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We construct a family of supersymmetric solutions in time-dependent backgrounds in supergravity
theories. One class of the solutions are intersecting brane solutions and another class are brane solutions in
pp-wave backgrounds, and their intersection rules are also given. The relation to existing literature is also
discussed. An example of D1–D5 with linear null dilaton together with its possible dual theory is briefly
discussed.
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I. INTRODUCTION

There has been much interest in time-dependent super-
symmetric solutions of supergravities in ten- and 11-
dimensional spacetime because of their applications to
cosmology and to our understanding of spacelike singular-
ities [1–5]. Among others, solutions with the linear dilaton
background in the null direction with 1

2 supersymmetry are
proposed to describe the singular region in the spacetime
without difficulty [6], and various extensions have been
considered [7–26]. For a detailed review of the big-bang
models in string theory see [27]. It has been argued that it is
possible to map the theory near the singularity at a very
early time to the dual matrix theory which allows us to
discuss the behaviors of the solution in perturbative pic-
ture, whereas in the far future it can be thought of as a
perturbative string theory with weak string coupling. It is
the matrix degrees of freedom but not the perturbative
string states that describe the physics near the singularities,
but later the spacetime picture in terms of the closed strings
becomes relevant. Furthermore the celebrated AdS/CFT
duality has also been used to argue that the dual field theory
is a time-dependent supersymmetric gauge theory on the
boundary of the AdS space in other backgrounds. In view
of these interesting developments in the study of time-
dependent solutions in string theory, it is important to
explore further examples of supersymmetric solutions of
string and supergravity theories in time-dependent
backgrounds.

On the other hand, D-branes can probe the nonperturba-
tive dynamics of the string theory and they have been used
to study various duality aspects of string theory. A system-
atic derivation of the general D-brane solutions in the pp-
wave backgrounds has been given in [28]. It is thus inter-
esting to find if we can have such brane solutions in time-
dependent backgrounds with time-dependent dilaton. In
fact, D3-brane solutions have been found and discussed
in [17,19] and other single brane solutions in [24,26], but it

is not known if there exist further general intersecting
brane solutions of this type in a time-dependent setup.

Motivated by the recent surge of interest in finding out
time-dependent solutions in supergravity and speculation
on the dual field theory in this setup, in this paper we
present a general class of intersecting brane solutions in
time-dependent supersymmetric backgrounds with and
without pp-wave by using the method developed in
Ref. [28,29]. We start with a general ansatz for the metric
and solve for the field equations of the supergravity. We
also derive the intersection rules for the branes in this
background. Some examples of dual field theories are
also discussed briefly.

The rest of the paper is organized as follows. In Sec.. II
we present the classical solution of supergravity by directly
solving the equations of motion. For simplicity, we take the
factorized ansatz for the metric functions as the product of
usual r-dependent part and the time-dependent part. This
way of taking the ansatz has a clear advantage in that the
supergravity equations of motion essentially have two
different contributions coming from the r-dependent part
and a differential equation involving only time derivatives.
We then present three kinds of solutions. We further show
that special cases of our general solutions reproduce known
solutions. We also write explicitly a particular example of
intersecting branes of D1–D5 system with a linear dilaton
and make some comments about the dual field theory. In
Sec. III we present our conclusions and outlook.

II. SUPERGRAVITY SOLUTION

The low-energy effective action for the supergravity
system coupled to dilaton and nA-form field strength is
given by

 I �
1

16�GD

Z
dDx

�������
�g
p

�
R�

1

2
�@��2

�
Xm
A�1

1

2nA!
eaA�F2

nA

�
; (1)

where GD is the Newton constant in D dimensions and g is
the determinant of the metric. The last term includes both
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RR and NS-NS field strengths and aA �
1
2 �5� nA� for RR

field strengths and aA � �1 for NS-NS 3-form. We put
fermions and other background fields to be zero.

From the action (1), one can derive the field equations/
Bianchi identities
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 @��F�1����nA
� � 0: (5)

In this paper we consider the case in which the metric
functions depend on u and r. Specifically we take the
metric ansatz

 ds2
D � e2�u0�v0���2dudv� K�u; y�; zi�du

2�

�
Xd�2

��1

e2�u��v��dy2
� � e2�B�C��dr2 � r2d�2

~d�1
�;

(6)

where D � d� ~d� 2, the coordinates u, v and y�, �� �
1; . . . ; d� 2� parameterize the d-dimensional world-
volume directions and the remaining ~d� 2 coordinates r
and angles are transverse to the brane world-volume
(sometimes denoted also by the orthogonal coordinates
zi), d�2

~d�1
is the line element of the �~d� 1�-dimensional

sphere. Here u0, u� and B are assumed to be functions of r
only, and v0, v� and C are those of u only. The dilaton� is
also taken as a sum of u-dependent and r-dependent terms:
� � �r ��u. Our ansatz includes more general solutions
than those in [17,19].

For the field strength backgrounds, we take

 FnA � e2fA�u�E0A�r�du ^ dv ^ dy
�1 ^ � � � ^ dy�qA�1 ^ dr;

(7)

where nA � qA � 2. Throughout this paper, the dot and
prime denote derivatives with respect to u and r, respec-
tively. Equation (7) is an electric background and we could
also consider magnetic background, but that is basically
the same as the electric case with the replacement

 g�� ! g��; Fn ! ea� 	 Fn; �! ��: (8)

This is due to the S-duality symmetry of the original
system (1). So we do not have to consider it separately.

The NS-NS 3-form responsible for the off-diagonal
component of the metric is separately written as

 Huij � e2g�u�@�ibj�; (9)

such that it satisfies the Bianchi identity. Here the indices i,
j denote the directions transverse to the branes (zi, zj or r
and angles). The field equation for this NS-NS 3-form
leads to

 @�ibj� � e�U�2�u0�v0�B�C����ij; (10)

where �ij is constant and U is defined by

 U � 2u0 �
Xd�2

��1

u� � ~dB: (11)

There is no restriction on the u-dependent part of bj from
the field equation, but we have chosen it like Eq. (10) as our
convention.

With our ansatz, the Einstein equations (2) reduce to
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where SA, TA and ����A are defined by

 SA � exp
�
�AaA�r � 2

X
�2qA
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�
; TA � exp

�
�AaA�u � 2

X
�2qA
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�
; (17)

 ����A �
�
D� qA � 3
��qA � 1�

for
�
y� belonging toqA-brane
otherwise

; (18)

respectively, the sum of � runs over the world-volume of
the qA-brane (u, v and �qA � 1�y� coordinates, and soP
�2qAu� � 2u0 �

PqA�1
��1 u� for example), and �A �

�1��1� is for electric (magnetic) backgrounds. The
Eqs. (12)–(16) are the uv, uu, ��, rr and ab components
of the Einstein equations (2), respectively. The dilaton
equation (3) and the remaining Eqs. (4) and/or (5) yield

 e�U�eU�0�0 � �
1

2

X
A

�AaASATA�E
0
A�

2; (19)

 �r~d�1SAE0A�
0 � 0; (20)

where the dilaton field is written as a sum of r- and
u-dependent terms: � � �r ��u.

The field equations (12)–(16), (19), and (20) are sim-
plified considerably by imposing the condition

 U � 0: (21)

It is known that under this condition, all the supersymmet-
ric intersecting brane solutions can be derived [29].

Now the dilaton equation (19) gives

 �00 �
�~d� 1�

r
�0 � �

1

2

X
A

�AaASATA�E0A�
2; (22)

In order to cancel the u-dependence in Eq. (22), we should
set

 4fA � ��AaA�u � 2
X
�2qA

v�; (23)

namely TA � 1. Then the field equation for the dilaton
reduces to the one discussed in [28].

Thus, for our ansatz that the exponents of metric func-
tions, the dilaton and other backgrounds are simply sums of
terms dependent on u and r, we see that the Einstein
equations and other field equations separate into terms
dependent on u and r. The metric corresponds to the
‘‘warped form’’ of supersymmetric time-dependent solu-
tions and static branes, giving a generalization of D3-
branes in time-dependent backgrounds in Refs. [17,19].
So these parts in the field equations should be separately
satisfied. The r-dependent equations are simply those of
Ref. [28] for static branes in the pp-wave backgrounds

except for Eq. (13). These r-dependent equations are al-
ready solved in Ref. [28].

For Eq. (13), the u-dependent part should balance with
each other:
 

�
Xd�2

��1

�v� � �~d� 2� �C�
Xd�2

��1

_v2
� � �~d� 2� _C2

� 2 _v0

�Xd�2

��1

_v� � �~d� 2� _C
�
�

1

2
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2; (24)

which is the only constraint that the u-dependent terms
should satisfy.

Here we note that there are three classes of solutions
depending on whether we have the plane-wave function K
or not and which coordinate dependence it has. We now
discuss these solutions separately.

A. Brane solutions in time-dependent backgrounds

If we do not have the function K, its source should be
zero:

 bi � 0; (25)

which is enough to eliminate the u-dependence from
Eq. (13), and the only condition that v� should satisfy is
Eq. (24). The resulting equations for r-dependent factors
are the same as the static branes [29], and we find the
solutions are simply given by
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D �
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(26)

where �A and 	���A are defined by
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(27)

respectively, and �u should be determined by the relation
(24). Here and in what follows, HA � 1� QA

r~d represent

harmonic functions in ~d� 2 dimensions. These give the
generalization of the class of solutions discussed in
Ref. [19], in which D3-brane solutions are given with C �
0. Our solutions generalize these to orthogonally intersect-
ing branes with nonvanishing C.

B. Branes in plane-wave backgrounds

If K does not depend on y�, @2
�K term in Eq. (13) is

absent. Considering Eq. (10), we find that the condition

 4g�u� � 2�v0 � C� ��u; (28)

is enough to eliminate u-dependence from Eq. (13). It is
then easy to give the solutions, following Ref. [28].’’

The result is
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where 	���A is the same as in Eq. (27) and the function K is
defined by

 ��
~d�2�K � �

1

2
��ij�

2
Y
A

HlA
A ; (30)

where

 lA �
4�qA � 1� � ��AaA � 2��D� 2�

�A
;

and �u should be determined by the relation (24).
In Ref. [19], D3-brane solutions with�ij � 0 andC � 0

are given. There K is taken to depend only on u, in which
case we see that Eq. (30) is trivially satisfied and K can be
an arbitrary function of u, in agreement with Ref. [19]. The
same solutions in different coordinate system are also
given in [17]. Our solutions, when restricted to single
branes, are still more general than those.

C. Branes in more general wave backgrounds

If we have the general function K describing waves, we
must have

 4g�u� � 2�v0 � C� ��u; v� � C; (31)

in order to get rid of u-dependence from Eq. (13). Then we
see that Eq. (24) reduces to

 � �D� 2�� �C� _C2 � 2 _v0
_C� � 1

2�
_�u�

2: (32)

and the remaining condition from Eq. (13) precisely gives
the corresponding one in Ref. [28].

The determination of the remaining functions are essen-
tially the same as [28], so we do not repeat the details, but
simply present the final result:
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where 	���A is the same as in Eq. (27) and the function K is
defined by
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respectively, and �u should be determined by the relation
(24). The function K is essentially the same as given in
Ref. [28]. For a single DqA-brane, Eq. (34) admits a
solution of the form
 

K � c�
Q
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��ij�

2

32
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X
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�
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�for ~d � 2� (35)

and
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Q
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�
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2
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�
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X
�

y2
� � �qA � 1�QA lnr

�
;

�for ~d � 2�: (36)

We also have the intersection rules for the branes [28]. If
qA-brane and qB-brane intersect over �q�
 qA; qB� dimen-
sions, this gives
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�qA � 1��qB � 1�

D� 2
� 1�

1

2
�AaA�BaB: (37)

For D-branes �AaA �
3�qA

2 , and we get
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qA � qB

2
� 2: (38)

The results presented here are the generalization of the
intersection rules already discussed in the literature [29] to
the supersymmetric intersecting branes in time-dependent
backgrounds.

D. Supersymmetry

In the time-dependent background without the NS-NS
flux, the amount of unbroken supersymmetry depends on
the condition 	u� � 0, and the brane supersymmetry con-
dition. Usually these two conditions are two independent
conditions, and one needs to impose them both on the
gravitino and the dilatino variations. They are compatible
with each other, but the unbroken supersymmetry is 1=2
compared with the usual static brane solutions. So if �ij �

0, we have 1=2 supersymmetry for no branes, 1=4 super-
symmetry for single branes as discussed in Refs. [17,19],
1=8 supersymmetry for 2 orthogonally intersecting branes
and so on.

In the presence of the NS-NS flux Huij, the supersym-
metry variations normally restrict the form of the flux for
getting a solution of the killing spinor equation of motion.
As it was argued in [28], this choice further breaks 1=2 of
the remaining supersymmetry.

To get an idea how the solutions look like, let us consider
intersecting D1–D5 system without �ij (the case in
subsection II B). The supergravity solution is given by
 

ds2 � H��3=4�
1 H��1=4�

5 e2v0�u���2dudv� K�u�du2�

�

�
H1

H5

�
1=4 X4

��1

ev��u�dy2
�

�H1=4
1 H3=4

5 e2C�u��dr2 � r2d�2
3�;

� � ln
�
H1

H5

�
1=2
��u:

(39)

We see that the solution resembles the ordinary intersect-
ing branes, and the difference is the presence of time-
dependent factors multiplying the metric and terms appear-
ing in the dilaton and forms such as (7). In the present

intersecting branes in a wave background with�ij � 0, the
amount of unbroken supersymmetry is four, as this pre-
serves 1=8 of the full type IIB supersymmetry, correspond-
ing to N � 2 supersymmetry in 2 dimensions. If the metric
depending on the light-cone coordinate u are finite, the
near horizon geometry is AdS3 � S3 �M4. As argued in
Ref. [30], the corresponding dual field theory would be
two-dimensional conformal field theory, now in time-
dependent backgrounds.

The D1–D5 system has a singularity (big bang) at
v0�u� ! �1, as some components of the metric vanish
and we can easily see that the curvature components also
blow up. For example, let us choose the dilaton and metric
functions linear in the coordinate u: � � �au�a > 0�,
v0�u� � v��u� � bu, C�u� � cu. The condition (24) tells
us that a2 � 16c2 � 8�b� c�2. For the simple choice c �
K � 0 and b � a=2

���
2
p

, there appears a singularity in the
infinite past in the solution (39).

III. CONCLUDING REMARKS

Motivated by the recent interest in supersymmetric time-
dependent solutions in supergravity with their possible
application to the singularities in our spacetime, we have
derived a rather general class of solutions with and without
pp-wave. Our solutions reproduce many of the known
time-dependent solutions but are more general than those
already known. These solutions have time-dependent null
dilaton which is related to the string coupling. So the string
theory has time-dependent coupling.

According to the AdS/CFT correspondence, it is ex-
pected that these solutions have dual description in terms
of super Yang-Mills theories. It would be very interesting
to further explore the nature of these solutions, especially
their singularity structures, and their field theory duals. An
interesting question is whether and how the field theory
dual gives well-defined description of the behavior of the
solutions close to the singularities. It would also be im-
portant to find more cosmological applications of these
solutions and try to understand the nature of the spacelike
singularities.
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