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We treat the coupled Dirac-Einstein system in the framework of effective field theories in order to
quantize the gravitational field at long distances in a consistent manner. In the Dirac-Einstein system we
consider the leading post-Newtonian and quantum corrections to the nonrelativistic scattering amplitude
of charged spin- 1

2 fermions. We extract the relevant vertex rules from the action appropriate to the one-
loop level calculations and find the nonrelativistic scattering matrix potential for two massive charged
spin- 1

2 fermions. Our focus is kept only on the nonanalytic parts contributing to the potential which are
known to generate the long-range interactions.
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I. INTRODUCTION

On the search for a theory of quantum gravity,
Donoghue [1] proposed 12 years ago an interesting new
way to look at general relativity. He suggested that, when
treating general relativity as an effective field theory [2]
using the background field method [3,4], reliable quantum
predictions at low energies could be made. Similarly, chiral
perturbation theory is viewed as the low energy effective
field theory of QCD. It is also well known that a field
theory need not necessarily be strictly renormalizable in
order to be able to yield quantum predictions at low
energies. However, a fundamental quantum theory of grav-
ity does not appear in this way, but this method never-
theless makes it possible to calculate quantum corrections
order by order in a momentum expansion.

Having laid the foundations for this new approach,
Donoghue and collaborators turned their attention to the
practical applications of this idea. A number of interesting
calculations have been made involving quantum gravita-
tional corrections to various quantities [1,5–8].

Prior to the effective field theoretical description of
general relativity, attempts had been made to find a quan-
tum theory for gravity. In particular, many proved that
general relativity was indeed not renormalizable, be it
pure general relativity or general relativity coupled to
bosonic or fermionic matter; see e.g. [9–12]. Of course,
it is a well-known fact that general relativity is a non-
renormalizable theory per se, and these authors succeeded
in exactly confirming that gravity indeed is explicitly non-
renormalizable, with or without matter. However, when
looked at in the framework of an effective field theory,
these theories do become order by order renormalizable in
the low energy limit. Many interesting results have been
found from this procedure. The most interesting from the
point of view of this paper is the bosonic quantum correc-
tions to the Newtonian/Coulomb potentials [6].

In Ref. [6] the post-Newtonian as well as the quantum
corrections that were generated to the Newtonian and
Coulomb potentials were explicitly found. We wish to
repeat this calculation, but now in terms of couplings to
fermions. Previously, Nieves and Pal have considered the
gravitational couplings of neutrinos [13] and charged lep-
tons [14] in a medium. We wish, in particular, to see
explicitly if the post-Newtonian as well as the quantum
gravitational corrections generated are identical to [6] or
not.

We will more or less follow a similar procedure as in [6]
mostly to avoid confusion about conventions and to make it
easy to compare the results at the end. However, it is by no
means a straightforward task to complete a similar calcu-
lation in terms of fermions. Some obstacles have to be
overcome compared to bosonic matter in curved space, e.g.
the issue of introducing fermionic matter into curved
space-time. Luckily, this issue has been dealt with before
[9,10,15–19]. The additional formalism is resolved by
introducing the vierbein formalism and deriving the proper
covariant derivative for the spinor fields.

Donoghue devised a particularly elegant way to extract
relevant information in terms of analytical and nonanalyt-
ical contributions to the scattering matrix [1]. This was
realized through the integrals occurring in the calculations,
and propagation of massless particles. Since it is possible
to fully determine the post-Newtonian and quantum cor-
rections by the nonanalytical pieces of the 1-loop ampli-
tude generated by the lowest order Einstein action alone, it
becomes possible to perform this calculation completely
by merely focusing on these contributions. We will also
only consider 1-loop effects in this paper. We will extract
the nonanalytical parts of the full set of 1-loop diagrams
needed for the 1-loop scattering matrix in the combined
quantum theory of general relativity and QED. As we will
see in this paper, and as can also be seen in [1,5–8], the
nonanalytical contributions correspond exactly to the long-
range corrections of the potential.

We will employ the same conventions as in Refs. [5,6].
The mostly minus Minkowski metric convention �1;�1;*Electronic address: butmu@nbi.dk
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�1;�1� will be used and the natural units are �@ � c � 1�
when nothing else is stated.

In Sec. II we will see how to combine QED with general
relativity by using the vierbein formalism, and, moreover,
introduce the ghost fields. Next, in Sec. III, we will focus
first on the distinction between nonanalytical and analyti-
cal contributions to the scattering matrix amplitude, where-
after we will define the potential. Finally, in Sec. IV, we
will evaluate the Feynman diagrams contributing nonana-
lytically to the scattering matrix, in order to construct the
leading corrections to the nonrelativistic Newtonian and
Coulomb potentials. We will end this paper with a discus-
sion in relation to [6]. In the appendixes, the vertex rules
together with a table of relevant integrals are presented.

II. THE DIRAC-EINSTEIN SYSTEM AS A
COMBINED EFFECTIVE FIELD THEORY

The combined theory of QED in a gravitational field is
given by the sum of the QED and Einstein Lagrangian
densities,

 L � Lgravity �LQED: (1)

The interacting field theory for quantum electrodynamics
is well known, with the Dirac equation minimally coupled
to the electromagnetic field,

 L QED � LDirac �LMaxwell

� � �i��D� �m� �
1
4g
��g��F��F��; (2)

where m is the mass, eq [20] is the electron charge with
eq � jeqj, and finally D� � @� � ieqA��x� is the cova-
riant derivative.

To make the action of the Dirac Lagrangian density
invariant under general coordinate transformations, we
follow the general procedure, i.e. multiply it with

�������
�g
p

,
and at the same time introduce a proper covariant deriva-
tive,

 L Dirac �
�������
�g
p � �i��D� �m� 

� e � �i�ded
�D� �m� : (3)

Now D� � @� � ieqA� �
1
2�

ab!�ab and we have used�������
�g
p

� det�ea�� � e, i.e. the determinant of the vierbein
is the matrix square root of the metric. Finally, �� �
�aea

�.
The full generally covariant Lagrangian density includ-

ing the fermionic degrees of freedom may collectively be
written as
 

L � e
2

�2 R� e�
� i�aea�D� � �  m�

�
1

4

�������
�g
p

g��g��F��F��: (4)

This will account for our full theory. The Lagrangian
density is to be expanded in powers of c�� [where we

choose c�� to be linearly symmetrically equal to h��
(A9)] in the case of the Dirac field and only h�� in the
case of the Maxwell fields; specifically, we expand the
Lagrangian density as follows:

 L � Lbackground �Llinear order � . . . ; (5)

where the ellipses denote second and higher order terms
that will not contribute at the 1-loop level calculations.

The Lagrangian density for the photon field can now be
expanded in powers of h��,

 LMaxwell � �
�
4
h�@�A�@�A� � @�A�@�A��

�
�
2
h���@�A�@�A� � @�A�@�A�

� @�A�@�A
� � @�A�@

�A��; (6)

where the trace of h � h�� � h�� � h; Eq. (6) is also
found in [21] and many other places. Likewise, we obtain
for the fermionic part
 

LDirac � eq � ��A� 

�
i�eq

2
� �a�Ia��� � 	a�
���h��A� 

�
�
2
h� � i��@� � � m � �

�
2

� �dh�d@� 

�
�
2

� ���ab@bha� ; (7)

where the symmetric identity Ia��� �
1
2
a

f�
�g�, which
can also be found in [21].

All the necessary lowest order interaction vertices of
fermions, gravitons, and photons can be found for the
theory from the linear order expansions as stated above
in Eqs. (6) and (7). A summary of these rules is presented
in the appendixes; see also [13,21] for comparison.

In principle, we should also expand

 L � e
2

�2 R; (8)

however, it is known [9] that the metric and vierbein
formulations are equivalent for fields with only covariant
vector indices. The coupling to the vierbein field only
occurs as a symmetric combination of vierbein fields; the
symmetric combination is, as we have seen, equal to the
metric tensor to linear order. No new aspects of the tradi-
tional quantization of the pure gravitational action are
introduced. We will therefore use the known vertices and
propagators for the bosonic and gravitational fields.

We have excluded the antisymmetric fields in all our
expressions. This is due to the fact that the antisymmetric
fields have propagators that go as ��2. This can be seen
when we fix the gauges in our quantization scheme. Our
theory (i.e. fermions including gravitational effects) has
two types of invariances. One is the general coordinate
transformation, under which the fermions behave as scalars
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(since they are defined with respect to the local Lorentz
frame). The other is the local Lorentz transformation,
under which the fermions transform as spinors. If the
Einstein action is included, then the coordinate gauge can
be fixed by choosing the harmonic (de Donder) gauge,

 L C � �1
2

�������
� �g

p
�h��;� �

1
2h�

�
;��

2; (9)

whereas the local Lorentz invariance is broken by choosing
the sum of the squares of the antisymmetric vierbein
components,

 L L � �1
2e�

�2a2
��: (10)

Gauge fixing of both these fields will result in an introduc-
tion of two sets of ghost fields. We do not need to be
concerned about the ghost introduced due to the antisym-
metric field. In a vierbein description of pure gravity, the
ghosts are never external. Furthermore, neither the anti-
symmetric vierbein fields nor its ghosts propagate (they
cancel each other [9]); thus we will not need to calculate
vertices for the external ghosts fields. This is very reassur-
ing since the pure gravity theory in vierbein formulation
can be covariantly quantized and is equivalent to the
quantized metric approach. That is, we could, in principle,
describe the theory without introducing these variables.
But if we do not have pure gravity and include fermions,
the antisymmetric fields become coupled to the vertices.
We need only consider the symmetric fields of the inter-
actions. This is due to the fact that we will only be
interested in the long-range corrections to the background
field, and the antisymmetric fields do not produce non-
analytic terms to the order at which we are working, due to
the proportionality factor of their propagator ��2. In fact,
a diagram consisting of at least an antisymmetric field and
a graviton vertex will at least go as ��3 which is an order
higher than ��2. However, in a full treatment of gravita-
tional interaction between fermionic matter, these fields
will have important contributions. They will most likely
contribute to higher order calculations.

III. THE SCATTERING MATRIX AND THE
POTENTIAL

The nonanalytical parts that occur in the calculations
originate from the propagation of massless particles (pho-
tons and gravitons). These cannot originate from massive
particles like the fermions, since it is not possible to expand
them in a Taylor series. From

 

1

q2 �m2 � �
1

m2

�
1�

q2

m2 � . . .
�

(11)

we see that no � 1
q2 -type terms are generated in the above

expansion of the massive propagator. The nonanalytical
effects are terms in the S matrix that will go as � ln��q2�
or � 1�������

�q2
p . These terms will generate corrections to the

long-ranged forces we are interested in. The analytic parts
of the S matrix will only generate corrections to local
effects and will not contribute in the low energy regime,
hence they will be disregarded.

Defining the potential

The S matrix is defined as the scattering matrix between
incoming and outgoing particles. The invariant matrix
element iM originating from the diagrams is

 hk1k2 . . . jiTjkAkBi � �2��4	4�kA � kB � �kfinal��iM�;

(12)

here we have two incoming particles. If we Fourier trans-
form the earlier mentioned nonanalytic terms to real space,
we easily see how the nonanalytic terms contribute to the
long-ranged corrections,

 

Z d3q

�2��3
ei ~q�~r

1

jq2j
�

1

4�r
; (13)

 

Z d3q

�2��3
ei ~q� ~r

1

jqj
�

1

2�2r2 ; (14)

 

Z d3q

�2��3
ei ~q� ~r ln�q2� � �

1

2�r3 : (15)

Obviously these terms do indeed contribute to the long-
range corrections. When we calculate the tree diagrams,
we explicitly see that the nonanalytic contribution of the
type (13) will correspond to the Coulomb and Newtonian
part of the potentials and the higher power of 1

r will gen-
erate the leading order and classical corrections to the
Coulomb and Newtonian potentials. Explicitly, the invari-
ant matrix element will look like

 M �

�
A� Bq2 � ��1�2 � �2e2�

1

q2

� �1�2e2q2 ln��q2� � �2�2e2q2 m����������
�q2

p . . .
�
;

(16)

where the high energy regime of the effective field theory
is represented by the terms A;B; . . . corresponding to the
analytical, local, and short-ranged interactions; hence these
terms will be the dominating terms at the high energy
range. The low energy range will be dominated by
�1; �2; . . . and �1; �2; . . . terms corresponding to the lead-
ing nonanalytic, nonlocal, long-range contributions to the
amplitude. Many diagrams will yield pure analytic contri-
butions to the S matrix; such diagrams will not be neces-
sary in our calculations, and we will only consider the
nonanalytic contributions from the 1-loop diagrams. The
diagrams which will yield nonanalytic contributions to the
S-matrix amplitude are those containing two or more
massless propagating particles.
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Relating the Born approximation to the scattering am-
plitude in nonrelativistic quantum mechanics, we get in
terms of iT

 hk1k2 . . . jiTjkAkBi � �i ~V�q��2��	�E� E0�; (17)

where q � p0 � p and ~V�q� is the nonrelativistic potential
transformed in momentum space. We should be careful
when comparing with (10); in �iM� factors of �2m1 	
2m2� arise due to relativistic normalization conventions,
thus we divide with these to obtain the nonrelativistic limit.
Equating the two we deduce
 

�i ~V�q��2��	�E� E0� � �2��4	4�kA � kB � �kfinal��iM�

(18)

or rather
 

~V�q� � �
1

2m1

1

2m2

Z d3k

�2��3
�2��3

	 	3�kA � kB � �kfinal��M�: (19)

Momentum integration yields the nonrelativistic potential

 

~V�q� � �
1

2m1

1

2m2
M (20)

or, in coordinate space,

 V�x� � �
1

2m1

1

2m2

Z d3k

�2��3
eik�xM: (21)

In our calculations, M will only contain the nonanalytic
contributions of the amplitude of the scattering process to
1-loop order, and we will not compute the full amplitude of
the S matrix; only the long-range corrections will be of
interest to us. In order to obtain their contribution to the
potential, only a subclass of scattering matrix diagrams
will be required. If we wanted to find the full total non-
relativistic potential, we would merely have to include the
remaining 1-loop diagrams. This type of calculation has
e.g. been performed in [22] (who also have used the same
definition of the potential as us), where the full amplitude is
considered. Their choice of potential included all 1-loop
diagrams; hence they obtained a gauge invariant definition
of the potential. This choice of the potential makes good
physical sense since it is gauge invariant, but other choices
are also possible. The most convenient choice could de-
pend on the physical situation at hand or how the total
energy is defined. The gauge invariant choice is also
equivalent to the suggestion in [23], where it is suggested
that one should use the full set of diagrams constituting the
scattering matrix, from which one can decide the non-
relativistic potential from the total sum of the 1-loop dia-
grams. However, it is worthwhile to note that we consider
all the nonanalytic corrections to 1-loop order; thus, if we
had the full amplitude to 1-loop order, we would still need
to extract the nonanalytical parts. We will continue using
this definition of the potential.

IV. RESULTS FOR THE FEYNMAN DIAGRAMS

A. Diagrams contributing to the nonanalytic parts of
the scattering matrix potential

In this section we shall extract the nonanalytical parts of
a limited set of 1-loop diagrams needed for the 1-loop
scattering matrix in the combined quantum theory of
QED and general relativity (however, it is a practically
complete set of diagrams in terms of nonanalytical contri-
butions to the scattering matrix). We will explicitly see that
the nonanalytic contributions indeed correspond to the
long-range corrections of the potential. This will become
obvious when the amplitudes are Fourier transformed to
produce the scattering potential, whence all the analytic
pieces are disregarded. The resulting nonanalytic piece of
the scattering amplitude will then be used to construct the
leading corrections to the nonrelativistic gravitational
potential.

B. Classical physics

Here we will look at the tree diagrams. The fermion-
fermion scattering process at tree level should, of course,
reproduce the results of classical physics both for gravita-
tional interactions and for electromagnetic interactions.

Tree diagrams

Given in Fig. 1, we have depicted the scattering process,
where the (incoming/outgoing) momenta for the first par-
ticle are �k=k0� with the (mass/charge) being �m1=e1�, and
similarly for the second particle with �p; p0� being the
(incoming/outgoing) momenta and �m2=e2� being the
(mass/charge). This is assigned for all the other diagrams
as well. The formal expression for the diagram depicted in
Fig. 1(a), the scattering process involving a photon ex-
change, is

 iM1�a� � �u�p0�
���u�p� �u�k0�
���u�k�
�
�
i
��
q2

�
(22)

and the expression for Fig. 1(b), a graviton exchange, is

 iM1�b� � �u�p0�
����u�p� �u�k0�
����u�k�
�iP����

q2

�
(23)

yielding the well-known classical results, namely, the

 

k p

k

q

p

(e1 , m1 ) ( e2 , m 2 )

(a) (b)

FIG. 1. The set of tree diagrams.
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Coulomb,

 V1�a��r� �
e1e2

4�r
; (24)

and Newtonian,

 V1�b��r� � �
Gm1m2

r
; (25)

potentials. It is worthwhile to note that already at this stage
the level of difficulty is not obvious. There is virtually no
problem in working out the Coulomb term for the interac-
tion; technically and mathematically it is straightforward.
However, in comparison, the Newtonian term is much
more sophisticated to work out. This is mainly due to the
many �matrices involved and the complicated vertex rules
in matter theories coupled to gravity. This difference will
play a much bigger role when more complicated diagrams
are involved. Indeed, the next set of diagrams is perhaps
the most challenging of them all, the box and crossed box
diagrams.

C. The 1PI diagrams

We will calculate all the relevant 1PI diagrams necessary
to find the long-range corrections to the potentials. We will
start with the box and crossed box diagrams and continue
with the set of triangular diagrams. Lastly, we will work
out the circular loop diagram.

1. The box and crossed box diagrams

There are in all four distinct diagrams: two box and two
crossed box diagrams; these are depicted in Fig. 2. We will
not treat all of these diagrams here. We will only look at
one of these; the rest can be treated in the same manner.
Explicitly, Fig. 2(a) is defined by
 

iM2�a� �
Z d4‘

�2��4

�
�
i
	�
‘2

�� iP����

�‘� q�2

�
�u�p0�

	 
����p� ‘; p0�DF�p� ‘��	�p; p� ‘��

	 u�p� �u�k0�
����k� ‘; k0�DF�k� ‘�

	 ���k; k� ‘��u�k�: (26)

The methods and techniques to work with these dia-
grams are identical to those shown in [6]; we will repeat
them briefly here.

The only difference lies in the fact that these diagrams
require four different integrals that were not worked out
previously. We have worked them out, and the coefficients
can be obtained by contacting us; they are too tedious to be
written down in the appendixes. Other than these integrals,
these diagrams simply had to be worked out even though
they involved enormous amounts of calculations. The level
of difficulty is much higher than in the previous case, due
to the reasons mentioned earlier. All the box diagrams have
been calculated by using symbolic manipulation on a
computer. These have partly been checked by hand. On
the mass shell we will have the following types of identi-
ties:
 

‘ � q � 1
2��‘� q�

2 � q2 � ‘2�;

‘ � k � 1
2��‘� k�

2 �m2
1 � ‘

2�;

‘ � p � �1
2��‘� p�

2 �m2
2 � ‘

2�;

(27)

so

 q�K�� �
Z d4‘

�2��4
�‘ � q�‘�

‘2�‘� q�2
�‘� k�2 �m2
1�
�‘� p�

2 �m2
2�

! �
q2

2

Z d4‘

�2��4
‘�

‘2�‘� q�2
�‘� k�2 �m2
1�
�‘� p�

2 �m2
2�
� �

q2

2
K� (28)

since the terms with �‘� q�2 and ‘2 simply do not contribute with nonanalytical results.
A more drastic reduction of the integrals takes place when the integral is contracted with the source momenta instead of

the exchange momenta,

 

(a) (b)

(c) (d)

FIG. 2. The set of box diagrams contributing to the potential.
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 k�K
�� �

Z d4‘

�2��4
�‘ � k�‘�

‘2�‘� q�2
�‘� k�2 �m2
1�
�‘� p�

2 �m2
2�
!

1

2

Z d4‘

�2��4
‘�

‘2�‘� q�2
�‘� p�2 �m2
2�
�

1

2
I�p (29)

or, in a similar manner,

 p�K
�� �

Z d4‘

�2��4
�‘ � p�‘�

‘2�‘� q�2
�‘� k�2 �m2
1�
�‘� p�

2 �m2
2�
! �

1

2

Z d4‘

�2��4
‘�

‘2�‘� q�2
�‘� k�2 �m2
1�
� �

1

2
I�k ;

(30)

where the subscripts k and p on the I’s are written to
indicate that the propagators left in the integrals are either
from the particle with momentum k or p. Thus a loop
momentum contracted with a source momentum simplifies
our integrals considerably. The kinematics are (on the mass
shell)

 k � q � p0 � q �
q2

2
; k0 � q � p � q � �

q2

2
; (31)

 k � k0 � m2
1 �

q2

2
; p � p0 � m2

2 �
q2

2
: (32)

The potential contribution from these diagrams are found
to be
 

V�r�2�a��2�b��2�c��2�d� �
3

4

e1e2�m1 �m2�G

�r2 �
118

48

Ge1e2

�2r3 :

(33)

These diagrams yield both a classical contribution—
� 1

r2—and a quantum correction—� 1
r3 .

2. The triangular diagrams

Diagrammatically, the triangular diagrams are given in
Fig. 3; these are the only triangular diagrams that contrib-
ute with nonanalytic terms. We will again only consider
one instance of these diagrams, namely, Fig. 3(a).
Formally, it is written down as follows:
 

iM3�a� �
Z d4‘

�2��4
�u�p0�
����	��u�p� �u�k0�

	 
�����‘� k; k0�DF��‘� k��
��k;�‘� k��

	 u�k�
�
�
i
	�
‘2

�� iP����

�‘� q�2

�
: (34)

Upon applying contractions and insertion of the relevant
integrals, whereafter Fourier transformations are per-
formed, we end up with the potential contribution

 V3�a��3�b��3�c��3�d��r� � �
9Ge1e2

4�2r3 : (35)

3. The circular diagram

The circular diagram is depicted in Fig. 4. Formally, it
can be written as

 iM4�a� �
Z d4‘

�2��4
�u�p0�
����	��u�p�

�
�
i
	�
‘2

�

	

� iP����

�‘� q�2

�
�u�k0�
�������u�k�: (36)

After doing all the contractions and rearranging the �
matrices, one arrives at the result that the contribution to
the potential from the circular loop diagram is precisely
equal to nill,

 V4�a� � 0: (37)

 

(a)
(b)

(c) (d)

FIG. 3. The set of triangular diagrams contributing nonanalyti-
cally to the potential.

 

FIG. 4. The circular diagram with nonanalytic contributions.
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D. The vertex correction diagrams

There are several sets of 1PR diagrams. All these are
presented in this section.

1. The 1PR diagram

The first set of these 1PR diagrams is given in Fig. 5.
These diagrams are the only ones corresponding to the
gravitational vertex corrections. Again, we will only con-
sider one instance of these diagrams. The matrix element
originating from Fig. 5(a) is
 

iM5�a� �
Z d4‘

�2��4
�u�p0�
��DF�p� ‘��

������	��‘; ‘� q��

	 u�p�
�
�i
��
‘2

��
�i
�	
�‘� q�2

��iP����

q2

�

	 �u�k0�
����k; k0��u�k� (38)

which yields the following potential when all the diagrams
are summed,

 V5�a��5�b��r� � G
�
m2e

2
1 �m1e

2
2

8�r2 �
e2

1
m2

m1
� e2

2
m1

m2

3�2r3

�
: (39)

This checks with [5] where it has also been calculated.
Of the next set of 1PR diagrams, depicted in Fig. 6, we

will also only consider the first one. This is the first of the
set of diagrams corresponding to the photonic vertex cor-
rections. Formally, Fig. 6(a) is given by
 

iM6�a� �
Z d4‘

�2��4
�u�p0�
��DF�p� ‘�����p; p� ‘��

	 u�p�
�
�i
��
�‘� q�2

��iP ����

‘2

�

����	���q; ‘� q��

	

�
�i
�	
q2

�
�u�k0�
���u�k�; (40)

giving the potential

 V6�a��6�b��6�c��6�d��r� � �
3Ge1e2

4�2r3 : (41)

The second set of diagrams corresponding to the pho-
tonic vertex corrections is given in Fig. 7. Formally,

Fig. 7(a) is given by

 iM7�a� �
Z d4‘

�2��4
����	���q; q� ‘�

�iP����

‘2

�

	

�
�i
��
�‘� q�2

�
�u�p0�
�������p; p0; e2��u�p�

	

�
�i
�	
q2

�
�u�k0�
���u�k�; (42)

yielding the potential

 

(a) (b)

FIG. 5. The first set of 1PR diagrams contributing nonanalyti-
cally to the potential.

 

(a) (b)

(c) (d)

FIG. 6. The second set of 1PR diagrams contributing to the
potential.

 

(a) (b)

(c) (d)

FIG. 7. The third set of 1PR diagrams contributing to the
potential.
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 V7�a��7�b��7�c��7�d��r� �
3Ge1e2

2�2r3 : (43)

2. The vacuum polarization diagram

The diagram is depicted in Fig. 8. The formal expression
for this diagram is
 

iM8�a� �
Z d4‘

�2��4
�u�p0�
���u�p�

�
�i
�	
q2

�
����	���q;�‘�

	

�
�i
��
‘2

�� iP����

�‘� q�2

�
��������‘; q�

�
�i
�
q2

�

	 �u�k0�
���u�k�: (44)

This is the only instance in these calculations that �
matrices are not explicitly involved. Simple index contrac-
tions are done and one obtains the potential contribution
after going to the nonrelativistic limit

 V8�a��r� �
Ge1e2

6�2r3 (45)

which is identical to the bosonic version.

V. THE RESULTS FOR THE POTENTIAL

When adding up all the separate contributions, we end
up with
 

V�r� ��
Gm1m2

r
�

~�~e1~e2

r
�

1

2
�m2~e2

1�m1~e2
2�
G~�

c2r2

� 3
~e1 ~e2�m1�m2�~�G

c2r2 �
4

3

G~�@

�c3r3

�
e2

1

m2

m1
� e2

2

m1

m2

�

� 15
1

6

G~�@~e1~e2

�r3 ; (46)

where we have included the appropriate physical factors of
@, c and we have further rescaled everything in terms of
~� � @c

137 ; lastly, �~e1; ~e2� are the normalized charges in units
of elementary charge. The result is divided into three
separate parts: the first two terms represent the
Newtonian and Coulomb potentials; the next two terms
represent the classical post-Newtonian corrections to the
potential, which also can be found by pure classical treat-
ment of general relativity with the inclusion of charged
matter sources [24]. It is interesting to see that loop calcu-

lations also reproduce classical results, and not only quan-
tum corrections. Finally, the last two terms are the leading
1-loop quantum corrections. We have, to a greater extent,
reproduced the results of [6], except for the last quantum
correction where we get the factor ��15 1

6� instead of ��8�
as in [6]. Other than the box diagrams, the remaining
diagrams have been done by hand, and all the diagrams
done in this paper have been checked by symbolic manipu-
lation on a computer.

VI. DISCUSSION

We have examined the leading order quantum correc-
tions to gravitational coupling of a spin- 1

2 massive charged
particle. Explicitly, we have extracted the nonanalytic
terms from the diagrams, which exactly manifested them-
selves as corrections to the long-range forces; this was
realized when we Fourier transformed these terms into
coordinate space. These terms originated from the propa-
gation of the massless particles, here the photons and
gravitons. We have obtained similar results for most of
the contributions to the corrections of the potentials, when
compared with [6]. Only one of the leading quantum
corrections differs from the bosonic calculation.

One could, in a similar manner, do a QED-pure gravity
scattering calculation as in [8]. However, difficult prob-
lems would appear. First of all, one would have to find
many new vertex rules involving the antisymmetric fields.
Moreover, we would have to derive second order
Lagrangian densities in terms of both the symmetric and
antisymmetric fields. Indeed, in this direction there lies a
considerably interesting project ahead.
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APPENDIX A: THE METRIC FIELD AND THE
VIERBEIN FIELDS

In this section we will briefly give the most essential
ingredients needed to expand the Lagrangians and derive
the vertex rules presented in this paper. The following
relations between the vierbein fields exist:
 

ea�eb
� � 	ab; (A1a)

ea�ea� � 	�� ; (A1b)

and the metric in terms of the vierbein is

 g�� � ea�eb�
ab: (A2)

The generators of the Lorentz group are �ab �
1
4 
�a; �b�

 

FIG. 8. The vacuum polarization diagram contribution to the
nonrelativistic potential.
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for spinors belonging to a given representation S��� �
e1=2�ab�ab ; the covariant derivative for spinor fields is

 D� � �@� �
1
2�ab!

ab
� � ; (A3)

where the spin connection is given by

 !ab
� �

1
2�e

a�@
�e

b�
�� � e

a�eb�@
�ec��e
c
��: (A4)

Note that Latin letters commute with Latin letters and
Greek letters commute with Greek letters.

The metric and the vierbein fields are expanded into two
separate contributions, a classical background field and a
quantum field,

 g�� � �g�� � �h��; (A5)

 ea� � �ea� � �ca�; (A6)

where �2 � 32�G and the background fields are denoted
as �g�� and �ea�. The quantum part—the graviton field—is
denoted by h�� and ca�, the sum of these being the full
metric and vierbein, respectively. The following inverses
and other relations are deduced:

 ea� � �ea� � �c�a � . . . (A7)

for the vierbeins, and

 g�� � �g�� � �h�� � �g�� � ��c�� � c��� � �2ca�ca�;

g�� � �g�� � �h�� � . . . � �g�� � ��c�� � c��� � . . .

(A8)

for the metric. From these relations we see that the metric
and vierbein quantum fields are related according to

 h�� � c�� � c�� � �ca�ca� � s�� � �ca�ca�; (A9)

showing us that the quantized metric field is equal to the
quantized symmetric vierbein field to first order in the
quantum fields, i.e. h�� � c�� � c�� � s��. The determi-
nants of the vierbein and metric fields are expanded into

 e � det
ea�� � ~e�1� �c�� � . . .� (A10)

with ~e � det �ea�, as well as the square root of the metric

tensor
�������
�g
p

�
�����������������������
� det�g���

q
,

 

�������
�g
p

�
�������
� �g

p �
1�

�
2
h�� � . . .

�
(A11)

with �g � det �g��. Finally, when expanding the spin con-
nection we get
 

!background
�ab � 0; (A12a)

!first order
�ab � 1

2@�aba �
1
2@bsa� �

1
2@asb�; (A12b)

where we have defined a new field, an antisymmetric field
a�� � c�� � c��.

APPENDIX B: FEYNMAN RULES

1. Propagators

The relevant propagators are presented in this section.

a. Photon propagator

The photon propagator is no stranger in QFT. In
Feynman gauge the propagator becomes

 

b. Graviton propagator

The graviton propagator is perhaps a stranger. However,
it has been worked out in several places. In the harmonic
gauge we get the following for the graviton propagator:

 

with the projection operator

 P ���� �

1
2 �
�f�
�g� � 
��
���

q2 � i
:

c. Fermion propagator

The fermion propagator can be found in many places in
literature; it is very well known,

 

2. Vertices

The vertices are presented here. They are all derived in
[25]. For all vertices, the rules of momentum conservation
has been applied.

a. 1-photon-2-fermion vertex

The 1-photon-2-fermion vertex can also be looked up in
the literature; it is worked out to be

 

with

 ���p; p0� � ieq�
�:
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b. 1-graviton-2-fermion vertex

The 1-graviton-2-fermion vertex is found to be

 

where

 

����p;p0� �
i�
2

�

��

�
1

2
�6p� 6p0� �m

�
�

1

4
�f��p�p0��g

�
:

c. 1-photon-1-graviton-2-fermion vertex

The 1-photon-1-graviton-2-fermion vertex is not known
from the literature; however, it is found to be

 

where

 �������p; p0� �
i�eq

4
�a�2
�a
�� � 
�f�
�ga�:

d. 1-graviton-2-photon vertex

We have derived the following for the 1-graviton-2-
photon vertex:

 

where

 

�����	��p; p0� � i�
P����	��p � p0�

� 1
2�


��p	p0� � 
�	pf�p0�g

� p	p0f�
�g� � p0�pf�
�g	��:

P ����	� is defined as above.

APPENDIX C: TABLE OF RELEVANT INTEGRALS

The following integrals are needed; note that in these
integrals only the lowest order nonanalytical terms are
presented:

 J �
Z d4‘

�2��4
1

‘2�‘� q�2
�

i

32�2 
�2L� � . . . ; (C1)

 J� �
Z d4‘

�2��4
‘�

‘2�‘� q�2
�

i

32�2 
q�L� � . . . ; (C2)

 J�� �
Z d4‘

�2��4
‘�‘�

‘2�‘� q�2

�
i

32�2

�
q�q�

�
�

2

3
L
�
� q2
��

�
�

1

6
L
��
� . . . ;

(C3)

together with

 I �
Z d4‘

�2��4
1

‘2�‘� q�2��‘� k�2 �m2�

�
i

32�2m2 
�L� S� � . . . ; (C4)

 

I� �
Z d4‘

�2��4
‘�

‘2�‘� q�2��‘� k�2 �m2�

�
i

32�2m2

�
k�

��
�1�

1

2

q2

m2

�
L�

1

4

q2

m2 S
�

� q�

�
L�

1

2
S
��
� . . . ; (C5)

 

I�� �
Z d4‘

�2��4
‘�‘�

‘2�‘� q�2��‘� k�2 �m2�

�
i

32�2m2

�
q�q�

�
�L�

3

8
S
�

� k�k�

�
�

1

2

q2

m2 L�
1

8

q2

m2 S
�
� �q�k� � q�k��

	

��
1

2
�

1

2

q2

m2

�
L�

3

16

q2

m2 S
�

� q2
��

�
1

4
L�

1

8
S
��
� . . . ; (C6)
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I��� �
Z d4‘

�2��4
‘�‘�‘�

‘2�‘� q�2��‘� k�2 �m2�

�
i

32�2m2

�
q�q�q�

�
L�

5

16
S
�
� k�k�k�

�
�

1

6

q2

m2 L
�
� �q�k�k� � q�k�k� � q�k�k��

�
1

3

q2

m2 L�
1

16

q2

m2 S
�

� �q�q�k� � q�q�k� � q�q�k��
��
�

1

3
�

1

2

q2

m2

�
L�

5

32

q2

m2 S
�
� �
��k� � 
��k� � 
��k��

�
1

12
q2L

�

� �
��q� � 
��q� � 
��q��
�
�

1

6
q2L�

1

16
q2S

��
� . . . ; (C7)

where S � �2m�������
�q2
p and L � ln��q2�. The ellipses denote higher order nonanalytical contributions as well as the neglected

analytical terms. Please note that there seems to be a typo in [6]; in I��� the factor after �k�k�k�� is lacking an L. Other
than this typo, all the integrals have been checked and are agreed upon.

The following integrals are needed to do the box diagrams.

 

K �
Z d4‘

�2��4
1

‘2�‘� q�2��‘� k�2 �m2
1���‘� p�

2 �m2
2�

�
i

16�2m1m2q
2

��
1�

w
3m1m2

�
L
�
� . . . ; (C8)

 K0 �
Z d4‘

�2��4
1

‘2�‘� q�2��‘� k�2 �m2
1���‘� p

0�2 �m2
2�
�

i

16�2m1m2q
2

��
�1�

W
3m1m2

�
L
�
� . . . ; (C9)

 K� �
Z d4‘

�2��4
‘�

‘2�‘� q�2
�‘� k�2 �m2
1�
�‘� p�

2 �m2
2�
� �q� � �k� � �p�; (C10)

 K0� �
Z d4‘

�2��4
‘�

‘2�‘� q�2
�‘� k�2 �m2
1�
�‘� p

0�2 �m2
2�
� �0q� � �0k� � �0p0�; (C11)

 K�� �
Z d4‘

�2��4
‘�‘�

‘2�‘� q�2
�‘� k�2 �m2
1�
�‘� p�

2 �m2
2�

� 
q�q�a� k�k�b� p�p�c� � 
�q�k� � q�k��d� �q�p� � q�p��e� � �p�k� � p�k��f� 
��q
2g; (C12)

 K0�� �
Z d4‘

�2��4
‘�‘�

‘2�‘� q�2
�‘� k�2 �m2
1�
�‘� p

0�2 �m2
2�

� 
q�q�a0 � k�k�b0 � p0�p0�c0� � �q�k� � q�k��d0 � �q�p0� � q�p0��e0 � �p0�k� � p0�k��f0 � 
��q2g0: (C13)

Here we have defined w � �k � p� �m1m2 and W � �k � p0� �m1m2. From these, we can deduce an important relation
that becomes vital during the calculations, namely, W � w � k � �p0 � p� � �k � q� � �q2

2 . The w and W are displayed
here only for the K and K0 integrals; for the rest of the integrals we have used W � �k � p� �m1m2 �

q2

2 (see [25] for
derivations). The coefficients to these are long and tedious to write down properly; however, if required, they can be
obtained by contacting us.

For the above integrals the following constraints for the nonanalytical terms can be verified directly on the mass shell.
We will use kI �

1
‘2�‘�q�2
�‘�k�2�m2

1�
for k, pI �

1
‘2�‘�q�2
�‘�p�2�m2

2�
for p, p0I �

1
‘2�‘�q�2
�‘�p0�2�m2

2�
for p0, and no particular

choice is needed for contractions with q:
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K��

�� � K0��


�� � I���

�� � I��


�� � J��

�� � 0; K��q

� � �
q2

2
K�; K�q

� � �
q2

2
K;

K0��q
� � �

q2

2
K0�; K0�q

� � �
q2

2
K0; K��p

� � �
1

2 kI�; K�p
� � �

1

2 kI; K��k
� �

1

2 pI�;

K�k� �
1

2 pI; K0��p0� �
1

2 kI�; K0�p0� �
1

2 kI; K0��k� �
1

2 p0I�; K0�k� �
1

2 p0I; I���q� � �
q2

2
I��;

I��q� � �
q2

2
I�; I�q� � �

q2

2
I; J��q� � �

q2

2
J�; J�q� � �

q2

2
J; kI���k

� �
1

2
J��;

kI��k
� �

1

2
J�; kI�k

� �
1

2
J; pI���p

� � �
1

2
J��; pI��p

� � �
1

2
J�; pI�p

� � �
1

2
J:

There seems to be a typo in [6]; the metric in I���
�� is written as I���
��.
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