
Bound states of Dirac particles in gravitational fields

Nicolas Boulanger* and Philippe Spindel†
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We investigate the quantum motion of a neutral Dirac particle bouncing on a mirror in curved
spacetime. We consider different geometries: Rindler, Kasner-Taub, and Schwarzschild, and show how
to solve the Dirac equation by using geometrical methods. We discuss, in a first-quantized framework, the
implementation of appropriate boundary conditions. This leads us to consider a Robin boundary condition
that gives the quantization of the energy, the existence of bound states and of critical heights at which the
Dirac particle bounces, extending the well-known results established from the Schrödinger equation. We
also allow for a nonminimal coupling to a weak magnetic field. The problem is solved in an analytical way
on the Rindler spacetime. In the other cases, we compute the energy spectrum up to the first relativistic
corrections, exhibiting the contributions brought by both the geometry and the spin. These calculations are
done in two different ways. On the one hand, using a relativistic expansion and, on the other hand, with
Foldy-Wouthuysen transformations. Contrary to what is sometimes claimed in the literature, both methods
are in agreement, as expected. Finally, we make contact with the GRANIT experiment. Relativistic effects
and effects that go beyond the equivalence principle escape the sensitivity of such an experiment.
However, we show that the influence of a weak magnetic field could lead to observable phenomena.
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I. INTRODUCTION

Quantum mechanical systems in interaction with an
external gravitational field are of particular interest, not
only in theoretical physics, but also from an experimental
point of view. Thirty years ago, the COW experiment [1]
displayed the quantum mechanical phase shift experienced
by neutron waves due to their interaction with the Earth’s
gravitational field. The acceleration of a sodium atom due
to gravity has also been measured, see Ref. [2]. More
recently, the GRANIT experiment proved the existence
of bound states of ultracold neutrons bouncing on a mirror
in the Earth’s gravitational field [3]. Most of the theoretical
studies related to these experiments feature the
Schrödinger equation in the linear Newtonian potential
[3,4]. This simple model gives satisfactory results in re-
producing the experimental data because the particles or
atoms used are nonrelativistic.

The next step in the improvement of such models should
be the inclusion of the spin degrees of freedom. In particu-
lar, the dynamics of neutrons should be described by the
Dirac equation on curved spacetime. Many theoretical
investigations have been devoted to the study of the spin-
gravity couplings of a Dirac particle on the Rindler space-
time (see, for example, Refs. [5–7]). Few of them focused
on the problem of bound states of Dirac particles in a

gravitational field (see, however, [8]). The latter problem,
which we investigate in the present work, is motivated by
the GRANIT experiment but also has an intrinsic theoreti-
cal interest related to the understanding of gravitational
effects in first-quantized systems beyond the equivalence
principle [9].

We focus on a neutral Dirac particle bouncing on a fixed
mirror in a gravitational field. Three particular geometries
are considered. The first one involves the Rindler metric,
which corresponds to the metric of a uniformly accelerated
observer [10]. It is generally believed to describe a homo-
geneous gravitational field. The second metric with a
planar symmetry that we use is the Kasner-Taub metric,
which is a particular case of Kasner metrics [11,12]. In
contrast with the Rindler metric, it describes a genuinely
curved spacetime, corresponding to the spacetime in the
neighborhood of a plane brane [13], see also [14]. Because
of the equivalence principle, both Rindler and Kasner-Taub
metrics are equivalent in the Newtonian limit, but differ in
relativistic corrections as we show. Finally, we also use the
well-known Schwarzschild geometry.

Our goal is to compute the energy spectrum of the Dirac
particle. The energy is indeed quantized because of the
mirror which imposes particular boundary conditions.
Using the Rindler metric, we can compute the energy
spectrum in an analytical way. For the other geometries,
we restrict ourselves to the first relativistic corrections that
we compute by resorting to the usual relativistic expansion
and by using a Foldy-Wouthuysen (FW) transformation
[15]. It is of interest to compare these two different meth-
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ods since the validity of the FW transformation in the
present context is still subject to discussions, see Ref. [7]
and references therein. We also allow for the neutral Dirac
particle to be nonminimally coupled to a weak magnetic
field and show that some observable effects could be
derived in future experiments.

Our paper is organized as follows. In Sec. II we intro-
duce the notation, write the Dirac equation on curved
spacetime, and focus on plane-symmetric geometries. We
also discuss the boundary conditions encoding at best the
presence of the mirror on which the particle bounces. In
Sec. III we proceed to the same analysis with a spherically
symmetric geometry. In Sec. IV we particularize the met-
rics that we use: Rindler and Kasner-Taub. Then, we solve
the Dirac equation on those spacetimes. On the Rindler
spacetime, the Dirac equation can be solved analytically,
taking into account the boundary condition induced by the
mirror. Moreover, we compute the energy spectrum of the
particle in the Rindler and Kasner-Taub spacetimes using a
relativistic expansion. In Sec. V, the same computations are
done, but this time by resorting to a FW transformation and
also considering the Schwarzschild geometry. Finally, we
apply our results to neutrons in the Earth’s gravitational
field and compare them to the GRANIT experiment in
Sec. VI. Our conclusions are given in Sec. VII.

II. DIRAC EQUATION ON A PLANE-SYMMETRIC
SPACETIME

A. Dirac equation in curved spacetime

We introduce the notation and recall the main theoretical
features that we will need about the Dirac equation on
curved spacetime. First of all, the Clifford algebra is given
by f�a; �bg � 2�ab where a; b � 0; . . . ; 3. The metric is
given by ds2 � �ab�

a � �b, where �a are the coframe
fields that diagonalize the metric. We adopt the ‘‘mostly
minus’’ convention� � diag�� ���� and use units such
that @ � 1 � c.

The covariant derivative for a two-spinor in a curved
background has been known for a long time [16]. When
acting on a Dirac spinor �, it is given by

 r� � d��
i
2
!ab�ab� � �d����;

�ab �
i
4
��a; �b�;

where �ab are the generators of Lorentz transformations
and !ab are the usual Levi-Civita connection one-forms.
An important property of r is that it preserves the Dirac
matrices, i.e.

 r�b � d�b �!
c
b�c � ��; �b� 	 0:

Finally, the Dirac equation on a curved background
reads

 i�ae�ar���m� � i�ara��m� � 0; (1)

where the symbols e�a denote the coefficients of the
vierbeins ea in coordinates. In the following, Latin indices
will denote orthonormal indices, whereas Greek indices
will denote curved (holonomic) indices. Hated specific
indices will also be used to denote flat (nonholonomic)
indices.

B. Explicit form

The metric

 ds2 � A2���dt2 � B2����dx2 � dy2� � d�2 (2)

clearly describes a spacetime with planar symmetry for
given t and � . For the moment, the functions A and B are
arbitrary functions of � ; they will be specified later on.
Knowing the metric, it is straightforward to write the
(co)frame fields:

 

8><>:
e0̂ � A�1@t
e|̂ � B�1@j
e3̂ � @�

;

8><>:
�0̂ � Adt
�|̂ � Bdxj

�3̂ � d�
; j � 1; 2:

From the zero-torsion condition, we deduce the only non-
zero components of the spin connection one-form !a

b:

 !0̂
3̂
�
A0

A
�0̂; !|̂

3̂
�
B0

B
�|̂;

the prime denoting a derivative with respect to the variable
� .

We want to study a neutral fermion of spin 1=2 with
massm and anomalous magnetic moment �n, not only in a
gravitational field, but also in a weak external electromag-
netic field described by the field strength F��. Including
such an electromagnetic interaction is achieved by adding
to the Dirac equation a nonminimal coupling term of the
form ��n�abFab [17]. If the electromagnetic field is
purely magnetic, this term reduces to �n�k̂B

k̂, with Bk̂

the magnetic field �k � 1; 2; 3� and �k̂ the spin matrices.
Using the previous results, we have explicitly from Eq. (1)
 �
i�0̂A�1@t � i�

|̂B�1@j � i�
3̂@� �

i
2
�3̂

�
A0

A
�

2B0

B

�

�m��n�k̂B
k̂
�

� � 0: (3)

Concerning the metric (2), it is worth mentioning that we
will consider it independent of the magnetic field. The
problem of writing plane-symmetric solutions of the
Einstein-Maxwell equations is a nontrivial one, out of the
scope of the present work. We assume here that both the
gravitational and magnetic fields are weak enough so that
one can neglect their mutual interactions.

C. Dirac wave function

We are interested in solutions described by the following
positive-energy ansatz:
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 � � e�i!tei
~k
 ~xA�1=2B�1����; ! > 0:

Equation (3) becomes

 !�0̂A�1�� 6kB�1�� i�3̂�0 �m���n�k̂B
k̂� � 0;

(4)

where ~k � �k1; k2; 0� and 6k � kj�|̂ with j � 1, 2.
We now define the spinor U� such that

 Uy�U� � 1; �0̂U� � U�; ^6k�3̂U� � i�U�; (5)

with ^6k � 6k=k, k � j ~kj, and � � �1. In general, U� de-
fined by the relations (5) is not an eigenvector of the
magnetic term �k̂B

k̂. It will be such if

 �^6k�3̂;�k̂B
k̂� � 0;

or equivalently if ~B is orthogonal to ~k, with B3̂ � 0. Thus,
if ~k � �k; 0; 0�, we will assume that ~B � �0;B; 0�. Then,
the following relations also hold

 6kU� � ik��3̂U�; �|̂B
|̂U� �

B�
2
U�:

As Uy�3̂U � 0, it is convenient to decompose � as fol-
lows:

 � � F���U �G����3̂U; (6)

where we dropped the dependence in � in order to simplify
the notation. The normalization condition

 

Z
�y�d� � 1 (7)

implies that the following relation must hold:

 

Z
�jFj2 � jGj2�d� � 1: (8)

Moreover, the application of the condition (7) to Eq. (4)
allows us to write the energy of the neutron as

 ! �
Z

�yĤ�0̂�d�; (9)

with

 Ĥ � �AB�16k� iA�3̂@� �mA1��n�k̂B
k̂:

In principle, Eqs. (8) and (9) and a boundary condition
(discussed below) are sufficient to compute the energy
spectrum, provided we know the functions F and G. We
thus have to find the differential equations that these func-
tions satisfy.

Because of the decomposition (6) and to the fact that the
spinors U and �3̂U are linearly independent, Eq. (4) splits
into two parts:

 

�D�F� i’G� iG0 � 0;

�D�G� i’F� iF
0 � 0;

(10)

with

 D� � !A�1 �m�
�nB�

2
; ’ � B�1k�: (11)

Once F is known, G is readily given by

 G �
i
D�
�@� � ’�F: (12)

From Eqs. (10), one can extract the following equation

 F00 �
D0�
D�

F0 �
�
D�D� � ’

2 �
D0�
D�

’� ’0
�
F � 0:

(13)

Finally, upon rescaling F according to

 F � D1=2
� f���; (14)

we are left with

 f00 �
�
D�D� � ’2 �

D0�
D�

’� ’0 �
D00�
2D�

�
3D02�
4D2
�

�
f � 0:

(15)

Together with Eqs. (12) and (14), the above equation
enables us to find F and G once f is known.

D. Boundary condition

The particle we are considering bounces on a mirror
placed at � � 0. This situation should provide us with a
particular boundary condition and should eventually lead
to the quantization of the energy. By analogy with the
standard Schrödinger equation, one could demand that
the wave function vanish at the mirror. This condition
can easily be implemented with a Klein-Gordon field
[18] and indeed leads to the existence of bound states
[19]. However, for a Dirac particle, things are not so
simple. For example, imposing �j��0 � 0 is not very
fruitful since the relation (12) would lead to the conclusion
that � is zero everywhere. The same conclusion holds if
one requires that the probability density j0̂ � �y� �
jFj2 � jGj2 vanish at the boundary. Moreover, the
j3̂-component of the current is given by

 j3̂ � ���3̂� �
i
D�
�FF0
 � F
F0�:

Since F and F0 are determined only up to an arbitrary
complex coefficient and thus can be chosen to be real
functions (see Eq. (13)), j3̂ is identically zero. Physically,
this expresses the fact that a repeatedly bouncing particle is
described by a stationary state.

A satisfactory first-quantized boundary condition can be
found if we represent the mirror by a scalar potential [20] V
such that Vj�<0 � V0 � m and Vj�>0 � 0. Formally, at
the level of the Lagrangian, the introduction of such a
potential amounts to replacing m by m� V. Then, in the

BOUND STATES OF DIRAC PARTICLES IN . . . PHYSICAL REVIEW D 74, 125014 (2006)

125014-3



region � < 0 where the potential blows up, Eq. (15) be-
comes approximately

 f00 � V2
0f;

which yields

 F � NV1=2
0 eV0� ; G � iNV1=2

0 eV0� ; (16)

where N is a normalization constant. Since, at � � 0, the
wave function has to be continuous, we assume from
Eq. (16) the Robin boundary condition

 Fj��0 � �iGj��0 (17)

which, using Eq. (12), can be rewritten as

 �D� � ’�Fj��0 � F0j��0: (18)

Thanks to this last relation, the energy of the neutron will
be quantized. The presence of ’ ensures that only two
solutions exist: The energy will be spin-dependent.
Moreover, at leading order, Eq. (18) becomes Fj��0 � 0.
This is the boundary condition we are used to seeing when
the Schrödinger and/or the Klein-Gordon equations are
employed [19,21].

III. DIRAC EQUATION ON A SPHERICALLY
SYMMETRIC SPACETIME

We now turn our attention to spherically symmetric
metrics. Such a metric reads

 ds2 � e2��r�dt2 � e2��r�dr2 � r2d!2 (19)

and the corresponding Dirac equation is
 �
ie���0̂@t � i�3̂e��

�
@r �

�0

2
�

1

r

�
�
i
r
�1̂

�
@� �

cot�
2

�

�
i�2̂

r sin�
@� �m

�
� � 0; (20)

where a prime now denotes a derivative with respect to the
radial coordinate r. It is convenient to use the following
representation of the Dirac matrices

 �0̂ �
1 0
0 �1

� �
; �k̂ � �i

0 �k

�k 0

� �
:

Decomposing the Dirac spinor into a pair of bi-spinors

 � �
	
�

� �
;

we find that Eq. (20) yields the following two equations
 

ie��@t	� �
3e��@r��

1

r
6D�

�
1

2
e��

�
�0 �

2

r

�
�3� � m	; (21)

 

� ie��@t�� �3e��@r	�
1

r
6D	

�
1

2
e��

�
�0 �

2

r

�
�3	 � m�; (22)

where 6D is the Dirac operator on the unit sphere,

 6D � �1@� �
1

sin�
�2@’ �

1

2
cot��1: (23)

In order to solve these equations, we may use the well-
known decomposition of bi-spinors in terms of spherical
spinorial harmonics �, presented from a group-theoretical
point of view in (almost) all text books on relativistic
quantum mechanics (see, for example, Ref. [22]).
Nevertheless, for pedagogical purposes, we find it useful
to reconsider this decomposition from a more geometrical
point of view, the method having the advantage of being
easily extended to more general situations (higher dimen-
sions, other geometries, etc.). Let us separate the variables
and write the bi-spinors 	 and ’ as products of the
positive-energy exponential e�i!t multiplied by radial
functions and spherical spinorial harmonics:

 	 � e�i!tF�r����; ’�; � � �ie�i!tG�r� ~���;’�;

(24)

where ~� has to be specified appropriately. By inserting this
ansatz (24) into Eqs. (21) and (22), it is easy to see that the
Dirac equation is satisfied provided

(i) we define ~� � �3�;
(ii) the spinor � verifies the equation

 �3 6D� � 
�: (25)

By integrating �y�3 6D� by parts on the sphere, it can be
found that the eigenvalues 
 are real numbers. On the other
hand, we know that the eigenvalues� of the Dirac operator
(23),

 6D� � ��;

are purely imaginary. From an eigenspinor of the Dirac
operator we obtain a solution of Eq. (25) by taking the
combination � � �� i�3�, the corresponding eigenval-
ues being related by 
 � �i�.

For completeness, let us recall that the eigenspinors of
the Dirac operator (on any sphere of arbitrary dimension)
can be obtained by using a Killing spinor and the usual
spherical scalar harmonics Y as follows. A Killing spinorK
is a spinor verifying the equations

 DâKk � �
i
2
�âKk:

On S2 there exist four Killing spinors, k � 1; . . . ; 4 [23].
Taking any one of them, we may obtain the eigenspinors of
the Dirac operator by considering the combination �k �
@âY�âKk � �YKk [24]. Substituting this ansatz into the
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Dirac equation and using the well-known spectrum of
the spherical scalar harmonics, we obtain � � i� with
� 2 Z0.

The well-known equations that the radial functions F�r�
and G�r� have to satisfy are

 

�
D�F� iG0 � i’�G � 0;

�D�G� iF0 � i’�F � 0;
(26)

where

 D� � !e��� �me�; ’� �
�0

2
�

1� 
e�

r
:

These equations can be seen as the counterpart of
Eqs. (10). From Eqs. (26), we obtain that F and G are
given by
 

F00 �
�
D0
�

D�

� ’� � ’�

�
F0

�

�
D�D� � ’0� �

’�D
0
�

D�

� ’�’�

�
F � 0; (27)

 G �
i

D�

�@r � ’��F; (28)

these equations being similar to Eqs. (12) and (13) ob-
tained previously in the plane-symmetric case.

The number 
 is a nonzero integer which can directly be
interpreted in the Schwarzschild geometry. It represents
the eigenvalues of the operator constructed on the time
translation Killing vector and on the Penrose-Floyd tensor
[25], see also Eq. (23) of Ref. [26].

Because of the symmetry of the problem, the boundary
condition (17) will be slightly modified. Let us indeed
consider that the scalar potential is equal to a large constant
V0 in the region r < R, with R an arbitrary radius, and
vanishes for r > R. Then, we find from Eqs. (26) that

 Fjr�R � �ie
�Gjr�R: (29)

In the Schwarzschild geometry, for example, we have

 Fjr�R � �
i������������

1� rs
R

q Gjr�R: (30)

Note that, obviously, such a boundary condition is only
valid in the region R� rs. We stress that the present first-
quantized formalism is no longer valid near the
Schwarzschild radius, where a second-quantized formal-
ism is definitely needed.

IV. EXACT SOLUTIONS

A. Geometrical preliminaries

Before proceeding to the resolution of our equations, we
have to specify the metrics we will use. Usually, the flat
Rindler metric is used to describe the physics of a uni-
formly accelerated system in flat spacetime (see e.g. [27]

chapter 6)

 ds2 � �1� g��2dt2 � dx2 � dy2 � d�2: (31)

With the notation introduced in Eq. (2), it corresponds to

 A � �1� g��; B � 1: (32)

Another spacetime metric, that describes a plane-
symmetric solution of the vacuum Einstein equations, is
given by the Kasner-Taub metric [12]

 ds2 � �z=z0�
�2=3dt2 � �z=z0�

4=3�dx2 � dy2� � dz2: (33)

It can be interpreted as the gravitational field around an
infinite plane [13]. The constant z0 can be related to the
gravitational acceleration in the Newtonian limit. In this
limit, we set z � z0 � � and expand the metric component
g00 to first order in �=z0, which gives g00 � 1� 2

3
�
z0
�

1� 2�N . The Newtonian potential is thus�N � g� where
g � 1

3 z0. Considering the full relativistic metric (33)
 

ds2 � �1� 3g���2=3dt2 � �1� 3g��4=3�dx2 � dy2� � d�2

(34)

corresponds to taking

 A � �1� 3g���1=3; B � �1� 3g��2=3 (35)

in Eq. (2). In order to restore the c factors, we have to
replace g by g=c2 and t by ct as usual. Let us note that the
metrics defined through Eqs. (32) and (35) differ at order
c�2. For the sake of simplicity, we shall discuss both
simultaneously using

 A � 1�
g�

c2 � �1� a�
g2�2

c4 ;

B � 1� b
g�

c2 ; with a � �1; 1; b � 2; 0;

(36)

for the Kasner-Taub and Rindler metrics, respectively.

B. Bound states in Rindler metric

Exact solutions of the free Dirac equation on Rindler
spacetime are well known (see, for example, Ref. [28], or
sometimes in a disguised form, Ref. [29] and references
therein). In the present section we particularize these so-
lutions to our problem, namely, a particle bouncing on a
mirror, and show that boundary condition (17) implies the
quantization of energy.

Instead of the spinor U� of Sec. II C, we introduce the
spinor W� obeying

 �0̂�3̂W� � W�; �1̂�2̂W� � i�W�:

The positive-energy Dirac spinor is now defined as

 � � e�i!tei
~k
 ~x�����;

where � � � � 1
g and
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 ����� � �����W� � �
�����0̂W�:

It can be shown that the functions �� obey the following
equations [28]

 ��@��@���� �
�
�m2 � k2��2 �

�
i!
g
�

1

2

�
2
�
��;

whose solutions are

 �� � H�1�i!=g�1=2�i
��;

where H�1� is the Hankel function of the first kind (the
Hankel function that vanishes when � is going to infinity)
and 
2 � m2 � k2.

The spinor �� is an eigenspinor of the operator �1̂�2̂.
Since this operator commutes with the Hamiltonian, � is a
good quantum number. Depending on its values, the large
and small components of �� can be identified with the
functions F and G by the relations

 F / �� � ���; G / �� � ���:

The position of the mirror being given by � � 1=g and
because �� � ����
, the boundary condition (17) can be
rewritten

 <�H�1�i!=g�1=2�i
=g�� � �=�H
�1�
i!=g�1=2�i
=g�� � 0: (37)

Let us emphasize that if the spin contributions (the 1=2 in
the index of the Hankel functions) are neglected, these
Hankel functions become real and Eq. (37) yields

 H�1�i!=g�i
=g� � 0; (38)

which is the usual boundary condition in the Klein-Gordon
case [19]. A plot of the left-hand side of the boundary
conditions (37) compared to (38) is drawn in Fig. 1, where
we defined " � !� 
c, restoring the c factors. Obviously,
it leads to positive, quantized energy levels "n�. In the
nonrelativistic limit, these levels all coincide. This is illus-
trated in Fig. 2.

In order to discuss this nonrelativistic limit, it is useful to
introduce the following quantities

 u � i
!c
g
�

1

2
; w �

i
c2

gu
:

For weak gravitational fields, we have juj � 1 and con-
sequently jwj � 1. In this case, we can assume that
"=
c� 1 and approximate the Hankel function by
[[30], Eq. (9.3.37)]
 

H�1�u �uw� / Ai
�
�

�
2

mg2

�
1=3
"
�

�
i
c

�
g

4m

�
1=3

Ai0
�
�

�
2

mg2

�
1=3
"
�
�O�c�2�;

(39)

where Ai denotes the regular Airy function. Note that 
 �

mc in the nonrelativtistic limit. Moreover, the imaginary
part of H�1� can be neglected in this limit, so that the
condition (37) together with Eq. (39) gives

 "n � �
�
mg2

2

�
1=3

n; (40)

with 
n the nth zero of the regular Airy function. These
can be found, for example, in Ref. [30], Table 10.13. A
WKB approximation of these zeros can also be found in
[30], Eq. (10.4.94):

 

FIG. 1. Numerical plot of the left-hand side of the Dirac
boundary condition (37) for � � �1 (solid line) and � � �1
(dotted line), and of the Klein-Gordon boundary condition (38)
(dashed line). The zeros of these curves (full circles) are the
energy eigenvalues, "n�, given in units of �
g2=2c�1=3. We fixed

 � 2, g � 1, and c � 1.

 

FIG. 2. Numerical plot of "n� in units of �
g2=2c�1=3 versus
the dimensionless parameter �
c2=g�1=3 for the first two energy
levels. We fixed g � 1.
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n � �
�

3�
2
�n� 1=4�

�
2=3
: (41)

This approximation is precise up to 8%. Note that the
asymptotic values of the energy levels "n� in Fig. 2 are
given by �
1 � 2:34 and �
2 � 4:09 as expected from
Eq. (40).

C. Relativistic expansion

1. Lowest order solutions

Although it is possible to find an analytical solution of
the Dirac equation in Rindler spacetime, the determination
of the energy is rather problematic in the other cases, due to
the nature of the singularity in the differential equations. To
our knowledge, no explicit solution in Kasner-Taub ge-
ometry has been found yet. It is thus interesting to expand
the equations in powers of 1=c2. Moreover, this procedure
will allow us to find a solution in Kasner-Taub spacetime
and to study the influence of a weak magnetic field. The
equation we need to solve, that is Eq. (15), can be expanded
up to the order c�2 with the appropriate choice of A and B
given by Eqs. (36). We define the energy ! as

 ! � mc2 �
k2

2m
� E: (42)

From Eq. (15), we obtain at lowest order

 �
f00

2m
�mg�f�

�n

2
B�f � Ef; (43)

which is the expected Pauli equation with a linear gravita-
tional potential and a magnetic field. To go ahead, we
simply assume that the magnetic field is constant in the y
direction, i.e.

 B � B0: (44)

This choice is relevant in the context of the GRANIT
experiment [3] since it can easily be added to the current
experimental setup. Equation (43) is then simply a
Schrödinger equation with a linear potential, with the
boundary condition (18) given at this order by fj��0 � 0.
The solution of such an eigenequation is well known [[21],
Problem 40]
 

En� � �

�
mg
�

�

n �

�n

2
B0�; (45a)

fn� �
�1=2

jAi0�
n�j
Ai��� � 
n�; (45b)

with

 � � �2m2g�1=3: (45c)

Without magnetic field, formula (45a) tells us that the
energy of the particle, and thus the height at which it can
bounce, only depends on its mass and of the strength of the
gravitational field. If a nonzero magnetic field is present,

the energy depends on �. As it is deduced from Eqs. (5),
�=2 can be interpreted as the spin of the particle along the
y direction. This will be detailed in the following.

As a consistency check, we note that the formula (9),
taken in the nonrelativistic limit where F � f and G � 0,
gives

 !0 � mc2 �
k2

2m
�
hp2

� i

2m
�mgh�i �

�n�
2
hBi: (46)

The average values are computed with respect to the wave
function (45b). The expressions for these average values
are analytical, as it can be seen in Eqs. (49).

2. Relativistic corrections

We are mainly interested here in the relativistic correc-
tions to the energy spectrum. These can be obtained by
expanding the formula (9) at the order c�2. The wave
functions which have to be used are the properly normal-
ized F and G computed thanks to relations (8), (12), and
(14), with f given by (45b). We can keep the same bound-
ary conditions as in the previous section. After some
algebra, we find

 ! � !0 �!2 �O�c�4�;

with !0 the nonrelativistic energy (46) and
 

!2 � �
�k2 � hp2

� i�
2

8m3c2 �

�h�p2
� i

2m
� �1� 2b�

h�ik2

2m

�
g

c2

� �1� a�
g2mh�2i

c2 � �1� 2b�
gk�

4mc2 : (47)

The various relativistic corrections appearing in the
above equation are now interpreted in analogy with the
energy E of a classical particle on a curved spacetime.
With the metric (2), we obtain

 E � A
���������������������������������������������������
m2c4 � B�2c2k2 � c2p2

�

q
and thus
 

E � mc2 �
k2

2m
�
p2
�

2m
�mg� �

�k2 � p2
� �

2

8m3c2 �
g�

c2

p2
�

2m

� �1� 2b�
g�

c2

k2

2m
� �1� a�m

�g��2

c2 : (48)

Apart from the spin (�) dependent term, Eq. (47) clearly
reproduces the terms appearing in the classical formula
(48). The first term in !2 is the usual relativistic correction
arising from the expansion of the relativistic kinetic energy
in powers of 1=c2. The next two terms between square
brackets are redshift corrections. The first one gives a
quantum mechanical translation of the usual redshift for-
mula for a particle falling in a gravitational field, viz.

 E�L� �
�
1�

gL

c2

�
E�0�:
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The second is an additional transverse redshift term. The
�2 term is a curvature correction. As expected, it vanishes
in the flat Rindler geometry. The last term is a spin-
dependent correction.

The properties of the regular Airy function lead to the
relations
 

h�i � �
2
n
3�

; h�2i �
8
2

n

15�2 ; (49a)

hp2
� i � ��

3h�i � �2
n;

h�p2
� i � ��

3h�2i � �2
nh�i; (49b)

which allow to express Eq. (47) in terms of 
n (41) and �
(45c).

V. FOLDY-WOUTHUYSEN TRANSFORMATION

A. Kasner-Taub and Rindler metrics

It is interesting to compare the previous energy spectra
with the results obtained by resorting to a FW transforma-
tion [15,31]. Whether this procedure works in the case we
are dealing with is indeed still subject to discussions [6,7].

The Dirac equation (3) can be recast in the Hamiltonian
form

 i@t� � H�; (50)

where
 

H � �m��n��k̂B
k̂ �O� P ;

O � AB�1
|̂pj � A

3̂p� �

i
2

�
A0 �

2B0A
B

�

3̂;

j � 1; 2;

P � m�A� 1��:

(51)

We recall that the operators O and P satisfy

 f�;Og � 0 � ��;P �

and that pk � �i@k. Using the standard Bjorken and Drell
conventions, at the first order in 1=m, the FW Hamiltonian
computed from (51) is [31]

 HFW � �m� �
O2

2m
� P �

1

8m2 �O; �O;P ��:

The positive-energy part of this FW Hamiltonian is given
by
 

HFW � mc2 �

�
1� �1� 2b�

~g 
 ~x

c2

�
k2

2m
�

�
1�

~g 
 ~x

c2

� p2
�

2m

�m~g 
 ~x��n
~S 
 ~B� �1� 2b�

~S 
 � ~g� ~p�

2mc2

� �1� a�m
� ~g 
 ~x�2

c2 � i�2b� 1�
~g 
 ~p

2mc2 ; (52)

with ~g � �0; 0; g�. The lowest order FW Hamiltonian is
almost identical to the one which can be read from Eq. (43)

provided that one sets Sy � �=2. This confirms the inter-
pretation of �=2 given in the previous sections. Moreover,
the relativistic corrections are on average identical to those
obtained in the formula (47) since hp� i � 0. As the FW
transformation is only performed up to the order m�1, we
miss the kinetic corrections in m�3. So, comparing the
method used in the previous section with the FW method
at the same order in 1=m, we may conclude that both
approaches lead to the same results. Let us also note that
for the Rindler metric without magnetic field, we recover
the result of Ref. [5].

B. Schwarzschild metric

Since we have shown that the usual relativistic expan-
sion agrees with the FW technique for Kasner-Taub and
Rindler geometries, we apply the latter to the
Schwarzschild geometry. The Hamiltonian corresponding
to Eq. (20) is

 H � �i
3̂e���

�
@r �

�0

r
�

1

r

�
� i
1̂ e�

r

�
@� �

cot�
2

�

� i
2̂ e�

r sin�
@� �me��:

After a FW transformation, we find that the positive-energy
part of the Hamiltonian is
 

HFW � mc2 �

�
1�

3 ~g 
 ~r

c2

�
p2
r

2m
�

�
1�

~g 
 ~r

c2

�
‘�‘� 1�

2mr2

�m~g 
 ~r�
3

2mc2
~S 
 � ~g� ~p� �

m
2

� ~g 
 ~r�2

c2

� i
~g 
 ~p

mc2 ; (53)

where ~g � �GM~1r=r
2 and ‘�‘� 1� is the eigenvalue of

the squared orbital momentum. Formula (53) agrees with
the corresponding formula (28) of Ref. [7] upon perform-
ing a change of coordinates from isotropic to the usual
Schwarzschild coordinates. Here again, hpri � 0 and the
last term in Hamiltonian (53) brings no contribution.

Let us point out that the classical energy of a nonrela-
tivistic particle moving in the spacetime (19) geometry is
given by

 E � e�

������������������������������������������������������
m2c4 � e�2�c2p2

r � c
2 L

2

r2

s
:

In the particular case of the Schwarzschild metric, we have

 E � mc2 �
p2
r

2m
�

L2

2mr2 �m~g 
 ~r�
�p2

r � L
2=r2�2

8m3c2

� 3
~g 
 ~r

c2

p2
r

2m
�
~g 
 ~r

c2

L2

2mr2 �
m
2

� ~g 
 ~r�2

c2 : (54)

The classical energy given by Eq. (54) is again identical to
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the Hamiltonian (53) apart from the spin-dependent terms
and the kinetic corrections in m�3.

VI. COMPARISON WITH THE GRANIT
EXPERIMENT

What can be measured experimentally is the critical
height, corresponding to the classical turning point of the
neutron. It is given by

 E n� � mghn�; (55)

which can be rewritten in our approximations

 hn� � �

n
�
�
�nB0�

2mg
�
!2;n�

mg
: (56)

At the lowest order, and without magnetic field, we simply
obtain

 hn � �

n
�
: (57)

This relation has been successfully checked for the first
two bound states by the GRANIT experiment [3]. Indeed,
knowing that � � 0:17 �m�1 for a neutron in the Earth’s
gravitational field, the predicted heights are

 h1 � 13:7 �m; h2 � 24:0 �m; (58)

while the experimental results concerning these states are

 hexp
1 � 12:2 �m� 1:8syst � 0:7stat;

hexp
2 � 21:6 �m� 2:2syst � 0:7stat:

(59)

If we still stay at the lowest order but allow for a weak
magnetic field, then, formula (56) predicts a splitting of the
critical heights depending on the values of �. A given level
hn shall be split in hn;1 and hn;�1, both levels being sepa-
rated by a value which does not depend on n, that is

 	h �
���������nB0

mg

��������: (60)

In the future of the GRANIT experiment, it seems possible
to deal with a magnetic field whose density � is of order
0:1T=m [32]. As the characteristic size of the experiment is
around 10 �m, a value such as B0 � 10�6 T could be
produced (we assume the experimental apparatus to be
shielded from the Earth’s magnetic field). In such circum-
stances, one would observe 	h � 0:6 �m. An experimen-
tal confirmation of this point requires an increase of the
experimental accuracy, which should be possible in a near
future [32]. Note that a value such as � � 0:1 T=m is still
in the weak magnetic field regime since �n�=mg � 6%.

The relativistic corrections are particularly interesting,
since they involve couplings between spin, momentum,
and gravity. In particular, there exists the term ~S 
 � ~g�

~p�, which states that even without magnetic field, the
particle will bounce at different heights depending on the
value of its spin. Again, this term will split a given height-
level into two separate levels, distant by the quantity

 	hsg /
@vh

2mc2 ; (61)

where vh is the horizontal speed of the particle. In the
GRANIT experiment, vh � 6:5 m=s [3]. This leads to
	hsg � O�10�18 �m�: The experimental detection of
this phenomenon unfortunately seems hopeless with such
an experiment, as well as the detection of the other rela-
tivistic corrections, as pointed out in Ref. [8].

VII. CONCLUSION

In this work, we obtained the quantization of the energy
of a Dirac particle bouncing on a mirror on a curved
spacetime. Consequently, the critical heights at which the
particle bounces are also quantized. This is due to the
presence of the mirror, which imposes a Robin boundary
condition leading to the existence of a discrete set of bound
states. We computed the spectrum of these bound states for
several choices of spacetime metrics. First, we solved the
problem analytically on the Rindler spacetime. We then
computed the energy spectrum in Kasner-Taub and Rindler
geometries at the second order in 1=c2 thanks to a relativ-
istic expansion. At lowest order, these energies are equal in
both geometries—in agreement with the equivalence prin-
ciple. However, they differ in the relativistic corrections
through redshift, curvature, and spin terms. One of the
most conceptually interesting corrections is a term in ~S 

� ~g� ~p�, which shows that the energies, and thus the criti-
cal heights, are spin-dependent. We also expressed the
Hamiltonian in Rindler, Kasner-Taub, and Schwarzschild
geometries using a Foldy-Wouthuysen transformation. We
checked that the results are identical for the first two
geometries, showing a posteriori that the Foldy-
Wouthuysen transformation is valid in this framework.
Finally, we compared our results with those of the
GRANIT experiment. The nonrelativistic approximation
is enough to reproduce the current experimental results,
but the relativistic corrections appear to be too small to be
detected. Moreover, we showed that the presence of a weak
constant magnetic field leads to observable effects.
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