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Reparametrizing the Skyrme model using the lithium-6 nucleus
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The minimal-energy B = 6 solution of the Skyrme model is a static soliton with D,; symmetry. The
symmetries of the solution imply that the quantum numbers of the ground state are the same as those of the
lithium-6 nucleus. This identification is considered further by obtaining expressions for the mean charge
radius and quadrupole moment, dependent only on the Skyrme model parameters e (a dimensionless
constant) and F, (the pion decay constant). The optimal values of these parameters have often been
deliberated upon, and we propose, for B > 2, changing them from those which are most commonly
accepted. We obtain specific values for these parameters for B = 6, by matching with properties of the
lithium-6 nucleus. We find further support for the new values by reconsidering the a-particle and deuteron

as quantized B = 4 and B = 2 Skyrmions.
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I. INTRODUCTION

A nonlinear theory was put forward by T. H.R. Skyrme
in 1961 [1]. It sets out to describe a low-energy effective
theory of QCD, and the Lagrangian of the theory is defined
in terms of pion fields. The most successful and promising
physical interpretation of the theory is as a description of
atomic nuclei. The Skyrme model admits topological soli-
ton solutions, falling into sectors labeled by an integer-
valued topological degree. This quantity is identified with
baryon number. A quantized Skyrmion of topological
charge B is interpreted as a nucleus with baryon number B.

To date, relatively little work has been done on the
electromagnetic properties of quantized Skyrmions and
their comparison to known experimental results. Two pa-
pers by Braaten and Carson [2,3] consider the electrostatic
properties of the B = 2 Skyrmion, and their comparison to
the experimentally determined properties of the deuteron.
This analysis was extended in [4] to account for the softest
vibrational modes of the B = 2 Skyrmion, the quantization
of which resulted in an accurate prediction of the mean
charge radius of the deuteron.

In this paper we perform a similar analysis for the B = 6
Skyrmion. However, performing a quantization of all pos-
sible vibrational modes for B > 2 is technically very diffi-
cult. We therefore consider rescaling the Skyrme model
parameters (introduced in the next section), while sup-
pressing the vibrational modes, in order to calculate ob-
servables that more closely correspond to experiment.

The outline of the paper is as follows. In the following
section we present the Skyrme model and, following [5],
give an expression for the electromagnetic current.
Section III provides an overview of the rational map ansatz
for Skyrmions [6], which is used in later sections.
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Section IV discusses the fermionic quantization of solitons,
as applied to the Skyrme model, recalls the Finkelstein-
Rubinstein (FR) constraints [7], and reviews Krusch’s
method of determining the FR constraints [8]. In Sec. V
we recall the semiclassical method of soliton quantization,
following [2], in which only the translational, rotational,
and isorotational collective coordinates are considered. In
Sec. VI this quantization of the B = 6 Skyrmion is per-
formed, and we find that the symmetries of the minimal-
energy classical solution, via the FR constraints, ensure
that the lowest-lying quantized state has spin 1 and isospin
0, the quantum numbers of the lithium-6 nucleus. In
Sec. VII we present an expression for the mean charge
radius of the quantized B = 6 Skyrmion. Section VIII
presents an expression for the quadrupole moment of the
quantized B = 6 Skyrmion. The reparametrization of the
Skyrme model in the B = 6 sector is considered in Sec. IX,
and the mean charge radius and quadrupole moment of the
quantized B = 6 Skyrmion are explicitly calculated and
compared to experiment. In Sec. X we reconsider the B =
2 and B = 4 Skyrmions in the light of the reparametriza-
tion. We provide a conclusion in Sec. XI. The calculations
presented in this paper support our interpretation of the
lithium-6 nucleus as the lowest-lying quantum state of the
B = 6 Skyrmion. They confirm that if one wishes to apply
the Skyrme model to nuclei, then a reparametrization is
desirable.

II. THE SKYRME MODEL

The Skyrme model is a nonlinear theory of pions in three
spatial dimensions, defined in terms of an SU(2)-valued
scalar, the Skyrme field [1,9]. It provides a low-energy
effective theory of QCD, becoming exact as the number
of quark colors becomes large [10,11]. Its topological
soliton solutions, Skyrmions, can be interpreted as nucle-
ons and nuclei.
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The SU(2) Skyrme model has the Lagrangian density
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where U(r, x) is the Skyrme field, F, is the pion decay
constant, e is a dimensionless parameter and m, is the pion
mass.

It is helpful to use energy and length units of F,/4e and
2/eF . respectively. In terms of these Skyrme units the
Skyrme Lagrangian becomes

L:f { S TH(R,R®) + < TH(R,,, R,TRY, R*)

+ m? Tr(U — 12)}d3x, (2)

where we have introduced the 11(2)-valued current R,, =
(0,U)U™", and defined m = 2m,/eF .

The scalar field U, at a fixed time, is a map from R3 into
§3, the group manifold of SU(2). However, the boundary
condition U — 1, at spatial infinity implies a one-point
compactification of space, so that topologically U: S3 —
S3, where the domain S° is identified with R3 U {oo}. Thus,
configurations U obeying this boundary condition fall into
topological sectors labeled by their topological degree

B= ] By(x)d*x (3)

|
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The electromagnetic current is determined as

1
Tule) = 1672
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where

1
B,(x) = a2 Cuvap THO"UU™ yeyuu—toPUU™Y. @)

The degree B, which takes integer values, is identified with
baryon number. We refer to B, as the baryon density. The
minimal-energy, static solutions of the field equation for
each nonzero baryon number we call Skyrmions.

The internal symmetry of the Skyrme model is the
global isospin symmetry U — AUA!T where A is an
SU(2) matrix. This is generated by the infinitesimal trans-
formations U — U + ie[rp, U], where 7,0 p=1,2,3are
the Pauli matrices. To couple electromagnetism to the
Skyrme model, the U(1) symmetry generated by the third
component of isospin is gauged, with the derivatives in (1)
and (2) replaced by the covariant derivative D, U =
0, U —ieyA,[Q, U], where Q = %73 + % 1, is the charge
matrix of quarks. In the presence of electromagnetism, the
form of the baryon current density given previously is
unsatisfactory as it is not gauge invariant under

Ux) — Ux) + iega(x)[Q, U], A, — A, +0,a

&)

The gauge invariant, conserved generalization is given by

(5]

{TrU '9"UU '9cUU 0P U + 3iegA” TrQ(U '0*UU 10BU — 9°UU ' 9PUU™Y)

(6)

€uvap TrOQ(”UU ' 0*UUOPUU! + U™19"UU 1 0*UU ' 9PU)

: 1 I
+ 22 €, apd” AT Q20BUU™! + QXU 0P + = Q0BUQU™! — 2 QUQIFU L + B(x).  (7)
4 2 2

We are interested in static or slowly varying Skyrme
fields, quantized to have isospin zero. In this case the
electromagnetic current simplifies. It can be shown, assum-
ing I3(x) = 0, Ag # 0, A = 0 and 9yA, = 0, that

1 1

1
2 By = 24 5 €0ijkEpar Y1 Vi Vi = 5 detl’,  (8)

J,
0~ 4ar

where the matrix I" has elements y? defined by
0,U) U = =iyl T, 9)

Therefore, the electric charge density is half the original
baryon density.

ITII. THE RATIONAL MAP ANSATZ

The rational map ansatz [6] applies the topological
notion of suspension, using a rational map from §> — §?
to construct an approximate Skyrmion, a map from R? —
§3. It exhibits a nonlinear separation of variables, separat-
ing the angular and radial dependence of the Skyrme field.
One identifies the domain S? with concentric spheres in R?,
and the target S? with spheres of latitude on S°. A point
in R3 can be denoted by its coordinates (r, z), where r is
the radial distance from the origin and z specifies the
direction from the origin, a point on the unit sphere. Via
stereographic projection, the complex coordinate z can
be identified with conventional polar coordinates by
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z = tan(A/2)e'?. Equivalently, the point z corresponds to
the unit vector

l'lZ = lelz(z + Z Z(Z - Z)r 1= |Z|2)’ (10)

and conversely

— (nz)l + i(nz)Z

1+ m,); (4o

The ansatz for the Skyrme field depends on a rational
map R(z) = p(z)/q(z), where p and ¢ are polynomials in
z, and a radial profile function f(r). The value of the
rational map R is associated with the unit vector

(R+ R, i(R—R),1—|R]?. (12)

1
n = —
R T+ RP?

The ansatz is
U(r, z) = exp(if(r)ingg - 7), (13)

with f(r) satisfying f(0) = & and f(o0) = 0.

The degree of the rational map, N, is the greater of the
algebraic degrees of the polynomials p and ¢g. N is also
equal to the topological degree of the map R viewed as a
map from S?> — S2. The baryon density of the ansatz is

given by
—frsinf\2/1+ |z]* | dR |\2
B =—=— — 1], 14
o) 27r2< r ><1~|—|R|2 dz ) (14
and so the baryon number is given by
—fsinf\2/ 1+ |z|* |dR |\2 2idzdZ
B=|55\— 2o ) e
2w\ r 1+ |R|? | dz 1+ zI%)
15)

where 2idzdz/(1 + |z|*)? is equivalent to the usual 2-
sphere area element sinfdfdd¢. It is straightforward to
show that B = N.

An SU(2) Mobius transformation M; of R corresponds
to an isorotation; an SU(2) Mobius transformation M, of z
corresponds to a rotation in physical space. They induce
the following transformation of the rational map R(z):

R(z) = R(z) = M,(R(M,(2))). (16)

j

The energy for a field of the form (13) is

sin? f

£- [ 28 s (LU o8

dz

1+ |z?
1+ |RJ?

sin*f /1 + |z|> | dR | \*
+ — +2m%(1 —
rt <1 +|RI? | dz l) m Cosf)}
2idzdz
2, 17
a+m a7

which can be simplified to
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E=4r /:<r2f'2 + 2Bsin2f(f2 + 1) + JSiIrljf
+2m?r3(1 — cosf))dr. (18)
Here I denotes the purely angular integral
T e [E ) T o

which only depends on the rational map R. Both B and 7,
and hence the energy E, are invariant under the transfor-
mations (16).

To minimize E one first minimizes J over all maps of
degree B. The profile function f may then be found by
solving the second order ODE that is the Euler-Lagrange
equation for the expression (18) with B and I as fixed
parameters:

(r* + 2Bsin’*f)f" + 2rf' + sin2f<3(f/2 1) - Isin2f>

2

— m?r?sinf = 0. (20)

Note that the inclusion of the pion mass term in the
Lagrangian density has no effect on the rational map, but
results in the profile function being slightly modified,
leading to higher energies than in the massless case. The
optimized rational map ansatz has been shown to give a
good approximation to the true Skyrmion for baryon num-
bers up to B =7 (and for a larger range of B in the
massless pion case) [6,12]. For B = 8, 9 and beyond, and
m of order 1, the structure of the minimal-energy
Skyrmions differs qualitatively from that given by the
rational map ansatz [13,14].

IV. FERMIONIC QUANTIZATION OF THE
SKYRME MODEL

We recall that the configuration space C of the Skyrme
model has connected components Cg, which are the homo-
topy classes, labeled by baryon number. The fundamental
group of each component satisfies 77, (Cz) = Z,, and there-
fore all Cy admit double-valued functions. However, these
double-valued functions can be defined as single-valued
functions on Cp, the universal covering space of Cp.

We write ¢, ¢’ for different points of Cp covering the
point ¢ € Cp. The condition that § # g’ implies that a path
from ¢ to ¢’ projects to a noncontractible loop in Cp.
Double-valued functions ¥ on Cp are thought of as func-
tions on C B!

P: Cp— C, V= P(g). (21)

Fermionic quantization requires that the wavefunction is
defined on Cp and satisfies

V(g) = —¥(q). (22)
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Let a rational map R have the following symmetry, for
some particular M| and M,

R(z) = M (R(M,(2))), (23)

where M, corresponds to an isorotation by #; around n;
and M, corresponds to a rotation by 6, around n,. For
0, + 2k for k € Z, M, only leaves the antipodal points

i (my); + i(ny), _ (my), +i(ny),
2 1 + (n,); 1 — (ny);
(24)

and z_, =

fixed. Similarly, M, only leaves R..,,, fixed, where R, are

defined similarly as above. Therefore, for the symmetry
R(z) = M,(R(M,(z))) to hold, we have

R(z-n,) = Ren,. 25)

By reversing the signs of n; and 6, if necessary, we may set
J

+1 if the loop induced by the symmetry is contractible,

AFR = { —1 otherwise.

We note the following general result, proved in [8]:

The value of ypgr for a given symmetry of a rational map
only depends on the isorotation angle #; and the rotation
angle 6,, where the angles are defined such that R(z_,,) =
Ry, and is given by

B
xR = (D%, WMRWEE;Q@—m) (29)

V. SEMICLASSICAL COLLECTIVE COORDINATE
QUANTIZATION

The Skyrme Lagrangian is invariant under the Poincaré
group of (3 + 1)-dimensional space, SO(3) isorotations
and some discrete parity transformations, which will not
be considered here. Similarly, the space of static solutions,
that is, configurations which minimize the energy func-
tional, is invariant under the Euclidean group and isorota-
tions, E5 X SO(3)!. By acting with the latter symmetry
group on a static Skyrmion U, we generate a set of new
solutions:

U(x) = A Uy(D(Ay)(x — X))A], (30)

where A;, A, are SU(2) matrices and D(A,); =
% Tr(1,A, 7 jA;r ) is the associated SO(3) rotation. The clas-
sical degeneracy of the above solutions is removed when
the theory is quantized. We think of the parameters X(z),
A,(t) and A,(7) as dynamical variables and then quantize
the resulting dynamical system according to standard ca-
nonical methods [2]. This is the collective coordinate
quantization of the Skyrmion U,. As we shall only be
concerned with the computation of spin and isospin, we
shall ignore the translational degrees of freedom and quan-
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R(z—p,) = Ry, (26)

Now consider the Skyrme field configuration defined by
the rational map ansatz, using this rational map and some
profile function f, and assume the quantum wavefunction
is nonvanishing for this field configuration. The symmetry
gives rise to a loop in configuration space (one thinks of
this as a loop in Cy by letting the isorotation angle increase
from O to 8, with the rotation angle increasing from 0O to
6,). This leads to the following constraint on the wave-
function:

eifmaL pifmi K|y — 3o 1), (27)

where L. and K are the body-fixed spin and isospin opera-
tors, respectively, and the Finkelstein-Rubinstein (FR)
phase ypr enforces the fermionic quantization condition:

(28)

[
tize the solitons in their zero-momentum frame. We shall
also ignore possible deformations of the Skyrmion U,
which lead to vibrational excitations.

Our  dynamical ansatz is then U(x, 1) =
A, (HUy(D(A,(1)x)A, (¢)t. Inserting this into the Skyrme
Lagrangian, one obtains the kinetic contribution to the total
energy as

1 1
T'=3aUya; = aWyb;+5b;Vib;, (D)
where
aj=—iTrrAfA,, b, =iTrrA,Al (32)

and the inertia tensors U;;, W;; and V;
tionals of Uy(x), are given by [8]:

j» expressed as func-

1
U, = - [ Tr<Tl~Tj + ;R TR, Tj]>d3x, (33)
1
Wij = feﬂmxl Tr(TiRm + Z[Rk, Ti:”:Rk! Rm]>d3x, (34)

1
Vij=~ [Gilmejﬂpxlxn Tr(Rme + Z[Rk’ R,,]
X [Ry, RP]>d3x’ (35)

where R;, = (9;Uq)U; ! is the right invariant $1(2) current
defined previously and

T, = 57 UslUy ! (36)

is also an 311(2) current. The potential energy, in terms of
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collective coordinates, is just a constant, the static mass of
the Skyrmion.

The quantized momenta corresponding to b; and q;
become the body-fixed spin and isospin angular momenta
L; and K; satisfying the $11(2) commutation relations [2].
The usual space-fixed spin and isospin angular momenta J;
and /; are related to the body-fixed operators by
Ji = _D(Az)iTij, I, = —D(A));K;.  (37)
We also have J> = L2, I? = K. Thus the operators J, L,
I and K form the Lie algebra of SO(4);; ® SO(4); «.
Their action on A; and A, is given by
[Ii: Al] =

1 1
[Ji’ Az] = EAZTi’ - ETiAl’ (38)

[L;,A] = — %TiAb [Ki, A] = %Alﬂ'; (39)
with all other commutators between momenta and coordi-
nates zero.

A basis for the Hilbert space of states is given by
|J, J3, L3> ® |I, 13, K3>, with —J = J3, L3 =Jand —I =
Iy, K3 =1. Concretely, |J,Js,L3) and |I, 15, K3) are
Wigner functions of the Euler angles parametrizing A,
and A; respectively. The ground states are the states with
the lowest values of J and / that are compatible with the FR
constraints arising from the symmetries of the given
Skyrmion. The allowed values of L3 and K3 are also con-
strained by the symmetries of the Skyrmion. In what
follows, the arbitrary third components of the space and
isospace angular momenta J3 and /3 are omitted.

Recall that physical states satisfy [7]

2TL|) = 27K |y = (—)B|W),  (40)

so even B implies that the spin and isospin, J and I, are
integral, and odd B implies that they are half-integral.

For general B > 1, the moments of inertia are larger for
rotations than for isorotations. Since these appear in the
denominator of the quantum Hamiltonian, the quantum
states of lowest energy are those with minimal isospin,
and spin excitations of Skyrmions require less energy than
isospin excitations. In particular, for even B the ground
state has zero isospin, but (because of the FR constraints)
not necessarily zero spin. These observations match what
is seen experimentally for a large range of nuclei up to
baryon number about 40.

VI. QUANTIZATION OF THE B = 6 SKYRMION

The minimal-energy B = 6 Skyrmion, shown in Fig. 1!
has D,,; symmetry, and is well approximated by the ra-
tional map ansatz. We recall that the dihedral group Dy is
obtained from C,, the cyclic group of order 4, by the

'"Thanks to P.M. Sutcliffe, University of Durham, UK, for
providing the picture
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FIG. 1. Baryon density isosurface (to scale) of the B =06
Skyrmion.

addition of a C, axis which is orthogonal to the main Cy
symmetry axis. The group D, is extended to D,; by
including a reflection in a plane which contains the main
symmetry axis and bisects a pair of the C, axes obtained by
applying the C, symmetry to the generating C, axis. The
optimized rational map, in a convenient orientation, is [6]

z4+a

R(z) = ——F—, = 0.16i. 41

O amyqy  a-016 @D
The D,, symmetry can be seen by considering the expres-
sion for the baryon density in (14). The baryon density
vanishes where the Wronskian W of the map R = p/q,
given by

W =gqp' — pq = —2z(az® + 3a*> — N* +a), (42)

vanishes. In addition to the nine zeros of W, the baryon
density also vanishes at z = oo due to the factor of z? in the
denominator of the rational map.

The D, subgroup is generated by two elements, a 7
rotation about the x;-axis, and a 7 rotation about the x; =
x, axis. The product of these is a 77/2 rotation about the
x3-axis. The corresponding symmetries of the rational map
are R(z) =1/R(1/z) and R(z) = —1/R(i/z). Therefore,
the solution is invariant under the following two symme-
tries:

(i) a 7 rotation about the x;-axis combined with a 7

isorotation about the 1-axis, and

(i) a 7 rotation about the x; = x, axis combined with a

7 isorotation about the 2-axis.

For the first symmetry, we have n; = n, = (1,0, 0)7,
and 6, = 6, = 7. As required, R(z_,,) = R, = 1. We
compute N = 15 using the formula from the previous
section, and deduce that ygg = —1. For the second sym-
metry, we have n; = (0,1,0)7, n, = %(1, 1,0)7, and
6, = 6, = 7. As required we have R(z_,,) = R, =i.
Again N = 15, so ygr = — 1. Therefore the FR con-
straints reduce to
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el | Uy = —|P), (43)
and
L+ L) N2 i |y = — ), (44)

We note that these constraints are equivalent to those
obtained in [15] using an alternative method by which
the contractibilities of the closed loops corresponding to
the symmetry group elements were determined by continu-
ous deformation of the minimal-energy solution into three
well-separated B = 2 tori.

A basis for the Hilbert space of states is given by
|J, L) ® |1, K5). We require the identities [16]:

e Ly) = ZU’ L§>D£;L3(0’ a, m) = (—1)/|J, —Ls),
L} '

(45)

™1 Ksy = Y |1 KDy (0, m, ) = (= 1)1, = K3),

K;
(46)
e[ K3y = ;l], K§>D§<£K3 (0, 7, 0)
3
= (=D)L —Ks), (47
e ML L) = N, LDy, (0, 7, 7/2)
L
= (~DHURLY, — L), (4)
where D{, 1. for given J, is the matrix of Wigner functions
353

representing the symmetry operation.

Seeking simultaneous solutions of the above FR con-
straints, we obtain the ground state as |1, 0) ® |0, 0). The
first excited state with / = 0 is |3, 0) ® |0, 0), and the low-
est state with / = 1is |0, 0) ® |1, 0) [15].

VII. MEAN CHARGE RADIUS OF THE
QUANTIZED B = 6 SKYRMION

The state |1, 0) ® |0, 0) of the B = 6 Skyrmion has the
quantum numbers of the ground state of the lithium-6
nucleus. Let us calculate its mean charge radius (r2)!/2,
defined as the square root of

\p>,

) !
(49)

<‘I’ ‘ /rzjo(x, 1)d?x

(W] [To(x, A1)

where J,, is the electric charge density operator and | W)
represents the state with any value of J5. Only the isoscalar
part of Jy(x, #) contributes to the matrix elements, and so
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the integrals are pure ¢ numbers. The normalization factor
is 3, the total electric charge of lithium-6. Therefore

() = % f P2 By(x)d3x, (50)
using (8).

Using the expression (14) for the baryon density in terms
of the rational map ansatz, we obtain

o _ L1+ lz? |dR |\
(r*) 6 4m f<71 T IRE | 4z ‘) sinfdOd ¢
X%f(—f’)rzsinzfdr, (S1)
2 .
== f(—f’)rzsmzfdr. (52)
T

The profile function f can be numerically determined
using a shooting method,” for which the inputs are B, m
and J. Then the radial integral in (52) can be evaluated, and
the mean charge radius in Skyrme units determined as the
square root of this. B = 6 and J = 50.76 for the rational
map (41), but we defer discussion of m and the actual value
of (r?)!/2 until Sec. IX.

VIII. QUADRUPOLE MOMENT OF THE
QUANTIZED B = 6 SKYRMION

An additional static electromagnetic property that is
known experimentally for the lithium-6 nucleus to quite
high precision is its quadrupole moment. The classical
quadrupole tensor of a Skyrmion is defined as

Qab = ](3xa-xb - rzaab)j()(x) t)d3x

1
= 5 /(3xaxb - r25ab)BO(X)d3x, (53)
using (8). It is traceless by definition. The D,; symmetry of
the B = 6 Skyrmion implies that the tensor Q,, is diago-

nal, and further that Q;; = 0y = —Q13/2.
From (53) we find

Oy = % fr2(3cos20 — 1)By(x)d>x, (54)

and therefore, using the rational map ansatz,

11 1+ |z|2 dR |\2
=___ 3cos26 — 1 il
O3 247Tf( cos™d )<1+|R|2 dz >
2
X sinfdfd¢p = f (—f")2sin? fdr. (55)
T

For the rational map given previously for the B =6
Skyrmion,

>Thanks to Bernard M. A.G. Piette, University of Durham,
UK, for providing the C + + code
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(az® + (3a* — 1)z* + a)(a@z® + (3a* — 1)z* + a)
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1+ z?
(T e

dR |\2
— I) = 4|z]*(1 + |z|2)2{
dz

(al?lz]2 + |28 + 1z]*(1 + az* + az*) + az* + az* + |a|?)?

}, (56)

and substituting z = tan(6/2)e'?®, writing a = i, where a € R, and setting 8 = 1 + 3a?, this becomes

dR

1+ [z]> | 4R
( dz

1+ |RJ?

2 0 0\2
= 4tan?~ (1 + tan? -
> an 2( an )

a?tan'®? + 2aBsindptan'? & + (B2 + 2a? cos8P)tan® § — 2a B sindptan* § + o?
{ (e?tan'?% + (1 — 2asind¢)tan® 4 + (1 + 2a sind¢p)tan*§ + o)

A numerical integration technique can then be used to
determine the angular integral in (55), for & = 0.16. The
result is

033 = 0.395 % f(—f’)rzsinzfdr, (58)

where the radial integral is the squared charge radius (52).
The accuracy of the numerical integration can be checked
by considering the integral

1+ [z

(=

The same procedure yields a result 75.40, which is equal to
247

Note that Q33 is positive, so the classical Skyrmion is

prolate. It is helpful to consider upper and lower bounds on

its value, for a given B and (r?). We observe that Q33 is
maximal for baryon densities restricted to the x5-axis and

dR |\2
T ‘ > sinfdfd¢ = 4wB.  (59)
z

minimal for baryon densities restricted to the
(x, xp)-plane, hence
B
- §<"2> = 033 = B(r?). (60)
For the B = 6 case,
—3=05/(r)=6. (61)

Within this range, the actual value Qs3/{r?) = 0.395 is
rather close to zero.

In the quantum state the Skyrmion occurs in all possible
orientations. Substituting

O(x) = A Up(D(A)x)A], (62)
we obtain
0,; = D(A)1,0,,D(Ay),), (63)

for the rotated classical Skyrmion. We observe that 0, ;18
independent of A;. The symmetry relations reduce this
quadrupole moment operator to the expression

A 1
Q= §Q33(3D(A2),~T3D(Az)3j = 8i), (64)

and thus

]f' 57

R 1
O3 = §Q33(3C0529 — 1) = Q33D}y(. 6, ),  (65)

where ¢, 6, ¢y now denote the Euler angles parametrizing
A,, and D3 (¢, 6, ¢) is a Wigner function.

The wavefunction W is the product of Wigner functions
Din(, 0, ) ® DI, (a, B,y) on SO3)’ X SO(3). For the
ground state of the B = 6 Skyrmion, withJ = 1 and I = 0,

and J; = m,
_ 13
W= [ 5Dk, (,6,0). (66)

The quadrupole moment of the quantized B = 6 Skyrmion
is defined as the expectation value of Q33 in the state with
J3 = 1 (by convention the quadrupole moment is measured
in the top spin state), i.e.

0= <q’13:1|Q33|‘1’J3:1>
3 .
=50 f D3,|D}, I sinbdpdody,  (67)

and using the well-known expression in terms of Wigner
3j-symbols for the integral of the product of three Wigner
functions,

D/ D D" sinbdddody = 872( 7 ;o
ab™~ cd™ef a c¢ e

s
(i) @
we find that

3 .
0=~ 505 f D3,D}, D}, sinfdodpdy

_3Q211211
o o o/lo 1 -1

2 |1

= -3 iy
O3 15130

1
=73 Os3. (69)

This is the standard result for an axisymmetric system in
a J =1 state. Note that a prolate classical shape (Qs;3
positive) gives an oblate quadrupole moment (Q negative),
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and vice versa, because the prolate object can be regarded
as spinning about its short axis aligned along the third axis
in space when J3 = 1. From (61) we deduce the inequal-
ities

- 1.2=Q/(r*) = 0.6. (70)

We note that to obtain physically meaningful results for
both the mean charge radius and the quadrupole moment, it
is necessary to convert back to physical units, by reintro-
ducing the Skyrme model parameters, and using the con-
version factor ic = 197.3 MeV fm. We do this in the next
section.

IX. REPARAMETRIZING THE SKYRME MODEL

The parameters e and F . can be fixed in a number of
ways. It has been common practice to use the set of
parameters given in [17], specifically

e = 4.84, F,=108 MeV and m, = 138 MeV
(which implies m = 0.528) (71)

for the Skyrme model with the physical pion mass taken
into account. In [17], the values of ¢ and F,, were tuned to
reproduce the masses of the proton and the delta resonance.
This parameter set was adjusted to optimize the predictions
of the model in the B = 1 sector at the expense of the B =
0 sector, which requires F, = 186 MeV. It is therefore not
the optimal parameter set with which to describe the higher
baryon number sectors of the Skyrme model. Nevertheless,
in [2] this parameter set was used in a quantization of the
collective coordinates of the toroidal B = 2 Skyrmion. The
resulting quantum state is too small compared to the size of
the deuteron, and it is too tightly bound. However, this
discrepancy was dealt with by the quantization of selected
vibrational modes of the B = 2 Skyrmion in [4]. We there-
fore do not propose to change ¢ and F, for B=1or B =
2. However, for higher B, it becomes technically very
difficult to perform a quantization of the possible vibra-
tional modes. Instead, we consider rescaling the parame-
ters in order to fit the Skyrme model to experimental
nuclear data, while suppressing the quantization of vibra-
tional modes.

We have first determined (#2)!/2 and Q for the B = 6
Skyrmion using the set of parameters given in [17], and
setting a = 0.16i (the value of @ that minimizes I, as
required by the rational map ansatz). After evaluating the
radial integral (52), we find

(V2 =148 fm, Q= -0.173 (fm)%.  (72)

In [18] the experimental root mean square radius of the
charge density distribution of the lithium-6 nucleus is
given as (r?)!/2 =255 fm, substantially larger than
1.48 fm, and its quadrupole moment is given as —0.82 X
1073 barns = —0.082 (fm)? in [19]. We can change the
length scale 2/eF ., to obtain a mean charge radius in close
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agreement with experiment. This results in the dimension-
less mass m = 2m,/eF ,, with m, = 138 MeV as before,
being changed, and so the profile function and hence the
radial integral in the expressions for the mean charge
radius and quadrupole moment is also modified. By itera-
tion, it is found that by setting m = 1.125, and hence
eF, = 24534 MeV, we obtain (r2)!/2 = 2.55 fm, which
fits the data.

With this choice for eF, the theoretical prediction of
the quadrupole moment becomes Q = —0.512 (fm)?.
Although the sign is right, this is unfortunately about 6
times the experimental value. One must bear in mind that
the rational map ansatz does not generally determine exact
solutions of the Skyrme field equation, but rather approx-
imations to solutions. It is useful to allow a slight modifi-
cation of the rational map (41), while preserving its
symmetry and prolateness. If we take a = 0.1933i, rather
than 0.16/, and use the new value for eF,, we obtain a
quadrupole moment in very close agreement with experi-
ment: Q = —0.082 (fm)?. The parameter « is not a funda-
mental parameter of the Skyrme model. As it is just a
parameter in the rational map approximation, it can be
changed while preserving the Dj; symmetry of the
solution.

We note that this modification of the rational map leads
to the value of the integral I being slightly modified (from
50.76 to 51.49, i.e. not quite the minimum as required by
the rational map ansatz), which subsequently leads to the
profile function and hence the radial integral in both the
expressions for the mean charge radius and the quadrupole
moment being modified, but only slightly. In summary,
using eF, = 245.34 MeV, m, = 138 MeV (which im-
plies m = 1.125), and a = 0.1933i, we find

(P2 = 2,55 fm, Q = —0.082 (fm)%,  (73)

and hence Q/(r?) = —0.0127. By virtue of (70), we con-
sider the quadrupole moment of the lithium-6 nucleus to be
only slightly oblate. The change we needed to make to the
parameter a should not be regarded as a large change.

It remains to consider the energy scale F,/4e of the
Skyrme model. Assuming negligible spin kinetic energy (it
is expected to be in the region of 1 MeV), we may identify
the static Skyrmion energy (18) with the mass of the
lithium-6 nucleus, M, given by

M = 6my — Epinging = 5601 MeV, (74)

where my = 939 MeV is the average mass of a nucleon
and Eyinging = 32 MeV is the total binding energy of the
nucleus [20]. The static Skyrmion energy is determined
numerically, and we find for m = 1.125, after converting to
physical units, that

F

E=-2-972. 75
4e ? (75)

Equating this to the mass of the nucleus implies that
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F./4e = 5.76 MeV, (76)
and combined with eF, = 245.34 MeV we obtain, finally

e = 3.263, F,.=7520MeV and m, = 138 MeV
(which implies m = 1.125). a7

We conclude that with this choice of parameters, and
taking a = 0.1933i, the mass and static electromagnetic
properties of the quantized B = 6 Skyrmion are in close
agreement with those experimentally determined for the
lithium-6 nucleus.

We recall that the Skyrmion is exponentially localized.
This is because the equation for the profile function (20)
has an asymptotic Yukawa-type solution. The classical
solutions match the experimental pion tails of nuclei if
we use the physical value of m, of 138 MeV, and it is
for this reason that we have chosen to keep m , fixed at this
value. As a result, our suggested value of F . is consider-
ably smaller than the experimental pion decay constant
(186 MeV). This can be attributed to the simplicity of the
model, and the fact that we are suppressing some quantum
effects in the model, in particular, Skyrmion vibrations.
Also, in earlier work F, differs considerably from this
experimental value [2].

X. RECONSIDERING THE B =2 AND B =4
SKYRMIONS

A. The quantized toroidal B = 2 Skyrmion

The minimal-energy solution in the B = 2 sector is
axially symmetric, and has the shape of a torus. In [2],
Braaten and Carson performed the collective coordinate
quantization of the solution (see also [21]). Using the same
notation as that used above for the B = 6 case, it was found
that the axial symmetry of the solution requires

(2K; + Ly)|¥) = 0. (78)

In addition to this constraint, the FR constraint associated
with the discrete rotations by 7 in the D, symmetry group
is

KoL | Iy = —|P), (79)

The ground state is the J = 1, I = 0 state |1, 0) ® |0, 0),
which has the quantum numbers of the deuteron. The first
excited state |0, 0) ® |1, 0) may be identified with the iso-
vector 'S, state of the two-nucleon system.

Further properties of the quantized Skyrmion were also
determined, taking the Skyrme model parameters to be as
in (71), and compared to experimental data on the deu-
teron. An expression equivalent to (50) is obtained for the
mean charge radius of the B = 2 Skyrmion. The expres-
sion for the quantum quadrupole moment in this case is
also given by Q = —%Q33, where (33 is negative here,
because the classical Skyrmion is oblate. The quantity Q33
was evaluated in [2] using the numerical, exact classical
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solution and its corresponding baryon number density. The
predictions were:

(r)H'2 = 0.92 fm, (80)
0 = 0.082 (fm)?, (81)
M = 1720 MeV, (82)

compared to experimental data of (+2)!/2 = 2.095 fm [22],
0 = 0.2859 (fm)? [23] and M = 1876 MeV. The mass of
the nucleus (82) is given by the sum of the classical mass,
equal to 1659 MeV, and a spin correction equal to 1/V}; =
61 MeV. It was suggested in [2] that these discrepancies
could be an artifact of the Skyrme model parameters, and
that the disagreement with experiment could be assuaged
by an adjustment of e and F, such that eF, is approxi-
mately halved and F,./e is unchanged. The new parameter
set which we propose is close to this, but we also take into
account the corresponding change of m when fitting to
experimental data.

B. Attractive channel Skyrmions and the deuteron

Because the deuteron appears too small and too tightly
bound according to [2], it was suggested in [4] that the
deuteron is better described as a quantum state on a ten-
dimensional manifold of B = 2 Skyrme fields. This mani-
fold includes the toroidal configurations of minimal energy
(i.e. the eight-dimensional manifold considered in [2]), and
soft deformations of these into configurations which are
approximately the product of two separated B =1
Skyrmions in the most attractive relative orientation. The
ten coordinates of this manifold are the separation parame-
ter, overall translations, rotations and isorotations. A
unique bound quantum state is found with the quantum
numbers of the deuteron. The values of ¢ and F, were
taken to be 4.84 and 108 MeV, respectively, i.e. those of
[2,17], but for technical reasons the pion mass was taken to
be zero. In this model, the predictions are

(rHY'/2 = 2.18 fm, (83)
0 = 0.83 (fm)?, (84)
M = 1872 MeV. (85)

The calculated deuteron binding energy of 6 MeV is very
close to the experimentally determined binding energy of
the deuteron, and the deuteron mass (85) is simply the sum
of the proton and neutron masses minus this binding en-
ergy. The prediction for the mean charge radius is in very
close agreement with experiment. However, the deuteron’s
quadrupole moment has become much larger than the
experimental value. This is explained in [4] as follows:
The tensor force is responsible for the existence of a d-
wave contribution to the deuteron wave function. In the
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absence of a d-wave, Q would be zero. The size of Q is
therefore a measure of the d-wave probability, which in
turn indicates the strength of the tensor force. The trunca-
tion to the space of attractive channel fields systematically
overestimates the strength of the tensor force. Therefore it
is not surprising that the theoretical prediction for Q is
rather large.

C. Is reparametrization helpful in the B = 2 sector?

Let us reconsider the collective coordinate quantization
of [2], ignoring the attractive channel deformations into
separated Skyrmions (described above), but using our new
parameter set (77). To avoid recalculating the exact B = 2
Skyrmion solution for various values of the pion mass
parameter m, we use the rational map ansatz. There is a
unique map here, namely R(z) = z> [6]. This gives, for the
quantized B = 2 Skyrmion,

11 1+ z|> |dR |2 .
2y — - B S il
(r?) 3 I <1 TIRE | 4 ‘) sinfd6d ¢
Xzf(—f’)rzsinzfdr
T
2 )
=—f(—f’)r251n2fdr, (86)
aa
and
111 1+ |z|2 dR |\2
= —— -~ [(Beos?0 — 1)1 |28
0 5247rf( o8 )<1+|R|2 dz )
2
X sinfdfd¢d — ](—f’)rzsinzfdr. (87)
T

It is straightforward to calculate the profile function f in
this case, and to perform the numerical integrations.
Converting back to physical units, and using first the tradi-
tional values of e, F, and m given by (71), we obtain

(rH'/2 = 0.940 fm, (88)
0 = 0.102 (fm)?, (89)
M = 1757 MeV. (90)

which are reasonably close to the values (80)—(82) in [2].
We have again assumed that the mass of the nucleus (90)
can be equated to the sum of the static Skyrmion energy
(1696 MeV) and the spin correction which we take to be
the same as in [2] (61 MeV). Comparing this value of the
static Skyrmion energy to the classical mass given in [2],
we see that the rational map ansatz gives a very good
approximation.

Using the new parameters (77), and their associated
length and energy scales, we find after recalculating the
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radial integral (which we recall is a function of m)

(r)1/? = 1.644 fm, 91)
Q = 0.311 (fm)?, (92)
M = 1969 MeV. (93)

The deuteron mass (93) is again the static Skyrmion energy
(1950 MeV) plus an estimated spin correction equal to
61 MeV times the ratio of the squares of the predicted
mean charge radii (80) and (91), which allows for the
increase in the moment of inertia. Comparing these with
the experimental values, we conclude that the new parame-
ters give quite a good description of the deuteron, better
than those in [2], and provide an alternative to taking
account of the soft deformations.

D. The B = 4 Skyrmion and the a-particle

The B = 4 Skyrmion is cubically symmetric, and was
first quantized by Walhout [24], using the exact classical
solution and the traditional parameter set. The rational map
ansatz for this Skyrmion uses the unique map of degree 4
with cubic symmetry [6],

A+ 232+ 1
fal 2\/§iz2 +1°

The FR constraints corresponding to the cubic symmetry
were determined in [15] as

R(z) = (94)

eCmI3L1+ Lo+ L3) pR7i/3VIEK Kt K3) [y = |W), (95)

el(7/2)Ls i(m/NDK —Ko) [Py = | ), (96)

The ground state, in the basis introduced previously, is
|0,0) ® |0, 0), which trivially satisfies the constraints.
This state may be identified with the a-particle.

If vibrational modes are ignored, then the traditional
parameters give a much too small and tightly bound
a-particle. Walhout’s rather complicated analysis takes
into account a number of the vibrational modes of the B =
4 Skyrmion, obtaining (r2)'/2 =158 fm and M =
3677 MeV, compared with the experimental values
()12 = 1.71 fm [18] and M = 3727 MeV.

We wish to ignore the vibrational modes, but in com-
pensation, use our new parameter set (77). As the spin of
the B = 4 Skyrmion is zero, there is no quadrupole mo-
ment to determine, just the mean charge radius. The mass
of the quantized Skyrmion is equal to the classical mass, as
there is no spin energy contribution. Numerically comput-
ing the profile function (with inputs J = 20.65 and m =
1.125), and numerically integrating the corresponding den-
sities, we find

(r)H2 =213 fm, 97)
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M = 3679 MeV, (98)
which agrees reasonably well with experiment.

XI. CONCLUSION

We conclude that in order to accurately predict certain
properties of nuclei (with baryon numbers greater than
two) using the Skyrme model, it is necessary to rescale
the Skyrme model parameters, if the quantization of vibra-
tional modes is not going to be considered in the calcu-
lation. We have in this paper explicitly determined the
values of these parameters in the B = 6 case, and discussed
how well they work when applied to the B =2 and B = 4
cases. We note, however, that the deuteron is very weakly
bound compared to other nuclei and therefore much more
extended. The new parameters which we suggest are not
ideal for the deuteron. It would be interesting to see how
well the new parameters work for Skyrmions with other
baryon numbers.

Our suggestion that the dimensionless pion mass m
should be increased from 0.528 to 1.125 backs up the
suggestion made in [25], in which it was found that as
the pion mass is increased its effect becomes important for
Skyrmions of all baryon numbers. In particular, the hollow,
polyhedral shell-like solutions which exist for a large range
of baryon numbers up to 20 or 30, and are stable for zero
pion mass, become unstable for baryon number eight and
above when m is of order unity. Instead, the stable solutions
become more solid structures, some of which are related to
chunks of the Skyrme crystal. This improves the qualitative
fit of the Skyrme model to real nuclei. Also, in [13], low-
energy Skyrmion solutions composed of charge four sub-
units were found for baryon numbers a multiple of four,
with m = 1. This is the Skyrmion analogue of the
a-particle model of nuclei.

We have worked with the standard SU(2) Skyrme
model. However, the introduction of explicit vector meson
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fields, allowing for the dispensation of the fourth order
stabilizing term in the Lagrangian density (1), leads to an
improved description of the short-range structure of the
nucleons [26,27]. This could lead to further refinement of
our discussion, and refine the modelling of nuclei, but since
not much is known about Skyrmions with B > 1 in these
extended models, we have decided to work with the origi-
nal model. Moreover, an approximation to Skyrmion solu-
tions, analogous to the rational map ansatz for the original
model, has not been formulated for these extended models.

The standard values of the Skyrme parameters originate
from [17], in which attention was restricted to the single
nucleon. In recent years, the substantial increase in results
available for Skyrmions over a range of baryon numbers
enables us to fit the Skyrme parameters to experimental
data for larger nuclei, with a view to modelling nuclei of all
baryon numbers. The parameters we propose here should
be regarded as provisional, since they rely on just a few
basic properties of lithium-6, and depend on the rational
map approximation. More work remains to be done within
the Skyrme model to see if one set of Skyrme parameters
can fit experimental data over a range of baryon numbers.
Both static properties of nuclei, like their masses and
electric charge distribution, and also the excitation energies
of higher spin states, need to be considered further.
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