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We find a strong-to-weak coupling crossover in D � 2� 1 SU�N� lattice gauge theories that appears to
become a third-order phase transition at N � 1, in a similar way to the Gross-Witten transition in the
D � 1� 1 SU�N ! 1� lattice gauge theory. There is, in addition, a peak in the specific heat at
approximately the same coupling that increases with N, which is connected to ZN monopoles (instantons),
reminiscent of the first-order bulk transition that occurs in D � 3� 1 lattice gauge theories for N � 5.
Our calculations are not precise enough to determine whether this peak is due to a second-order phase
transition at N � 1 or to the third-order phase transition having a critical behavior different to that of the
Gross-Witten transition. We show that as the lattice spacing is reduced, the N � 1 gauge theory on a
finite 3-torus appears to undergo a sequence of first-order ZN symmetry breaking transitions associated
with each of the tori (ordered by size). We discuss how these transitions can be understood in terms of a
sequence of deconfining transitions on ever-more dimensionally reduced gauge theories. We investigate
whether the trace of the Wilson loop has a nonanalyticity in the coupling at some critical area, but find no
evidence for this. However we do find that, just as one can prove occurs in D � 1� 1, the eigenvalue
density of a Wilson loop forms a gap at N � 1 at a critical value of its trace. We show that this gap
formation is in fact a corollary of a remarkable similarity between the eigenvalue spectra of Wilson loops
in D � 1� 1 and D � 2� 1 (and indeed D � 3� 1): for the same value of the trace, the eigenvalue
spectra are nearly identical. This holds for finite as well as infinite N; irrespective of the Wilson loop size
in lattice units; and for Polyakov as well as Wilson loops.
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I. INTRODUCTION

A phase transition is associated with a singularity in the
partition function, and so requires an infinite number of
degrees of freedom. Usually that requires an infinite vol-
ume. One of the peculiarities of large-N field theories is
that one can have phase transitions on finite, or even
infinitesimal, volumes at N � 1 because in this case we
have an infinite number of degrees of freedom at each point
in space. The classic example in the context of gauge field
theories is the Gross-Witten transition [1] that occurs in the
D � 1� 1 SU�1� lattice gauge theory (with the standard
Wilson action). In this case the theory is analytically
soluble and one finds a third-order phase transition at N �
1 [1] at a value of the bare coupling that separates the
strong and weak-coupling regions. The theoretical and
practical interest of such phase transitions, particularly in
D � 3� 1, has recently been reviewed in [2].

In D � 3� 1 SU�N� gauge theories numerical studies
reveal the existence for N � 5 of a first-order ‘‘bulk‘‘
transition separating the weak and strong coupling regions
[3–5]. One also finds that the deconfinement transition,
which is first order for N � 3, becomes sharper on smaller
volumes as N increases suggesting [6] that here too one
will have a phase transition on a finite volume at N � 1.
Indeed there appears to be a whole hierarchy of finite
volume phase transitions at N � 1 [2,7] which are, we
shall argue below, related to the deconfinement transition.

These are all in some sense strong-to-weak coupling
transitions, and this has led to the conjecture [2,8] that

Wilson loops in general will show such N � 1 transitions
as the lattice spacing decreases, when the physical size of
the loop passes some critical value. Such a transition in
D � 3� 1 could have interesting implications for dual
string approaches to large-N gauge theories, as well as
providing a natural explanation for the rapid crossover
between perturbative and nonperturbative physics that is
observed in the strong interactions [1,2,9]. In fact it is
known [10,11] that in the N � 1 D � 1� 1 continuum
theory the eigenvalue spectrum of a Wilson loop suffers a
nonanalyticity for a critical area that is very similar to that
of the plaquette at the Gross-Witten transition. However, in
contrast to the Gross-Witten transition, there is no accom-
panying nonanalyticity in the trace of the loop and it is
unclear what, if any, are its physical implications.

In this paper we investigate the existence of such phase
transitions in D � 2� 1 SU�N� gauge theories, as a step
towards a unified understanding of these phenomena in all
dimensions.

In the next Section we briefly describe the SU�N� lattice
gauge theory and how we simulate it. There follows a
longer section in which we review in more detail what is
known about the large-N transitions and, in some cases, we
extend the analysis. (We are interested in transitions that
may be cross-overs or actual phase transitions, and when
we refer to ‘‘transitions‘‘ in this paper it may be either one
of these.) Having established the background, we move on
to our detailed numerical results. Our conclusions contain a
summary of our main results.
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II. SU�N� GAUGE THEORY ON THE LATTICE

We discretize Euclidean spacetime to a periodic cubic
lattice with lattice spacing a and size L0 � L1 � L2 in
lattice units. We assign SU�N� matrices, Ul, to the links l
of the lattice. (We sometimes write Ul as U��n� where the
link l emanates in the positive � direction from the site n.)
We use the standard Wilson plaquette action

 S � �
X
p

�
1�

1

N
Re TrUp

�
(1)

whereUp is the ordered product of the SU�N� link matrices
around the boundary of the plaquette p. The partition
function is

 Z �
Z Y

l

dUl exp��S�; lim
a!0

� �
2N

ag2 : (2)

Exactly the same expression defines the lattice gauge
theory in D � 1� 1 and D � 3� 1 except that � �
2N=a2g2 and � � 2N=g2 respectively. Equation (2) also
defines the finite temperature partition function, if we
choose

 T �
1

aL0
; L1; L2 � L0: (3)

We simulate the above lattice theory using a conventional
mixture of heat bath and over-relaxation steps applied to
the SU�2� subgroups of the SU�N� link matrices.

It will sometimes be convenient to distinguish cou-
plings, inverse bare couplings and (critical) temperatures
in different spacetime dimensions, D, and we do so using
subscripts or superscripts, e.g. g2

D, �D, TDc . Where there is
no ambiguity we will often omit such subscripts.

We expect to obtain a smooth large N limit by keeping
g2N fixed [12]. It is therefore useful to define the bare ’t
Hooft coupling, �, and the inverse bare ’t Hooft coupling,
�,

 � � ag2N; � �
1

�
�

�

2N2 : (4)

Various numerical calculations have confirmed that a
smooth N ! 1 limit is indeed obtained by keeping g2N
fixed, both in D � 2� 1 [13] and in D � 3� 1 [4,6,14]
and that to keep the cut-off a fixed as N ! 1 one should
keep � fixed.

A useful order parameter for finite volume phase tran-
sitions is provided by taking the Polyakov loop, l�, which
is the ordered product of link matrices around the �-torus,
and averaging it over the spacetime volume:

 

�l � � c�
X
n���

1

N
Tr
� Yn��L�
n��1

U��n0; n1; n2�

�
(5)

where the normalization is c�1
� �

Q
���L�. When the

system develops a nonzero value for h�l�i this indicates
the spontaneous breaking of a global ZN symmetry asso-

ciated with the �-torus. In particular such a symmetry
breaking occurs at the deconfining temperature, if the
�-torus defines the temperature T.

III. BACKGROUND

A. The ‘Gross-Witten’ transition

By fixing gauge and making a change of variables, one
can show [1] that the partition function of the D � 1� 1
SU�N� lattice gauge theory (with the Wilson plaquette
action) factorizes into a product of integrals over SU�N�
matrices on the links and the theory can be explicitly
solved. One then finds a crossover between weak and
strong coupling that sharpens with increasing N into a
third-order phase transition at N � 1. In terms of the
plaquette, up � Re TrUp=N, this shows up in a change
of functional behavior

 hupi �
N!1

� 1
� � � 2;
1� �

4 � 	 2:
(6)

More detailed information about the behavior of plaquettes
and Wilson loops can be gained by considering not just
their traces but their eigenvalues. The eigenvalues of an
SU�N�matrix are just phases, � � expfi�g, and are gauge-
invariant. (We also use � for the ‘t Hooft coupling: which is
intended should be clear from the context.) As �! 0 the
eigenvalue distribution ���� of a Wilson loop becomes
uniform while as �! 1 it becomes increasingly peaked
around � � 0. As shown in [1], at the Gross-Witten tran-
sition a gap opens in the density of plaquette eigenvalues:
in the strongly-coupled phase the eigenvalue density is
nonzero for all angles �� 	 � 	 �, but in the weakly-
coupled phase it is only nonzero in the range ��c 	 � 	
�c, where �c < � [1].

In D � 3� 1 it is known that at N � 1 [3], and indeed
for N � 5 [4,5], there is a strong first-order transition as �
is varied from strong-to-weak coupling. Calculations in
progress [15] suggest that the plaquette eigenvalue distri-
bution does indeed show a gap formation at N � 1 that is
similar to theD � 1� 1 Gross-Witten transition. However
the first-order transition itself is usually believed to be part
of the phase structure one finds with a mixed adjoint-
fundamental action [16] and related to the condensation
of ZN monopoles and vortices [17]. This finite-N phase
transition ‘‘conceals‘‘ any underlying N � 1 Gross-
Witten transition and makes the latter hard to identify
unambiguously.

In D � 2� 1 there has been, as far as we are aware, no
systematic search for a Gross-Witten or ‘‘bulk‘‘ transition,
and this is one of the gaps that the present work intends to
fill.

B. Wilson loop transitions

The Gross-Witten transition involves the smallest pos-
sible Wilson loop, the plaquette. On the weak-coupling
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side the plaquette can be calculated in terms of usual weak-
coupling perturbation theory; but this breaks down
abruptly at the Gross-Witten transition, beyond which a
strong coupling expansion becomes appropriate [1]. The
coupling is the bare coupling and hence a coupling on the
length scale of the plaquette. Thus one might interpret the
transition as saying that as one increases the length scale,
there is a critical scale at which perturbation theory in the
running coupling will suddenly break down.

One might imagine that this generalizes to other Wilson
loops: i.e. when we scale up a Wilson loop, at some critical
size, in ‘‘physical units‘‘, there is a nonanalyticity. In fact
precisely such a scenario has been conjectured for
SU�N ! 1� gauge theories in D � 3� 1 [2,8]. Unlike
the lattice Gross-Witten transition, this would be a property
of the continuum theory.

Such a nonanalyticity does in fact occur for the SU�N !
1� continuum theory in D � 1� 1 [10,11]. The transition
occurs at a fixed physical area

 Acrit �
8

g2N
: (7)

Very much larger Wilson loops have a flat eigenvalue
spectrum ���� which becomes peaked as A! A�crit. As A
decreases through Acrit a gap appears in the spectrum near
the extreme phases � � 
�. So for loops with A < A�crit
the eigenvalue density is only nonzero for��c 	 � 	 �c,
where �c < �, and �c ! 0 as A! 0. The nonanalyticity
at A � Acrit appears at first sight to be more singular than
for the Gross-Witten transition, in that the derivative
@�=@� diverges at �c � 
�. However, unlike the
Gross-Witten transition this is not a phase transition: the
partition function is analytic. Moreover the trace of the
Wilson loop, and the traces of all powers of the Wilson
loop, remain analytic in the coupling. Thus it is unclear
what if any is the physical significance of this
nonanalyticity.

In this paper we shall investigate whether such a non-
analyticity develops in D � 2� 1 SU�N� gauge theories
and whether it is accompanied by any nonanalyticity of the
trace. The implications could be very interesting [9] and
this makes a search in D � 2� 1 (and even more so in
D � 3� 1 [15]) well worth while.

C. Finite volume transitions

Consider a D � 3� 1 SU�N� gauge theory on a
L0L1L2L3 lattice with L0 � L1 � L2 � L3. As we in-
crease � there will be a deconfining transition at � � �c0

where

 a��c0
�L0 � 1=TD�4

c : (8)

This transition is first order for N � 3 [5,6]. A convenient
order parameter is the Polyakov loop, h�l��0i, which ac-
quires a nonzero expectation value in the deconfined phase
(related to the spontaneous breaking of a corresponding

global ZN symmetry). On our finite volume this is a cross-
over, but will sharpen to a true phase transition at N � 1,
even for Li � L0 � 	 with 	 arbitrarily small [5,6].

As we increase � and T further we will have the usual
dimensional reduction to an effective D � 2� 1 SU�N�
gauge theory coupled to adjoint scalars 
 that are the
remnants of the A0 gauge field [18]. To leading order the
gauge coupling and mass of the scalar of the effective D �
2� 1 gauge-scalar theory are [18]

 g2
3 � g2

4�T�T; m2
a / g2

4�T�T
2 (9)

so ma=g2
3 � O�1=g4�T�� and at high enough T the D �

3� 1 gauge theory reduces to the SU�N� gauge theory in
D � 2� 1 on a L1 � L2, L3 lattice. As we increase �4 �
� we simultaneously increase �3 � 2N=ag2

3 ’ �4L0 (ne-
glecting the difference between g2

4�a
�1� and g2

4�T�), Now
this D � 2� 1 gauge theory will deconfine at

 a��c1
�L1 � 1=TD�3

c (10)

at which point hl��1i acquires a nonzero vacuum expecta-
tion value. We estimate the corresponding critical value of
��� �4� to be

 �c1
 0:36N2 L1

L0
: (11)

using �Tc=
p
��D�3  0:9 [19] and

p
�=g2

3N ’ 0:198 [13],
together with Eq. (9). For finite N this will be a crossover,
but we expect (for the same reasons as in one higher
dimension) that as N ! 1 one will have a phase transition
on any volume where L2, L3 � L1 � 	, for any fixed 	
however small.

As we increase � beyond �c1
on our L0 � L1 � L2 �

L3 lattice, TD�3 � 1=aL1 will become ever larger, and
eventually the system will undergo a further dimensional
reduction to a D � 1� 1 SU�N� gauge theory with g2

2 �
g2

3T
D�3 and with adjoint scalars which, however, do not

decouple at high TD�3 [20]. Thus this D � 1� 1 theory,
unlike the pure gauge theory, is a nontrivial confining field
theory which we can expect to deconfine at some TD�2

c �

1=a��c2
�L2. We estimate the corresponding critical value

of the coupling ��� �4� to be

 �c2
 0:43r2N2 L2

2

L0L1
; r �

TD�2
cp
�

(12)

using the value � �0:8�2g2
3TN=3 extracted from [20].

Because we are in one spatial dimension the high-T phase
cannot have a true nonzero expectation value for hl��2i

but, as we shall see when we discuss our results in
Section IV D 2, there can be a real phase transition at N �
1.

If we increase � further we come to consider a field
theory with a finite Euclidean time extent given by aL3

living in an infinitesimal spatial volume a3L0L1L2. Such
systems can in principle have deconfining phase transitions
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[21] although whether this one does or not we do not
attempt to make plausible by a simple argument. If it
does exist then it would provide the final step in our
cascade of N � 1 phase transitions �c0

� �c1
� �c2

�

�c3
on our L0 � L1 � L2 � L3 lattices.

We recall [7,8] that as one increases � on symmetric L4

lattices one finds atN � 1 a sequence of phase transitions,
where Polyakov loops, hl�i with � � � chosen at random,
acquire nonzero expectation values. It is natural to see this
as a continuation in volume of the above sequence of
deconfining transitions.

The above discussion has taken the D � 3� 1 SU�N�
gauge theory as its starting point. It is obvious that we
could equally well have started with a L0 � L1 � L2

D � 2� 1 SU�N� gauge theory and followed that through
a cascade of deconfining N � 1 transitions. This is the
case we shall later explore numerically.

IV. RESULTS

A. Preliminaries

1. Phase transitions

At a phase transition appropriate derivatives of 1
V logZ,

where V is the volume and Z is the partition function, will
diverge or be discontinuous as V ! 1. The lowest order of
such a singular derivative determines the order of the phase
transition. For Z or its derivatives to be singular, we require
an infinite number of degrees of freedom, and this usually
demands an infinite volume, with a crossover at finite V
sharpening to the appropriate singularity as V ! 1. As
N ! 1 we have the possibility of a new kind of phase
transition that takes place in a finite volume with the
infinite number of degrees of freedom being provided by
N.

With the standard plaquette action, a conventional first-
order transition has a discontinuity at V � 1 in the aver-
age plaquette,

 hupi � N�1
p @ logZ=@� (13)

where Np is the number of plaquettes. At finite V this
discontinuity is a rapid crossover so that the specific heat
C � N�1

p @2 logZ=@�2 � @hupi=@� diverges linearly at
the critical coupling � � �c as Np ! 1.

A conventional second-order transition has a continuous
first derivative of Z but a diverging second derivative and a
specific heat C! 1 as V ! 1. Defining up to be the
average value of up over the spacetime volume for a single
lattice field, we readily see that the specific heat can be
written as a correlation function:

 C � Nph�up � hupi�2i � Np�hup2i � hupi2�

�
X
p

h�up � hupi��up0
� hupi�i (14)

where p0 is some arbitrary reference plaquette. It is clear

from eqn (15) that the divergence of C as Np ! 1 implies
that there is a diverging correlation length-the standard
signal of a second-order phase transition.

A conventional third-order transition has continuous
first and second derivatives but a singular third derivative,
C0 � N�1

p @3 logZ=@�3, at V � 1. This may be written as

 C0 �
@C
@�
� N2

ph�up � hupi�3i

� N2
p�hup3i � 3hupihup2i � 2hupi3�: (15)

It should be clear that the higher the order of the tran-
sition, the greater is the statistics needed to determine its
properties to a given precision. In particular, identifying
third-order transitions is already a formidable numerical
challenge, and we do not attempt to look for transitions that
are of yet higher order.

Since we are particularly interested in transitions that
develop as N ! 1 and since we know that, in general,
fluctuations in the pure gauge theory decrease by powers of
N in the large-N limit [12,22] it is convenient to define the
rescaled quantities

 C2 � N2 � C; C3 � N4 � C0 (16)

which one expects generically to have finite nonzero limits
when N ! 1. The signature of a phase transition which is
only present for N � 1 will be a crossover for finite N at
which fluctuations decrease more slowly than the naive
power of 1=N2. If, therefore, we find a crossover in C2 or
C3 which does not sharpen with increasing volume at fixed
N, but rather becomes a divergence or a discontinuity only
in the large-N limit, then this will indicate a second- or
third-order N � 1 phase transition, respectively.
(Assuming hupi to be continuous.)

Large-N phase transitions can have an unconventional
behavior. Consider, for example, a second-order transition
characterized by a value of C2 that diverges at some � �
�c as N ! 1. This may indeed be due to a correlation
length � that diverges (in lattice units) as N ! 1: ���c� /
N�; � > 0. However there is another, less conventional,
possibility: the correlation length may be finite and it may
be that local plaquette fluctuations have an anomalous
N-dependence at the critical point: hu2

pi=hupi
2 � 1 /

N��2; � > 0.
Since a large-N phase transition can arise from fluctua-

tions that are completely local-as in D � 1� 1 where the
lattice partition function factorizes-it is also useful to con-
sider local versions of the quantities C2 and C3, where we
replace up by up, and which we call P2 and P3 respec-
tively. Calculations of P2 and P3 are statistically more
accurate than those of C2 and C3, so they will be particu-
larly useful at the largest values of N.

The eigenvalues �j � expfi�jg of an SU�N�matrix such
as the plaquette provide additional gauge-invariant observ-
ables. At the D � 1� 1 N � 1 Gross-Witten transition a
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gap opens at
� in the eigenvalue density of the plaquette
[1] and the fluctuations of the extreme eigenvalues diverge
when rescaled with N.

2. Wilson loop nonanalyticities

To investigate the possibility that Wilson loops undergo
some analogous nonanalyticity as their area passes through
some critical value, Acrit, we calculate Wilson loops of a
fixed size, n1 � n2, in lattice units and increase � so as to
decrease the lattice spacing a and hence the area, A �
an1 � an2, in physical units. If there is a nonanalyticity at
A��c�n1; n2�� we can then vary n1, n2 so as to check
whether the transition occurs at a fixed area in the contin-
uum limit, when expressed in units of say g2N, i.e. whether

 

Acrit

�g2N�2
� lim

a!0

�
�c

2N2

�
2
A��c� (17)

is finite and nonzero. Since all the evidence is that the D �
2� 1 SU�N� lattice gauge theory has no phase transition,
at zero temperature, once � is on the weak-coupling side of
the bulk transition, we expect any Wilson loop nonanaly-
ticity not to correspond to a phase transition of the whole
system. This will be an important constraint on what are
the important observables to calculate. We also expect that
any such transitions will be cross-overs at finite N, becom-
ing real nonanalyticities only atN � 1. This is because we
can imagine that they are driven by the degrees of freedom
close to the critical length scale, and that we need these to
be infinite in number for a real nonanalyticity.

We remarked in Sec. III B that a nonanalyticity in the
eigenvalue spectrum of the Wilson loop is known to occur
[10,11] in the D � 1� 1 N � 1 gauge theory at the
critical area given in Eq. (7). We have performed numerical
lattice calculations in this theory for large N and find that
the lattice critical area is very close to the continuum one
for Wilson loops that are 2� 2 or larger. To be more
precise let us denote the product of link matrices around
a square n� n Wilson loop by Un�n

w and its trace by
un�nw � 1

N Re TrfUn�n
w g which we generically write as uw.

Then we find that the nonanalyticity occurs when uw
reaches a particular value

 huwi ’ e
�2: (18)

As an example we show in Fig. 1 the eigenvalue spectrum
of a 3� 3 Wilson loop in D � 1� 1 for N � 48 at � �
0:7971 where the trace satisfies Eq. (18) and we compare it
to the continuum expression obtained from [10,11] We
clearly have a very good match (apart from the N � 48
bumps that arise from the eigenvalue repulsion in the Haar
measure). Now we know that in D � 1� 1 the Wilson
loop factorizes into a product of plaquettes

 huwi � hupi
A=a2

(19)

and that hupi � 1� �=4 at N � 1 [1]. Putting all this

together, we have

 

�
1�

�
4

�
A=a2

� eA=a
2 ln�1���=4�� ’a!0 e��A�=4a2� ’ e�2

(20)

which we observe is nothing but the continuum relation in
Eq. (7). These numerical calculations show that lattice
corrections are small except for loops smaller than 2� 2,
such as the plaquette that has its nonanalyticity at the
Gross-Witten transition where � � 2. Because of the fac-
torization in Eq. (19) the trace of uw will be analytic in the
(bare) coupling when this gap in the eigenvalue spectrum
forms (except for the very smallest loops where it occurs at
the Gross-Witten transition) and so it is not immediately
obvious what is the significance of this gap formation.
What this tells us, nonetheless, is that we should not only
search in D � 2� 1 for nonanalyticities of traces of
Wilson loops, but also for such eigenvalue gap formation.

We shall search for nonanalyticities in huwi and its
derivatives, such as @huwi=@�, which can be expressed
as correlators. We shall also calculate ‘‘local‘‘ versions of
the latter, just as we do for hupi, and various moments of
the Wilson loops. Finally, we shall also calculate and
analyze their eigenvalue spectra.

B. Bulk transition

In 3� 1 dimensions the bulk transition is easily visible
as a large discontinuity in the action for N � 5 (where the
transition is first order) and as a (finite) peak in the specific
heat for N 	 4 (where the transition is a crossover). We
have searched for an analogous jump or rapid crossover in
2� 1 dimensional SU(6), SU(12), SU(24) and SU(48)
gauge theories, in particular around � � �=2N2  1=2.
At � 1=2 our typical L � 6 lattice has a size La

p
�

3 and so is large enough that it should display a very sharp
crossover for a conventional first-order transition. This
should be more so as N " and (most) finite volume effects

 

FIG. 1. The spectrum of eigenvalues, ei�, of a 3� 3 Wilson
loop for SU(48) in D � 1� 1 at the critical coupling � �
1=� � 1:255, together with the continuum spectrum (��� ).
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disappear. (As a check we have repeated our calculations
on 123 lattices for SU(6) and have indeed found no volume
dependence.) What we see is that the action appears to be
approaching a smooth crossover in the large-N limit, with
no evidence for a first-order phase transition either at finite
N or at N � 1.

Our results for the specific heat C2 for SU(6) and SU(12)
are shown in Fig. 2. (For larger N errors dominate C2.)
There is a clear peak around � ’ 0:42 which appears to be
growing stronger with increasing N. For SU(6) we re-
peated our calculations on 123 lattices and found no vol-
ume dependence. This tells us that we are not seeing a
conventional second-order phase transition at fixed N for
which the specific heat peak grows as the volume increases
(since a larger volume can better accommodate the diverg-
ing correlation length). So if there is a second–order phase
transition, it would appear to be not at finite N, but only at
N � 1.

To search for a possible third-order transition we have
calculated C3, but our calculations are not accurate enough
to produce anything significant, even for SU(6).
P2, the ‘‘local‘‘ version of C2, is much more accurate, as

we see in Fig. 3, where we show its values for SU(6),
SU(12), SU(24) and SU(48). There is no significant evi-
dence for a peak in P2 which indicates that if there is a
second-order transition at N � 1, as suggested by the
peak in C2, it will primarily involve correlations between
different plaquettes rather than arising from the fluctua-
tions of individual plaquettes. However, what we do see in
P2 is definite evidence for a cusp developing with increas-
ing N, at � ’ 0:43, where the derivative of P2 will suffer a
discontinuity. This corresponds to a third-order transition
at N � 1, just like the D � 1� 1 Gross-Witten transition
[1]. For comparison we have numerically calculated values
of P2 in D � 1� 1 SU�N� gauge theories (where P2 �
C2) and find that, apart from a small relative shift in �, the
results forD � 2� 1 andD � 1� 1 are remarkably simi-
lar. This strengthens the evidence for a third-order N � 1
transition.

To investigate this further, we show in Fig. 4 our results
for P3 (the ‘‘local‘‘ version of C3) for SU(6), SU(12),
SU(24) and SU(48) in D � 2� 1. There is clearly an
increasingly sharp transition around � ’ 0:43 as N in-
creases. For comparison we show in Fig. 5 corresponding
numerical results forD � 1� 1 (where C3 � P3) together
with the analytic result for SU�1� [1]:

 C3 �

�
0; � 	 0:5
� 1

8�3 ; � � 0:5: (21)

which has a discontinuity at the Gross-Witten transition at
� � 1=2. It is clear that once again the behavior in D �
2� 1 is remarkably similar to that in 1� 1 dimensions.

We see further evidence for a Gross-Witten-like transi-
tion in the plaquette eigenvalue spectra. The fluctuations of
the extreme eigenvalues, normalised to those of eigenval-
ues in the ‘‘bulk‘‘ of the spectrum, show a clear peak
around � ’ 0:43 whose height increases rapidly with N,
just as in D � 1� 1 at the Gross-Witten transition.

Finally if we compare the D � 2� 1 and D � 1� 1
transitions directly, by comparing the plaquette eigenvalue

 

FIG. 2. The specific heat, C2, as a function of � � 1
ag2N
� �

2N2

for SU(6) (solid line) and SU(12) (dashed line).

 

FIG. 3. The ‘‘local‘‘ specific heat, P2, as a function of � � �
2N2

for SU(6) (� ), SU(12) (� ), SU(24) ( � ) and SU(48) (�).

 

FIG. 4. The cubic local plaquette correlator, P3, as a function
of � � �

2N2 for SU(6) (� ), SU(12) (� ), SU(24) ( � ) and
SU(48) (�).
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densities across the transition, we find that they are very
similar both below and above the transition.

All the above suggests that D � 2� 1 SU�N� gauge
theories possess an N � 1 third-order strong-to-weak
coupling transition that is remarkably similar to the D �
1� 1 Gross-Witten transition.

Despite this striking similarity, when we look in more
detail we also observe significant differences between the
bulk transition in 2� 1 dimensions and the Gross-Witten
transition. In particular we have seen in Fig. 2 that there is a
peak in the specific heat in D � 2� 1 which is simply not
present in D � 1� 1. From Fig. 3 it is clear that this peak
does not primarily come from fluctuations of individual
plaquettes, but rather from correlations between different
plaquettes. To investigate this we consider the following
particular contributions to the specific heat C2: the contri-
bution from correlations between a plaquette and its neigh-
bors in the same plane, which we label Ci; the contribution
from correlations between a plaquette and its neighbors
which share an edge but are not in the same plane, Co; and
finally Cf, the contribution from correlations between a
plaquette and the plaquettes facing it across an elementary
cube. We include a factor N2, as for C2. We find a clear
peak, growing with N, in our results for Co, plotted in
Fig. 6. The peak accounts for about half of the difference
between C2 and P2. There is also a much weaker peak in
Ci, approximately a factor of 15 times smaller, which also
clearly grows withN, at least up toN � 24. (The weakness
of the signal means that we lose statistical significance for
largerN.) For Cf, where we happen to have results only for
SU(6) and SU(12), we see in both cases a clear peak. This
is almost exactly a factor of 4 lower than the corresponding
peak for Co. Since each plaquette has 4 times as many out-
of-plane neighbors as it has neighbors facing it across an
elementary cube, this shows the correlation of a plaquette
with its individual out-of-plane neighbors is in fact the
same as with a facing plaquette. By contrast the correlation

with the ‘‘nearer‘‘ neighboring plaquettes that are in the
same plane (as measured by Ci) is very much weaker. This
pattern is precisely what one would expect if the correla-
tions were due to a flux emerging from the cube symmet-
rically through every face, i.e. due to the presence of
monopole-instantons.

If such monopoles are present, we would expect the
correlation of the plaquette with itself, P2, to be also
affected. These correlations of the plaquette with itself
should be as large as with each of its eight out-of-plane
neighbors, so this contribution to P2 should be about one
eighth of Co. Even for SU�48� this is only0:04, which is
easily consistent with our results in Fig. 3.

There are several scenarios for what happens at N � 1
that are consistent with our results. One possibility is that
there is a third-order phase transition with critical exponent
� different from�1. Such phase transitions occur in three-
link and four-link chiral chain models (the latter is equiva-
lent to SU�N� gauge theory on a tetrahedron), which have
critical exponents � � � 1

2 and � � 0� respectively [23].
In this case the specific heat C2 will asymptote to a cusp,
and C0 and P2 will remain finite. Alternatively there could
be a second-order phase transition at N � 1, driven either
by local fluctuations, in which case C0 and P2 would
eventually diverge, or by the correlation length diverging
(or both). Our results cannot distinguish between these
scenarios, but the slow growth in C0 seen in Fig. 6 suggests
that, if there is a second-order transition driven by local
fluctuations diverging, these fluctuations will only become
dominant at very large values of N.

To search for the possibility of a diverging correlation
length, we measured the mass of the lightest particle that
couples to the plaquette, in both SU(6) and SU(12). Our
results show a modest dip in the masses near the transition,
which becomes more significant as we increase N. While
this is certainly consistent with a second-order crossover,
the masses are large (am is greater than 2.5), and if the
correlation length is going to show any sign of diverging it
will be at much larger values ofN than are accessible to our
calculations.

 

FIG. 6. The plaquette correlator, Co, as a function of � � �
2N2

for SU(6) (� ), SU(12) (� ), SU(24) ( � ) and SU(48) (�).

 

FIG. 5. The cubic plaquette correlator, C3 (equal to P3 here) as
a function of � � �

2N2 in 1� 1 dimensions for SU(6) (long
dashes), SU(12) (short dashes), for SU(6) (� ), SU(12) (� ),
SU(24) ( � ) and the analytic result for SU(1) (solid line).
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It is interesting to note what happens when we study the
bulk transition on anisotropic lattices where the timelike
and spacelike lattice spacings are different. We find that as
we turn on the anisotropy the discontinuity in P3 splits into
two, with one jump occuring for the timelike plaquettes at
a lower value of �, and one for the spacelike plaquettes at a
higher value of �, so there are two apparently third-order
transitions. However, there is only one peak in the specific
heat, which always remains at the same coupling as the
spacelike third-order transition.

C. Wilson loops

1. Traces and correlators

When we calculate how huwi varies with � we see no
sign of any singularity developing in this quantity, or in our
simultaneous calculations of @huwi=@�, in contrast to the
growing peak we saw for C2 / @hupi=@� in Fig. 2. The
more accurately calculated local version of the correlator
that is equivalent to the derivative, also shows no evidence
of developing the sort of cusp that might suggest anN � 1
singularity in the second derivative. Thus, at this level of
accuracy, we see no evidence for any N � 1 nonanalytic-
ity in the variation of huwi as a function of the coupling �.

Given our uncertainty in the type of nonanalyticity that
might occur we have also looked at quantities analogous to
P2 and P3 for the plaquette. The variation of these quan-
tities with �, for SU(6), SU(12), SU(24) and SU(48), does
not become sharper with N, in contrast to the behavior in
Fig. 3.

All our results are in fact essentially identical to those
we obtain in similar calculations in D � 1� 1, where we
know that the huwi is analytic in � except at the Gross-
Witten transition.

Finally we recall that for the plaquette the Gross-Witten
transition is characterized by a divergence in the relative
fluctuation of extremal eigenvalues. For n� n Wilson
loops the analogous quantity in, for example, SU(6),
SU(12) and SU(24) shows no such behavior. Again this
parallels what one finds in D � 1� 1.

2. Matching eigenvalue spectra

Although we have found no evidence that the trace of a
Wilson loop is nonanalytic in � at some critical area, it is
possible that there are more subtle nonanalyticities of the
kind that exist in D � 1� 1 and which are associated with
a gap forming in the eigenvalue spectrum.

To determine numerically whether at some given � the
spectrum ���� in some region close to � � 
� will
extrapolate exactly to zero when N ! 1 is clearly a deli-
cate matter, given that the values at finite N from which we
extrapolate are already extremely small.

So to search for such nonanalytic behavior we explore
the strategy of directly comparing Wilson loop eigenvalue
spectra in 1� 1 and 2� 1 dimensions. We first evaluate

the spectrum in 1� 1 dimensions at the critical coupling at
which the gap forms. A true gap only forms at N � 1; for
finite N we use the same value of the critical ’t Hooft
coupling, [10,11]

 �c �
1

�c
� 4�1� e��2a2=A��; (22)

where A is the area of the Wilson loop in physical units. At
this coupling the expectation value of the trace of the
Wilson loop is, using Eq. (6) [10,11],

 huwi � fhupigA=a
2
N ! 1 �

�
1�

�
4

�
A=a2

� e�2; (23)

which is the same value as at the critical coupling in the
continuum limit. Note also that as a! 0 and A=a2 ! 1,
Eq. (22) reduces to Eq. (7) as it should. Having obtained
the spectrum (numerically) in D � 1� 1 for a given size
Wilson loop (in lattice units) and for a given value ofN, we
then calculate the eigenvalue spectrum in D � 2� 1 for
the same size loop and for the same N, varying the cou-
pling to a value where the two eigenvalue spectra match.

We find that it is always possible to achieve such a
match, for any N and for any size of Wilson loop. We
show an example in Fig. 7, where we compare the eigen-
value density of the 3� 3 Wilson loop in SU(12) in 1� 1
dimensions to the density in 2� 1 dimensions, at a cou-
pling chosen to give the best match. In Fig. 7 the coupling
in D � 1� 1 is �c, the coupling at which the gap forms.
The spectra are clearly very similar and indeed indistin-
guishable on this plot. We also find that the spectra can be
matched when they are away from the critical coupling. In
Fig. 7 we also plot the analytically known spectrum [10,11]
in the continuum limit of the N � 1 theory in D � 1� 1
at the corresponding coupling. This clearly matches the
corresponding finite-N spectra very well, except in two
respects: the latter have N bumps which arise from the

 

FIG. 7. 3� 3 Wilson loop eigenvalue density, ei�, for SU(12)
in 1� 1 dimensions at � � �

2N2 � 1:255 (solid line) and in 2� 1

dimensions at � � 0:722 (long dashes), and the continuum
large-N distribution in 1� 1 dimensions at A � Acrit (short
dashes).
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eigenvalue repulsion that is a well-known characteristic of
the Haar measure, and the finite-N spectrum is not pre-
cisely zero in the region of the ‘‘gap‘‘.

The fact that at finite but large N we can match so
precisely the D � 1� 1 and D � 2� 1 eigenvalue spec-
tra for couplings at and above the D � 1� 1 transition,
provides convincing evidence that the Wilson loops in the
D � 2� 1N � 1 theory also undergo a transition involv-
ing the formation of a gap in the eigenvalue spectrum.

In Fig. 8 we plot the eigenvalue spectra of 2� 2, 3� 3,
and 4� 4 loops in SU(6) in 2� 1 dimensions. The three
couplings have been chosen so as to give the best match to
the eigenvalue spectra of Wilson loops of the same size in
D � 1� 1 at �c. We see that the three spectra are essen-
tially identical. Moreover the critical value of theD � 2�
1 coupling �c � 1=�c appears to grow linearly with the
size of the L� L loop, suggesting that there is a finite
critical area for gap formation in the continuum limit:
[10,11]

 �2
cL2 �

a!0
�ag2N�2L2 � �g2N�2Acrit: (24)

As we shall see below, in Sec. IV C 4, this is nearly but not
quite the case.

It turns out that all the above is an immediate corollary
of a much stronger and rather surprising result concerning
the matching of Wilson loop eigenvalue spectra in 1� 1
and 2� 1 (and indeed 3� 1) dimensions.

The general statement is that if we take an n� nWilson
loop Un�n

w in the SU�N� gauge theory and calculate the
eigenvalue spectra inD andD0 dimensions, we find that the
eigenvalue spectra match at the couplings �D and �D0 at
which the averages of the traces un�nw � 1

N Re TrfUn�n
w g are

equal:

 hun�nw ��D�iD � hun�nw ��D0 �iD0 : (25)

We have tested this matching for D � 1� 1 and D � 2�

1 over groups in the rangeN � 2 toN � 48 and for Wilson
loops ranging in size from 1� 1 (the plaquette) to 8� 8
and, in 2� 1 dimensions, for couplings from � � 4:0 to
� � 0:40. We have in addition tested it in the deconfined as
well as in the confined phase. Some sample calculations in
D � 3� 1 have also been performed [15] strongly sug-
gesting that the same is true there.

The fact that such a precise matching is possible implies
that the eigenvalue spectrum is completely determined by
N, the size of the loop, and its trace. Hence the eigenvalues
are not really independent degrees of freedom, which is
unexpected. Moreover we have seen in Fig. 8 a demon-
stration of the fact that the spectra of Wilson loops that are
2� 2 and larger can also be matched with each other. The
matching occurs at values of the traces that are the same as
those in D � 1� 1 where they are calculable. In this
sense, the size of the Wilson loop is not really an extra
variable here. Finally, the N dependence is weak, and
consists mainly of the two differences noted earlier.

Finally we remark that our results at this stage rely on a
comparison that is visual and impressionistic. Ideally one
would like to match the spectra by varying � continuously
and this can be done, from nearby calculated values of the
coupling, by standard reweighting techniques. In addition
it would be useful to quantify any differences (which must
be very small) with a standard error analysis. We intend to
provide such analyses elsewhere [15].

3. Polyakov loops

We have also investigated the eigenvalue spectra of
Polyakov loops as defined in Sec. II. These are products
of link matrices that wrap around one of the spacetime tori
(and are of minimal length unless specified otherwise) i.e.
they can be thought of as noncontractible Wilson loops.
They provide the conventional order parameter for the
deconfinement phase transition. As one crosses this tran-
sition the Polyakov loop that winds around the time (tem-
perature) torus acquires a nonzero expectation value. This
corresponds to the spontaneous breaking of a global center
symmetry in the Euclidean system. To simulate the system
at temperature T we use a L2

sL0 lattice with Ls � L0 so
that T � 1=aL0. As N grows one can weaken the inequal-
ity, so that one can take Ls ! L0 as N ! 1 while still
maintaining the thermodynamic interpretation and the
sharp phase transition.

We calculated the eigenvalue spectra of timelike
Polyakov loops in SU(12) on L2

sL0 lattices. We found
that it is always possible to match the Polyakov loop
eigenvalue spectra to those of Wilson loops in 1� 1 di-
mensions (and hence also to Wilson loops in 2� 1 dimen-
sions) by choosing couplings at which the trace of the
Polyakov loop equals that of the Wilson loop

 jh�l��0ij � huwi (26)

where, as we have seen, the size of the Wilson loop does

 

FIG. 8. Eigenvalue density in SU(6) in 2� 1 dimensions for
the 2� 2 loop at � � 0:483 (solid line), the 3� 3 loop at � �
0:719 (long dashes), the 4� 4 loop at � � 0:965 (short dashes)
and the continuum large-N distribution in 1� 1 dimensions at
A � Acrit (dots).

STRONG TO WEAK COUPLING TRANSITIONS OF SU . . . PHYSICAL REVIEW D 74, 125010 (2006)

125010-9



not matter to a very good approximation. (We take the
modulus because the Polyakov loop is proportional to
some element of the center in the deconfined phase and
the modulus effectively rotates that element to unity. The
eigenvalue spectrum also needs to be rotated by the same
center element.) This matching has the corollary that the
Polyakov loop eigenvalue spectrum will develop a gap at
N � 1 when its trace crosses the critical value jh�l��0ij �

e�2. For N > 4 the deconfining transition at T � Tc is
strongly first order and the value of jh�l��0ij will jump
from jh�l��0ij � 0 at T < Tc to some nonzero value for
T � T�c . The latter value will typically be greater than e�2

for small L0, i.e. for coarse lattice spacings, and will ! 0
as a! 0 and hence L0 ! 1. Moreover for fixed L0 the
trace increases with increasing T. (See Section IV C 4 for
why this is so.) Thus for coarse lattice spacings we expect
the gap formation to occur at the phase transition, T � Tc,
while for larger L0 it will not coincide with the deconfining
transition; instead it will occur at some T > Tc. The critical
value turns out to be L0 � 7. Thus in the continuum limit
the gap formation in timelike Polyakov loops does not
occur at T � Tc but rather at T � 1.

As a numerical example of the eigenvalue matching we
show in Fig. 10, the eigenvalue spectra of the timelike
Polyakov loop just below and just above the deconfinement
transition for L0 � 4, together with a 3� 3 Wilson loop
spectrum in 1� 1 dimensions at a coupling chosen to
match the spectrum of the deconfined Polyakov loop.
The spectra clearly match closely. Since the 1� 1 dimen-
sional � is above �c for the 3� 3 loop, the Wilson loop
will develop a gap at this coupling in the large-N limit.
Hence the Polyakov loop will presumably also develop a
gap.

Finally we recall that as N ! 1 the deconfining tran-
sition occurs on smaller spatial volumes Ls ! L0 so that at
N � 1 one can discuss the transition on a L3 lattice.
Taking into account the fact that our preliminary results
[15] indicate that all the above carries over to Wilson and
Polyakov loops in D � 3� 1, we can make direct contact
with the observation in [7,8] that on an L4 lattice the
Polyakov loop develops a gap when it develops a nonzero
expectation value.

4. Theoretical interpretation

The fact that atN � 1 there is a gap at weak coupling in
the eigenvalue spectra of Wilson loops, has a simple ex-
planation in the theory of Random Matrices. (See e.g. [24]
for a recent review.) At N � 1 the Gaussian Unitary
Ensemble (GUE) of complex Hermitian N � N matrices
generates an eigenvalue spectrum that is the well-known
Wigner semicircle

 ����N ! 1 /
�
1�

�2

4

�
1=2
: (27)

In weak coupling, when �! 1, the SU�N� link matrices

can be expanded in terms of the Hermitian gauge potentials
and it is very plausible that the averages involved in the
calculation of Wilson loops fall into the same ‘‘universality
class‘‘ as the GUE. That is to say, once the eigenvalues of
Wilson loops are clustered close to unity, the fact that the
phases are on a circle rather than on the line becomes
irrelevant and the phases (suitably rescaled by the cou-
pling) should be distributed according to the semicircle in
Eq. (27). In fact this is precisely what we find. Thus the
existence of a gap in the eigenvalue spectrum at weak
coupling has a rather general origin in terms of Random
Matrix Theory.

On the other hand we know that in a confining theory

 huwi / e��A !
A!1

0 (28)

which requires a nearly flat eigenvalue spectrum in
���;���. Thus as we decrease the lattice spacing, the
eigenvalue spectrum of a L� L Wilson loop must change
from being nearly uniform to eventually having a Wigner
semicircle gap. Thus at some bare coupling it must pass
through a transition where the gap forms.

For this gap to be physically significant, it must occur at
a fixed physical area in the continuum limit. However, as
we shall now see, this is not the case for either 2� 1 or
3� 1 dimensions (in contrast toD � 1� 1). The reason is
the perturbative self-energy of the sources whose propa-
gators are the straightline sections of the Wilson loop.
(Often referred to as the ‘‘perimeter term‘‘.) The leading
correction is given by the Coulomb potential Vc�r� at the
‘‘cut off‘‘ r � a. For a Wilson loop whose size is l� l �
aL� aL in physical units, this correction is

  loghuwi / lVc�a� /
�
�L loga D � 2� 1
�L D � 3� 1

(29)

using the fact that Vc�r� / g2N logr, g2N=r and � �
ag2N, g2N in D � 2� 1, 3� 1 respectively. Let us, for
illustrative purposes, assume that the full potential is given
by this self-energy and the area piece, �A � a2�L2, that
comes from linear confinement. Then we have

 huwi / expfc�L log�� c0�2L2g: D � 2� 1 (30)

using the fact that a2� / �ag2N�2 � �2 and loga �
log�� � � � in D � 2� 1, and

 huwi / expfc�L� c0e��cr=��L2g: D � 3� 1 (31)

using the fact that a2� / expf�cr=g2Ng in D � 3� 1,
where cr is given by the coefficients of the 2-loop renorm-
alisation group equation.

Consider first the D � 2� 1 case in Eq. (30). Since
�L � ag2NL � g2Nl is the length scale in physical units,
we see that if it were not for the weakly varying log� term
in Eq. (30), the Wilson loop trace would be the same on the
lattice and in the continuum (up to the usual O�a2� lattice
corrections). That is to say, we expect that as we approach
the continuum limit, �! 0, the critical area for gap for-
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mation will vanish

 Acrit /
1

�log��2
!
a!0

0 (32)

rather than tending to some finite limit. At coarse a the
logarithmic correction will be weak and one might well be
tempted to perform an extrapolation to the continuum limit
that does not include it. We illustrate all this with a nu-
merical calculation of the coupling, and hence lattice spac-
ing, at which L� L loops develop a gap. We define the
appearance of a ‘‘gap‘‘ in our finite-N calculations as the
coupling at which the spectrum is closest to the spectrum
of the L� L loop in 1� 1 dimensions at the coupling �c
in Eq. (22), for the same N. For SU(2) we calculated this
coupling for L up to 8 on 163 lattices. For SU(6) we
calculated up to L � 4 on 63 lattices. We show our results
in Fig. 9, together with a best fit to the SU(2) data which
has the asymptotic behavior in Eq. (32). The numerical
data shows deviations from linearity which could either be
interpreted as low L corrections to an asymptotic scaling
behavior � � ��1 / L, or as a logarithmic violation of this
asymptotic scaling. From our above analysis we know the
latter to be the correct interpretation.

In contrast to the anomalous behavior we see when
taking the continuum limit of �c�A�, the large-N limit is
achieved rapidly and smoothly. To illustrate this we list in
Table I the coupling for which the 3� 3 loop develops a
gap for N 2 �2; 48�. The critical coupling is essentially
constant from SU(6) onwards, showing that we are in the
large-N limit. Indeed, even for SU(2) the corrections are
small.

In the case of D � 3� 1 the self-energy diverges line-
arly and will normally dominate the trace for all � in the
weak-coupling region. Thus we expect Acrit / a2 up to
logarithmic corrections from the running coupling, so
that the gap formation occurs in the deep ultraviolet as
we approach the continuum limit. In contrast, in D � 1�
1 where the Coulomb potential is linear Vc�r� / g2Nr, the

self-energy term contributes at most a mere lattice spacing
correction that vanishes in the continuum limit.

From the above discussion we see that the anomalous
behavior of Acrit as a! 0 arises from divergent self-energy
contributions. If the source had a finite mass, so that the
propagator was smeared over some range r 1=�, we
would evaluate the Coulomb self-interaction at r � 1=�
rather than at r � a and hence would replace �L log�!
�L log� in Eq. (30), and �L! �=� in Eq. (31).
Assuming the univerality of the gap formation persists
for such loops, we would then expect them to form a gap
at a value of Acrit that is finite in the continuum limit if we
have chosen � to be finite in physical units. The value of
Acrit will of course depend on the value of �.

Similar considerations apply to Polyakov loops.
While the above considerations make plausible the uni-

versality aspect of the gap formation in Wilson and
Polyakov loops, they do not explain our most striking
result which is that the complete eigenvalue spectra can
be matched across spacetime dimension and loop size by
merely matching traces.

Finally, whether the gap formation, and the associated
nonanalyticity, has any significant physical implications is
unclear. For that to be so one would require that the gap
should form at a fixed physical area Acrit in the continuum
limit. As we have seen that is not the case in D � 2� 1 or
in D � 3� 1 and is only the case in D � 1� 1, where

 

FIG. 9. Couplings for which the gap forms for L� L Wilson
loops in SU(2) (� ) and SU(6) ( � ), and fit to SU(2) data
(dashed line).

TABLE I. Inverse coupling at which gap forms for 3� 3 loops
in SU�N�.

N �c

2 0.700(3)
6 0.719(3)
12 0.722(2)
24 0.722(1)
48 0.722(2)

 

FIG. 10. Polyakov loop eigenvalue density in SU(12) in 2� 1
dimensions in the confined phase at � � 0:764 (solid line) and in
the deconfined phase at � � 0:833 (long dashes), and the 3� 3
Wilson loop in 1� 1 dimensions at � � 1:684 (dashes).
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there are no propagating degrees of freedom and so no
‘‘physics‘‘ in the usual sense. One can imagine regularizing
the divergent self-energies so that Acrit is finite and nonzero
in the continuum limit, but then it would appear to depend
on the regularization mass scale � used.

D. Finite volume

In Sec. III C we argued that D � 3� 1 SU�N� gauge
theories on L0 � L1 � L2 � L3 lattices undergo a series
of 3 (or possibly 4) N � 1 phase transitions at �c0

�

�c1
� �c2

(� �c3
). These phase transitions are essen-

tially deconfining transitions, a��ci�Li � 1=TD�4�i
c , in a

sequence of ever-more dimensionally reduced theories. We
conjecture that continuity, and vanishing finite size correc-
tions at largeN, link at least some, and perhaps all, of these
transitions to the N � 1 phase transitions on L4 lattices
that have been discussed in [2,7,8].

The same argument clearly holds for SU�N� gauge
theories on L0 � L1 � L2 lattices in D � 2� 1. Here
we provide some (very) exploratory numerical results in
support of this scenario. For practical reasons we do so on
lattices with a less than asymptotic ordering, L0 <L1 <
L2.

1. First transition

The first transition is the usual deconfining phase tran-
sition when L1, L2 ! 1. It is second order for SU(2) and
SU(3), either second or first order for SU(4), and first order
for N � 5 [19]. Because the latent heat for N � 5 is / N2,
the crossover on a finite L0 < L1, L2 lattice will become a
first-order phase transition at N � 1. All this is well-
established and does not require further numerical confir-
mation in this paper.

2. Second transition

To search for the second transition we simulate SU�12�
gauge fields on a L0L1L2 � 2� 4� 40 lattice over a large
range of � � �=2N2. We calculate the Polyakov loop
around the � � 1 torus, average it over the given lattice
field, and take the modulus: j�l1j. This provides the conven-
tional order parameter for a deconfining transition with the
L1 � 4 torus providing the (inverse) temperature. We plot
results for the average of this, hj�l��1ji, at each value of � in
Fig. 11 and of the plaquette difference, h�u01 � u02�i,
which should also reflect such a transition. We see in
Fig. 11 a very clear signal for a transition at � 3:2 in
both quantities. This occurs at a temperature Tc1

�

TD�1�1
c � 1=4a�� 3:2� in the reduced theory. In units

of the usual deconfining temperature of the D � 2� 1
gauge theory, Tc0

� TD�2�1
c , this amounts to Tc1

 3Tc0
.

The rapid, steep crossover suggests that the transition is
first order. When we plot a histogram of j�l1j in the cross-
over region we indeed see a clear double-peak structure
that is typical of a first-order deconfining transition.

The next question is whether this crossover will sharpen
into an actual phase transition in the two interesting limits:
when we increase the spatial volume (here just aL2) at
fixed N; or when we increase N at fixed volume. In
addressing the former question we need to remark upon
some special features of first-order transitions in the effec-
tive D � 1� 1 theory that we are discussing here. The
high temperature deconfined phase is normally character-
ized by a center symmetry breaking so that �l c����
expfi2�n=Ng where c��� is a self-energy renormalisation
factor. Two such phases, characterized by n and n0 say, can
coexist and will be separated by a domain wall whose
tension we expect [25], for large T, to be

 �k / k�N � k�
T2���������
g2

2N
q ; k � jn� n0j; T �

1

aL1
:

(33)

In one spatial dimension the domain wall is just a ‘‘point‘‘
and so the usual energy/entropy arguments tell us that at
T � 1=aL1 � Tc1

the field will break up into domains of
typical size

 �r / exp
�
�
�k
T

�
(34)

Thus at any T if we take L2 ! 1 the volume will consist of
a ‘‘gas‘‘ of domain ‘‘walls‘‘, and hence domains, and on the
average these will be equally distributed amongst all the
center phases, so that hj�l��1ji ! 0. However on volumes
that satisfy L1 � L2 � �r we will typically be in one
domain and will thus have the usual deconfining signal of a
nonzero value for j�l��1j. In addition it is clear that the
lightest mass, mp, coupling to the � � 1 Polyakov loop
will not vanish at T > Tc1

but will approximately satisfy
mp / expf�cNT=

p
�g. Note that this mass decreases with

increasing L1 � 1=aT1 in contrast to the stringy behavior,
mp / L1, in the confining phase. It is clear from the above

 

FIG. 11. Values of the shorter ‘‘spatial‘‘ Polyakov loop
hj�l��1ji, �, and the plaquette difference 500� h�u01 � u02�i,
�, on a 2� 4� 40 lattice in SU(12) versus the bare inverse ’t
Hooft coupling, � � �=2N2.
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that our conventional signals for being in a deconfined
phase become more complicated to interpret inD � 1� 1.

Similar considerations apply to the deconfining transi-
tion itself. Suppose that there are confining and deconfin-
ing phases that differ by a free energy density f. At
T � Tc1

we have f � 0 so that the typical field will consist
of a ‘‘gas‘‘ of domain walls of typical size �r /
expf��cd=Tg where �cd is the free energy of the
confining-deconfining interface. This is the essential dif-
ference with higher dimensions. For large enough volume
( � L2) half the domains will be confining and half will be
deconfining. Let us now increase the temperature T a little
above Tc1

. Then f � 	0�T � Tc1
� near Tc1

, where 	0 �

�m�0 in D � 1� 1. If T � Tc1
is small enough, then

�rf�T�=T � 1 and the fraction of the volume that is still
in the confined phase will be / expf��rf�T�=Tg O�1�.
That is to say, the transition will take place over a range of
temperatures �T that is no smaller than

 

�T
Tc1

/ 	�1
0 expf��cd=Tc1

g (35)

and this remains nonzero in the infinite volume limit. This
implies that inD � 1� 1, for any finite N, there cannot be
an infinitely sharp first-order transition even in the large
volume limit. However, because both �cd (probably) and f
(certainly) grow / N2, there can be a phase transition at
N � 1, and this can occur at finite volume.

Returning to our numerical results, we begin with
SU(12) and show in Fig. 12 how the average plaquette
difference h�u01 � u02�i varies across the transition when
we vary the ‘‘spatial‘‘ volume, L2. (We expect the plaquette
difference to be less sensitive to domain formation than the
Polyakov loop.) It is clear that the transition does become
much sharper when we pass from L2 � 10 to L2 � 40
although the nature of the change between L2 � 40 and
L2 � 80 is less clear. The evidence is for a would-be first-
order transition inhibited by the domain formation de-
scribed in the previous paragraph.

Turning now to the N-dependence of the transition, we
show in Fig. 13 how hj�l��1ji varies with � on a 2� 4� 10
lattice for SU(6), SU(12) and SU(24) gauge theories. We
see a rapid sharpening of the transition with increasing N
which leaves little doubt that there is a first-order transition
atN � 1 at L2 � 10, and presumably at other values of L2

as well.

3. Third transition

To search for a third transition, characterized by a non-
zero expectation value for j�l��2j, we take our SU(12)
gauge theory on an 2� 4� 10 lattice and increase �
beyond the values associated with the transitions discussed
above. When we plot the resulting values of hj�l��2ji versus
�, we see a transition of the kind that we are looking for,
but one which is very smooth. Increasing N to N � 24 we
see what appears to be a significant sharpening of the
transition, suggesting that it might become an actual phase
transition at N � 1.

Plotting a histogram of the values of j�l��2j obtained in
SU(24) on a 2� 4� 10 lattice at � � 156:25 (in the
crossover region) shows a clear peak at low values that
one naturally interprets as belonging to the confined phase,
and a further peak (or peaks) at larger values that one
naturally associates with the deconfined phase. This sug-
gests that if this is a phase transition at N � 1 then it is
first order.

V. CONCLUSIONS

We have shown that there is a very close match for a
number of observables between the bulk transition that
separates strong and weak coupling in 2� 1 dimensions,
and the Gross-Witten transition in 1� 1 dimensions. In
particular the third derivative of the partition function,
C3 / N4@3 logZ=@�3, appears to develop a discontinuity
as N ! 1, just as it does across the Gross-Witten transi-

 

FIG. 12. The average plaquette difference hui �
103 � h�u01 � u02�i in SU(12) on 2� 4� L2 lattices with L2 �
10 (� ), L2 � 40 ( � ), and L2 � 80 (�), versus � � �=2N2.

 

FIG. 13. The average � � 1 Polyakov loop for SU(6) (� ),
SU(12) ( � ), and SU(24) (�) versus the inverse bare ’t Hooft
coupling � � �=2N2, all on 2� 4� 10 lattices.
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tion, providing strong evidence for a third-order transition
in the large-N limit of D � 2� 1 SU�N� gauge theories.

When we expressed @3 logZ=@�3 as a cubic correlator of
plaquettes, we saw that some of the discontinuity arose
from fluctuations of plaquettes at the same position. This is
consistent with a genuine N � 1 phase transition that
arises from the N2 ! 1 degrees of freedom on each pla-
quette rather than from the collective behavior of a large
number of separated plaquettes. This motivated us to study
the eigenvalue spectrum of the plaquette. We found that at
the critical inverse ’t Hooft coupling, � � �c, the spectrum
develops a gap at the boundary of its range ei� � 
1 and
this gap grows as � increases. While the gap formation
does not, in itself, lead to a nonanalyticity in Z, it possesses
a feature that does. At � � �c and for N ! 1 the spec-
trum ���� approaches its end-points with a vanishing
derivative. This means that the extreme eigenvalues pos-
sess fluctuations that diverge compared to the O�1=N�
fluctuations of the eigenvalues in the bulk of the spectrum,
and this is directly related to the singularity in P3, the local
part of the third derivative of Z. All these features are
exactly the same as in the D � 1� 1 Gross-Witten tran-
sition. In addition we find that there is a very close match in
the behavior of the plaquette eigenvalue density and in the
ratio of plaquette eigenvalue fluctuations when we com-
pare the transitions in D � 2� 1 and in D � 1� 1. Thus
it would appear that the bulk transition in 2� 1 dimensions
is very much like the Gross-Witten transition.

However, there is clearly more than this going on. The
Gross-Witten transition has no peak in the specific heat, but
we see in 2� 1 dimensions a clear peak that coincides with
(or is very close to) the third-order transition. The contri-
bution from neighboring or nearly neighboring plaquettes
appears to grow with N, indicating a possible second-order
phase transition driven by local fluctuations decreasing
more slowly than 1=N2 at the critical point. An alternative
is that there is a third-order phase transition, but that it has a
critical exponent � � �1, unlike the Gross-Witten transi-
tion. It is also possible that there is a second-order tran-
sition due to a correlation length that diverges as N ! 1
(we see a slight decrease in the lightest mass that couples to
the plaquette when we go from SU(6) to SU(12)).
Numerical calculations that are both more accurate and
extend to larger N are clearly needed here. In any case, the
fact that the correlations between nearby plaquettes behave
as if due to a flux emerging from an elementary cube,
suggests that the transition may be due to center
monopole(-instanton) and vortex condensation. It is there-
fore plausible that this (possible) second-order phase tran-
sition is connected to the line of specific heat peaks in the
fundamental-adjoint plane found in SU(2) [26], which may
also become a line of second-order phase transitions in the
large-N limit, and which, just as in D � 3� 1 [17], can be
understood in terms of condensation of ZN monopoles and
vortices. In D � 3� 1 this phase structure is believed to

lead to the observed first-order bulk transition. The N � 1
specific heat peak would appear to be a manifestation of
the same dynamics, but in one lower dimension.

We have also investigated the sequence of finite volume
transitions that occurs with increasing � on L0L1L2 latti-
ces. We argued that when the tori are strongly ordered,
L0 � L1 � L2, these can be understood in terms of de-
confinement, followed by high-T dimensional reduction as
� is increased, followed by deconfinement in the reduced
system, and so on. The first transition is first-order for N �
5 and, for N ! 1, will occur at any fixed, finite spatial
volume L1, L2 > L0. As we increase �, and hence T, the
system will eventually be dimensionally reduced,
L0L1L2 ! L1L2. This L1 � L2 system will itself undergo
a deconfining transition at some higher value of�. Because
of the fragmentation of the high-T phase into domains (a
feature of 1 spatial dimension) this transition is only a
crossover at finite N, even in an infinite volume. But as
N ! 1 the domain ‘‘wall‘‘ tension will diverge (presum-
ably as N2), so that the domain structure is suppressed, and
the crossover becomes a genuine first-order transition, even
at finite L2, as indicated by our simulations. At higher�we
can again expect dimensional reduction to occur, L1L2 !
L2, and there is some limited numerical evidence that the
‘‘infinitesimal‘‘ L0 � L1 system may undergo a N � 1
transition. These arguments can trivially be lifted to SU�N�
gauge theories in 3� 1 dimensions. Here they clearly have
some relation, by continuation, to theN � 1 finite volume
transitions on L4 lattices discussed in [2,7,8].

Motivated originally by conjectures [2,7,8] that Wilson
loops in D � 3� 1 may undergo N � 1 nonanalyticities,
when their area, in physical units, reaches a critical value,
we have analyzed the behavior of Wilson loops in D �
2� 1 SU�N� gauge theories. Our results show a remark-
able match between the behavior of Wilson loops in D �
2� 1 and in D � 1� 1. We find that the eigenvalue
spectra of Wilson loops (and indeed Polyakov loops) in
D � 2� 1 match those of Wilson loops in D � 1� 1
when the traces are equal. Moreover the spectra of
Wilson loops of any size (in lattice units and when larger
than about 2� 2) also match if the couplings are tuned to
values where their traces are equal. This is true for any
fixed N. As a corollary, it immediately follows that in D �
2� 1 at N � 1 a gap will form in the eigenvalue spectrum
of a Wilson loop at a critical coupling that depends on the
size of the loop, just as it is known to do in D � 1� 1 in
both the lattice and continuum theories [10,11]. However
because of a logarithmically divergent self-energy piece,
this nonanalyticity in the spectrum will not occur at a finite
nonzero value of the area in the continuum limit. This is in
contrast to the case in D � 1� 1. We have preliminary
evidence [15] for a similar matching between Wilson loops
in D � 3� 1 and those with the same trace in lower
dimensions. Here the self-energy divergence is even
more severe and the gap forms deep in the ultraviolet. As
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in D � 2� 1 one can imagine regularizing this self-
energy by using finite mass sources in constructing the
‘Wilson/Polyakov loops’, so as to obtain a gap formation at
a fixed physical area.

The appearance of the gap at N � 1 follows quite
generally if we make plausible connections with Random
Matrix Theory. The spectrum of an l� l � aL� aL
Wilson loop should be flat at large a, since linear confine-
ment demands its trace to be / expf��l2g  0, while at
sufficiently small a we expect to find the Wigner semi-
circle of the N � 1 Guassian Unitary Ensemble.
Somewhere in between a gap must form. Because the
derivative of the spectrum diverges at its end-point, in
contrast to that of the plaquette at the bulk transition, there
are no anomalous fluctations of the extreme eigenvalues
and no nonanalytic behavior in the correlators that are
related to derivatives of the Wilson loop with respect to
the coupling. And indeed we find the traces of Wilson
loops to be analytic in the coupling just as they are in D �
1� 1. Thus the physical implications of this nonanalytic-
ity in the eigenvalue spectrum remain unclear.

The remarkable similarity between the eigenvalue spec-
tra of Wilson loops in different dimensions does not appear
to have a simple explanation within Random Matrix
Theory and merits a more careful and quantitative inves-
tigation than the one provided in this paper.

In summary, the D � 2� 1 large-N phase structure that
we have investigated in this paper can be understood, as we
have argued above, in terms that appear to allow a unified
understanding of these phase transitions in D � 1� 1,
D � 2� 1 and D � 3� 1 SU�N� gauge theories.
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