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Forward scattering amplitudes and the thermal operator representation
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We develop systematically to all orders the forward scattering description for retarded amplitudes in
field theories at zero temperature. Subsequently, through the application of the thermal operator, we
establish the forward scattering description at finite temperature. We argue that, beyond providing a
graphical relation between the zero temperature and the finite temperature amplitudes, this method is
calculationally quite useful. As an example, we derive the important features of the one-loop retarded
gluon self-energy in the hard thermal loop approximation from the corresponding properties of the zero

temperature amplitude.
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I. INTRODUCTION

In a series of papers [1-4], the idea of a thermal operator
representation [5,6] has been developed extensively in both
the imaginary time formalism and the real time formalism
of the closed time path. In simple terms, the thermal
operator representation relates a Feynman graph at finite
temperature (with or without a chemical potential) to the
corresponding graph at zero temperature. As we have
argued earlier, the thermal operator representation offers
a powerful method for studying various questions at finite
temperature. As an example, we have shown in an earlier
paper [7] how the cutting rules at finite temperature (with
or without a chemical potential), in the closed time path
formalism, can be derived starting from those at zero
temperature. This derivation also clarifies the miraculous
cancellations that arise in an explicit demonstration of a
cutting description for the imaginary part of a thermal
amplitude [8,9].

At finite temperature, retarded amplitudes play a signifi-
cant role in studying various physical phenomena. Plasma
oscillations provide a very simple example of this. When a
thermal plasma is perturbed weakly, the subsequent re-
sponse of the plasma to the perturbation is studied using
the linear response theory [10—12]. In particular, the damp-
ing of the oscillation in the plasma is understood by
analyzing the poles of the retarded propagators of the
particles moving through the plasma. Of course, at finite
temperature very few quantities can be evaluated exactly,
but the forms of thermal amplitudes simplify considerably
either in the low temperature or the high temperature limit.
In many phenomena of physical interest (such as quark-
gluon plasma phase transitions, early universe, etc.), it is
the high temperature behavior that is relevant. While there
are many ways of evaluating the high temperature behavior
(also known as the hard thermal loop approximation [13])
of thermal amplitudes, the forward scattering description
for the retarded amplitudes provides an efficient calcula-
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tional tool [14]. This can be seen from the following simple
example. Let us consider a scalar field theory with a cubic
interaction in six dimensions (which is similar to non-
Abelian gauge theories in four dimensions). The thermal
correction to the one-loop retarded self-energy can be
directly calculated (see Fig. 1) in this theory and, after
doing the internal energy integral, leads to
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Furthermore, ng(E;) denotes the bosonic distribution func-
tion and p, is assumed to correspond to py + i€ which is
necessary for the retarded self-energy. At very high tem-
peratures where |]_C)| > p,,m, the masses can be neglected,
and we see from (1) that the high temperature limit needs to
be calculated carefully since there are energy differences in
the denominator.

On the other hand, the forward scattering description of
the same retarded self-energy involves diagrams where one
of the internal propagators in the loop is thermal and on
shell while the other corresponds to a zero temperature

FIG. 1. One-loop retarded self-energy in ¢> theory.
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FIG. 2. Two forward scattering amplitudes for the one-loop

retarded self-energy.

retarded propagator. They are shown in Fig. 2 and lead
immediately to
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Here the “ie” in p, (denoting a retarded propagator) as
well as ko = E; are to be understood. At high temperature
where masses can be neglected, this takes the simple form
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The structure resulting directly from the forward scattering
description is very simple and interesting (of course, the
same structure would also arise in a direct calculation, but
limits have to be taken carefully and terms have to be
grouped properly before this simple structure is obtained).
o (RD
k]
the integrand is manifestly Lorentz covariant and is a
homogeneous function of degree zero in the external mo-
mentum and of degree (—2) in the internal momentum.
The manifest Lorentz covariance is broken at high tem-
perature only when the angular integration is carried out. In

First of all, we note that the coefficient of the term n

fact, if we carry out the integration over k|, the high
temperature limit is obtained to be
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where we have defined £* = (1, k). This Lorentz covariant
structure of the integrand in (3) (which results directly in
the forward scattering description) is very helpful and has
been used to derive in a simple way, in the hard thermal
loop approximation, the effective action for QCD as well
as the energy-momentum tensor for the quark-gluon
plasma [15]. This method is also convenient for the analy-
sis of the high temperature behavior of gauge field theories
in a curved space-time [16]. It is also worth noting that the
study of the solution of the transport equation at high
temperature leads to structures naturally arising in the
forward scattering method [17].

In spite of its success, a simple and general derivation of
the forward scattering amplitudes to all orders at finite
temperature is so far lacking. As we have already argued,
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the thermal operator representation [1,2,7] provides a
powerful method for obtaining results at finite temperature
starting from zero temperature, and in this paper we show
how the forward scattering amplitudes for retarded thermal
n-point functions can be derived through the use of the
thermal operator representation. The thermal operator rep-
resentation is clearly meaningful in studying this question
if there exists a forward scattering description at zero
temperature. In this paper we derive the forward scattering
description for retarded amplitudes in zero temperature
field theories. The thermal operator representation then
directly leads to the forward scattering description at finite
temperature and clarifies the origin of the nice structures
observed in the context of the forward scattering ampli-
tudes at high temperature.

The paper is organized as follows. In Sec. II, we develop
the forward scattering description for retarded amplitudes
of a scalar field theory at zero temperature. In Sec. III, we
show how the thermal operator representation leads di-
rectly to the forward scattering description for retarded
thermal amplitudes. In this section, we also point out
various interesting features of retarded amplitudes both at
zero and at finite temperature. In Sec. IV we discuss the
forward scattering description for the Yang-Mills theory. In
particular, we emphasize that various nice properties in the
hard thermal loop approximation, such as transversality,
manifest Lorentz covariance and gauge invariance of the
integrand of the one-loop retarded self-energy, follow sim-
ply from the properties of the zero temperature amplitude
through the thermal operator representation. We conclude
with a brief summary in Sec. V.

II. FORWARD SCATTERING DESCRIPTION AT
ZERO TEMPERATURE

The idea of a forward scattering description basically
already exists even at zero temperature, although it is not as
well developed and is certainly not widely known.
Therefore, in this section, we will develop the idea of
forward scattering amplitudes at zero temperature system-
atically for retarded amplitudes so that the thermal operator
representation can lead directly to the forward scattering
amplitudes at finite temperature. The basic idea behind a
forward scattering description at zero temperature [18] is
the simple observation that a (time ordered) Feynman
propagator (for a massive scalar particle, for simplicity)
can be expressed as

i i
= +2m0(—ko) 5 (kK* — m?),
o i —E m6(—ko) S ( m?)
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where we have identified E2 = k* + m?. Namely, the
Feynman propagator is the sum of the retarded propagator
and a negative energy propagator. As a result, if we have a
simple one-loop diagram with n scalar propagators, the
amplitude (neglecting vertex factors) can be written as
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where we have denoted the momentum in the ith propa-
gator as k; which is a sum of the loop momentum k and
some combination of the external momenta whose explicit
form is not relevant for our discussion. The form of the
integrand in (6) is quite interesting. The first term in the
product which will involve only products of retarded
propagators would vanish when integrated over energy
(which can be seen simply as a consequence of the fact
that all the poles lie on the lower half of the complex plane
and, therefore, the contour can be closed in the upper half
plane to yield zero). The other terms in the expansion of the
right-hand side would involve terms with a number of
retarded propagators and the rest of the propagators on
shell. If we assume that an on-shell propagator can be
thought of as a cut-open line representing an on-shell
particle coming in and going out, this is very roughly a
forward scattering description; namely, a Feynman ampli-
tude can be expressed as a sum of diagrams that involve a
number of on-shell particles scattering in the forward
direction (their momenta are unchanged in the scattering)
and retarded propagators. It is worth noting from the form
of (6) that the series of forward scattering diagrams may
involve completely disconnected diagrams (which is not
the case for retarded amplitudes at finite temperature), but
we would like to point out that this is only a consequence of
the fact that we are looking at a time ordered Feynman
amplitude.

On the other hand, we are interested in retarded ampli-
tudes and, as is well known, these are quite hard to con-
struct at zero temperature within the context of the
conventional Feynman propagators. However, if we double
the degrees of freedom (the theory with the doubled de-
grees of freedom can be taken as the zero temperature limit
of the theory at finite temperature in the closed time path
formalism as described in [7,9]), a diagrammatic represen-
tation of retarded amplitudes can be constructed in a
straightforward manner. With this in mind, let us look at
a scalar field theory with a ¢ interaction with doubled
degrees of freedom; we denote the two field degrees of
freedom as ¢, and ¢_. The propagator for the doubled
theory corresponds to a 2 X 2 matrix,

A :<A++

A,
. ) %)

and, in the momentum space, the components take the
forms
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[Unlike in our earlier papers [1,2,7], here we will follow
the simple convention of representing quantities at zero
temperature without any superscript (7" = 0). We will re-
serve the superscript (7)) only for quantities at nonzero
temperature in order to simplify the notation.)

However, since the forward scattering amplitudes have a
physical description in the mixed space (we will discuss
this later), we will analyze the problem in this context (the
momentum space analysis that is normally done can be
obtained from our results through a Fourier transforma-
tion). In the mixed space, the components of the propagator
can be obtained from a Fourier transformation of (8) and
they have the forms (see also [7] for various notations and
conventions)

A (LE) = %[H(t)e*”” + 0(—1)e't],

1 .
A+—(t) E) = _elEt;
2F
] &)
_ ik
A_ (1 E) 2Ee ,

A__(LE)= ﬁ[ﬁ(t)e’f’ + 6(—1)e 1),

where E = /p? + m? describes the on-shell energy of the
particle and we are suppressing the “ie” in the exponents
for simplicity. Thus, we see that A, describe, respec-
tively, the on-shell negative and positive energy propaga-
tors. The vertices involving the ¢ fields and the ¢ _ fields
differ by a relative negative sign.

The time ordered components of the propagators in (9)
satisfy the constraint

A, +A _=A, +A_,. (10)

It is now simple to see that the retarded and the advanced
propagators of the theory can be identified with

AR(LE)=A, (t,E)— A, _(tE)

1 ) )
= g(t)ﬁ(eﬂEt _ e:Ez)’

an
AA(l‘) E) = A++(t’ E) - A7+(Z’ E)

— _ 1 iEt _ ,—iEt
= 0= S (e — B

much like at finite temperature [9]. From these definitions,
we note that

AR(_I, E) = AA(Z, E), (12)
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as we would expect. As a result of these relations, we can
decompose the matrix propagator in (7) as

A=P+A,_0Q, (13)

where

Paan=(, M 4 e=(1 )

Let us next note that a retarded n-point amplitude at any
loop can be defined as follows. If we assume that the time
t; corresponding to the first index of the amplitude is the
largest among the time coordinates, then we have

l—‘n,R(l‘l’ SRR tn) = Z F+a1.4.an_1(t1’ SRR tn)r (15)

a;==*

where we have suppressed the energy dependence of the
amplitude for simplicity. Here a; denote the *‘thermal
indices” of the fields which can take the values “*.”
For example, the retarded two-point function (self-energy)
at one loop would correspond to the sum of the two
diagrams in Fig. 3. Let us also note here for future use
that, for any n-point amplitude,

Z 1—‘“1“2113~~11n = O’ (]6)

which follows from the largest time equation [7]. We are
now ready to derive the forward scattering description for
retarded amplitudes to all orders at zero temperature and
we do so in two steps.

A. Forward scattering amplitudes at one loop

The forward scattering amplitudes for retarded n-point
functions can be derived algebraically at one loop (which is
the reason for separating the derivation into two cases).
First we note from (15) that the retarded amplitude consists
of terms where each vertex other than the largest time is
summed over the thermal index ““=*.”” Furthermore, as we
have already pointed out, the vertex for the ¢ _ field has a
relative negative sign compared to that for the ¢, field.
Thus, summing over the thermal index of the graph at one
loop can be effected by multiplying the matrix propagator
with a 2 X 2 matrix o3 at the vertex where the thermal
index is being summed. For example, for the case of the
retarded self-energy at one loop (see Fig. 3), we note that
(once again we are neglecting factors associated with the
vertices as well as the dependence on external energies for

k, E, k, E,
4 1, ] 5
+
P+ + p P+ - P

k+p, E; k+p E;

FIG. 3. Sum of two diagrams which gives the retarded self-
energy at one loop.
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Note also that the retarded amplitude is obtained by taking
the “++ component in the matrix product (simply be-
cause we start from a “+” vertex and end at the same
vertex). As a result of this simplification, the retarded
n-point amplitude at one loop, shown in Fig. 4, can be
written as

(1) d3k n—1
I‘n,R(h, el tn) = W[(ﬂ A(ti — i+ Ei)ff3>
X A, — 1, E»} . (18)
++

We can use the decomposition (13) of the propagator in
terms of the P, Q matrices which satisfy many interesting
relations. We list below some of the relations that are
useful for our discussion.

Q030 =0,
Qa3P(Ag, Ap) = A0, (19)
P(Ag, Ap)a30 = ARQ,
P(A1g, A A)o3P(Agr, Ay p) = P(A RAsR, Ajalga)

Using these relations, the n-point amplitude in (18) can be
simplified considerably. First, we note that the expression
on the right-hand side can at most be linear in Q and,
therefore, can only have at most a single propagator of the
type A, _ which, as we have seen, can describe on-shell
particles [see, for example, (8)]. Furthermore, if we assume
that an on-shell propagator can be thought of as a cut-open
line (representing an on-shell particle), it is clear that the
retarded n-point amplitude will involve only connected
diagrams (not disconnected as can be the case in a time

FIG. 4. One-loop diagram for the retarded n-point function.
The sum over the thermal indices from 7, to ¢, is to be under-
stood.
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ordered Feynman amplitude which we have seen earlier).
In fact, an explicit evaluation of (18) leads to

I‘(l) — - A t: VE;
nR (2 )3 l_[ R( i1 )
n—1 n—m—1
+ Z( [] Ar(— ti+1’Ei)>
m=0\ i=1
X A+—([n—m ~ly—mt1s En—m)

X (l_[ AA(l‘n—m-%—j - tn—m+j+1’ En—m+j)>:|’ (20)
Jj=1

where we are identifying ¢, = 1, E,+; = E;. We are
also using the convention that, when m = 0 (or m = n —
1), the term in the parentheses has the value

(]j A(t,)) ~1. @1)

It is obvious that the first term in the bracket that involves
only a product of retarded propagators would vanish when
integrated. Furthermore, using (12) we can convert all the
advanced propagators into retarded ones and write

d3k n 1 n—m—1
(1) oy 2 ( l_[ Ar(t; = ti+1rEi)>
i=1

X AJrf(tn*m ~ly—mt1s En*m)

m
X (l_[ AR(_t;'L—m+j + tn—m+j+1’ En—m+j))- (22)
j=1
This gives a forward scattering description for the retarded
n-point amplitude at one loop at zero temperature. Each
term in the series is a number of retarded propagators with
one on-shell propagator (A,_) leading to the forward
scattering of a single on-shell particle in all possible man-
ners in a connected causal manner. Unlike the Feynman
amplitude in (6), the forward scattering description for the
retarded n-point function does not involve disconnected
diagrams, which is also reflected in the basic definition of
the retarded amplitudes in terms of nested commutators
that we will discuss in Sec. III. From (22), we can easily
derive a recursion relation for the integrands of the one-
loop retardgd amplitudes of the form

7’521 R l_[ Ar(t; = tivy, EAL_(ty11 —

(1) RAR(= 1,1 + 11, E,iy) (23)

tl)En-H)

B. Forward scattering amplitude at higher loops

The simple algebraic derivation of the one-loop forward
scattering amplitudes for the zero temperature retarded
n-point function does not carry over to higher loops in
general. This is simply because of the fact that, at higher
loops, more than two propagators (internal lines) may be
connected to a given vertex. In such a case, the convenient
matrix structure for retarded amplitudes that arises in one
loop (because only two propagators can be connected to a
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vertex) is not present. Nonetheless, the forward scattering
description for some simple higher loop graphs can be
easily derived algebraically as follows. Let us consider
the scalar ¢"*? theory. In this case, the retarded self-
energy at n loops (see Fig. 5) can be written as

2;{1) = (2 )3 [E(n 1)A++(En+1) E(n 1)A+—(En+l)]
&k, (- n—
Z/( ’%[2( 1)A+ (En+1) E( lAR(En+1)]
&k, (-
- /(2 )} SEVAL (Ey)
d%
[ o )’3 A (E)AR(E, ). (24)
Here k;,i = 1,2, - - -, n denote the n independent momenta

of the loops and, in the intermediate steps, we have used
various relations such as (11) and have neglected terms
involving products of retarded quantities in the integrand
(which will vanish upon integration). The recursion rela-
tion in (24) is interesting for two reasons. First, it shows the
generic feature in higher loops that any retarded amplitude
at n loops can be given a forward scattering description in
terms of retarded amplitudes at lower order. Second, the
recursion relation (24) can be thought of as a recipe for
opening up loops [18] for this particular diagram.

Although the forward scattering description for some
simple higher loop diagrams can be derived algebraically,
for a general higher loop amplitude, this is best established
diagrammatically. For this purpose, let us introduce the
graphical representation for the two parts of the matrix
propagator in (13) as

Pa = —_— )
T . (25)
Av Qu = & 4 b

There are two important things to note here. First, the
“cut” propagator corresponds to the on-shell propagator
and all the elements of the matrix Q have the value unity so
that the form of the cut propagator is the same, independent
of the indices a, b = *. Second, since the propagator P is
directional, we choose the convention of taking the direc-
tion of time flow to be towards the ““+° vertex in a retarded
amplitude (which corresponds to the largest time). This
simplifies the derivation and is physically meaningful to
give a causal evolution for the amplitudes. The direction of
the time flow at other vertices, where the thermal indices

En+l EVI+I

FIG. 5. Sum of diagrams which gives the n-loop retarded self-
energy in ¢"*? theory.
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are being summed over, is unimportant. It is clear that a
graphical decomposition of the propagator in the manner
as described in (25) would allow us to write any diagram as
a sum of diagrams each consisting of certain numbers of
“P” propagators and the remaining ones cut propagators.
Each cut propagator corresponds to an on-shell propagator
and, therefore, can be thought of as a cut-open line repre-
senting forward scattering of an on-shell particle. This can,
therefore, also be thought of as a graphical description of
the opening up of loops.

In this process of “opening up of loops,” we may run
into disconnected diagrams. As we will discuss in more
detail in the next section, the retarded amplitudes corre-
spond to vacuum expectation values of products of nested
commutators and as such cannot have disconnected dia-
grams (which would correspond to products of vacuum
expectation values). This can, of course, be checked graph
by graph at any order as was done at finite temperature in
[19]. However, this can also be seen graphically as follows.
Suppose, in this process of opening up of a diagram, it
separates into two disconnected parts as shown in Fig. 6.

In this case, there are two distinct possibilities. First, one
of the disconnected parts contains the “+” vertex corre-
sponding to the largest time and the other is a connected
part involving only vertices whose thermal indices are
being summed over. In this case, the second part would
vanish because of the identity (16). The other possibility is
that one of the disconnected parts is a connected diagram
involving the ““+” vertex and the other simply consists of a
vertex whose thermal index is being summed over. Once
again, when we sum over the thermal index of this dis-
connected vertex (with a fixed distribution of the other
thermal indices), the diagram would sum to zero (since
the “+” and the “—” vertices have a relative negative
sign). The crucial ingredient that allows this argument to
go through is the special property that a cut propagator is
the same for any value of the thermal indices. As a con-
sequence of this nice result, it follows now that, for an
arbitrary retarded amplitude at n loops, there can, at the
most, be n number of cut propagators in a diagram because
more cuts than that would render the graph disconnected.
Furthermore, only those propagators in a diagram can be
cut propagators (even when their number is less than or

I

~ -
(O

= sy \ R /+
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<D <>

FIG. 6. Two ways of cutting the two-loop self-energy diagram
with two cut propagators which render the graph disconnected.
The thermal indices a, b, and ¢ are being summed.

equal to n) if they do not render the diagram disconnected.
The propagators that are not cut correspond to the “P”
propagators which can be seen explicitly from (14) to be
lower triangular with

Piy = Ay,
Pr=P,,

P+_=O,

26
—P,_ = Ag 20
As aresult, in a retarded amplitude, the uncut propagators
simply correspond to Ay propagators (which can be
thought of as retarded ““P”’ propagators).

From these interesting properties follows a simple recipe
for constructing the forward scattering amplitudes for a
retarded graph at n loops. Start with a given graph and
write it as sum of all possible diagrams involving “‘uncut™
and cut propagators (open lines) such that none of the
diagrams is disconnected and there are at the most n
number of cut propagators. The diagram with n number
of cut propagators would correspond to a tree-level for-
ward scattering diagram with intermediate retarded propa-
gators. Any diagram with the number of cut propagators
less than n would involve vertex diagrams of lower order
(loop) as well as intermediate propagators that are retarded.
The vertex diagrams of lower order would correspond to
retarded diagrams with respect to the ““P”’ propagators and,
therefore, would involve only Ap propagators. This is the
forward scattering description for a retarded diagram at
any loop at zero temperature.

The above recipe is already obvious in the examples that
we have discussed before. Let us illustrate these as well as
some nontrivial examples at higher loops in a graphical
manner. First, let us look at the one-loop retarded self-
energy in the ¢3 theory which can be written as

125005-6
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Similarly, the retarded three-point function at one loop in the ¢* theory takes the form

+
+

O _
1"31R = +
b a b

+
+

1 “ -

(H(P)
T Y

Mo/

Let us next look at the retarded self-energy at two loops in the ¢* theory, which takes the form

N
N

e =

N
AL

-S>

DN
ST

(29)

LN

N
N
N

R
) LR + 3 >—§

Here and in what follows a multiplicative factor in a graph denotes symbolically the number of distinct graphs of the same
topology that can be drawn. Let us next look at a nontrivial diagram for the retarded self-energy at two loops in the ¢?>

theory which takes the form

3@ 4®— _z @

All these examples illustrate how the recipe works for an
arbitrary retarded amplitude at n loops, and demonstrate
the forward scattering description for a retarded amplitude
at zero temperature.

@)
U4,k

III. FORWARD SCATTERING DESCRIPTION AT
FINITE TEMPERATURE

Given the forward scattering description for retarded
amplitudes at zero temperature, it is now straightforward
to derive the forward scattering description at finite tem-
perature through the use of the thermal operator. Let us
recall that, in the closed time path formalism, the thermal
propagator for a scalar field can be related to the zero
temperature one through the thermal operator as [1]

AD(t, E) = OT(E)A(t, E), (31)

where

+ 8 Sﬂ‘k‘% (30)

OT(E) =1+ ng(E)(1 — S(E)). (32)

Here ng(E) represents the bosonic distribution function
and S(E) is a reflection operator that takes E — —E. The
thermal operator is the same for each component of the
propagator (it is a scalar multiplicative operator) and leads
to

AP (1, E) = OT(E)A,_(t, E)
=A,_(LE)+A? (1 E), (33)

where we have identified the temperature dependent part of
the propagator to be (this notation is an attempt to be
consistent with the notation in [19], although we have
denoted the propagator in those papers by G)

ng(E)

A B) ==

( —iEt + zEt) (34)
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The other interesting thing to note is that

AD(1, E) = OT(E)Ax(1, E) = AR(t, E),

(35)
AD(t, E) = OT(E)AA(t, E) = AA(1, E).

Namely, physical propagators such as the retarded and the
advanced propagators (at the tree level) are independent of
temperature. Graphically, these results can be written as

(T) £ . 5
O (E) a b - a b (36)
E E E
O(T)(E) a b = a » t oa L

where the “double cut” propagator can be identified with
AE,Q (completely parallel with the notation of [19]).

We know that any Feynman graph at finite temperature
is related to the corresponding zero temperature graph
through a thermal operator [1,2] that can be built out of
the basic thermal operator in (32). For example, the inte-
grand of a graph (after the internal time integrations are
done in the mixed space or the energy integrations are done
in the energy-momentum space) with N scalar propagators
carrying energy E;, i = 1,2, - - -, N at finite temperature is
related to the integrand of the corresponding graph at zero
temperature by the thermal operator

N
00 = l_[ (O(T)(Ei)- (37)
i=1

This is a consequence of the simple fact that at finite
temperature only the propagators of the theory are modi-
fied (because of the periodicity properties) while the inter-
action vertices remain unaltered. As a result, the finite
temperature forward scattering description for a retarded
diagram can be obtained directly from the zero temperature
one by simply applying the thermal operator appropriate to
the particular diagram. Of course, this also clarifies the
origin of the finite temperature forward scattering descrip-
tion; namely, it exists because there is a corresponding
description at zero temperature.

It is clear from (36) that, since the thermal operator does
not change the *“P” propagators, all the uncut lines in a
diagram in the forward scattering description will continue
to be the zero temperature retarded propagator, Agz. The
thermal operator will only change the cut propagators (the
open lines) to a cut plus a “double cut” propagator. (Like
the cut propagators, the “double cut” propagators are also
on shell with a factor of the distribution function ng and
correspondingly can be thought of as representing thermal
on-shell incoming and outgoing particles.) Thus, one can
organize the graphs in the number of “double cut” propa-
gators. There will be diagrams with no ‘“‘double cut”
propagator, a single ‘“‘double cut” propagator and so on,
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and the maximum number of “double cut” propagators
will be n for a retarded amplitude at n loops. The diagrams
without any “‘double cut” propagator will, of course, cor-
respond to the zero temperature retarded amplitude. The
diagrams with the maximum number of “double cut”
propagators (n in the case under study) will represent
tree-level forward scattering amplitudes for thermal on-
shell particles. The diagrams with the number of “double
cut” propagators less than n will all arrange into forward
scattering amplitudes for thermal on-shell particles with
(zero temperature) retarded vertices of lower order (n — 1
and lower). Namely, the effect of applying the thermal
operator to a retarded amplitude at zero temperature is to
change all the “P” retarded vertices in the forward scat-
tering description to genuine retarded vertices at zero
temperature and replace all the on-shell forward scattering
particles by thermal on-shell forward scattering particles.
If we ignore the zero temperature retarded amplitude, the
rest of the diagrams yield the temperature dependent for-
ward scattering amplitudes.

The fact that the graphs will arrange as described above
can be seen symbolically as follows. Let us identify Az =
P,AL_ =y, Aﬁ_ = yP. Then, a retarded graph with N
propagators at zero temperature can be symbolically rep-
resented as (P + y)V. If the graph is at n loops, then we can
expand it in terms of the number of on-shell propagators
(v) and write it symbolically as

T g =P+ =PV 4+ aPVly+ - +a,PN 7y
(38)
Here the multiplicities a;, i = 1,2, ..., n are assumed to

denote the number of ways the forward scattering on-shell
particles can occur in a graph without disconnecting the
diagram (which is why these cannot correspond to the pure
binomial coefficients). Furthermore, the terms involving
powers of P represent intermediate retarded propagators as
well as “P” retarded vertices. As we have seen, under the
action of the thermal operator,

OD(P+y)=(P+y+yh) (39)

As a result, using the thermal operator representation, we
obtain

(1) _ A1)
1—‘(X/),R =0 )F(;'V),R

= (P Py Iy

=P +y+yA¥

+ a,(P + y)N (P

— I‘(”) + yﬁ(r("fl)

(n=1) .
(MR w-nr TP 5 +)

(N—2),R

+ OPPIG

(N-D.R + .- ) 4+ .. (40)
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It is useful to remember that the sum of the power of y and y# in any term on the right-hand side of (40) can at the most be n
at n loops.

Let us illustrate these relations with some examples. Applying the thermal operator to the forward scattering description
of the retarded self-energy in the ¢* theory at one loop [see (27)], we obtain

zg)(T) _ 0<T>z§{)=2§)”’)+ \ - / + X\ 7‘( +

VAN FATIR
:Eg)+k\R7{+

=z +x P

(41)

R

Similarly, the one-loop retarded three-point function [see (28)] at finite temperature takes the form

M7 = omr=rin Xapaly Nl Xl
+ \XRlR/% + B)/(\RlR}{ + \XRlR}{ (42)
ris el Sepl XeaZ g rgy,

A slightly more complicated example would correspond to the two-loop retarded self-energy in the ¢* theory [see (29)] at
finite temperature which takes the form

R
2T = 0P =z P 4 3 + 3 §—§
R R (43)
+ 3 + 6 + 3

|
™M
5
+
(O8]
+
(O8]
:’E\'
|
M
5
+
M
5
=

This shows explicitly how the P’ retarded vertices of lower order rearrange themselves into full retarded vertices. Finally,
let us consider the nontrivial example of the two-loop retarded self-energy diagram [see (30)] at finite temperature,

125005-9



BRANDT, DAS, FRENKEL, AND PEREZ

Zg)(T) — O(T)Zg) :Zg)(P) +

:Z§)+

This nontrivial example once again demonstrates how the
“P” retarded vertices of lower order rearrange themselves
into full retarded vertices. We note that the thermal opera-
tors O7) for the different amplitudes in (41)—(44) are
different and their appropriate forms can be obtained
from (37). Furthermore, the temperature dependent for-
ward scattering amplitudes are denoted with a superscript
B to coincide with the definition in [19] and in the appli-
cable examples can be checked to agree with the results
there.

We would now like to make some observations on the
structure of retarded amplitudes in general which are not
directly related to the main goal of this paper, but are quite
important in understanding their structures. First, we note
that the retarded N-point amplitude at any loop is defined
algebraically in the coordinate space in terms of the origi-
nal fields of the theory as the vacuum expectation value of
the nested commutators [20],

.y tN) == (—i)NﬂH(l‘] - t2)0(l2 - t3). ..
X O(ty—1 — ty)OI[L- .. [ (x1), P(x2)]
¢ (x3)].... d(xy)]10)

+ permutations. (45)

Cyr(ty, to ..

Here we have assumed that the time coordinate #; is the
largest among all the coordinates and the ‘“permutations”
refer to symmetrizing in all the other coordinates (other
than the largest time) and fields. As a result, the retarded
amplitude is symmetric in all the coordinates other than the

T [R >

PHYSICAL REVIEW D 74, 125005 (2006)

N A A

R} R RT

+

8 h\ iT =z +z QP

R LR

(44)

{
largest time coordinate. For a real scalar field, ¢(x) is a
Hermitian operator and, therefore, the factor (—i)¥™!
shows that the retarded amplitudes are real in coordinate
space. Under Hermitian conjugation, the change in the sign
of each factor of i is compensated by the change in sign
coming from each commutator. We have already argued in
Sec. II graphically that a retarded amplitude cannot have
disconnected parts which would correspond to products of
vacuum expectation values. This can also be seen from the
above definition as follows. Let us denote the nested com-
mutator involving the first N — 1 fields as

A=[[...[d(x)), d(x2)] d(x3)]..., dxy_1)]  (46)

Then, we can write the vacuum expectation value of the
nested commutator in (45) as

(OI[A, ¢(x)]10). 47)

Inserting a complete set of intermediate states (say, discrete
energy eigenstates or the particle number states), this can
be written as

OILA, B 110) = ﬁo (OlAInYnl (ey)[0)
(0l nalalo)
= i(<OIAIn><nI¢(xN)I0>

Ol lA). @

Namely, the intermediate vacuum states cancel out in the
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vacuum expectation value of the commutator and, as a
result, the retarded amplitudes contain only connected
graphs which we have explicitly seen earlier.

It was noted earlier [7] that the retarded self-energy for a
real scalar field in the mixed space is a real quantity. As we
have already argued, the retarded amplitudes, by definition,
are real in the coordinate space. However, in going to the
mixed space, one Fourier transforms the spatial coordi-
nates into spatial momenta, and Fourier transformation
does not maintain the reality of a function in general. Let
us comment here briefly on when the retarded amplitudes
will be real in the mixed space for a scalar theory. The
definition of the retarded amplitudes in the mixed space
takes the form [see (45)]

Cyr(ty ty oo ty) = (=N 710(t) — 1)0(t, — 13) ...
X O(ty—y — ty)OIL. .. [&(, B1),
é(t2, p2)] - .., P(ty, Py)1I0)

+ permutations. (49)

Under Hermitian conjugation, the change in sign in each
factor of *“i” is still compensated for by the change in sign
coming from each commutator. However, since under
Hermitian conjugation

¢(t, p) = (1, —p), (50

the retarded amplitude is not real in general. In fact, let us
note explicitly that, under Hermitian conjugation,

Tyvr(tn ty, ooy ty) = ()N 710(1) — 1)0(t, — 13) ...
X Oty — ty)OIL. . [p(t1, — 1),
d(t2, —p2)) .., Plty, —py)]I0)
+ permutations. (51

We note that, if the scalar field transforms under parity as
¢(1, p) = &1, —p) = (=1)*¢(z, p), (52)

where 7 = (—1)* denotes the intrinsic parity of the scalar
field, then we can write (51) as

f‘j\/,R(tl’ ty, ..o, ty) = (=D (=)N10(1) — 1,)0(t, — 13) ...

X O(ty—1 — ty)OI[...[p(11, ),
d)(tZ’ ﬁZ)]r LR QS(tN’ 5N)]|O>

+ permutations
= (=DVeTyr(t), ta, ... ty). (53)

For a scalar field of even parity, « = 0 and we see that the
retarded amplitudes will continue to be real even in the
mixed space. However, for a pseudoscalar field, « = 1 and
we note that only parity conserving retarded amplitudes
will be real while the parity violating retarded amplitudes
will be purely imaginary in the mixed space. We would like
to emphasize that the reality of an amplitude in the coor-
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dinate space/mixed space is not contradictory to the exis-
tence of dispersion relations in the energy-momentum
space since the imaginary parts of the amplitudes in
energy-momentum space arise from the imaginary parts
of the step functions [6(¢)] in the integral representation.

IV. FORWARD SCATTERING DESCRIPTION FOR
YANG-MILLS THEORY

The results of the earlier sections show that the forward
scattering description at finite temperature can be obtained
from the forward scattering description at zero temperature
by the use of the thermal operator. Although we have done
this explicitly for scalar field theories, this can be general-
ized easily to other theories. We would like to emphasize
that this correspondence between the finite temperature
and zero temperature forward scattering descriptions
should not be thought of as only useful in establishing a
graphical identification. It is also quite useful as a calcula-
tional tool as well as in clarifying various aspects of field
theories at high temperature. To give an example of this,
we will next derive the retarded gluon self-energy in the
Yang-Mills theory [belonging to SU(N)] at one loop in the
hard thermal loop approximation from the zero tempera-
ture result, which will also clarify the structure of this
thermal amplitude.

A lot is known about the structure of Yang-Mills theories
at high temperature [11,12]. It is known, for example, that
in the hard thermal loop approximation the one-loop re-
tarded self-energy in the forward scattering description is
independent of the gauge fixing parameter and has a man-
ifestly gauge invariant (transverse) and Lorentz covariant
structure (before carrying out the angular integrations).
However, the reason for such a structure at finite tempera-
ture is not well understood. We will see below that such a
structure of the integrand for the retarded self-energy al-
ready exists at zero temperature in the appropriate regime
and, since the thermal operator is gauge invariant, the
thermal amplitude obtained through the application of
the thermal operator representation preserves these
properties.

From the discussions in Sec. II, we can immediately
write down the forward scattering description for the one-
loop retarded self-energy for the Yang-Mills field (includ-
ing the ghost contributions) easily. Our discussion in Sec. II
has been completely within the context of the mixed space
simply because we wanted to bring out the physical nature
of the retarded amplitudes as evolving forward in time in a
connected manner. However, the thermal operator repre-
sentation holds equally well in the energy-momentum
space (which can be seen simply by Fourier transforming
the external time coordinates) where the thermal operator
acts on the integrand after all the energy integrations have
been carried out. Since all the calculations of thermal
amplitudes in the hard thermal loop approximation have
been carried out in the energy-momentum space, in this
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section we will also work in the energy-momentum space and use the thermal operator representation in this space.
The forward scattering description for the one-loop retarded self-energy for the Yang-Mills field [belonging to SU(N)] at

zero temperature can be written as

p.a V- Spb Pagu V§Pb
ab(1) _
Iy r () = + DRWAY I S L Hk—>=k)

k.c k+p.d k.c k.c k.c ke k+pd kc
2 4 2
8 d'k oy 2\ [pade pbed dM (k + p)

= k aac C ,—k— ,k dkaV —,—k,k
2 (27‘5)36 ( )[f S Ve (p p.k) (k + p)? (k)Vvy (=p +p)
abcc adc C k (k+ )
+ Wilpe dP0() = 2f e p Pt p‘;’zv +(k > =D, (54)

where wavy and dotted lines in the graphs denote, respec-
tively, the gluon and the ghost propagators, which, in an
arbitrary covariant gauge, have the forms

b B iéab
Duv(k) - 2 d/LV(k)
T k,k,
= (-0 69
. i5ab
Do) =

Here ¢ denotes the gauge fixing parameter, and the appro-
priate “ie” factors in the denominators of the propagators
are understood. We also note here that a product such as
51 (k?) k—lz in (54) has to be understood in a regularized sense
as has been described in [21]. Similarly, the gauge and the
ghost vertices have the forms (we are suppressing the
energy-momentum conserving delta functions and are de-
fining V5o = —gf*V,,, and VP = gf°V,)

V,u,v)x(p’ k, q) = nyv(p - k)A + nw\(k - q),u, + UAM(CI - p)w

Vu(p.k ) =k,. (56)

The quartic vertex, (—ig?W4bed ), can be read off from

[22]. Furthermore, we have defined

81 (k) = (ko) S(K*). (57

Since the ghost propagator as well as the gauge interaction
vertex are independent of &, for the purpose of understand-
ing the ¢ dependence in (54), we can restrict ourselves only
to the diagrams involving intermediate gauge field
propagators.

The tree-level gauge field vertices (56) satisfy the iden-
tity

K'Vud(p ke @) = (0P = PuPr = Murd® + 4,92
(58)

where we have used the fact that k = —¢g — p because of
energy-momentum conservation. In the region where

[

k, > p, (where we are assuming that k, g are the internal
momenta and p is the external one), the first two terms in
(58) can be neglected for our purpose, and what remains is
a structure that is transverse to the other internal momen-
tum. As a result, we see that the terms quadratic in the
parameter ¢ vanish so that the self-energy in (54) can at
most depend linearly on the gauge fixing parameter £. An
explicit evaluation of the diagrams involving the gauge
field propagators shows that the linear terms in ¢ cancel
out among the two classes of diagrams at the integrand
level. Consequently, in the limit k, > p,,, the leading
order contribution to the self-energy is independent of
the gauge fixing parameter £.

At zero temperature, the amplitudes are manifestly
Lorentz covariant. Furthermore, the Ward identity for the
gluon self-energy requires that it be transverse to the
external momentum,

pHII4 R (p) = 0.

(59)

Since the leading part of the retarded self-energy is inde-
pendent of the gauge fixing parameter £, in evaluating (54)
in this regime, we can choose it to have the value ¢ = 1 for
simplicity (Feynman gauge). In this case, the numerator of
the gauge propagator in (55) is simply the metric tensor
independent of any momentum. The momentum depen-
dence in the numerator in (54) comes from the vertices and
is, therefore, at most quadratic in the momenta. (Note that
the three-point vertex depends on the momentum, but the
quartic vertex is independent of the momentum.) Since we
are interested in the ‘“hard” internal momentum region
where k, > p,,, we can expand the numerator in powers
of the internal momentum. Similarly, we can also expand
the denominator in (54) in this region as (recall that k> = 0
because of the delta function)

1 1 p?
J— — +...
(p+k?> 2p-k (2k-p)?

(60)

Using these in (54), one explicitly finds that the leading
contribution in this region comes from terms in the inte-
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grand (multiplying the delta function) which are of degree
zero in both the external and the internal momentum. There
is only one such tensor structure available at zero tempera-
ture which is consistent with the Ward identity (59),
namely,

pk,k,
(p-k)?*

and the integrand has to be proportional to this structure.
Explicit calculation indeed shows that, in this region, (54)
takes the form

_ puk, + p.k,
p-k

Nuv (61)

Hub(l)( ): —g2N§ab d*k 6+(k2)
uwv,R p 8 (277_)3
puk, + Pk, PP,
X - . 2
(n’” p-k o) ©?

This is the leading contribution in the hard internal mo-
mentum region and, as we will show shortly, this leads to
the hard thermal loop results at high temperature.

There are several things to note from the structure in
(62). First, the quantity in the parentheses is manifestly
Lorentz covariant of degree zero in both the internal and
the external momenta. Furthermore, it is manifestly trans-
verse (gauge invariant). We note that the integral in (62) is
quadratically divergent and is usually set to zero in the
dimensional regularization. However, if we only carry out
the k, integration, it does not vanish and, as we will show
shortly, it is this leading contribution that leads to the hard
thermal loop results at high temperature. (We remark here,
parenthetically, that the conventional ultraviolet divergent
terms in the self-energy are, in contrast, gauge dependent
and are only logarithmically divergent, yielding at high
temperature only In7 contributions [23].) We want to
emphasize that the reason for carrying out only the k;
integration is that the thermal operator acts on the inte-
grand after the energy integrations have been carried out
and before evaluating the integrations over the spatial
momenta [1]. To apply the thermal operator representation,
we need to integrate over the k, variable in (62) and this
leads to

&Pk 1
Hllb(l) = —2N§ab
#V,R(p) 8 (277.)3 2Ek
puk, + pk,  pPk,k,
x(n,w— A ’ﬂ2>, (63)
pk (p k)

where E, = |k| and we have defined IQ/L = (1, k).
Applying now the thermal operator to the integrand, we
obtain [It is worth clarifying here once again that although
some of the diagrams in (54) involve two propagators, only
the thermal operator corresponding to the on-shell propa-
gator leads to a nontrivial result. The retarded propagators
are unchanged by the application of the thermal operator as
discussed in (36).]
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1

dk
ab(I)(T) _ _ _2a7s8ab T
g = —gNé o) 0! )(Ek)2—Ek

» (n _ Puky Pk pzk,{@)

g p-k (p-k?
&k ng(E))

__ 1yab(l) 2 ab B\ Lk

= H/_wyR(p) g*’Néo o’ L,
% (7] _ p,u,kv + f’l/k,u + pzk/LAkV)

g p-k (p - k)?

= 0 (p) + MUARP. (64)

The temperature independent part sz,i llg can now be set to
zero using dimensional regularization for the spatial
momentum.
We note that, since E;, = |k|, the radial momentum
integration in the second term in (64) can be done to yield
T T?

f " dkkng (k) = , (65)
0 6

which leads us to the temperature dependent part of the
self-energy

INT?254b p k,+ p k
meWB) =822 9 [ oy, —Leir T Prlu
uv,R (P) 4877 77;4,1/ D i

L Pk ky>
(p -k

This is the well-known result for the temperature depen-
dent part of the retarded self-energy in the hard thermal
loop approximation in the forward scattering description.
The angular integrations break the manifest Lorentz in-
variance. (At finite temperature, Lorentz invariance is bro-
ken because the rest frame of the heat bath defines a
preferred reference frame.) However, the beautiful proper-
ties of the integrand follow simply from the properties of
the zero temperature amplitude.

This example demonstrates that, in addition to establish-
ing a graphical correspondence, the thermal operator rep-
resentation can also be conveniently used to calculate the
thermal amplitudes in the hard thermal loop approximation
from the hard internal momentum amplitudes at zero tem-
perature. Such a calculation also clarifies various important
features of the thermal amplitudes at high temperature.

(66)

V. CONCLUSION

In this paper, we have systematically derived the for-
ward scattering description for retarded amplitudes to all
orders at zero temperature. This graphical derivation then
allows us to obtain the forward scattering description for
such amplitudes to all orders at finite temperature through
the thermal operator representation. Although our deriva-
tion has been within the context of a scalar field theory, the
derivation can be generalized easily to other theories with
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or without a chemical potential. Furthermore, although we
have used the real time formalism of the closed time path
for our discussions for simplicity, the results also hold in
the imaginary time formalism (which we do not go into).
Besides giving a graphical derivation of the forward scat-
tering description at finite temperature, such a relation can
be used as a powerful tool for calculations at high tem-
perature and it clarifies various properties of thermal am-
plitudes. As an example, we have calculated the one-loop
retarded self-energy for gluons in the Yang-Mills theory at
finite temperature starting from the forward scattering
description at zero temperature. This derivation empha-
sizes that various nice features of these amplitudes such

PHYSICAL REVIEW D 74, 125005 (2006)

as gauge invariance, transversality, manifest Lorentz co-
variance, etc. arise simply because the zero temperature
amplitude already possesses such properties. This descrip-
tion of the forward scattering amplitudes at finite tempera-
ture provides yet another example of the usefulness of the
thermal operator representation.
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