-loop RGEs for
the MSSM gauge couplings and the one-loop RGEs for the
Yukawa couplings in order to study the unification of
couplings at the GUT scale.

In order to study the gauge-Yukawa unification, we look
for a region where top, bottom, and tau Yukawa couplings
are unified (yt � yb � y� � yG) at the GUT scale. We
define the GUT scale (MG) as a scale where g1�MG� �
g2�MG� � gG. In our analysis, we allow the possibility that
the strong gauge coupling is not exactly unified, i.e.,
g3�MG�

2=g2
G � 1� �3 where �3 can be a few %. This

mismatch �3 from exact unification can be due to the
GUT-scale threshold corrections to the unified gauge
coupling.

First, we review gauge-Yukawa unification for the ca-
nonical case kY � 5=3. In Fig. 1, contours of �b (dotted
lines in Fig. 1(a)], tan� (dashed lines in Fig. 1(b)], and �3

(dotted lines in Fig. 1(b)] are shown as a function of �t and
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�g3
, which are required for the Yukawa unification at the

GUT scale. In order to fix �g1;2
, we assume that all SUSY

mass parameters which contribute to �g1;2
are equal to

500 GeV (�g1
� 	0:006 and �g2

� 	0:02). As shown in
Fig. 1, tan� should be about 52, and the value of �b should
be a few %, which is much smaller than 1 naively expected
in large tan� case. Small values of �b significantly con-
strains the superpartner spectrum, as discussed in
Refs. [11,14]. On the other hand, �t is in the expected
range (see Ref. [15]).

After requiring Yukawa unification, we calculate a pa-
rameter R defined as follows:

 R �
max�yG; gG�
min�yG; gG�

: (66)

In the shaded regions of Fig. 1, gauge-Yukawa unification
is realized within 5% level (R 
 1:05), while allowing �3

to be a few %.
Next, we take kY � 23=21 as predicted by the SU�7�

model, and give examples as to how gauge-Yukawa uni-
fication might be realized. Gauge coupling unification can
be restored by adding vectorlike particles with SM quan-
tum numbers, as in Sec. VI. A simple example for kY �
23=21 is adding one set of Lx � ux. However, as shown in
Fig. 2, Yukawa unification then requires �t shifted up 0.06
compared to Fig. 1, which is not compatible with the SUSY
threshold corrections in most of the parameter space.

Note that �t can be modified if mixing in the top quark
sector is allowed. We then have the Yukawa and mass
terms

 ytQ0Huu0c � y0Q0Huu0cx �Mu0xu0cx ; (67)

where the primes denote weak eigenstates. Diagonalizing
the mass matrix, we obtain

 

yt
yt0
�

�
2

1� 	2 � x2 	
��������������������������������������������
�1� 	2 � x2�2 	 4x2

p �
1=2
: (68)

Here the notation is as follows: yt0 is the value without
mixing, x � M=mt, and 	 � y0=yt. Experimentally, M &

200 GeV is excluded [16]. As an example we take M �
300 GeV. Precision electroweak data (more precisely the
bounds on the oblique parameter T) then requires the
extended Cabibbo-Kobayashi-Maskawa (CKM) parameter
Vxb & 0:4 [17]. This constraint corresponds to 	 & 0:5 and
a downward shift in �t of & 0:06.

A similar example is adding one set of Lx � dx � ex.
Gauge-Yukawa unification is then obtained essentially
with the same parameters as above, since the
�-coefficients are identical at one loop. �t in this case
can be modified even assuming no mixing, due to the new
Yukawa couplings y1LxHde

c
x � y2L

c
xHuex. Shifting �t

down appreciably requires no or a weak y1 coupling and
a strong y2 coupling, and a numerical example is provided
in Fig. 3.

 

FIG. 2. Same as Fig. 1, but for kY � 23=21 with one set of Lx � ux added at M � 300 GeV.

 

0.12 0.1 0.08 0.06 0.04
g3

0.06

0.04

0.02

0

δ

a

R 1.05
R 1.1
R 1.15

δ b 0

0.02

0.04

0.06

0.12 0.1 0.08 0.06 0.04
δg3

0.06

0.04

0.02

0

t

a

0.12 0.1 0.08 0.06 0.04
g3

0.06

0.04

0.02

0

δ

b

tan 50

52

54

ε3 0.04

0.02

0

0.12 0.1 0.08 0.06 0.04
δg3

0.06

0.04

0.02

0

t

b

FIG. 1. Parameter space satisfying the gauge-Yukawa unification. Contours of �b (dotted lines in Fig. 1(a)], tan� (dashed lines in
Fig. 1(b)], and �3 (dotted lines in Fig. 1(b)] are shown as a function of �t and �g3

, required for Yukawa unification (yt � yb � y�).
After finding the region for the Yukawa unification, contours of a parameter R (defined in text) are plotted in Fig. 1(a). The shaded
regions represent a region where the gauge-Yukawa unification is achieved within 5% level (R 
 1:05). Here we have fixed �� � 0:02,
�g1
� 	0:006, and �g2

� 	0:02.
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Another way to restore gauge coupling unification while
preserving Yukawa unification is to add vectorlike charged
singlets and allow fractional charges. As an example, we
again take kY � 23=21, and add two pairs of charged
singlets with mass mZ and charges �1 and �2=3. As
shown in Fig. 4, gauge-Yukawa unification is then achieved
similar to the canonical case.

In Fig. 5, we show the charge of a vectorlike charged
singlet pair with massmZ allowing unification, for kY in the
range 1=15 to 5=3. (Adding one pair with charges �Q is
equivalent at one-loop to adding multiple pairs with
charges �Qi if Q2 �

P
iQ

2
i .) Here we choose �t;b;�;gi

such that Q � 0 for kY � 5=3 and �MS
s �mZ� � 0:119.

The �0:01 uncertainty we display for �MS
s �mZ� represents

both SUSY and GUT threshold corrections.
For fractionally charged singlets, there is a constraint on

particle per nucleon of about 10	22 [18]. This requires the
particle mass M to be * 104Tr, where Tr is the reheating
temperature [19].2 Since Tr can be as low as a few MeV,
this in principle allows fractionally charged singlets as
light as allowed by accelerator searches. The mass limit
from accelerators is aroundmZ (for a review see Ref. [20]).

VIII. HIGGS MASS

We end the paper with some remarks on the Higgs mass,
where by the Higgs mass we refer to the mass of the light
CP-even scalar. Assuming that mZ � mSUSY, where
mSUSY is the characteristic supersymmetry particle mass
scale, the theory below mSUSY is the SM with threshold
effects at mSUSY. The SM Higgs quartic coupling at mSUSY

is given by

 
 �
1

4
�g2
Y � g

2
2�cos22� �

1

4

�
g2

2

cos2�W

�
cos22�; (69)

where tan� is the ratio of the two supersymmetric Higgs
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Q

FIG. 5. jQj of the vectorlike charged singlet with mass mZ
allowing unification for kY in the range 1=15 to 5=3.
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FIG. 4. Same as Fig. 1, but for kY � 23=21 with vectorlike charged singlets (one pair with Q � �1 and one pair with Q � �2=3)
added at mZ.
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FIG. 3. Same as Fig. 1, but for kY � 23=21 with one set of Lx � dx � ex added at M � 300 GeV. The Yukawa coupling y1 is
assumed negligible, while y2 is taken to be 0.7 at M, corresponding to ’ 1:5 at the GUT scale.

2Since the fractionally charged particle is not neutralized it
may have difficulty getting past the heliopause if is not accel-
erated by astrophysical processes. This may reduce the abun-
dance on earth a few orders of magnitude, but since the
abundance is very sensitive to M=Tr, the conclusion does not
change much, and conservatively we can say M * 103Tr.
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vacuum expectation values, and �W is the Weinberg angle.
Since cos2�W � kY=�1� kY� at MGUT, �W at mSUSY de-
pends on kY . The Higgs mass therefore also depends on the
value of kY , but for SUSY broken at the TeV scale the
effect is numerically insignificant, of order a few hundred
MeV. The Higgs mass predictions are therefore practically
the same as in canonical MSSM [21] and SUSY SO�10� for
the case with third-family Yukawa unification [14,22]. The
Higgs mass upper bound for mt � 172:5 GeV and
mSUSY � 1 TeV is � 130 GeV [21].

IX. CONCLUSION

We have considered a class of orbifold GUTs based on
6D N � �1; 1� and 7D N � 1 supersymmetric SU�N�
gauge theories, where the 4D gauge group is SU�3�C �
SU�2�L �U�1�Y below the compactification scale. For the
SU�5� model the only zero mode that can be introduced in
the bulk is a quark doublet, while the SU�6� model allows
gauge-Higgs unification. Finally, we can have gauge-
Yukawa unification for the third family in SU�7� or higher
rank groups. Depending on the model, the U�1�Y normal-
ization factor kY is either uniquely determined to have a
noncanonical value or lies in a continuous interval. Gauge
coupling unification and gauge-Yukawa unification can be
obtained for noncanonical kY values by adding particles to
the MSSM spectrum. As examples, we introduce a mini-
mal set of vectorlike multiplets with SM quantum numbers
or fractionally charged color singlets, assuming masses in
the TeV range. The existence of such particles will be
tested by the upcoming LHC.
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APPENDIX A: SIX-DIMENSIONAL ORBIFOLD
MODELS

We consider 6D space-time which can be factorized into
a product of 4D Minkowski space-timeM4 and the torus T2

which is homeomorphic to S1 � S1. The 6D coordinates
are x�, (� � 0, 1, 2, 3), x5, and x6. The radii for the circles
along the x5 and x6 directions are R1 and R2, respectively.
We define the complex coordinate

 z � 1
2�x

5 � ix6�; (A1)

in which case the torus T2 can be defined as C1 modulo the
equivalence classes:

 z� z� �R1; z� z� �R2ei�: (A2)

To define the orbifold T2=Z6, we require that R1 � R2 �
R and � � �=3. Then T2=Z6 orbifold is obtained from T2

as:

 �T : z�!z; (A3)

where ! � ei�=3. There is one Z6 fixed point: z � 0, two
Z3 fixed points: z � �Rei�=6=

���
3
p

and z � 2�Rei�=6=
���
3
p

,
and three Z2 fixed points: z �

���
3
p
�Rei�=6=2, z � �R=2,

and z � �Rei�=3=2.
The N � �1; 1� supersymmetry in 6D has 16 super-

charges and corresponds to N � 4 supersymmetry in
4D, so that only the gauge multiplet can be introduced in
the bulk. This multiplet can be decomposed under 4D
N � 1 supersymmetry into a vector multiplet V and three
chiral multiplets �1, �2, and �3 in the adjoint representa-
tion, where the fifth and sixth components of the gauge
field, A5 and A6 are contained in the lowest component of
�1. The SM fermions can be on the 3-branes at the Z6 fixed
points. Here, we follow the conventions in Ref. [23].

For the bulk gauge group G, we write down the bulk
action in the Wess-Zumino gauge and 4D N � 1 super-
symmetry language [24],
 

S �
Z
d6x

�
Tr
�Z

d2�
�

1

4�g2 W
�W �

�
1

�g2

�
�3@�2 	

1���
2
p �1
�2;�3�

��
� H:c:

�

�
Z
d4�

1

�g2 Tr
�
���
2
p
@yz ��y1 �e

	V�	
���
2
p
@z � �1�e

V

� @yz e	V@zeV� �
Z
d4�

1

�g2 Tr
�y2e
	V�2eV

��y3e
	V�3e

V�

�
; (A4)

where � is the normalization of the group generator, and
W � denotes the gauge field strength. From the above
action, we obtain the transformations of the vector multi-
plet

 V�x�;!z;!	1 �z� � R�TV�x
�; z; �z�R	1

�T
; (A5)

 �1�x
�;!z;!	1 �z� � !	1R�T�1�x

�; z; �z�R	1
�T
; (A6)

 �2�x
�;!z;!	1 �z� � !	1	kR�T�2�x

�; z; �z�R	1
�T
; (A7)

 �3�x
�;!z;!	1 �z� � !2�kR�T�3�x

�; z; �z�R	1
�T
; (A8)

whereR�T is nontrivial to break the bulk gauge groupG. To
preserve 4D N � 1 supersymmetry, we obtain k � 0 or
k � 1 [23].

The Z6 transformation properties for the decomposed
components of V, �1, �2, and �3 in the SU�7� models are

 V:

1 !	n1 !	n2 !	n3

!n1 1 !n1	n2 !n1	n3

!n2 !n2	n1 1 !n2	n3

!n3 !n3	n1 !n3	n2 1

0
BBB@

1CCCA� 1; (A9)
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 �1:

!	1 !	n1	1 !	n2	1 !	n3	1

!n1	1 !	1 !n1	n2	1 !n1	n3	1

!n2	1 !n2	n1	1 !	1 !n2	n3	1

!n3	1 !n3	n1	1 !n3	n2	1 !	1

0
BBB@

1
CCCA�!	1;

(A10)

 

�2:

!	1	k !	n1	1	k !	n2	1	k !	n3	1	k

!n1	1	k !	1	k !n1	n2	1	k !n1	n3	1	k

!n2	1	k !n2	n1	1	k !	1	k !n2	n3	1	k

!n3	1	k !n3	n1	1	k !n3	n2	1	k !	1	k

0
BBBBB@

1
CCCCCA

�!	1	k; (A11)

 

�3:

!2�k !	n1�2�k !	n2�2�k !	n3�2�k

!n1�2�k !2�k !n1	n2�2�k !n1	n3�2�k

!n2�2�k !n2	n1�2�k !2�k !n2	n3�2�k

!n3�2�k !n3	n1�2�k !n3	n2�2�k !2�k

0BBBBB@

1CCCCCA
�!2�k; (A12)

where the zero modes transform as 1. Note that n1 � n2 �

n3 � 0 and from Eqs. (A9)–(A12), we obtain that for the
zero modes, the 6D N � �1; 1� supersymmetric SU�7�
gauge symmetry is broken down to 4D N � 1 supersym-
metric SU�3�C � SU�2�L �U�1�Y �U�1�� �U�1��
gauge symmetry.

APPENDIX B: SEVEN-DIMENSIONAL ORBIFOLD
MODELS

We consider a 7D space-time M4 � T2=Z6 � S
1=Z2

with coordinates x�, (� � 0, 1, 2, 3), x5, x6, and x7. The
torus T2 is homeomorphic to S1 � S1 and the radii of the
circles along the x5, x6, and x7 directions are R1,R2, andR0,
respectively. We introduce a complex coordinate z for T2

and a real coordinate y for S1,

 z � 1
2�x

5 � ix6�; y � x7: (B1)

The orbifold T2=Z6 has been defined in Appendix A, while
the orbifold S1=Z2 is obtained from S1 by moduloing the
equivalent class

 �S: y�	y: (B2)

There are two fixed points: y � 0 and y � �R0.
The 7D N � 1 supersymmetry has 16 supercharges

corresponding to N � 4 supersymmetry in 4D, and only
the gauge multiplet can be introduced in the bulk. This

multiplet can be decomposed under 4D N � 1 supersym-
metry into a gauge vector multiplet V and three chiral
multiplets �1, �2, and �3, all in the adjoint representation,
where the fifth and sixth components of the gauge field, A5

and A6, are contained in the lowest component of �1, and
the seventh component of the gauge field A7 is contained in
the lowest component of �2.

We express the bulk action in the Wess-Zumino gauge
and 4D N � 1 supersymmetry notation [24]
 

S �
Z
d7x

�
Tr
�Z

d2�
�

1

4�g2 W
�W � �

1

�g2

�
�3@z�2

��1@y�3 	
1���
2
p �1
�2;�3�

��
� H:c:

�

�
Z
d4�

1

�g2 Tr
�
���
2
p
@yz ��y1 �e

	V�	
���
2
p
@z � �1�eV

� @yz e	V@zeV � �
���
2
p
@y � �y2 �e

	V�	
���
2
p
@y � �2�eV

� @ye	V@yeV � �y3e
	V�3eV�

�
: (B3)

From the above action, we obtain the transformations of
the vector multiplet:

 V�x�;!z;!	1 �z; y� � R�TV�x
�; z; �z; y�R	1

�T
; (B4)

 �1�x�;!z;!	1 �z; y� � !	1R�T�1�x�; z; �z; y�R	1
�T
; (B5)

 �2�x�;!z;!	1 �z; y� � R�T�2�x�; z; �z; y�R	1
�T
; (B6)

 �3�x�;!z;!	1 �z; y� � !R�T�3�x�; z; �z; y�R	1
�T
; (B7)

 V�x�; z; �z;	y� � R�SV�x
�; z; �z; y�R	1

�S
; (B8)

 �1�x
�; z; �z;	y� � R�S�1�x

�; z; �z; y�R	1
�S
; (B9)

 �2�x
�; z; �z;	y� � 	R�S�2�x

�; z; �z; y�R	1
�S
; (B10)

 �3�x�; z; �z;	y� � 	R�S�3�x�; z; �z; y�R	1
�S
; (B11)

where we introduce nontrivial transformations R�T and R�S
to break the bulk gauge group G.

The Z6 � Z2 transformation properties for the decom-
posed components of V, �1, �2, and �3 in the SU�8�
model are given by

 V:

�1;�� �!	n1 ;�� �!	n1 ;	� �1;	� �!	n2 ;��
�!n1 ;�� �1;�� �1;	� �!n1 ;	� �!n1	n2 ;��
�!n1 ;	� �1;	� �1;�� �!n1 ;�� �!n1	n2 ;	�
�1;	� �!	n1 ;	� �!	n1 ;�� �1;�� �!	n2 ;	�
�!n2 ;�� �!n2	n1 ;�� �!n2	n1 ;	� �!n2 ;	� �1;��

0
BBBBB@

1
CCCCCA� �1;��; (B12)
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 �1:

�!	1;�� �!	n1	1;�� �!	n1	1;	� �!	1;	� �!	n2	1;��
�!n1	1;�� �!	1;�� �!	1;	� �!n1	1;	� �!n1	n2	1;��
�!n1	1;	� �!	1;	� �!	1;�� �!n1	1;�� �!n1	n2	1;	�
�!	1;	� �!	n1	1;	� �!	n1	1;�� �!	1;�� �!	n2	1;	�
�!n2	1;�� �!n2	n1	1;�� �!n2	n1	1;	� �!n2	1;	� �!	1;��

0BBBBB@

1CCCCCA� �!	1;��; (B13)

 �2:

�1;	� �!	n1 ;	� �!	n1 ;�� �1;�� �!	n2 ;	�
�!n1 ;	� �1;	� �1;�� �!n1 ;�� �!n1	n2 ;	�
�!n1 ;�� �1;�� �1;	� �!n1 ;	� �!n1	n2 ;��
�1;�� �!	n1 ;�� �!	n1 ;	� �1;	� �!	n2 ;��
�!n2 ;	� �!n2	n1 ;	� �!n2	n1 ;�� �!n2 ;�� �1;	�

0BBBBB@

1CCCCCA� �1;	�; (B14)

 �3:

�!;	� �!	n1�1;	� �!	n1�1;�� �!;�� �!	n2�1;	�
�!n1�1;	� �!;	� �!;�� �!n1�1;�� �!n1	n2�1;	�
�!n1�1;�� �!;�� �!;	� �!n1�1;	� �!n1	n2�1;��
�!;�� �!	n1�1;�� �!	n1�1;	� �!;	� �!	n2�1;��
�!n2�1;	� �!n2	n1�1;	� �!n2	n1�1;�� �!n2�1;�� �!;	�

0
BBBBB@

1
CCCCCA� �!;	�: (B15)

From Eqs. (B12)–(B15), we obtain that the 7D N � 1 supersymmetric SU�8� gauge symmetry is broken down to 4D
N � 1 supersymmetric SU�3�C � SU�2�L �U�1�Y �U�1�� �U�1�� �U�1�� gauge symmetry [2].
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