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We show that Fronsdal’s Lagrangian for a free massless spin-3 gauge field in Minkowski spacetime is
contained in a general Yang-Mills–like Lagrangian of metric-affine gravity (MAG), the gauge theory of
the general affine group in the presence of a metric. Because of the geometric character of MAG, this can
best be seen by using Vasiliev’s frame formalism for higher-spin gauge fields in which the spin-3 frame is
identified with the tracefree nonmetricity one-form associated with the shear generators of GL�n;R�.
Furthermore, for specific gravitational gauge models in the framework of full nonlinear MAG, exact
solutions are constructed, featuring propagating massless and massive spin-3 fields.
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I. INTRODUCTION

Metric-affine gravity (MAG, see [1] for a review) con-
stitutes a rich and natural framework for the study of
gravitational phenomena at high energy, when spacetime
is expected to lose its Riemannian character. Thanks to its
geometric formulation, it is also a promising candidate
theory for the unification of gravity with the other funda-
mental forces based on Yang-Mills–like actions for inter-
nal gauge groups. Its spacetime can be seen as a
generalization of the spacetime of Weyl’s unified theory
of gravitation and electromagnetism [2]. There, spacetime
is described by a manifold in which not only the direction
but also the norm of vectors are affected by parallel trans-
port, thereby providing a ‘‘true infinitesimal geometry.’’ By
adopting a metric-affine spacetime �Ln; g�, instead of the
usual Riemannian spacetime Vn of Einstein’s general rela-
tivity, one naturally extends the latter by introducing tor-
sion T and nonmetricity Q, besides the Levi-Civita
connection, still conserving a classical, smooth spacetime.
The connection one-form � in �Ln; g� takes a value in the
Lie algebra gl�n;R� of the general linear group GL�n;R�,
the subgroup of the affine gauge group of MAG. More
precisely, a metric-affine spacetime is described by a met-
ric g��, a coframe field #� and an independent connection
��

� that generally carries torsion T� :� D#� and non-
metricity Q�� :� �Dg��, where D denotes the
GL�n;R�-covariant exterior derivative.

The idea that the metricity condition Q�� � 0 may
become operational at low energy after spontaneous sym-

metry breaking is attractive and has been investigated for
some time (see [1] and references therein). That the totally
symmetric piece of the nonmetricity may become massive
after the spontaneous symmetry breaking of GL�n;R�
down to its Lorentz subgroup SO�1; n� 1�, leaving the
metric as a massless Goldstone field, was studied recently
in [3]. There, it was suggested that this totally symmetric
and traceless piece ofQ should behave as a massless spin-3
gauge field at the Planck energy.

It is well known that the nonmetricity Q contains a spin-
3 piece, the totally symmetric and traceless piece of Q
being called trinom in [1]. However, it is only in the
recent work [4] that this idea was taken seriously:
Fronsdal’s action [5] for a massless spin-3 field was written
such that on shell the propagating spin-3 field coincides
with trinom. The latter field then acquired mass by a
specific Brout-Englert-Higgs (BEH) mechanism based on
the spontaneous breaking GL�n;R�=SO�1; n� 1� viewed
as a small part of a more general BEH mechanism by
which the full diffeomorphism group G � Diff�n; R� is
broken down to its Lorentz subgroupH. Besides the metric
being regarded as a Goldstone field, specific parameters
characterizing the coset space G=H were interpreted [4] as
higher-spin connections, in the context of which it seemed
plausible indeed to assume the Lorentz group as stability
group H.

In the present work, we elaborate on the idea that the
totally symmetric and traceless part of the nonmetricity
could represent a massless spin-3 gauge field. After a brief
review of metric-affine geometry in Sec. II, we show in
Sec. III that MAG houses indeed such a field by exhibiting
Fronsdal’s theory for a massless spin-3 field as a subsector
of linearized MAG. Because of the geometric nature of
MAG, it is actually more convenient to consider Vasiliev’s
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Lagrangian [6] for a massless framelike spin-3 field in
Minkowski spacetime. The crucial step is to identify the
traceless nonmetricity—the component of the nonmetric-
ity which lies along the shear generator ofGL�n;R�—with
Vasiliev’s spin-3 framelike field, thereby providing another
geometrical interpretation for the latter field and showing
that Fronsdal’s spin-3 theory is hidden in MAG.

To take care of this observation, in Sec. IV different
types of field Lagrangians of MAG and the corresponding
field equations will be investigated in the sector of vanish-
ing torsion. Our main aim is to show that the field equations
of MAG provide solutions for propagating spin-3 fields.

As a first ansatz we present in (63) (Sec. IVA) a non-
metricity Q�� that is pretty much adapted to describe
propagating modes of the totally symmetric spin-3 field
�1�Q

�����. Furthermore, we investigate particular
Lagrangians to exhibit the different propagation behavior
of massless as well as of massive modes.

In Sec. IV B we consider a Yang-Mills–like Lagrangian
for the pure spin-3 field �1�Q��� and show that, in vacuum,
this field configuration is just trivial since from a field
theoretical point of view kinetic terms of the nonmetricity
are missing. This reminds us of the situation in the
Einstein-Cartan theory where torsion is proportional to
the spin of matter, just mediating some type of contact
interaction.

The situation can be improved in Sec. IV C by adding
curvature dependent terms to the Lagrangian (82). Adding
a Hilbert-Einstein–type Lagrangian supports the existence
of massless spin-3 modes. Because of the curvature
�DQ�

� and the second field equation �DR��, the
Bianchi identities will ‘‘freeze’’ out the genuine dynamical
degrees of freedom of the fields. Hence, a field Lagrangian
such as (91) leads still to a second field equation which is
algebraic in the field strengths, cf. (94). In that case we
would like to call such fields pseudopropagating. Provided
the coupling constants will be adjusted suitably, the second
field equation will be fulfilled without further constraints
and the first field equation reduces to an Einstein equation
with a cosmological constant in a Riemannian spacetime.

If we supplement the Lagrangian (91) with further
pieces of the nonmetricity, cf. Sec. IV D, additionally
massive modes can be generated, at least for particular
choices of the coupling constants.

After identifying the Vasiliev field e��� with the trace-
free nonmetricity % ��� of MAG, it is natural to consider
field Lagrangians quadratic in the strain curvature Z��
yielding genuine dynamical degrees of freedom,
cf. Sec. IV E. For this particular consideration a slightly
modified Kerr-Schild ansatz for the nonmetricity will be
considered in which the propagation will be characterized
by the field ‘, cf. (70). Consequently, this type of approach
will convert the nonlinear second field equation into a
linear partial differential equation of second order.
Accordingly, we derive ��1�Q

����� � 0 for the compo-

nents of the spin-3 field for massless modes (‘2 � 0).
Observe that in general relativity this method implies that
the full nonlinear Einstein tensor equals its linearized part.
In this sense the Kerr-Schild ansatz leads to an ‘‘exact
linearization,’’ cf. Gürses et al. [7]. This linearizing prop-
erty of the Kerr-Schild ansatz can also be applied success-
fully in MAG. We generalize the Kerr-Schild form ‘ in
(158). Then field configurations with massive spin-3 char-
acter can also be generated. An example of such a simple
toy model can be found in Sec. IV E 2.

The conclusions are outlined in Sec. V and some tech-
nical results are relegated to the appendixes.

II. METRIC-AFFINE GEOMETRY

A. Notation and conventions

In this section we will summarize shortly the main
properties of an n-dimensional metric-affine spacetime.
At each point of spacetime, we have a coframe #� span-
ning the cotangent space; the frame (or anholonomic)
indices �;�; � . . . run over 0; 1; . . . ; n� 1. We denote
local coordinates by xi; (holonomic) coordinate indices
are i; j; k; . . . � 0; 1; . . . ; n� 1. Most of our formalism is
correct for arbitrary n. However, in this article we will
mainly concentrate on n � 4. We can decompose the
coframe with respect to a coordinate coframe according
to #� � ei

�dxi. For the frame e�, spanning the tangent
space, we have e� � ei�@i. If c denotes the interior prod-
uct, then we have the duality condition e�c#� � ���.
Symmetrization will be denoted by parentheses ���� :�
1
2���

1
2��, antisymmetrization by brackets ���� :�

1
2���

1
2��, and analogously for p indices with the factor

1
p! ; see Schouten [8]. Indices excluded from (anti)symmet-
rization are surrounded by vertical strokes: ��j�j�� :�
1
2����

1
2���, etc.

We assume the existence of a metric

 g � g��#� 	 #� with gij � ei
�ej

�g��: (1)

Choosing orthonormal (co)frames ei
��
 e

�

i
�

, we have the
condition

 g���


gije
�i
�e
�j
� � o�� :� diag��1;�1; . . . ;�1�; (2)

whereas the holonomic gauge is defined by C� :�
d#��
 0, that is,

 #��


��i dx

i; e��


�i�@i: (3)

When a metric is present, we can introduce the Hodge
star operator ?. If we denote exterior products of the
coframe #� as #�� :� #� ^ #�, #��� :� #� ^ #� ^
#�, etc., then we can introduce, as an alternative to the
theta basis, the eta basis according to
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 � :� ?1; �� :� ?#�;

��� :� ?#��; ���� :� ?#���; etc:;
(4)

see [1,9]. This basis can be very convenient if the ? is
involved in formulas.

Furthermore, the manifold will be assumed to carry a
metric-independent linear connection ��

�, see Kobayashi
& Nomizu [10] or Frankel [11], that generally supports the
torsion T� :� D#� � d#� � ��

� ^ #� and the nonme-
tricity Q�� :� �Dg��. Here d denotes the exterior de-
rivative and D the GL�n;R� gauge-covariant exterior
derivative.

It is advantageous to split the connection into
Riemannian and non-Riemannian parts. If we introduce
the distortion one-form N��, the connection reads

 ��
� � ~��

� � N�
�: (5)

In the following, the tilde always denotes the purely
Riemannian contribution. Torsion and nonmetricity can
be recovered from N�� by

 Q�� � 2N���� and T� � N�
� ^ #�: (6)

Explicitly, the distortion one-formN�
� can be expressed in

terms of torsion and nonmetricity as

 N�� � �e��cT�� �
1
2�e�ce�cT��#

� � �e��cQ����#�

� 1
2Q��: (7)

Furthermore, it will be helpful to separate this into

 N�� � N���� �
1
2% �� �

1
2Qg��; (8)

withQ :� Q�
�=n, % �� :� Q�� �Qg��, and g��% �� �

0.
For n � 4, the traceless nonmetricity % �� � % ���#

�

has 36 independent components that can be decomposed
under O�1; 3� as 36 � 16 � 16 � 4:

 % ���
�1�Q�� �

�2�Q�� �
�3�Q��: (9)

Then, we have the following irreducible decomposition of
the components of the nonmetricity one-form Q�� �

Q���#� with respect to the (pseudo)orthogonal group,
cf. [1,12],

(10)

where we have marked the leading spin content of the
fields. We have also given the decomposition of the
GL�n;R�-reducible componentsQ��� into irreducible rep-
resentations of the (pseudo)orthogonal group, so that the
Young diagrams on the right-hand side of the above equal-
ity label O�1; n� 1�-irreducible representations. (Note the
multiplicity 2 of the irreducible vector representation.) The
names of our corresponding computer macros are Q�� �

trinom� binom� vecnom� conom. Defining
�� :� e�c% ��, we have explicitly

 

�1�Q�� �

�
% ����� �

2

n� 2
���g���

�
#�

�

�
Q����� �

2

n� 2
���g��� �Q��g���

�
#�;

(11)

 

�2�Q�� �
2

3

�
% ��� � % ������

1

n� 1
���g��

����g����
�
#�; (12)

 

�3�Q�� �
2n

�n� 1��n� 2�

�
���g��� �

1

n
��g��

�
#�;

(13)

 

�4�Q�� � g��Q�#
�: (14)

The irreducible part �1�Q�� �
�1�Q���#

� (trinom) cor-

responds to the totally symmetric piece �1�Q��� �
�1�Q

����� of the nonmetricity in which the traces have
been subtracted out,

 

�1�Q��� �
n�4

% ����� �
1
3���g���

� Q����� �
1
3g����3Q�� �����: (15)

The tracelessness of �1�Q��� means g���1�Q��� � 0 and

g���1�Q��� � 0. The second term on the right-hand side of
(15) takes care of g��Q��� � nQ� and the third term of
g��% ��� � g��% ��� � ��. The totally symmetric
piece Q����� plays an important role in the recent gravita-
tional theory proposed in [4]. In the following we will
focus on the properties of �1�Q��, which, as we have
seen, carries leading spin 3.

The curvature two-form is defined by R�� :� d��
� �

��
� ^ ��

� � 1
2R���

�#� ^ #�. Associated with it is the
Ricci one-form Ric� :� e�cR�� � Ric��#�. Then the
components of the Ricci tensor read Ric�� � R���

�.
The Einstein �n� 1�-form is given by G� :� 1

2���� ^
R��.

With the help of (5) and (6) we can decompose the total
curvature R�� into Riemannian and post-Riemannian
pieces:

 R�
� � ~R�

� � ~DN�
� � N�

� ^ N�
�: (16)

In a metric-affine spacetime, the curvature two-form can be
split into a symmetric (strain) piece Z�� :� R���� and an
antisymmetric (rotational) piece W�� :� R����:

 R�� � Z�� �W��: (17)
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In turn, from Z��, we can subtract out the trace Z :� Z�
�

and arrive thereby at the shear curvature

 & �� :� Z�� �
1

n
Zg��; &�

� � 0: (18)

The Einstein �n� 1�-form depends only on the rota-
tional curvature:

 G� �
1
2���� ^ R

���� � 1
2���� ^W

��

� 1
2���� ^ �

�4�W�� � �5�W�� � �6�W���: (19)

If we decomposeG� with respect to the �n� 1�-form basis
��, namely G� � G����, then the G�� denote the com-
ponents of the Einstein tensor and G�� � W���

� �
1
2 g��W��

��.
In analogy to the Ricci one-form, we can define a Ricci-

type one-form (the ‘‘Rizzi’’ one-form) for Z�� and & �
�,

respectively:

 Riz � :� e�c Z�
� and 6Riz� :� e�c & �

�: (20)

In components, we have Riz�� � Z���
� and 6Riz�� �

& ���
�.

The zeroth Bianchi identity

 DQ�� 
 2Z�� (21)

links the nonmetricity to the strain curvature. After some
reordering (see Appendix B), we can isolate a purely
Riemannian covariant derivative according to

 

~D% �� � N���� ^ % �
� � N���� ^ % �

� � 2& ��: (22)

Note that, in the case of N���� � 0, the shear curvature is
completely determined by the Riemannian exterior cova-
riant derivative of the tracefree nonmetricity.

B. Field equations

The field equations of MAG have been derived in a first-
order Lagrangian formalism where the geometrical varia-
bles fg��; #�;���g are minimally coupled to matter fields,
collectively denoted �, such that the total Lagrangian, i.e.,
the geometrical part V plus the matter part Lmatter, results in

 Ltotal � V�g��; #
�;Q��; T

�; R�
��

� Lmatter�g��; #
�;�; D��: (23)

Using the definitions of the excitations,

 M�� � �2
@V
@Q��

; H� � �
@V
@T�

;

H�
� � �

@V

@R��
;

(24)

the field equations of metric-affine gravity can be ex-
pressed in a very concise form [1]:

 DM�� �m�� � ��� ��=�g���; (25)

 DH� � E� � �� ��=�#��; (26)

 DH�
� � E

�
� � ��

� ��=���
��; (27)

 

�L
��
� 0 �matter�: (28)

As a side remark, we discuss shortly the type of matter
that couples directly to the nonmetricityQ��; see also [13].
If we go over from the original geometrical variables g��,
#�, ��

� to the alternative variables g��, #�, T�, Q��,
then, with the help of Lagrangian multipliers (see [1]), we
find as a response to the variation of the torsion T� and the
nonmetricity Q��

 �Lmatter � � � � � �T
� ^�� �

1
2�Q�� ^���: (29)

Here the dots subsume the variations with respect to g��
and #�. Hence, for the hypermomentum with its definition
�Lmatter � � � � � ���

� ^��
�, we get

 ��
� � #� ^�� ���

�; (30)

where ��� :� ����� is the spin current and the strain-type
current ��

� is symmetric: ��� � ���. In a hydrody-
namic representation (see Obukhov and Tresguerres
[14]), a convective ansatz for the strain-type current reads
��� � 	���vc��, where v � v�e� is the velocity of the
fluid and � the volume n-form; moreover, 	�� � 	��.
Accordingly, it is the material strain-type current ���

that couples to the nonmetricity Q��. More specifically,
the dilation current ��

� couples to the Weyl covector Q
and the shear-type current B �� :� ��� � 1

n g
����

� to
the tracefree nonmetricity % ��.

On the right-hand sides of each of the three gauge field
equations (25)–(27), we identify the material currents as
sources; on the left-hand side there are typical Yang-Mills–
like terms governing the gauge fields, their first derivatives,
and the corresponding nonlinear gauge field currents.
These gauge currents turn out to be the metrical (Hilbert)
energy-momentum of the gauge fields
 

m�� :� 2
@V
@g��

� #�� ^ E�� �Q��� ^M
��� � T�� ^H��

� R�
�� ^Hj�j�� � R��j�j ^H��

�; (31)

the canonical (Noether) energy-momentum of the gauge
fields
 

E� :�
@V
@#�

� e�cV � �e�cT�� ^H� � �e�cR�
�� ^H�

�

�
1

2
�e�cQ���M

��; (32)

and the hypermomentum of the gauge fields
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 E�� :�
@V

@��
� � �#

� ^H� � g��M��; (33)

respectively.

The most general parity-conserving MAG Lagrangian,
at most bilinear in fQ��; T

�; R��g, has been investigated
by Esser [15] and reads

 

VMAG �
1

2


�
�a0R

�� ^ ��� � 2�0�� T
� ^

?
�X3

I�1

aI
�I�T�

�
�Q�� ^

?
�X4

I�1

bI
�I�Q��

�
� 2

�X4

I�2

cI
�I�Q��

�
^ #� ^ ?T�

� b5�
�3�Q�� ^ #

�� ^ ?��4�Q�� ^ #��
�
�

1

2�
R�� ^

?
�X6

I�1

wI
�I�W�� �

X5

I�1

zI
�I�Z�� � w7#� ^ �e�c

�5�W�
��

� z6#� ^ �e�c�2�Z��� �
X9

I�7

zI#� ^ �e�c�I�4�Z���
�
: (34)

One should also consult Refs. [12,15–18] and the literature
quoted there.

Here 
 is the dimensionful ‘‘weak’’ Newton-Einstein
gravitational constant, �0 the ‘‘bare’’ cosmological con-
stant, and � the dimensionless ‘‘strong’’ gravity coupling
constant. The constants a0; . . . ; a3, b1; . . . ; b5, c2, c3, c4,
w1; . . . ; w7, z1; . . . ; z9 are dimensionless and give a weight
for the different contributions of each linearly independent
term entering the Lagrangian. Actually, we will not con-
sider the complete Lagrangian (34). Instead, we choose a
simplified version with

 w7 � z6 � z7 � z8 � z9 � 0 (35)

whose effect is to decouple Z�� from W�
� in the

Lagrangian. Taking (36) into account, the various excita-
tions fM��;H�;H�

�g are found to be
 

M�� � �
2




?
�X4

I�1

b�I�I Q
��
�
�

2




�
c2#

�� ^ ?�1�T��

� c3#
�� ^ ?�2�T�� �

1

4
�c3 � c4�

?Tg��
�

�
b5




�
#�� ^ ?�Q ^ #��� �

1

4
g��?�3Q���

�
;

(36)

 H� � �
1




?
�X3

I�1

aI �I�T� �
X4

K�2

cK �K�Q�� ^ #
�
�
; (37)

 H�
� �

a0

2

��� �

X6

I�1

wI
?�I�W�

� �
X5

K�1

zK
?�K�Z��: (38)

The general structure of the excitations can be found in [1];
compare also [15].

III. MASSLESS SPIN-3 THEORY IN MAG

In this section, we show that, as was expected from the
decomposition of Q��, the action of MAG in the free limit
and in Minkowski spacetime indeed incorporates

Fronsdal’s action for a massless spin-3 gauge field, the
latter field being dynamically represented by �1�Q��.

As was first shown by Fronsdal [5] in 1978, a massless
integer-spin gauge field in Minkowski spacetime is de-
scribed by a totally symmetric tensor hi1...is subject to the
double tracelessness condition (for s � 4) oi1i2oi3i4hi1...is �

0. A quadratic Lagrangian for a free spin-s field is fixed
unambiguously in the form Ls � h ~Lh (where ~L is some
second-order differential operator) by the requirement of
gauge invariance under the Abelian gauge transformations
�hi1...is � s@�i1�i2...is�. The gauge parameters �i1...is�1

are
rank-�s� 1� totally symmetric traceless tensors, with
�i1...is�1

� ��i1...is�1�
and oi1i2�i1...is�1

� 0. This formulation
is parallel [19] to the metric formulation of gravity.

In 1980, in view of extending supergravity theories by
the addition of high-spin gauge fields, Vasiliev proposed a
framelike reformulation of Fronsdal’s theory by using
generalized vielbeins and spin connections [6].

In the next subsections, we briefly review Fronsdal’s and
Vasiliev’s approaches for the massless spin-3 gauge field.
Both approaches will be needed when showing the occur-
rence of a massless spin-3 sector in MAG.

A. Massless spin-3 field in Fronsdal’s approach

The action given in [5] for a totally symmetric massless
spin-3 gauge field hijk � h�ijk� in Minkowski spacetime
reads

 S�hijk� � �
1

2

Z
dnx

�
@‘hijk@‘hijk � 3@jh‘‘i@

jhk
ki

� 6@jh
‘
‘i@kh

jki � 3@jh
j
ik@‘h

‘ik

�
3

2
@jh‘‘j@ih

k
k
i
�
: (39)

It is invariant under the gauge transformations

 �hijk � 3@�i�jk�; �ij � ��ij�; oij�ij � 0: (40)

The corresponding source-free field equations are equiva-
lent to
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 F ijk :� �hijk � 3@‘@�ihjk�‘ � 3@�i@jhk�‘
‘ � 0: (41)

It is possible to reach the harmonic gauge

 Djk :� @ihijk � @�jhk�i
i � 0; �Djk � ��jk (42)

in which the field equations take the canonical massless
Klein-Gordon form �hijk � 0. By a residual gauge trans-
formation with parameter ��ij obeying � ��ij � 0, it is pos-
sible to set the trace of the gauge field to zero, yielding

 �hijk � 0; @ihijk � 0; oijhijk � 0: (43)

Actually, some residual gauge transformations �hijk �
3@�i ~�jk� are still allowed in (43). As shown in [19], this
gauge theory leads to the correct number of physical
degrees of freedom, that is, to the dimension of the irre-
ducible representation of the little group O�n� 2� corre-
sponding to the one-row Young diagram of length s � 3.

The counting of physical degrees of freedom can also be
done by using the gauge-invariant spin-3 Weinberg tensor
K [20] (see also [19]) which is the projection of
@i@k@mhn‘j on the tensor field irreducible under GL�n;R�
with symmetries labeled by the Young tableau

i k m
j n

.

Since @i@k@mhn‘j is already symmetric in all indices of the
two rows of the above Young tableau, it only remains to
antisymmetrize over the three pairs �ij; k‘;mn�. This cor-
responds to taking 3 curls of the symmetric tensor field hn‘j
and yields a curvaturelike tensor

 K ijk‘mn :� 8@�ij@�kj@�mhn�j‘�jj�: (44)

In fact, the source-free Fronsdal equations (41) imply the
Ricci-flat–like equations

 F � 0 ) TrK � 0 , oikKijk‘mn � 0: (45)

Conversely, it was shown in [21] that the Ricci-flat–like
equations TrK � 0 imply1 the Fronsdal equations F � 0.
This was obtained by combining various former results
[23,26,27]. Using the definition of K, the equations (45)
give the following set of first-order field equations:

 

� @�iKjk�‘mno � 0;

@iKijk‘mn � 0;
where TrK � 0: (46)

When n � 4, the above equations correspond to the (spin-

3) Bargmann-Wigner equations [28], originally expressed
in terms of two-component tensor spinors in the represen-
tation �3; 0� � �0; 3� of SL�2;C�. See also [26] for a careful
analysis of Fronsdal’s spin-3 gauge theory using the
Weinberg tensor K (denoted R6 in [26]).

In the massless spin-1 case, the Bargmann-Wigner equa-
tions read

 

�@�iFjk� � 0;

@iFij � 0;
(47)

which are nothing but the source-free Maxwell equations.
They imply �F � 0 and F � dA, where, as usual, F �
1
2Fijdx

i ^ dxj and A � Aidx
i. They are invariant under

�A � d�. The tensor F transforms into the representation
�1; 0� � �0; 1� of SL�2;C�. One can choose the Lorentz
gauge-fixing condition @iAi � 0 and look for solutions of
the source-free Maxwell equations with the ansatz

 A � Aidxi � ��x�k � ��x�kidxi; (48)

where ki are the constant components of a one-form k,
which is null: k ^ ?k � 0. We may choose the vector dual
to the one-form k in the z direction: ki � �E; 0; 0; E�. The
Lorentz condition ?d?A � 0 implies the equation k ^
?d� � 0, which is satisfied with � � 
�	a�eik�x where k �
x :� kix

i � �Et� Ez and where 
�	a� is a function of
the transverse coordinates 	1 � x, 	2 � y. (Implicitly, the
real component of � must be taken.) Then, the
d’Alembertian equation �d?d? � ?d?d�A � 0 is verified
if 
�	a� is a harmonic function in the �x; y� plane,
�x;y
�	a� � 0. The monochromatic plane-wave solution
Ai � 
�	a�kieik�x displayed here characterizes an electro-
magnetic pure-radiation field F (also called a null field)
since we have the vanishing of the two invariants F ^ F
and F ^ ?F. Note also that we have A ^ dA � 0, which
implies by Frobenius’s theorem that the vector dual to A is
hypersurface orthogonal, the surface being described by
the equation � 
 k � x� const � 0.

With the pure-radiation massless spin-1 solution F �
dA displayed above, it is simple to construct helicity-3
plane-wave solutions of the Bargmann-Wigner equations
(46):

 hijk � �kikjkk; ki � ��E; 0; 0; E�;

� � 
�	a�eik�x; �	
�	a� � 0 � ��:
(49)

Indeed, computing the spin-3 Weinberg tensor Kijk‘mn, we
find

 K ijk‘mn � �8�k�ijk�kjk�m@n�@j‘�@jj�
�eik�x: (50)

By using the properties of k and
, it can be shown that the
Bargmann-Wigner equations (46) are obeyed. Hence, on
shell, the field strength K is a propagating massless
helicity-3 field. It gives a representation of SL�2;C�
labeled by �0; 3� � �3; 0� and satisfies the massless Klein-
Gordon equation �K � 0. In the van der Waerden 2-

1More details, references and general results for tensor gauge
fields transforming in arbitrary irreducible representations of
GL�n;R� can be found in [22]. Note that, by introducing a
pure gauge field (sometimes referred to as a ‘‘compensator’’),
it is possible to write a local (but higher-derivative) action for
spin-3 [23] that is invariant under unconstrained gauge trans-
formations. Recently, this action was generalized to the arbitrary
spin-s case by further adding an auxiliary field [24] (see also [25]
for an older non ‘‘minimal’’ version of it).
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spinor notation, the monochromatic plane-wave solution
written above corresponds to a K that is equivalent to a
totally symmetric 6-spinor with all 6 null directions co-
inciding. The (6 times repeated) null spinor represents the
lightlike wave covector ki, cf. [26]. Finally, note that (i) the
equations (46) hold in arbitrary dimension n > 2 and
(ii) the gauge potentials hijk given in (49) satisfy the
equations (43).

Actually, we can put the plane-wave solutions (49) in
exactly the same form as that found by Obukhov [29] for
metric-affine gravity; see also Pasic and Vassiliev [30].
One must identify Obukhov’s one-form u with our one-
form k� and his H with our �, so that the nonmetricity
reads Q�� � k�k�u � �k�k�k. Then, as done in [29], it
is straightforward to add torsion by taking ��� �
k��’��k� k�k�u, where ’� � @�H. Similarly, one can
choose the coframe and metric as in [29], since they only
depend on the function H. The only component of the
curvature W�� that remains is the Weyl piece �1�W��. In
conclusion, with the identifications explained here, we
have made the exact correspondence between our plane-
wave solutions (49) and those of Obukhov [29].

B. Vasiliev’s approach to a massless spin-3 field

Fronsdal’s action for a massless spin-s gauge field in
Minkowski spacetime was elegantly rewritten by Vasiliev
[6] in a first-order framelike formalism. In the particular
spin-3 case, the set of bosonic fields consists of a general-
ized vielbein ei�� and a generalized spin connection
!i���. They obey the following algebraic identities:

 ei�� � ei��; o��ei�� � 0; !i��� � !i���;

!i����� � 0; o��!i��� � 0; o��!i��� � 0:

(51)

The action was originally written in four dimensions as [6]

 S�e;!� �
Z
d4x"ijk‘"���k!‘

���
�
@iej�

� �
1

2
!ij�

�
�
:

(52)

As in the Einstein-Cartan theory of gravitation (see
[31,32]), the connection is a nonpropagating field. One
can solve the source-free field equations for !i��� and
express it in terms of the framelike field ei��. Inserting the
result back in the action (52) and multiplying by 1=� for
further purpose, one obtains an action in second-order
formalism, in a form valid in any number of spacetime
dimensions,2

 S�e���� �
1

�

Z
dnx

��
1

4
A ���� � A ����

�
A ����

� �2A ���
� � A ���

��A �
���

�
; (53)

where A �� �
1
2 A ����#� ^ #� �

1
2 A ij��dxi ^ dxj is the

curvaturelike two-form constructed from the one-form
e�� � ei��dx

i � e���#
� by exterior differentiation:

 A �� :� de�� , A ���� � 2@��e����: (54)

Note that @� :� ei�@i. The action (53) is invariant under the
gauge transformations

 �e��� � @�	̂�� � â���; (55)

where â��� is traceless, o��â��� � 0 and o��â��� � 0,
and it transforms in the (2,1) module of O�1; n� 1� de-
noted by the Young tableau

.

The gauge parameter 	̂�� is symmetric 	̂�� � 	̂�� and
traceless o��	̂�� � 0, i.e., it transforms in the (2,0) mod-
ule

of O�1; n� 1�.
Because of the gauge symmetry �âe��� � â���, only

the totally symmetric component of e��� survives in the
action, yielding Fronsdal’s action (up to an inessential
overall constant factor) for h��� 
 e�����, invariant under
�h��� � 3@������, with ��� �

1
3 	̂�� [6].

C. Fronsdal’s action in MAG

As we anticipated by using the notation A �� for the
curvaturelike two-form of Vasiliev’s spin-3 vierbein one-
form e��, the Lagrangian in (53) is contained in a general
MAG Lagrangian (34) taken at quadratic order and eval-
uated in flat spacetime. The crucial point is to identify
Vasiliev’s spin-3 frame field with the traceless nonmetric-
ity:
 

e�� �
1

2
% ��

� ����� �
1

n
g����

� �

�
~����� �

1

n
g��~��

�
�

�



����� �
1

n
o����

�; (56)

where the tilde denotes the Riemannian connection and the
star refers to orthonormal coordinates. Then, taking the
traceless part of the zeroth Bianchi identity 1

2DQ�� 
 Z��
and recalling the definition (18) of the shear curvature
& ��, one finds (the irreducible decomposition is listed in
Appendix A)

2See Eq. (20) of [33] with the identification fmn~a ~b ! A mn��;
see also [34] with Bmnjab ! A mn��.
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1
2D% �� 
 & �� �

�1�& �� �
�2�& �� �

�3�& �� �
�5�& ��:

(57)

This is an exact relation valid in each metric-affine space.
If we now use orthonormal coordinates and linearize, we
discover that

 

1
2d% �� � de�� �

�1�A �� �
�2�A �� �

�3�A �� �
�5�A ��:

(58)

Here A �� is the curvaturelike two-form defined in (54). Of
course, since the decomposition of & �� is purely algebraic,
it also holds at the linearized level, for A ��.

We can now equate the Lagrangian (34) with (53) (the
former taken at quadratic order, in Minkowski spacetime).
We obtain a system of linear equations for the parameters
a0; . . . ; a3, b1; . . . ; b5, c2, c3, c4, w1; . . . ; w7, z1; . . . ; z9.
Obviously, only the terms

R
DZ ^? DZ of (34) will con-

tribute to the action (53), so that only the constants z1, z2,
z3, z4, z5 will be nonzero a priori. Furthermore, one can
already guess that z4 will be vanishing because Vasiliev’s
action (53) involves only the traceless part A �� of Z ��,
which is linearly independent from the pure trace part
�4�Z ��.

Using Appendix A, the volume n-form �, and the Rizzi-
like one-form associated with A �� [namely 6Riz�, cf. (20)],

the Lagrangian L�L��� 1
2�A ��^? �

P
I�1;2;3;5z

�I�
I A ���

can be written as
 

L �
z1 � z2

8�
A ����A ���� �

z1 � z2

4�
A ����A ����

�
1

4�

�
3n� 4

n�n� 2�
z1 �

z2

n� 2
�

2n

n2 � 4
z3 �

2

n
z5

�

� 6Riz�� 6Riz
�� �

1

4�

�
n� 4

n�n� 2�
z1 �

z2

n� 2

�
2n

n2 � 4
z3 �

2

n
z5

�
6Riz�� 6Riz

��: (59)

Hence (59) is equal to the Lagrangian in (53) if and only if
the following equations hold:

 z1 � 3; z2 � �1; z3 � 1� n; z5 � 3�1� n�;

(60)

all the other constants, in particular z4, being equal to zero.
Accordingly, Vasiliev’s action (53) reads

 SVasiliev�e���� � SFronsdal�h����

� �
1

2�

Z
	n

A �� ^
?
� X
I�1;2;3;5

z�I�I A ��

�

(61)

together with (60). Finally, the field equations turn out to
be

 0 �
�SVasiliev

�e���

� �
1

�
@��2A ������ � 2A ������ � A ����

� 4o��� 6Riz��� � 4o��� 6Riz��� � 2o��� 6Riz���

� 2o��� 6Riz����: (62)

Because of the equality SFronsdal � SVasiliev, the equations
(62) are equivalent to Fronsdal’s equations (41).

It is possible to pick up a gauge in which the only
irreducible part that remains of the shear curvature
A ���� is its first component �1�A ���� / @��h����. The
field h��� 
 e����� is the only component of the framelike
field that survives in the action, while the trace o��h���
and the divergence @�h��� both vanish in the appropriately
chosen gauge. This gauge is the one for which the field
equations take the form (43). As noted at the end of
Sec. III A, the plane-wave solutions (49) satisfy the corre-
sponding gauge conditions. Therefore, it is easy to see that
the components �I�A ����, I � 2, 3, 5, are zero for the
plane-wave solutions constructed in (49).

Up to an inessential factor of 2, we have thus identified
the spin-3 gauge field in Vasiliev’s frame formalism with
the component of the nonmetricity one-form which lies
along the shear generator of GL�n;R�. This enabled us to
show in a direct way the appearance of Fronsdal’s massless
spin-3 action as a part of MAG’s action (34), provided that
the free parameters present in the latter action are picked
according to (60), the remaining ones being zero
altogether.

IV. SPIN-3–LIKE EXACT SOLUTIONS OF FULL
NONLINEAR MAG

As we have shown in the previous section, in the gravi-
tational gauge sector of MAG, the connection ��

� already
mediates particles of different spin content, from 1 to 3.
Since the works of Fronsdal [5,35,36], it has been widely
recognized that free massive and massless higher-spin
fields consistently propagate in maximally symmetric
spaces,3 and consistent higher-spin cubic vertices have
been obtained in such spaces (see [40] for a light-cone
analysis and references on the problem of consistent
higher-spin cubic vertices, including Yang-Mills and gravi-
tational couplings; see [41,42] for non-Abelian massless
spin-3 covariant cubic vertices in flat space; higher-
derivative Abelian vertices are discussed in [43]).
However, so far, no interacting Lagrangian—consistent
at all orders in the coupling constants—has been written

3See the recent work of Buchbinder et al. [37] for more details
and references. See also Illge & Schimming [38], Illge &
Wünsch [39], and references therein, where more general back-
grounds have been investigated.
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that would nontrivially involve spin-3 gauge fields.
Presumably an infinite number of higher-spin fields is
required. The best hope in that direction is the theory
initiated by Fradkin and Vasiliev [44], further developed
notably in [45] and reviewed, e.g., in [46].

In the field theoretical approach proposed in [3,4],
higher-spin connections arise in the context of symmetry
breaking mechanisms starting from the group of analytical
diffeomorphism G � Diff�n; R�. Breaking this symmetry
down to the Lorentz group SO�1; n� 1�, e.g., those gen-
eralized connections can be identified with certain parame-
ters of the coset space G=H and give rise to an infinite
tower of higher-spin fields, cf. also [1,47,48].

Because of the identification (56) and the results of the
previous section, it appears that full nonlinear MAG offers
an interesting vantage point on the difficult problem of
spin-3 interactions, with itself and with gravity. Therefore,
an important step in that direction is to search for exact
solutions of full nonlinear MAG that propagate the spin-3
field �1�Q��. Moreover, such exact solutions are, within
MAG, interesting for their own sake, and, in particular, also
for studying non-Riemannian cosmological models; see
Puetzfeld [49,50].

A. Ansatz for the nonmetricity

To isolate the main spin-3 content of the connection, we
will postulate the existence of a one-form ‘�x� and a scalar
field ��x�, such that the nonmetricity can be parametrized
according to

 Q�� � �‘�‘�‘; (63)

with

 ‘ � ‘�#
� and ‘2 :� g��‘�‘� � ‘�‘

�: (64)

For this ansatz one should compare Obukhov [29,51] who
introduced plain fronted waves in MAG; see also our
considerations on the spin-3 solutions in (49).

Because of (63), the components of the one-form Q��

become totally symmetric, i.e.,

 Q��� � Q����� � �‘�‘�‘�: (65)

From there on, we will put n � 4. Because of (65), the
irreducible pieces of the nonmetricity will simplify.
Together with the one-forms

 Q�
� � 4Q � �‘2‘; (66)

 % �� � Q�� �Qg�� � ��‘�‘� �
1
4g��‘

2�‘; (67)

 � � �e�c% ���#
� � 3

4�‘
2‘ � 3Q; (68)

and the two-form

 P� :� % �� ^ #
� � 1

3#� ^� � 0; (69)

we find for the irreducible parts of the nonmetricity

 

�1�Q�� � ��‘�‘� �
1
6‘

2g���‘�
1
3�‘

2‘��#��

� ��‘�‘�‘� �
1
2‘

2g���‘���#
�;

�2�Q�� � �
2
3e��cP�� � 0;

�3�Q�� �
1
3�‘

2�‘��#�� �
1
4g��‘�

� 1
3�‘

2�g���‘�� �
1
4g��‘��#

�;

�4�Q�� �
1
4�‘

2g��‘:

(70)

Since �1�Q�� � 0, the ansatz (63) may carry genuine spin
3. This is consistent with (49) and (50) and with the fact
that the helicity-3 plane-wave solutions obey Bargmann-
Wigner equations for spin 3. Observe that the main spin-2
contribution, mediated by the tensor part �2�Q��, vanishes
identically. By using (67)–(69) and the vanishing of the
torsion, T� � 0, it is possible to show that �2�Z�� � 0 and
�3�Z�� � d�; see Appendix B, Eq. (B17).

Furthermore, we will need the Hodge duals of �1�Q��

and of the other irreducible pieces. Here the � basis (4) is
very convenient. The �1�Q��, as expressed in terms of #�,
can be easily hodged:

 

?�1�Q�� � ��‘�‘�‘� �
1
2‘

2g���‘����
�: (71)

It works for the other pieces analogously. If we recall #� ^
�� � g��� (see [1]), then, by straightforward algebra, we
find

 

�1�Q�� ^
?�1�Q�� � 1

2�
2‘6�;

�3�Q�� ^
?�3�Q�� � 1

4�
2‘6�;

�4�Q�� ^
?�4�Q�� � 1

4�
2‘6�:

(72)

We transvect (71) with ‘� and find

 

?�1�Q��‘
� � 2

3�‘
2�‘�‘� �

1
4‘

2g����
�: (73)

Additionally, a couple of relations for the nonmetricity as
multiplied by ��� will be needed for simplifying the field
equations. We use the ansatz (63) and the properties of the
� bases, cf. [1],
 

Q�� ^ ��� � �‘�‘�‘��� ��‘2‘���;

Q ^ ��� � �
1
2�‘

2‘�����;

Q��� ^ �
�
�� � ��‘2‘����� � 2Q ^ ���;

Q��� ^ ���� � �‘�‘�‘��� ��‘2‘�����:

(74)

Some consequences of the ansatz (63) that we will use
over and over again are the following relations:

 Q�� � �‘�‘�‘; % �� � ‘; (75)

 e�cQ�� � Q��� � Q�����; e��cQ��� � Q����� � 0;

(76)
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 ��� � ~��� � e��cT�� �
1
2�e�ce�cT��#

� � 1
2Q��; (77)

 Q � 1
3� �

1
4�‘

2‘; Q ^� � 0; (78)

 P� � 0; �2�Q�� � 0: (79)

Furthermore, we assume for the rest of Sec. IV, similar
to Boulanger and Kirsch [3,4], that the torsion vanishes:

 T� � 0: (80)

This implies that the connection (77) reduces to

 ��� � ~��� �
1
2Q�� or N�� �

1
2Q��: (81)

Connections of this type have been studied in a different
context by Baekler et al. [52,53].

B. A pure �1�Q�� square Lagrangian

In order to understand a propagating connection, we
consider first as a very special and degenerate case of
(34) the simple field Lagrangian

 V�1�Q2 �
b1

2

Q�� ^

?�1�Q��: (82)

The corresponding excitations (36)–(38) turn out to be

 M�� � �
2



b1

?�1�Q��; H� � 0; H�
� � 0;

(83)

and the gauge currents (31)–(33) read

 m�� � #�� ^ E�� �Q��� ^M
���; (84)

 E� � e�cV�1�Q2 � 1
2�e�cQ���M��; (85)

 E�� � �g��M
�� �

2



b1g��

?�1�Q��: (86)

Then the source-free field equations (25)–(27) reduce to

 DM�� �m�� � 0; (87)

 E� � 0; (88)

 E�� � 0: (89)

This is a rather trivial case. Because of (86) and (89), we
have

 

�1�Q�� � 0: (90)

Thus, alsoM�� � 0, and the field equations are identically
fulfilled. Consequently, the source-free field equations cor-
responding to the purely quadratic Lagrangian (82) do not
allow for propagating spin-3 fields. Our ansatz (75) was not
needed in order to achieve this result.

All this seems hardly surprising. However, we have to be
aware thatQ�� � �Dg�� is itself a field strength. Hence a
check of the triviality of the Lagrangian (82) was desirable.

C. Adding a Hilbert-Einstein–type term

Let us augment the Lagrangian (82) by a curvature
piece, the simplest one being the curvature scalar, and a
cosmological term. In this case the Lagrangian assumes the
form

 VR��1�Q2 � �
a0

2

R�� ^ ��� �

�0



��

b1

2

Q�� ^

?�1�Q��:

(91)

Besides the gravitational constant 
 and the cosmological
constant �0, we have a0 � �1 or � 0 (for switching on
and off) and b1 � arbitrary as dimensionless coupling
constants. For this particular Lagrangian, the excitations
turn out to be

 M�� � �
2



b1

?�1�Q��; H� � 0;

H�
� �

a0

2

���:

(92)

Substitution of (92) into the second source-free field
equation yields the algebraic relation
 a0

2

�Q�� ^ ��� � 2Q ^ ��� � T

� ^ �����

�
2



b1

?�1�Q�
� � 0: (93)

We now substitute the ansatz (71), (75), and (80) into (93):
 

a0

2

�
�‘�‘�‘ ^ ��� �

1

2
�‘2‘ ^ ���

�

� 2b1

�
�‘�‘�‘��

� �
1

6
�‘2�g��‘��

�

� ‘��� � ‘����
�
� 0: (94)

Transvection with ‘� yields

 ��1
4a0 �

1
3b1��‘4�� � �

1
4a0 �

4
3b1��‘2‘�‘��� � 0:

(95)

The second field equation (93) is only fulfilled by the
choice

 ‘2 � 0: (96)

We substitute this into (94) and obtain

 

�
a0

2
� 2b1

�
�‘�‘�‘��

� � 0: (97)

The only choice for nontrivial field configurations is

 b1 �
a0

4
and ‘2 � 0: (98)
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What about the first field equation? Because of (96), the
Hodge dual of ?�1�Q�� reduces to

 

?�1�Q�� � �‘�‘�‘��
� and �1�Q�� ^

?�1�Q�� � 0:

(99)

To simplify the gauge current E� in (32), we need infor-
mation about �e�cQ���M

��. Because of (96), this can be
shown to be identically zero. Collecting our results, the
first source-free field equation (26) reduces to

 E� � e�cVR��1�Q2 �
a0

2

�e�cR�

�� ^ ��� � 0 (100)

or, with � � �0=a0, to

 G� � ��� � 0; (101)

where G� is the Einstein three-form (19) that will deter-
mine the one-form ‘ and the scalar field �.

We can decompose the first field equation (101) into
Riemannian and post-Riemannian pieces. For this purpose
we start with the antisymmetric part of (16),

 W�� � R���� � ~R�� � ~DN���� � N��j�j ^ N��� (102)

in which (81) is substituted:

 W�� � ~R�� � 1
4Q
��j�j ^Q�

��: (103)

The last two terms vanish since Q�� ^Q�
� �

�2‘�‘�‘�‘
�‘ ^ ‘ � 0. Thus,

 G� �
1
2���� ^W

�� � 1
2���� ^

~R�� � ~G�: (104)

Hence our field equation reads ~G� � ��� � 0 or, in com-
ponents of the (Riemannian) Einstein tensor,

 

~G�� � �g�� � 0: (105)

Observe that (101) to leading order yields

 D�1�Q�� � nonlinear terms � 0: (106)

To separate the maximal spin content s � 3 of the connec-
tion, we have to take the totally symmetric part of (81):

 ������ �
1
2Q����� �

1
2@��g���

� 1
2�‘�‘�‘� �

1
2@��g��� �


 1
2�‘�‘�‘�: (107)

The star denotes the choice of an orthonormal frame.
However, as we have seen, these terms drop out from
(101) and only the Riemannian counterpart (105) is left.

Anyway, any solution of Einstein’s field equation with a
cosmological constant will generate (massless) fields with
spin-3 content in the framework of MAG. It remains to be
seen whether this fact is of physical relevance. In any case,
it shows that higher-spin fields can be constructed from the
field equations of MAG. Transvection of (105) with ‘�

yields

 

~G�
�‘� � �‘�: (108)

This is an eigenvalue equation for the eigenvector ‘�, and
the cosmological constant � is the corresponding eigen-
value of the (Riemannian) Einstein tensor.

D. Still more Q�� square terms added for spin-3 fields
with ‘2 � 0

The gravitational sector also allows for spin-3 modes
with ‘2 � 0. We call them tentatively massive modes since
we interpret ‘ as a wave covector. To support the connec-
tion ��

� to carry massive modes of this type, the
Lagrangian (91) has to be extended in order to include,
besides �1�Q��, also the other irreducible pieces of the
nonmetricity. These contributions will induce massive
spin-3 parts in the connection. As a suitable Lagrangian
with this property, we choose

 VR�Q2 � �
a0

2

R�� ^ ��� �

�0



��

1

2

Q��

^
X4

I�1

bI?�I�Q��: (109)

The corresponding excitations are

 M�� � �
2




X4

I�1

bI?�I�Q��; H� � 0;

H�
� �

a0

2

���:

(110)

Accordingly, the second field equation (27) [with (33)] is
again algebraic:

 

a0

2

�Q�

� ^ ��� � 2Q ^ ��� � T� ^ ����� �M�� � 0:

(111)

Its trace, its symmetric, and its antisymmetric pieces read,
respectively,

 M�
� � 0 or b4Q � 0; (112)

 

a0

2

Q
��
� ^ �j�j�� �M�� � 0; (113)

 

a0

2

�Q��

� ^ �j�j�� � 2Q ^ ��� � T
� ^ ����� � 0:

(114)

In the case of vanishing torsion T� � 0 and the appli-
cation of (75) in combination with (74), Eq. (114) vanishes
identically and is thus fulfilled, and the symmetric part
(113) becomes

 

a0

2

��‘�‘�‘��

� � ‘2‘������ �M�� � 0: (115)

With the ansatz (75), we find for M�� in (110)
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M�� � �
2�




�
b1‘�‘�‘� �

1

12
�2b1 � b3 � 3b4�‘

2g��‘�

�
1

3
�b1 � b3�‘2g���‘��

�
��: (116)

We substitute this into (115) and find a new form of the
symmetric part of the second field equation:
 

�

6

�3�a0 � 4b1�‘�‘�‘� � �2b1 � b3 � 3b4�‘2g��‘�

� ��3a0 � 4b1 � 4b3�‘
2g���‘����

� � 0: (117)

The b4-term in this equation is�b4
?Q. Because of (112), it

drops out. We transvect this equation first with ‘�,
 

��32a0 � 8b1 � b3�‘2‘�‘� � ��
3
2a0 � 2b1

� 2b3�‘4g����� � 0; (118)

and subsequently with ‘�,

 � 3�2b1 � b3�‘
4‘��

� � 0: (119)

Provided ‘2 � 0, we have from (112) and from (119) the
relations b4 � 0 and b3 � �2b1, respectively. If we sub-
stitute the latter into (118), we have finally

 b1 �
1
4a0; b3 ��

1
2a0; b4 � 0; all for ‘2 � 0:

(120)

For a reformulation of the first field equation (26) [with
(32)],

 E� � e�cVR�Q2 � �e�cR�
�� ^H�

��
1
2�e�cQ���M�� � 0;

(121)

we use (as part of VR�Q2 )

 Q�� ^
X4

I�1

bI
?�I�Q�� �

�
1

2
b1 �

1

4
b3 �

1

4
b4

�
�2‘6�

(122)

and

 

1

2
Q���M�� � �

1




�
1

2
b1 �

1

4
b3 �

1

4
b4

�
�2‘4‘�‘���:

(123)

If we collect our results, (121) can be written as
 

E� � �
a0



G���� �

�0



�� �

1

2


�
1

2
b1 �

1

4
b3 �

1

4
b4

�

��2‘6�� �
1




�
1

2
b1 �

1

4
b3 �

1

4
b4

�
�2‘4‘�‘��

�

� 0: (124)

Eventually, the first field equation reads

 

a0




�
G�� �

�0

a0
g��

�
�� �

1




�
1

2
b1 �

1

4
b3 �

1

4
b4

�

��2‘4

�
‘�‘� �

1

2
‘2g��

�
�� � 0: (125)

Using the parameter set (120), the expression containing
b1 etc. collapses to zero and we end up with an Einstein-
type vacuum equation

 G����� � �g�� � 0; (126)

where we put again � � �0=a0. As in the last subsection,
this equation, using our ansatz (75) and (80), reduces to the
Einstein equation in Riemannian spacetime:

 

~G�� � �g�� � 0: (127)

In our context, the Einstein three-form G���� equals the
Riemannian one G��~�� 
 ~G�. There is a general under-
lying pattern. If a connection is deformed by means of an
additive one-form A�

� according to ���
� � ��

� � A�
�,

then the curvature tensor responds with

 

�R�
� � R�

� �DA�
� � A�

� ^ A�
�: (128)

In the special case of a projective transformation with
A�� � ���P, we have (see [1,54])

 R��
proj

� R�� � �
�
�dP: (129)

Thus,

 W��

proj
:� R����

proj
� R���� � W�� and G�

proj

� G�:

(130)

The Einstein three-form is invariant under projective trans-
formations. Therefore, a gravitational Lagrangian in MAG
cannot consist of a Hilbert-Einstein–type term alone. It has
to carry additional terms.

The connection of our ansatz (81), namely ��� �
~��� �

1
2Q��, transforms the curvature according to

 R����� � ~R�� �
1
2

~DQ�� �
1
4Q�

� ^Q��: (131)

Consequently,

 W����� � ~W�� �
1
4Q�

� ^Q��; (132)

since the last term is antisymmetric in � and �. In turn,

 G���� � ~G� �
1
2����Q

�
� ^Q

��: (133)

However, in accordance with our ansatz (75), the Q-square
term vanishes:

 G���� � ~G�; W����� � ~W��: (134)
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E. A quadratic Lagrangian with pure strain curvature

In reminiscence of the Fronsdal Lagrangian, let us in-
vestigate a gravitational gauge model in the framework of
MAG with a field Lagrangian quadratic in the (symmetric)
strain curvature,4 i.e., we will concentrate on the field
Lagrangian

 VZ2 � �
1

2�
R�� ^

X5

I�1

zI
?�I�Z��: (135)

Incidentally, such Lagrangians may be also interesting in
cosmology; see Puetzfeld [49,50]. The excitations belong-
ing to the Lagrangian (135) turn out to be

 M�� � 0; H� � 0; H�
� �

1

�

X5

I�1

zI?�I�Z��:

(136)

Note that H�� is symmetric in � and �. The source-free
field equations (26) and (27) reduce to

 e�cVZ2 �
1

�
�e�cZ�

�� ^
X5

I�1

zI
?�I�Z�� � 0; (137)

 D
�X5

I�1

zI
?�I�Z��

�
� 0: (138)

The trace of the second field equation (138) yields

 2z4d?dQ � 0 (139)

and from its antisymmetric piece only

 Q���j

X5

I�1

zI?�I�Zj��
� � 0 (140)

is left over.
In order to get some insight into the possible solution

classes, we will distinguish between ‘2 � 0 and ‘2 � 0.

1. Solutions with ‘2 � 0

Let us first recall from (78) that the Weyl covectorQ, for
‘2 � 0, vanishes identically. Hence �4�Z�� � 0. Again

with our ansatz, according to (B17), we have �2�Z�� � 0

and �3�Z�� � d�. However, ��Q; see (78). Accordingly,

 

�2�Z�� �
�3�Z�� �

�4�Z�� � 0: (141)

To find solutions of the field equations (137), we will
make use of the Kerr-Schild ansatz for the metric, cf. [7],
which will be expressed in terms of a null tetrad according
to

 g � g��#
� 	 #�

� #0 	 #1 � #1 	 #0 � #2 	 #3 � #3 	 #2; (142)

that is, the anholonomic components of the (local) metric
are given by

 g�� �

0 1 0 0
1 0 0 0
0 0 0 �1
0 0 �1 0

0
BBB@

1
CCCA: (143)

We will introduce a set of coordinates ��; ��; u; v� and
choose the coframe

 #0 � d�; #1 � d ��; #2 � du; #3 � dv�V#2:

(144)

Then, the metric assumes the form

 g � 2�d�d �� � dudv� � 2V��; ��; u�du2; (145)

which will generate a class of pp waves, inter alia,
cf. [29,51,55].

The key point now is to identify the propagation vector ‘
of the spin-3 field with that of the Kerr-Schild ansatz; i.e.,
we will choose for the propagating trinom

 ‘ � V��; ��; u�du; (146)

with the further property

 ‘ ^ d‘ � 0: (147)

[In classical general relativity the components of ‘KS are
chosen to be ‘KS

� � �0; 0; 1; 0�.] Hence, in the massless
case, i.e., ‘2 � 0, it would be advantageous to rescale the
function � according to

 �! �̂=V; with �̂ � �̂��; ��; u�: (148)

This rescaling introduces some redundancy. However, it is
very convenient when one searches for exact solutions of
MAG. Then, one can take, e.g., for V an exact solution of
Einstein’s theory (in Riemannian spacetime), but still have
�̂ as a separate field for fulfilling the field equations of
MAG.

We insert (75) and (144), together with (148), into the
first field equation (137). It is fulfilled identically for
arbitrary parameter values of zI. The second field equation
(138) yields just one equation for the determination of the
functions V and �̂,
 

0 � z1��̂� ��V
2 � 2�̂�V ��V � 2�̂ ��V�V � 2V� ���̂V

� 2V�V ���̂� � z1��̂V
2�� �� : (149)

Incidentally, the choice V � 1, that is ‘ � du, would lead

4A Lagrangian quadratic in the rotational curvature of the type
W�� ^ ?W�� would not have a propagating �1�Q�� piece. This
can be seen as follows: The third term on the right-hand side of
(7) selects all the pieces of Q��, except �1�Q��. The fourth term
will not contribute to give a kinetic term d�1�Q�� ^ ?d�1�Q�� via
W�� ^ ?W�� because of its symmetries. Therefore, only the
third term of (7) has a chance to contribute a kinetic term
dQ�� ^ ?dQ��; but in the third term �1�Q�� dropped out.
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to z1�̂� �� � 0. Observe that in this case the corresponding
metric g alone represents a flat spacetime whereas the pair
fg; �̂g yields a nonflat solution of MAG. This shows that
the rescaling in (148) is a useful procedure.

Substitution of the nonmetricity (75) and the coframe
(144) together with the condition of vanishing torsion
yields for the massless case (‘2 � 0)

 

�1�W�� � 0; �4�W�� � 0; and �1�Z�� � 0:

(150)

It has been verified by using our REDUCE-EXCALC computer
algebra programs that these are the only nonvanishing
irreducible pieces of the curvature. We find, in particular,
�5�Z�� � 0. Moreover, the strain curvature can be written
in a compact notation as

 

�1�Z�� �
1

2V
d��̂V2���3�

�
3 ^ ‘: (151)

The partial differential equation (149) has simple poly-
nomial solutions, inter alia, such as

 V � f1�u� ��2 � f2�u� �� � f3�u� or

V � f4�u��
2 � f5�u�� � f6�u�;

(152)

with arbitrary wave profiles f1�u�; . . . ; f6�u�.
Summarizing, the propagating massless spin-3 field can

be characterized by the coframe (144) and by

 

�1�Q�� � �̂V��; ��; u���3�
�
3 ‘ � �̂V2��3 �

�
3#

2; (153)

where �̂ and V are a solution of (149). A comparison with
(151) shows that

 

�1�Z�� � 1
2d
�1�Q��; (154)

that is, the nonmetricity �1�Q�� acts as a true potential for
the strain curvature �1�Z��. The only nonzero component of
the spin 3 carrying piece �1�Q�� turns out to be

 

�1�Q222 � �̂V2��; ��; u�: (155)

Hence, the second field equation (138) can be written
symbolically as

 z1��1�Q��� � 0: (156)

We would like to mention that all results in this sub-
section will remain valid if one allows also for a nonzero
torsion trace, in accordance with the general results of
Heinicke et al. [12]. Hence, any torsion trace could be
parametrized as

 

�2�T� � �#� ^ ‘; � � ���; ��; u; v�; (157)

which is directly related to (63).

2. Solutions with ‘2 � 0

In order to look for solutions of massive propagating
�1�Q��, we have to choose a more general representation of
the one-form ‘, because (146) describes a null vector. As a
simple modification of (146) leading to nonvanishing ‘2

we can choose

 ‘ � V#2 �m0#0 �m1#1; (158)

where we assume for simplicity that m0 and m1 are con-
stants. For the norm ‘2 we find

 ‘2 � 2m0m1 � 0: (159)

We could scale ‘2 to unity with the choice m0 � m1 �

1=
���
2
p

. However, we will not do so.
The ansatz (75) for the nonmetricity will be written

slightly modified as

 Q�� �
�̂‘�‘�

V‘2 ‘; (160)

with �̂ � �̂�u� and ‘� � e�c‘. Even with these assump-
tions, it will be difficult to solve the field equations. For this
reason, we assume furthermore that the scalar V is con-
stant, too. This will lead us to a certain toy model showing
that the solution manifold for the field equations (137) and
(138) is not empty and allows for massive propagating
modes. We inserted all this into the first and second field
equations: The first field equation is fulfilled identically,
provided the coupling constants are chosen according to

 5z1 � z3 � 3�z4 � z5� � 0; (161)

 5z1 � 2z4 � z5 � 0; (162)

and the second field equation yields a second-order linear
differential equation for �̂,

 �3z1 � z4��̂uu � 0: (163)

This simple model implies two different subcases, either

 �̂�u� arbitrary; with z3 � z5 � z1 and z4 ��3z1;

(164)

or
 

�̂uu � 0; with 5z1 � z3 � 3�z4 � z5� � 0

and 5z1 � 2z4 � z5 � 0; (165)

leading to a 2-parameter class of solutions.
We find for these solutions that only the strain curvature

Z�� is nonvanishing and that the nonmetricity Q�� is
mainly nontrivial, namely

 W�� � 0; �2�Z�� � 0; �2�Q�� � 0: (166)

All other irreducible pieces are nonvanishing.
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To give an idea of the complexity of this simple toy
model, we list the massive spin-3 part of the nonmetricity,

 

�1�Q00 �
m1�̂

6m0V
�m0#0 � 3�m1#1 � V#2��; (167)

 

�1�Q01 �
�̂

6V
�m0#0 �m1#1 � 2V#2�; (168)

 

�1�Q02 � �
m1�̂

6V
#2; (169)

 

�1�Q03 � �
�̂

6m0V
�2m0V#

0 � 3�m1#
1 � V#2�V

�m0m1#
3�; (170)

 

�1�Q11 �
m0�̂

6m1V
�3m0#0 �m1#1 � 3V#2�; (171)

 

�1�Q12 � �
m0�̂

6V
#2; (172)

 

�1�Q13 � �
�̂

6m1V
��3m0#

0 � 2m1#
1 � 3V#2�V

�m0m1#3�; (173)

 

�1�Q22 � 0; (174)

 

�1�Q23 �
�̂

6V
�m0#0 �m1#1 � 2V#2�; (175)

 

�1�Q33 �
�̂

6m0m1
�3�m0#

0 �m1#
1�V � 3V2#2

� 2m0m1#3�: (176)

Because of (166), the spin-2 and spin-1 carrying pieces are
also nontrivial for those massive modes. A systematic
exploitation of the ansatz (158) and its generalizations
will be given elsewhere.

3. Rewriting the Lagrangian VZ2

It is also instructive to rewrite the Lagrangian (135) in
terms of a set of different variables. The �1�Z�� square

piece we leave as it is. Under our constraints, �2�Z�� � 0;

see (B17). The �3�Z��, as displayed in (B17), can be ex-
pressed in terms of d�. This implies

 

�3�Z�� ^
?�3�Z�� � 1

27d� ^ ?d�: (177)

Also simple is �4�Z��; see (A7). Thus,

 

�4�Z�� ^
?�4�Z�� � dQ ^ ?dQ: (178)

With the definition (A8) of �5�Z��, we derive the identity

 

�5�Z�� ^
?�5�Z�� � 3

8�� ^
?��: (179)

Collecting our results (177)–(179), and recalling � �
3Q [see (78)], the Lagrangian (135) can be put into the
form
 

VZ2 � �
1

2�

�
z1
�1�Z�� ^

?�1�Z�� �
�
z3

3
� z4

�
dQ ^ ?dQ

�
3

8
z5�� ^

?��
�
: (180)

If one desires, one can also introduce the Rizzi one-form.
Under our constraints, we have
 

VZ2 � �
1

2�

�
z1
�1�Z�� ^

?�1�Z�� �
�
z3

3
� z4

�
dQ ^ ?dQ

�
3

8
z5 6Riz� ^

? 6Riz�
�
: (181)

Note that, for a consistent transition to this new
Lagrangian, one has to add suitable Lagrange multiplier
terms to the Lagrangian.

V. DISCUSSION

In this paper, we carefully investigated the sector of
MAG related to a (free) massless spin-3 field and found
exact solutions of full nonlinear MAG theory in vacuum
with propagating nonmetricity �1�Q��.

Up to an inessential factor 2, we identified the spin-3
gauge field in Vasiliev’s frame formalism with % ��, the
component of the nonmetricity one-form which lies along
the shear generator of GL�n;R� � Rn3 2GL�n;R�. This
enabled us to show in a direct way the appearance of
Fronsdal’s massless spin-3 action in flat space as a part
of MAG’s action, provided that the free parameters present
in the latter action are picked according to (60), the re-
maining ones being zero altogether. Fronsdal’s Lagrangian
turns out to be purely quadratic in the shear curvature, a
purely post-Riemannian piece of the general linear curva-
ture. We also clarified the dynamical spin content of the
plane-wave solution found in [29] by explicitly relating it
to a simple propagating helicity-3 solution of the
Bargmann-Wigner equations.

We then constructed several exact solutions of full non-
linear MAG in vacuum with propagating tracefree non-
metricity, some showing a massless spin-3 behavior, others
presenting a massivelike spin-3 character. Note that,
although we have proved the occurrence of Fronsdal’s
massless spin-3 Lagrangian inside MAG by choosing the
only nonzero parameters as in (60), we have not shown that
the Singh-Hagen massive spin-3 Lagrangian [56] could
also be hosted inside MAG. This would require the intro-
duction of a scalar field, not present in the general MAG
Lagrangian (34) we have been considering here. This
scalar field was introduced in [4] as a BEH field, in analogy
to the Higgs field in U�1� symmetry breaking.

In MAG, as in any gauge theory, the geometrical fields
are coupled to matter currents. In addition to the symmetric
(Hilbert) energy-momentum current, which is coupled to
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the metric field, we have additionally the spin current and
the dilation plus shear currents inducing torsion and non-
metricity fields, respectively.

This requires the homogeneous Lorentz group to be
embedded in the larger general linear group. Having iden-
tified Vasiliev’s spin-3 frame field with the traceless non-
metricity, we have gained another geometrical
interpretation for the former field (the tracelessness of the
Vasiliev gauge parameter 	̂�� being the natural conse-
quence of a shear transformation), but we have lost the
Lorentz group as the local symmetry group of the tangent
manifold [13]. Indeed, although the Weyl one-form leaves
the conformal light-cone structure intact, the traceless non-
metricity (which couples to the shear current of matter)
does not preserve the light-cone structure and the local
Lorentz symmetry under parallel transport [1] with respect
to the connection ��

�. This implies that, in our discussion,
we are relating the massless spin-3 field with situations in
which there is no conventional flat, special relativity limit,
like e.g. in the early universe or in the microscopic domain
where the coupling of the shear plus dilation current of
matter to nonmetricity is expected to become non-
negligible, not to mention the coupling of matter’s intrinsic
spin current to the torsion field. This picture is in accor-
dance with Fronsdal’s spin-3 Lagrangian inside MAG
being purely quadratic in the shear curvature, hence be-
longing to the strong-gravity post-Riemannian part of
MAG’s Lagrangian.

Although there is presumably no consistent coupling
between a spin-3 field and dynamical Hilbert-Einstein
gravity (without resorting to an infinite tower of higher-
spin fields), our results suggest that spin-3 dynamics in the
framework of MAG could be well defined in the limit
where strong-gravitational MAG effects prevail and where
shear-type excitations of matter are expected to arise.

Finally, it would be interesting to compare our results
with those presented in [12].
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APPENDIX A: IRREDUCIBLE DECOMPOSITION
OF THE STRAIN CURVATURE

1. In components

We have the following irreducible decomposition of the
components of the strain-curvature two-form Z�� �
1
2Z����#

� ^ #� � 1
2Zij��dx

i ^ dxj with respect to the
(pseudo)orthogonal group, cf. [1,12,57],

(A1)

We have given the decomposition of the
GL�n;R�-reducible components Z���� into irreducible
representations of the (pseudo)orthogonal group, so that
the Young diagrams on the right-hand side of the above
equality label O�1; n� 1�-irreducible representations.
(Note the multiplicity 2 of the antisymmetric rank-2 tensor
irreducible representation. Indeed, Z�����

� and Z���
� are

linearly independent.) Accordingly,

 

�1�Z���� �
1

2
�& ���� � & ������ � & ������� �

1

2�n� 2�
�& "����

"g�� � & "����
"g�� � & "����

"g�� � & "����
"g��

� 2g��& "����
"� �

1

n
�& "����

"g�� � & "����
"g�� � & "����

"g�� � & "����
"g���;

�2�Z���� �
1

2�n� 2�
�& "����

"g�� � & "����
"g�� � & "����

"g�� � & "����
"g��� �

3

4
�& ������ � & �������

�
1

�n� 2�
& "����

"g��;

�3�Z���� �
n

�n� 2��n� 2�
�& "����

"g�� � & "����
"g�� � & "����

"g�� � & "����
"g��� �

4

�n� 2��n� 2�
& "����

"g��;

�4�Z���� �
1

n
Z��"

"g��; �5�Z���� �
1

n
�& "����

"g�� � & "����
"g�� � & "����

"g�� � & "����
"g���;

and with the shear curvature

 & ���� :� Z���� �
1

n
g��Z��"

":
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Equivalently, by introducing 6Riz��, we can rewrite this as follows:

 

�1�Z���� �
1

2
�& ���� � & ������ � & ������� �

1

2�n� 2�
�6Riz����g�� � 6Riz����g�� � 6Riz����g�� � 6Riz����g���

�
1

n� 2
6Riz����g�� �

1

n
�6Riz����g�� � 6Riz����g�� � 6Riz����g�� � 6Riz����g���;

�2�Z���� �
1

2�n� 2�
��6Riz��j� � 6Riz����gj�j�� � �6Riz��j� � 6Riz�j���g�j��� �

3

4
�& ������ � & ������� �

1

n� 2
6Riz����g��;

�3�Z���� �
n

n2 � 4
��6Riz��� � 6Riz��j��gj�j�� � �6Riz��� � 6Riz��j��gj�j��� �

4

n2 � 4
6Riz����g��;

�4�Z���� �
1

n
Z���

�g��;
�5�Z���� �

1

n
��6Riz��� � 6Riz��j�j�g��� � �6Riz��� � 6Riz��j�j�g����:

With regard to the uniqueness of the decomposition, a
remark is in order: If we simply apply the Young diagram
procedure to the components Z���� of Z�� and take traces,
three of the five irreducible pieces obtained are �1�Z��,
�2�Z��, and �5�Z��, as above, but the remaining two pieces
are arbitrary combinations of the two irreducible subspaces
involved in �3�Z�� and �4�Z�� above and hence are not
canonical. Here, however, the initial decomposition (A2)
with respect to the indices on the two-form Z�� has led to a
unique canonical set of irreducible pieces.

2. In exterior calculus—analogies with the irreducible
decomposition of Q��

We recall the definition of the tracefree shear curvature
two-form

 & �� � Z�� �
1

n
g��Z; with Z � Z�

�: (A2)

We cut this two-form into different pieces by contracting
with e� and transvecting with #�:
 

& � :� e�c& �� 
 6Riz�; �̂ :�
1

n� 2
#� ^ & �;

S� :� & �� ^ #
� � #� ^ �̂: (A3)

We have #� ^ S� � 0, e�cS� � 0; that is, the three-form
S�, in 4D, has 4� 4� 1� 6 � 9 independent compo-
nents. Subsequently we can subtract out the trace of & �:

 �� :� & � �
1
2e�c�#

� ^ & ��: (A4)

We have #� ^�� � 0, e�c�� � 0; that is, the one-form
��, in 4D, has 4� 4� 6� 1 � 9 independent
components.

The irreducible pieces may then be written as (the
number of independent components is specified for n � 4)

 �9 ind: comp:� �2�Z�� :� 1
2e��cS��; (A5)

 �6 ind:comp:� �3�Z�� :�
n

n�2

�
#��^e��c�

2

n
g��

�
�̂;

(A6)

 �6 ind: comp:� �4�Z�� :�
1

n
g��Z; (A7)

 �9 ind: comp:� �5�Z�� :�
2

n
#�� ^���; (A8)

 �30 ind: comp:�

�1�Z�� :� Z�� � �2�Z�� �
�3�Z�� �

�4�Z�� �
�5�Z��:

(A9)

Apparently, the forms fS�; �̂; Z;��g are equivalent to the
irreducible pieces f�2�Z��;

�3�Z��;
�4�Z��;

�5�Z��g, respec-
tively.

The strain curvature is of the type of a field strength. The
corresponding ‘‘potential’’ is expected to be the nonme-
tricity Q��. As we will show, the irreducible decomposi-
tion of the nonmetricity is reminiscent of that of the strain
curvature. In order to underline this, we will present all
definitions etc. strictly in parallel to the formulas above of
the strain curvature.

We start with the tracefree nonmetricity one-form

 % �� � Q�� � g��Q; with Q �
1

n
Q�

�: (A10)

We cut this two-form into different pieces by contracting
with e� and transvecting with #�:

 �� :� e�c% ��; � :� #���;

P� :� % �� ^ #� �
1

n� 1
#� ^�:

(A11)

We have #� ^ P� � 0, e�cP� � 0; that is, the two-form
P�, in 4D, has 6� 4� 4� 4 � 16 independent
components.

The irreducible pieces may then be written as (the
number of independent components is specified for n � 4)

 �16 ind: comp:� �2�Q�� :� �2
3e��cP��; (A12)
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 �4 ind: comp:�

�3�Q�� :�
2n

�n� 1��n� 2�

�
#��e��c �

1

n
g��

�
�;

(A13)

 �4 ind: comp:� �4�Q�� :� Qg��; (A14)

 �16 ind: comp:�

�1�Q�� :� Q�� �
�2�Q�� �

�3�Q�� �
�4�Q��:

(A15)

Apparently, the forms fP�;�; Qg are equivalent to the
irreducible pieces f�2�Q��;

�3�Q��;
�4�Q��g, respectively.

The analogies between the different irreducible decom-
positions of the forms T�, Q��, and Z�� in n dimensions
can be displayed in a pictorial description as follows:

(A16)

(A17)

(A18)

where the symbol denotes the correspondence be-
tween the set of forms on the left-hand side and the
corresponding irreducible pieces of the field strengths on
the right-hand side. Hence, the common procedure shows
that we need k independent forms (generally of different
degrees) to create k� 1 irreducible pieces of the corre-
sponding field strength. We recall the definition T :�
e�cT� and of �3�T� :� e�cA, together with A :� 1

3#
� ^

T�.
For later convenience, we list the irreducible pieces as

wedged with #�:

 

�1�Z�� ^ #
� � 0; �2�Z�� ^ #

� � S�;

�3�Z�� ^ #
� � �#� ^ �̂; �4�Z�� ^ #

� �
1

n
#� ^ Z;

�5�Z�� ^ #
� � 0; & �� ^ #

� � S� � #� ^ �̂:

(A19)

We can do the analogous for the nonmetricity:

 

�1�Q�� ^ #
� � 0;

�2�Q�� ^ #
� � P�;

�3�Q�� ^ #
� �

1

n� 1
#� ^�;

�4�Q�� ^ #
� � �#� ^Q;

% �� ^ #
� � P� �

1

n� 1
#� ^�:

(A20)

APPENDIX B: ZEROTH BIANCHI IDENTITY

1. Zeroth Bianchi identity in different disguises

A link between the three-form S� �
�2�Z�� and the two-

form P� �
�2�Q�� can be found via the zeroth Bianchi

identity:

 DQ�� 
 2Z��: (B1)

We introduce the slashed quantities:

 D% �� �D�Qg��� � 2& �� �
2

n
g��Z�

� (B2)

or, since dQ � 2
n Z�

�,

 D% �� � dQg�� �Q ^Q�� � 2& �� � g��dQ: (B3)

Accordingly,

 D% �� �Q ^ % �� � 2& ��: (B4)

The difference between the connection ��
� and the

Riemannian connection ~��
� is the distortion one-form

 

N�� � ��
� � ~��

�;

with N���� �
1
2Q��;N�

� ^ #� � T�: (B5)

If we execute the covariant exterior differentiation in (B4),
we find
 

~D% �� � N���� ^ % �
� � N���� ^ % �

� �Q ^ % ��

� 1
2Q�� ^ % �

� �
1
2Q�� ^ % �

� � 2& ��: (B6)

After some algebra, the explicit square pieces in the non-
metricity drop out. Thus,

 

~D% �� � N���� ^ % �
� � N���� ^ % �

� � 2& ��: (B7)

Let us come back to (B4). We wedge from the right-hand
side with #�:

 D�% �� ^ #�� �Q ^ �% �� ^ #�� � % �� ^ T�

� 2�& �� ^ #
��: (B8)

Also, here we can provide a version with a Riemannian
derivative. The simplest is to wedge (B7) from the right
with #� and to note ~D#� � 0:
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� ~D% �� ^ #
�� � N���� ^ % �

� ^ #
� � N���� ^ % �

�

^ #� � 2& �� ^ #�: (B9)

Then we substitute (A19) and (A20) into (B8) and find
 

D
�
P� �

1

n� 1
#� ^�

�
�Q ^

�
P� �

1

n� 1
#� ^�

�

� % �� ^ T
� � 2�S� � #� ^ �̂�: (B10)

We differentiate the sum and collect the torsion dependent
terms
 

�DP��Q^ P�� �
1

n� 1
#� ^ �d��Q^��

�

�
% ���

1

n� 1
g���

�
^ T� � 2�S��#� ^ �̂�: (B11)

Our strategy is now to separate S� from �̂. We contract
(B11) from the left with � 1

4 e
�c:

 � 1
4e
�cfl:h:s: of �B11�g� �

1
2e
�c�#� ^ �̂�

� 2�̂� 1
2#� ^ �e

�c�̂� � �̂

(B12)

or

 

�3�Z�� � �̂ � �1
4e
�cfl:h:s: of �B11�g�: (B13)

Now we can resolve (B11) with respect to S�:
 

�2�Z�� � S� �
1

2

�
DP� �Q ^ P� �

1

n� 1
#�

^ �d��Q ^�� �
�
% �� �

1

n� 1
g���

�

^ T�� � #� ^ �̂: (B14)

In this formula, �2�Z�� � S� is expressed in terms of non-
metricity and torsion. Note that our results (B13) and (B14)
are generally valid. No constraints have been assumed so
far. However, this will be done in the next subsection.

2. Consequences of the ansatz (75) and of vanishing
torsion (80)

We substitute (78)–(80) into (B14):

 S� � �
1

2�n� 1�
#� ^ d�� #� ^ �̂: (B15)

The two-form �̂ we take from (B13) after the constraints
(78)–(80) have been substituted into the left-hand side of
(B11). Thus,

 �̂ �
1

2�n� 1�
d� and S� � 0 (B16)

or
 

�2�Z�� � 0 and

�3�Z�� �
n

2�n� 1��n� 2�

�
#�� ^ e��c �

2

n
g��

�
d�:

(B17)

APPENDIX C: FIRST BIANCHI IDENTITY

Consider the first Bianchi identity,

 DT� 
 R�
� ^ #�: (C1)

The irreducible pieces of W�� and Z�� obey quite gener-
ally the algebraic constraints [1],

 

�1�W�
� ^ #� � �4�W�

� ^ #� � �6�W�
� ^ #�

� �1�Z�
� ^ #� � �5�Z�

� ^ #� � 0: (C2)

Thus,
 

DT� � ��2�W�
� � �3�W�

� � �5�W�
� � �2�Z�

�

� �3�Z�
� � �4�Z�

�� ^ #� � 0: (C3)

APPENDIX D: SECOND BIANCHI IDENTITY

The second Bianchi identity reads

 DR�
� � D�Z�

� �W�
�� � D

�X5

I�1

�I�Z�
� �

X6

I�1

�I�W�
�
�

� D
�X5

I�1

��I�Z�
� � �I�W�

�� �
W
12
#� ^ #�

�

 0:

(D1)

Here W :� e�ce�cW
�� is the curvature scalar and the

corresponding term in (D1) represents the sixth piece of
W�

�; see [1].
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