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Within the framework of a manifestly gauge invariant exact renormalization group for SU�N� Yang-
Mills, we derive a simple expression for the expectation value of an arbitrary gauge invariant operator. We
illustrate the use of this formula by computing the O�g2� correction to the rectangular, Euclidean Wilson
loop with sides T � L. The standard result is trivially obtained, directly in the continuum, for the first
time without fixing the gauge. We comment on possible future applications of the formalism.
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I. INTRODUCTION

The necessity of gauge fixing in order to compute in
Yang-Mills theories is, in common lore, practically taken
for granted and, for perturbative calculations, generally
considered obligatory. This point of view is lent consider-
able weight both by Feynman’s unitarity argument for the
existence of Faddeev-Popov ghosts [1] and by the elegance
and power of the resulting BRST symmetries [2].

However, there is no reason in principle why gauge
invariant quantities, as opposed to Green’s functions in
gauge fixed formulations, cannot be computed in a mani-
festly gauge invariant manner. Indeed, in a nonperturbative
context, this is routinely exploited on the lattice, where
calculations can be performed without gauge fixing. Ex-
citingly, in a series of works [3–20], a formalism has been
developed which allows manifestly gauge invariant com-
putations to be performed directly in the continuum.

The benefits of this scheme are numerous. The gauge
field is protected from field strength renormalization and
the Ward identities take a particularly simple form since
the Wilsonian effective action is built only from gauge
invariant combinations of the covariant derivative, even
at the quantum level [5]. In the nonperturbative domain,
the difficult technical issue of Gribov copies [21] is entirely
avoided. Furthermore, it should be possible to make state-
ments about phenomena such as confinement in a com-
pletely gauge independent manner, and it is surely this
which gives a manifestly gauge invariant scheme much
of its appeal.

The framework developed in [3–20] is based on the
exact renormalization group (ERG), the continuum version
of Wilson’s RG [22–24]. The essential physical idea be-
hind this approach is that of integrating out degrees of
freedom between the bare scale of the quantum theory
and some effective scale, �. The effects of these modes
are encoded in the Wilsonian effective action, S�, which
describes the physics of the theory in terms of parameters
relevant to the effective scale.

The possibility of constructing manifestly gauge invari-
ant ERGs arises, fundamentally, from the huge freedom
inherent in the approach [25]. For any given quantum field
theory, there are an infinite number of ERGs corresponding
to the infinite number of different ways in which the high
energy degrees of freedom can be averaged over (the
continuum version of blocking on the lattice) [8,16,25].
In Yang-Mills theory, an infinite subset of these schemes
allows the computation of the gauge invariant Wilsonian
effective action, without fixing the gauge.1

Central to the ERG methodology is the ERG equation,
which determines how the Wilsonian effective action
changes under infinitesimal changes of the scale. Part of
the reason for the considerable amount of work put into
adapting the ERG for Yang-Mills (see [26] for a summary
of the various approaches) is that the ERG equation, by
relating physics at different scales, provides access to the
low energy dynamics of the theory. Indeed, more generally,
the ERG has proven itself to be a flexible and powerful tool
for studying both perturbative and nonperturbative prob-
lems in a range of field theories (see [27–35] for reviews).
A particular advantage conferred by the ERG is that renor-
malization is built in: solutions to the flow equation (in
pretty much any approximation scheme), from which phys-
ics can be extracted, are naturally phrased directly in terms
of renormalized parameters. It is thus clear that a mani-
festly gauge invariant formalism, based on the ERG, has
considerable potential. Furthermore, an interesting link
between this formalism and the AdS/CFT correspondence
has recently been made [36].

The majority of the work into the scheme employed in
this paper has focused on constructing and testing the
formalism, culminating in the successful reproduction of
the SU�N� Yang-Mills two-loop �-function [15,17].
Subsequent to this, the powerful diagrammatic techniques
developed to facilitate this calculation have been refined
and applied in the context of �-function coefficients at
arbitrary loop order [18–20]. These substantial works have
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1In practice we further specialize to those ERGs which allow
convenient renormalization to any loop order [15–17].
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paved the way for more general application of the formal-
ism; in this paper, we describe how to compute the expec-
tation values of gauge invariant operators, without fixing
the gauge, and illustrate the formalism with a very simple
computation of the O�g2� correction to the rectangular,
Euclidean Wilson loop with sides T � L. [There have
been attempts to compute the perturbative corrections to
this Wilson loop in (gauge fixed) ERG studies, in the past.
In particular, using the axial gauge flow equation proposed
by [37], it was found in [38] that, while the O�g2� result
could be correctly reproduced, the formalism failed at
O�g4�. However, the flow equation of [37] is not a flow
equation in the Wilsonian sense: the implementation of the
cutoff, �, is not sufficient to regularize the theory, and
dimensional regularization has to be employed as well.
This is the reason for the negative result of [38]; as recog-
nized in [39], properly Wilsonian axial gauge flow equa-
tions can be constructed, which work perfectly well. In the
formalism used in this paper, the above issues never arise,
since the implementation of the (gauge invariant) cutoff is
sufficient to regularize the theory, as proven in [9].]

The outline of this paper is as follows. In Sec. II we
review the setup of our manifestly gauge invariant ERG.
Section III is devoted to the methodology for computing
the expectation of gauge invariant operators. The basic
idea, for which little prior knowledge is required, is de-
tailed in the short Sec. III A. In the remainder of Sec. III,
the machinery for performing calculations in perturbation
theory is developed. This section concludes with a fantas-
tically compact diagrammatic expression for the perturba-

tive corrections to the expectation value of any gauge
invariant operator. In Sec. IV, we specialize to the compu-
tation of the expectation values of (renormalized) Wilson
loops. After covering some general features in Sec. IVA, in
Sec. IV B we compute the O�g2� correction to the
Euclidean, rectangular Wilson loop with sides T � L
and recover the standard result. We conclude in Sec. V.

II. REVIEW

A. Elements of SU�NjN� gauge theory

Throughout this paper, we work in Euclidean dimension,
D. We regularize SU�N� Yang-Mills, carried by the physi-
cal gauge field A1

�, by embedding it in spontaneously
broken SU�NjN� Yang-Mills, which is itself regularized
by covariant higher derivatives [9]. The massive gauge
fields arising from the spontaneous symmetry breaking
play the role of gauge invariant Pauli-Villars (PV) fields,
furnishing the necessary extra regularization to supplement
the covariant higher derivatives. In order to unambiguously
define contributions which are finite only by virtue of the
PV regularization, a preregulator must be used in D � 4
[9]. We will use dimensional regularization, emphasizing
that this makes sense nonperturbatively, since it is not
being used to renormalize the theory, but rather as a
prescription for discarding surface terms in loop integrals
[9].

The supergauge invariant Wilsonian effective action has
an expansion in terms of supertraces and products of super-
traces [11]:

 

S �
X1
n�1

1

sn

Z
dDx1 � � � dDxnS

X1���Xn
a1���an �x1; . . . ; xn� strXa1

1 �x1� � � �X
an
n �xn�

�
1

2!

X1
m;n�0

1

snsm

Z
dDx1 � � � dDxndDy1 � � � dDymS

X1���Xn;Y1���Ym
a1���an;b1���bm

�x1; . . . ; xn; y1 � � � ym� strXa1
1 �x1� � � �X

an
n �xn�

� strYb1
1 �y1� � � �Y

bm
m �ym� � � � � ; (2.1)

where the Xaii and Y
bj
j are embeddings of broken phase

fields into supermatrices. We take only one cyclic ordering
for the lists X1 � � �Xn, Y1 � � �Ym in the sums over n, m. If
any term is invariant under some nontrivial cyclic permu-
tations of its arguments, then sn (sm) is the order of the
cyclic subgroup, otherwise sn � 1 (sm � 1).

The momentum space vertices are written

 SX1���Xn
a1���an �p1; . . . ; pn��2��

D�
�Xn
i�1

pi

�

�
Z
dDx1 � � � d

Dxne
�i
P
i

xi�pi
SX1���Xn
a1���an �x1; . . . ; xn�;

where all momenta are taken to point into the vertex. We
will employ the shorthand

 SX1X2
a1a2
�p� 	 SX1X2

a1a2
�p;�p�:

In addition to the coupling, g, of the physical gauge
field, there is a second dimensionless coupling, g2, asso-
ciated with one of the unphysical regulator fields, A2

�

[11,15–17]. For convenience, we work not with g2 directly
but with

 � 	 g2
2=g

2: (2.2)

The coupling g (similarly �) is defined through its renor-
malization condition:

 S
A1� �
1

2g2 tr
Z
dDx�F1

���
2 � � � � ; (2.3)

where the ellipses stand for higher dimension operators and
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the ignored vacuum energy. Equation (2.3) constrains the
classical two-point vertex of the physical field, SA

1A1

0�� �p� 	
S11

0���p�, as follows:

 S11
0���p� � 2�p2��� � p�p�� � O�p4�

	 2����p� � O�p4�: (2.4)

B. Diagrammatics

In this section, we introduce and describe the diagram-
matics necessary for this paper. For a comprehensive de-
scription of the diagrammatics, see [15,16].

1. Diagrammatics for the action

The vertex coefficient functions belonging to the action
(2.1) have a simple diagrammatic representation:

 

represents all vertex coefficient functions corresponding to
all cyclically independent orderings of the set of broken
phase fields, ffg, distributed over all possible supertrace
structures. For example,

 

represents the coefficient functions SA
1A1

which, from
(2.1), is associated with the (super)trace structure trA1A1.
This diagram would also represent the coefficient function
SA

1;A1
, were it not for the fact that this does not exist, on

account of trA1 � 0.

2. Diagrammatics for the exact flow equation

The diagrammatic representation of the flow equation is
shown in Fig. 1 [15,16].

The left-hand side just depicts the flow of all cyclically
independent Wilsonian effective action vertex coefficient
functions. The objects on the right-hand side of Fig. 1 have
two different types of component. The lobes represent
vertices of action functionals, where �g 	 g2S� 2Ŝ, Ŝ
being the seed action [10–12,14–17]: a functional which
respects the same symmetries as the Wilsonian effective
action, S, and has the same structure. Physically, the seed

action can be thought of as (partially) parametrizing a
general Kadanoff blocking in the continuum [16,25].

The object attaching to the various lobes, , is the
sum over vertices of the covariantized ERG kernels [5,11]
and, like the action vertices, can be decorated by fields
belonging to ffg. The fields of the action vertex (vertices)
to which the vertices of the kernels attach act as labels for
the ERG kernels. We loosely refer to both individual and
summed over vertices of the kernels simply as a kernel.

The rule for decorating the diagrams on the right-hand
side is simple: the set of fields, ffg, are distributed in all
independent ways between the component objects of each
diagram.

Following [4–6,11,12,15,16], it is technically conve-
nient to use the freedom inherent in Ŝ by choosing the
two-point, classical seed action vertices equal to the cor-
responding Wilsonian effective action vertices. The effect
of this is that the kernels, integrated with respect to ln� (at
constant �), turn out to the inverses of the classical, two-
point vertices in the transverse space. For example, in the
A1-sector we find that

 S11
0���p��

11
���p� � ��� �

p�p�
p2 ; (2.7)

where �11 in the integrated A1 sector kernel. It is apparent
that �11 is the inverse of the corresponding classical, two-
point vertex up to a remainder term which, since it is forced
to be there as a consequence of the manifest gauge invari-
ance, we call a ‘‘gauge remainder.’’ In recognition of the
similarities of the integrated kernels to propagators, in both
form and diagrammatic role, we refer to them as effective
propagators [11]. However, we emphasize that at no point
is gauge fixing required in their definition and that our
diagrams do not correspond, in any way, to conventional
Feynman diagrams. Equation (2.7) can be diagrammati-
cally generalized to hold in all sectors:

 

We have attached the effective propagator, denoted by a
solid line, to an arbitrary structure since it only ever
appears as an internal line. The field labeled by M can be
any of the broken phase fields. The object ≡ > is a

gauge remainder. The individual components of > will
often be loosely referred to as gauge remainders; where it
is necessary to unambiguously refer to the composite
structure, we will use the terminology ‘‘full gauge remain-

 − Λ∂Λ S
{ f }

=
1
2

•

Σ g

S

− Σ g

•

{ f }

FIG. 1. The diagrammatic form of the flow equation.
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der.’’ Equation (2.8) is referred to as the effective propa-
gator relation. From (2.4) and (2.7), it follows that

 �11
���p� �

���
2p2 �1� O�p2=�2��; (2.9)

which we will use later.
Embedded within the diagrammatic rules is a prescrip-

tion for evaluating the group theory factors. Suppose that
we wish to focus on the flow of a particular vertex coeffi-
cient function which, necessarily, has a unique supertrace
structure.

On the right-hand side of the flow equation, we must
focus on the components of each diagram with precisely
the same supertrace structure as the left-hand side, noting
that the kernel, like the vertices, has multisupertrace con-
tributions (for more details see [15,16]). In this more
explicit diagrammatic picture, the kernel is to be consid-
ered a double sided object. Thus, while the dumbbell like
term of Fig. 1 has at least one associated supertrace, the
next diagram has at least two, on account of the loop (this is
strictly true only in the case that kernel attaches to fields on
the same supertrace). If a closed circuit formed by a kernel
is devoid of fields then it contributes a factor of �N,
depending on the flavors of the fields to which the kernel
forming the loop attaches. This is most easily appreciated
by defining the projectors

 �� 	
1
2�1� ��

and noting that str�� � �N. In the counterclockwise
sense, either a �� or ��, as appropriate, can always be
inserted for free after any of the broken phase fields.

The above prescription for evaluating the group theory
factors receives 1=N corrections in the A1 and A2 sectors. If
a kernel attaches to an A1 or A2, it comprises a direct
attachment and an indirect attachment. In the former
case, one supertrace associated with some vertex coeffi-
cient function is ‘‘broken open’’ by an end of a kernel: the
fields on this supertrace and the single supertrace compo-
nent of the kernel are on the same circuit. In the latter case,
the kernel does not break anything open and so the two
sides of the kernel pinch together at the end associated with
the indirect attachment. This is illustrated in Fig. 2; for
more detail, see [15,16].

We can thus consider the diagram on the left-hand side
as having been unpackaged, to give the terms on the right-
hand side. The dotted lines in the diagrams with indirect
attachments serve to remind us where the loose end of the
kernel attaches in the parent diagram.

As an example, which will be of use later, consider the
group theory factor of the diagram on the left-hand side of
Fig. 3, where we suppose that the kernel forming the loop is
in the A1 sector.

On the right-hand side, we have unpackaged the parent
diagram and explicitly indicated, in red, how many circuits
each diagram has. To evaluate the corresponding group
theory factors, we simply take each circuit to contribute
str�� (�� because we are taking the kernel to be in the A1

sector). Therefore, the overall group theory factor is

 

1

N

�
N2 � 2

1

N
N �

1

N2 N
2

�
�

1

N
�N2 � 1� � 2C2�F�;

where C2�F� is the quadratic Casimir operator for the
fundamental representation of SU�N�.

III. METHODOLOGY

A. Basics

In this section we describe the strategy for computing
the renormalized expectation value of the gauge invariant
operator, O. Denoting the set of (dynamical) broken phase
fields by �, we aim to compute

 hOiR �
1

Z0

Z
�0

D�O�0

A1�e�S�0


��; (3.1)

where the subscript R stands for renormalized and Z0 �R
�0

D�e�S�0

��. Notice that we have explicitly tagged the

functional integral, action and O with �0. This is to remind
us that the expression is defined at the bare scale, �0. At
this scale, the gauge invariant operator is taken to be a
functional of just the physical gauge field, A1. The limit
�0 ! 1, which essentially corresponds to the continuum
limit [28], is taken at the end of a calculation.

Introducing the source, J, we rewrite (3.1) in the usual
way:

 hOiR � �
@
@J

lnZJ

��������J�0
; (3.2)

where

 ZJ �
Z

�0

D�e�S�0

���JO�0


A1�:

The key step now is to integrate out modes between the
bare scale and the effective scale, �, to yield

 →
direct

+
1
N

A 2

−

A 1

FIG. 2. The 1=N corrections to the group theory factors.

 

1
N

=
1
N

−
1
N

−
1
N

+
1

N 2

FIG. 3 (color online). An example showing how to evaluate the
group theory factor of a diagram in which the kernel is taken to
be in the A1 sector.
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 ZJ �
Z

�
D�e�S�
���O�
�;J�: (3.3)

Since both S� and O� are gauge invariant, the division of
terms between these two functionals is of course arbitrary.
For example, for some other definition of S� and O�, we
could have written the argument of the exponential in (3.3)
as S0�
�; J� �O0�
�; J� or even just S00�
�; J�. However,
we choose to define things such that S� is independent of J.
Given that the only dependence on J at the bare scale is
linear, it follows from the flow equation that the depen-
dence at the effective scale has a Taylor expansion in J and
so we can write

 O �
�; J� �
X1
i�1

JiOi
�
��: (3.4)

The real point now is that, from (3.2), we are pulling out the
O�J� part, only, when computing the expectation value.
Therefore, it makes sense to work at small J, in which case
we can take the effect of introducing the gauge invariant
operator at the bare scale as inducing an infinitesimal,
linear perturbation to the Wilsonian effective action at
the effective scale [5]:

 S� ! S� � JO� � O�J2� (3.5)

where, since we are henceforth only interested in the O�J�
part of (3.4), we have dropped the superscript index of O1

�.
By performing the shift (3.5) in the flow equation, we see

that the flow of the Wilsonian effective action is still given
as in Fig. 1 and the flow of O� is given in Fig. 4, where we
define

 � 	 g2S� Ŝ; (3.6)

take squares to represent vertices of O�, and have dropped
the subscript �.

Next, consider how ZJ evolves as we integrate out all the
modes i.e. as we take the limit �! 0. Let us start with the
behavior of the gauge invariant operator, O. Like the
Wilsonian effective action, O has an expansion in terms
of fields. However, unlike in (2.1), it is crucial that we
retain the field-independent part (i.e. the vacuum energy-
like term). As we integrate out modes, so this term receives
quantum corrections. What of the field dependent parts?
Clearly, once we have integrated out all modes, there
cannot be any field dependent terms remaining which are
multiplied by a finite coefficient. There are two choices:

either the coefficients diverge, in which case e�O�!0 ! 0,
or each coefficient corresponding to a field dependent term
in the expansion of O vanishes. We assume that the latter is
the case.

In the case of the Wilsonian effective action, matters are
simple. The structure of (3.1) ensures that, when comput-
ing hOi, the factor of e�S�!0 in the numerator is canceled
out by the Z0 in the denominator.2

Therefore, from (3.2), (3.3), (3.4), and (3.5) we deduce
the beautifully simple equation

 hOiR � O��0: (3.7)

To find hOiR, we can use Fig. 4 to compute the flow of
O�, Fig. 1 to compute the flow of S (which is buried in �),
and thereby determine O��0, in some approximation. For
the remainder of this paper, we will work in the perturba-
tive domain. Dropping the �, which we now take to be
implicit, we take the following weak coupling expansions.
The Wilsonian effective action is given by

 S �
X1
i�0

g2�i�1�Si �
1

g2 S0 � S1 � � � � ; (3.8)

where S0 is the classical effective action and the Si>0 the
ith-loop corrections; O is given by

 O �
X1
i�0

g2�i�1�Oi: (3.9)

The seed action has an expansion consistent with the fact
that S appears in the flow equation multiplied by an extra
power of g2, compared to Ŝ:

 Ŝ �
X1
i�0

g2iŜi: (3.10)

Recalling (2.2) we have

 − Λ∂Λ

{ f }
= •

Π
−

g2

2

•

{ f }

FIG. 4. The flow of O�.

 

•
n

{ f }

=

n

r=1

2 (nr − 1) βr +
i

γ i
r

∂
∂α i

nr

+
n

r=0

•

nr

Πr

−
1
2

•

n−

{ f }

FIG. 5. The weak coupling flow equations for O.

2In fact, there are terms in the Wilsonian effective action
which do diverge as �! 0 [9]. This is easy to see: in order
for the regularization scheme to work, the effective propagator in
the A1 sector dies off, for p2=�2 � 1, at least as fast as
�p2=�2��r (for r > 2). This means that the kinetic term must
be modified by a term which behaves as �p2=�2��r for
p2=�2 � 1. Such terms in the effective action clearly diverge
as �! 0.
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 � 	 �@�g �
X1
i�1

g2i�1�i��� (3.11)

 	 	 �@�� �
X1
i�1

g2i	i���: (3.12)

To obtain the weak coupling flow equation for O, we
substitute (3.8), (3.9), (3.10), (3.11), and (3.12) into Fig. 4,
but do not preclude the possibility that, in addition to g and
�, O� also depends on the dimensionless, running cou-
plings �i>1 (we identify �1 with �). This anticipates our
treatment of Wilson loops in Sec. IV. The weak coupling
flow equations for O are shown in Fig. 5, where _X 	
��@�j�X, nr 	 n� r, n� 	 n� 1, and �r 	 Sr � Ŝr.

B. Additional notation

In the diagrammatic flow equation—be it the exact form
or the perturbative expansion—we have considered deco-
ration by the set of fields ffg. However, only on the right-
hand side of (2.5) have we actually converted the fields ffg
into explicit decorations. Before such decoration, we con-
sider ffg to be implicit, or unrealized, decorations [15,18].
Just as it is useful to consider fields as implicit decorations,
so too is it useful to construct rules for decoration with
implicit effective propagators and instances of the gauge
remainder component >.

1. Gauge remainders

Instances of > arise from diagrams in which the effec-
tive propagator relation (2.8) has been applied, generating a
full gauge remainder. The � part of the gauge remainder
can be processed, using the Ward identities [5,11,15,16],
leaving behind a >. If one of the vertices generated by the
� is a classical, two-point vertex, then in the case where
this vertex attaches to an effective propagator, a further full
gauge remainder is generated. Processing this gauge re-
mainder using the Ward identities allows us to iteratively
generate structures containing an arbitrary number, m, of
>s. We denote m implicit instances of > by

 
 �>
m...
;

where the square brackets could enclose some diagram-
matic structure, but need not. The ellipsis represents any
additional implicit decorations, so long as they are not
further instances of>. The superscript notation >m simply
tells us that there are m instances of >.

For the purposes of this paper, we do not require the
rules for turning gauge remainders appearing as implicit
decorations into explicit structures. The details can be
found in [20].

2. Effective propagators

The rule for explicit decoration with implicit effective
propagators is as follows. If we wish to join two objects

(say two vertices) together with j0 out of a total of j
effective propagators, then there are jCj02j

0
ways to do

this. Intuitively, the first factor captures the notion that,
so long as they are implicit decorations, the effective
propagators are indistinguishable. The factor of 2j

0
allows

for the fact that we can interchange the two ends of an
effective propagator. If these effective propagators were
instead used to form j0 loops on a single vertex, then the
factor of 2j

0
would disappear, since the vertices are defined

such that all cyclically independent arrangement of their
decorative fields are summed over.

3. Vertices

When analyzing the perturbative flow of O, we will find
that vertices (of the Wilsonian effective action and O)
always occur in a very particular way. To introduce com-
pact notation for this, we start by introducing a set of vertex
arguments, vj, where the upper roman index acts as a label.
Thus, the vj are integers, denoting the loop orders of some
set of vertices. In the case that a vertex argument labels a
Wilsonian effective action vertex, we define the reduction
of vj, vj;R, such that a reduced vertex does not have a
classical, two-point component.

Next, we define

 vj;j� 	 vj � vj�1; vj;j�;R 	 vj;R � vj�1;R

and use this notation to construct

 

where ns gives the value of v0, which is the only vertex
argument not summed over on the right-hand side. Notice
that the sum over all vertex arguments is trivially ns:

 

Xj�1

i�0

vi;i� � vj �
Xj�1

i�0

�vi � vi�1� � vj � v0 � ns: (3.14)

The structure defined by (3.13) possesses a single vertex
belonging to O and j (reduced) Wilsonian effective action
vertices. This allows us to usefully define (3.13) for j � 0:
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C. The diagrammatic function, Qn

We introduce the functions

 

 

where, for the non-negative integers a and b, we define

 �a;b �
��1�b�1

a!b!

�
1

2

�
a�1

: (3.17)

In the case that either a or b are negative, �a;b is null. As
part of the definition of �Q, we insist that, upon explicit
decoration, all fully fleshed out diagrams must be
connected.

There is a simple, intuitive explanation for the relation-
ship between the total number of vertices, the number of
effective propagators, and the sum over the vertex argu-
ments. This is most simply put by taking m � 0 (the
following argument is easily generalized). From (3.14),
we know that the sum of the vertex arguments is n� s.
Now, given j� 1 vertices, exactly j effective propagators
are required to create a connected diagram. This leaves
over s effective propagators, each of which must create a
loop. Therefore, the loop order of the diagram is n� s�
s � n, as must be the case.

The maximum values of the sums over m and j follow
from the constraint that all fully fleshed out diagrams are
connected [20]. The maximum value of s clearly follows
from the requirement that the loop order of the diagram is
 0. The minimum value of s ensures that, in Q, we do not
double count the contribution n .

D. Expectation values in perturbation theory

The key to computing expectation values is to consider
the flow of Qn. It can be shown [20], by using the flow
equation, that this yields:3

 �@�Qn � 2
Xn
n0�1

�n� n0 � 1��n0Qn�n0 � 0; (3.18)

from which it follows that

 �
d
d�

X1
n�0


g2�n�1�Qn� � 0:

Integrating between � � � and � � �0 gives

 

where we have used (3.16) and we aim to take the limits
�! 0 and �0 ! 1.

The crucial point to recognize now is that (in perturba-
tion theory, at any rate)

 lim
�!0

g2�n�1� �Qn� � 0: (3.20)

We can argue this as follows. Consider �Qn, which is both
UVand IR finite, in the limit of small �. At the level of the
diagrammatic components out of which �Qn is built, all
contributions for which the loop momenta ki � � are
suppressed by the UV regularization. (We might worry
that this suppression does not occur in diagrams possessing
classical vertices which diverge in this limit. However,
these divergences are always overcompensated.) Thus, in
the limit �! 0, the loop integrals have no support and �Qn
vanishes.

To complete the argument, all that remains to be done is
to show that the behavior of lim�!0g2�n�1���� is suffi-
ciently good. It should be emphasized that we are applying
this limit to quantities computed in perturbation theory.
Introducing the arbitrary scale, M, we can write

 g2��� �
X1
i�1

g2i�M�ai�M=��:

Differentiating both sides with respect to M yields the set
of relationships:

 0 � 2
Xn�1

j�1

�n� j��jan�j�M=�� �
dan�M=��

d lnM=�
:

Given that a1 � 1, it follows that every ai must be a
function of lnM=�. Therefore, in the �! 0 limit, g���
diverges, at worst, as powers of ln�. This growth is slower
than the rate at which the UV regularization kills �Qn in the
limit that �! 0 [9] and so we have demonstrated (3.20).

From (3.19) and (3.20), we arrive at the central result of
our perturbative treatment:

 

3This result, though intuitive, is far from straightforward to
derive, afresh. However, the more difficult case of deriving
similar diagrammatic expressions for the perturbative
�-function coefficients is comprehensively illustrated in [20].
Given this derivation, (3.18) follows, essentially trivially.

GENERAL COMPUTATIONS WITHOUT FIXING THE GAUGE PHYSICAL REVIEW D 74, 125006 (2006)

125006-7



Notice that we have replaced the upper limits of the sums
over n with the finite n0. By taking n0 to infinity, (3.21)
becomes exact. However, the form given above is suitable
for the order-by-order computation of corrections to hOiR.

IV. WILSON LOOPS

In this section, we will illustrate (3.21) by using it to
compute perturbative corrections to Wilson loops. Before
taking the explicit case of the rectangular Wilson loop with
sides T � L, we discuss some general features of Wilson
loop calculations, within our framework.

A. General considerations

For some closed path, �, the path ordered phase factor,
a.k.a. the Wilson loop, is defined to be

 
��� �
1

N
trP exp

�
i
I

�
dx�A

1
��x�

�
:

It is well known [40–42] that the expectation value of this
object,

 W��� � h
���i; (4.1)

is divergent even after renormalization of the coupling and,
in the case of a gauge fixed formulation, field strength
renormalization. In our manifestly gauge invariant formu-
lation, where the gauge field does not suffer from field
strength renormalization, (4.1) is defined such that the
renormalization of the coupling has been done.

The remaining divergences have two sources. For
smooth, simple loops, there is a divergence e���0l���,
where � is a dimensionless parameter and l��� is the length
of �. The linearly divergent K 	 ��0 can be interpreted as
a mass divergence. The other divergences come from any
(finite) number of cusps and intersections, parameterized
by the angles �i and #i, respectively. The renormalized
expectation value of the Wilson loop with cusps but no
intersections is defined to be [42]

 WR���i� � Z��i�e� �m0�0l���W���i�;

where we have used powers of �0 to replace the bare mass,
m0, with a dimensionless parameter, �m0. The renormalized
mass, m, is

 m � K �m0

and the multiplicative renormalization constant factorizes:

 Z��i� � Z��1�Z��2� � � � :

[In the case that � includes intersections, WR��� no longer
renormalizes by itself, and must be considered together
with expectation values of a family of other loop
functions.]

Z��� and �m have the following expansions:

 Z��; g� � 1�
X1
i�1

g2iZi��� �m�g� �
X1
i�1

g2i �mi:

With these points in mind, we identify the boundary
value of our gauge invariant operator with

 O �0
�

1

N
trP exp

�
i
I

�
dx�A1

��x�
�
e� �m0�0l���Z��i�:

(4.2)

We can use the fact that O�0
does not possess an

O�1=g2� component to simplify the following analysis.
To this end, consider the classical flow of O:

 

Now, for the right-hand side not to vanish, the �0 vertex
must be decorated by at least two fields belonging to ffg.
This is because both seed action and Wilsonian effective
action one-point vertices vanish at tree level [11,16] and
�XX

0RS�k� � 0 due to our choice to set the seed action, two-
point, classical vertices equal to their Wilsonian effective
action counterparts.

From this it follows that

 

where X is any field. Integrating up and using the fact that
all classical vertices vanish at the boundary [see (3.9) and
(4.2)], we find that

 

But, these relationships, together with the vanishing of
�XX

0RS�k� and the boundary condition imply that

 

Iterating this argument, it is clear that, in fact,

 

Given that the O vertex of �Q must, therefore, have an
argument of at least one, this allows us to reduce the
maximum value of j by unity [20].

In a similar fashion, we can demonstrate that
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With these points in mind, let us apply (3.21) for n0 � 1.
Using the boundary condition, we obtain the expected
(trivial) result that

 

[Note that (4.3) is in fact exact, not requiring supplemen-
tation at O�g2�. This follows because, in the weak coupling
expansion, the vertex 1 multiplies g0.] At the next order
we find

 

Equation (4.4) gives the first nontrivial correction to the
renormalized Wilson loop parametrized by a contour with
an arbitrary (finite) number of cusps (generalization to
include intersections is straightforward, as indicated ear-
lier). To evaluate (4.4) we feed in the boundary condition
(4.2). The first term on the right-hand side possesses pre-
cisely those contributions necessary to cancel the diver-

gences in the second term. With these divergences
canceled, we can safely take the continuum limit, �0 ! 1.

B. The rectangular Wilson loop with sides T� L

To illustrate the application of (4.4) in a way which will
allow us to compare directly with known results, we must
compute a quantity which is independent of the renormal-
ization prescription. To this end, we focus on the rectan-
gular Wilson loop, ��, with sides T and L, in the limit where
T � L. The leading order contribution in this limit is
universal, being directly related to the lowest order
Coulomb potential of the physical SU�N� Yang-Mills
theory.

At the boundary, the expression for the first term on the
right-hand side of (4.4) follows, directly, from (4.2) upon
expanding the exponentials and identifying the O�g2�,
field-independent contribution. For the second term we
must work a little harder, since we need to relate the
two-point vertex to the boundary condition. To do this,
we expand the exponential of (4.2) and focus on the
coefficient of trA1

�A1
� at O�g0�:

 

�
1

2N

I
��
dx�

I
��
dy� � �

1

2N

Z
dDx

Z
dt
dx��t�

dt
��x� x�t��

Z
dDy

Z
ds
dy��s�
ds

��y� y�s��:

The recasting on the right-hand side allows us to directly compare this expression with the field expansion of O, given by
the analogue of (2.1) with S replaced by O. Therefore,

 

The other components of the second diagram on the right-hand side of (4.4) are the effective propagator, �11
���x; y�,

4 the
group theory factor (which can be evaluated according to Fig. 3) and an integral over the undetermined coordinates, x
and y.

Using (3.17), Eq. (4.4) becomes

 

where we have changed notation slightly to make the path
dependence of the left-hand side explicit. Since we are
taking the T=L! 1 limit, we do not need to be too precise
about our renormalization prescription: the associated fi-
nite terms are subleading and so we have

 lim
T=L!1

W�2�R � ��� � lim
T=L!1

�
�g2C2�F�

�
I

��
dx�

I
��
dx��11

���x; y�
��������finite

�
:

(4.6)

Writing

 �11
���x; y� �

Z dDp
�2��D

eip��x�y��11
���p

2=�2�

4The fields must be in the A1 sector at the bare scale, since this
is the only sector in which the vertex to which the effective
propagator attaches has support.
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and recalling (2.9), it is clear that our expression corre-
sponds to the usual one. However, we emphasize once
again that, despite obvious similarities, the object
�11
���p2=�2� is not a (regularized) Feynman propagator

and that at no stage have we fixed the gauge. Notice that
we can immediately take D! 4, since preregularization
plays no role here. Indeed, this highlights the fact that we
only ever use dimensional regularization as a prescription
for removing finite surface terms present as a consequence
of the Pauli-Villars regularization provided by the
SU�NjN� scheme [9]. All necessary UV regularization in
(4.5) and (4.6) is provided by the cutoff functions buried in
the effective propagator.

Explicitly evaluating the contour integrals we find that

 lim
T=L!1

W�2�R � ��� � g2 C2�F�T
4�L

;

recovering the standard result.

V. CONCLUSION

We have described how to compute the expectation
values of renormalized gauge invariant operators in a
manifestly gauge invariant way, within the framework of
the exact renormalization group. The methodology has
been illustrated with a computation of the O�g2� correction
to the rectangular Wilson loop with sides T � L.

The key elements of the methodology are as follows.
Given our regularized SU�N� gauge theory defined at the
bare scale, �0, we add a source term JO�0

for the gauge
invariant operator, O�0

. As we integrate out modes, so the
source term evolves. Although this generates a Taylor
series in J, the only term which contributes to hOiR is the
one linear in J which, after specializing to the small J limit,
we denote by O�. Figure 4 gives the flow of this
component.

We then derived Eq. (3.7), which states that the expec-
tation value of our gauge invariant operator is simply given
by O��0. Thus, in conjunction, Figs. 1 and 4 and Eq. (3.7)
allow us to compute the expectation value of an arbitrary
gauge invariant operator (in some approximation scheme).

The rest of the paper was devoted to exploring the
formalism in the perturbative domain. It was here that

the considerable effort invested in [15,18–20] to under-
stand the structure of perturbative �-function coefficients
really paid off. The associated developments allowed us to
directly obtain (3.21), which gives an extremely compact
diagrammatic expression for the perturbative corrections to
hOiR. We note that this expression makes use of the dia-
grammatic function, �Q, given by (3.15) and (3.16). This
function depends only on Wilsonian effective action verti-
ces, effective propagators and (components of) gauge re-
mainders. There is no explicit dependence on either the
seed action or the covariantization of the ERG kernels.

Whilst the perturbative treatment is useful both to gain
experience with the techniques and also to demonstrate that
practical calculations can be straightforwardly (and cor-
rectly) performed, the real challenge is to apply the formal-
ism nonperturbatively. Of course, the key results shown in
Figs. 1 and 4 and Eq. (3.7) are defined nonperturbatively.
The main difficulty is deciding how best to approximate
the flow equation where there is no obviously small pa-
rameter in which to expand (for speculations on whether it
might be possible to perform a strong coupling expansion
in the inverse of the renormalized coupling see [43]).
However, some inspiration for this may be provided by
the perturbative treatment. We know that, for operators
which correspond to physical observables, the expression
for O��0 must be universal. Obviously, such an expression
is independent of the details of the seed action or the
covariantization of the ERG kernels. Thus, it is natural to
speculate whether, nonperturbatively, O��0 can be written
in terms of a generalization of �Q; indeed, this general-
ization has now been found [44]. Nevertheless, this gener-
alized diagrammatic function possesses an infinite number
of vertices and so much work remains to be done to extract
useful information. However, this surely represents a de-
sirable, direct starting point for attacking nonperturbative
problems within the ERG formalism.
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