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We study the dimensional reduction of M5-branes wrapping special Lagrangian 3-cycles of a Calabi-
Yau manifold and show explicitly that they result in 2-branes coupled to the hypermultiplets of ungauged
N � 2 D � 5 supergravity theory. In addition to confirming previously known results, the calculation
proves the relationship between them and provides further insight on how the topological properties of the
compact space affect the lower dimensional fields.
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I. INTRODUCTION

Black branes satisfying the Bogomol’nyi-Prasad-
Sommerfield (BPS) condition have been studied from a
variety of perspectives many times over the years, ever
since it was discovered that such branes preserve some
degree of supersymmetry [1]. Of particular interest are
brane configurations wrapping manifolds with special or
restricted holonomy. Such manifolds have been catalogued
by Berger [2] and shown to admit calibrated forms (an
excellent review is [3]). This allows for the construction of
wrapped configurations simply by taking into account
calibrated forms on the compact space (see [4] or [5] for
detailed reviews and reference lists). Such a program was
started by the realization [6] that certain constructions
describing localized intersecting M5 branes [7] admit gen-
eralized Kähler calibrations, which take into account the
flux of the 11 dimensional 4-form gauge field. This was
further extended in the same Ref. [6] and used to find more
wrapped brane configurations. Inevitably, branes wrapping
other types of calibrated cycles were sought after using a
variety of techniques. Of interest to us are branes wrapped
over special Lagrangian-calibrated (SLAG) submanifolds.
The first such solution was found in [4], and later published
in [8]. A more general SLAG-calibrated construction was
announced in [9]. In the same reference, branes wrapping
submanifolds with G2 holonomy were also studied. Later,
Fayyazuddin and Husain [10] took a second look at SLAG-
wrapped branes and proceeded to explore other instances
of SLAG wrappings [11,12].

On the other hand, it is also possible to argue that M-
branes wrapping calibrated cycles of a Calabi-Yau mani-
fold dimensionally reduce to interesting BPS configura-
tions in lower dimensions. This has always been an
assumption based on geometric and physical arguments.
For example, the Kähler-calibrated branes of [6] dimen-
sionally reduce to black holes and strings coupled to the
vector multiplets of N � 2 D � 5 supergravity as dem-

onstrated in [13]. In addition to being formal proofs of
hypotheses that have always been simply assumed, such
calculations provide deeper insights into how lower dimen-
sional fields arise as consequences of the topology of the
compact subspace.

The other fields sector of ungauged D � 5 supergravity
theory is the hypermultiplets sector. A particular special
case of that is the so-called universal hypermultiplet. This
is better understood from a higher dimensional viewpoint
as the dimensional reduction over SLAG cycles of a
Calabi-Yau submanifold with constant complex structure
moduli (a lightning review is presented in the next section).
In [8], we found explicit SLAG-wrapped solutions in D �
11 and showed how such wrappings dimensionally reduce
to 2-branes in D � 5 coupled only to the universal hyper-
multiplet fields. In the same paper we analyzed the con-
ditions on a more generalD � 5 2-brane that couples to the
full set of hypermultiplets. From the higher dimensional
perspective, this is assumed to be a M5-brane wrapping
SLAG cycles of a Calabi-Yau 3-fold with nontrivial com-
plex structure moduli; the same calibrated brane configu-
ration studied by [9,10]. This correspondence has been
assumed without proof in most of these references. In
this paper, we provide that proof and show that at a scale
much larger than the size of the compact space, one does
indeed retrieve the results of [8].

The paper is structured as follows: Section II reviews
how D � 11 supergravity reduces to five dimensions, pro-
ducing the ungauged N � 2 theory, and sets the conven-
tions and notation. We are only interested in the
hypermultiplets, so the vector multiplets sector will be
ignored. Section III presents the 11-dimensional SLAG-
wrapped M5-brane in the form of [10] as well as the 2-
brane of [8]. At the risk of confusing the reader, we had to
change the notations used in the two references slightly in
order to avoid using the same symbols to describe different
things. Section IV details the dimensional reduction of the
11-dimensional brane to produce the five dimensional
result exactly and analyzes the geometric meaning of the
D � 11 SUSY conditions in the far field limit. Finally we
conclude and propose further study.*Electronic address: memam@clarku.edu
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II. DIMENSIONAL REDUCTION OF D � 11
SUPERGRAVITY

Dimensionally reducing D � 11 supergravity on a
Calabi-Yau 3-fold M yields ungauged D � 5 N � 2
supergravity coupled to (h1;1 � 1) vector multiplets and
(h2;1 � 1) hypermultiplets [14]; the h’s being the Hodge
numbers of M. M-branes wrapping Kähler-calibrated
cycles of M deform the Kähler structure of M and reduce
to configurations in which the vector multiplets are excited
[13]. SLAG-wrapped M-branes, our focus in this paper,
deform the complex structure of M and reduce to configu-
rations carrying charge under the hypermultiplet scalars.
The two sectors of the theory decouple and we only keep
the hypermultiplets in our presentation.

The D � 5 N � 2 supergravity Langrangian including
the full set of (h2;1 � 1) hypermultiplets can be written in
terms of geometric quantities on the moduli space of the
complex structures of the Calabi-Yau manifold M. These
structures are discussed in detail in [15], and we will give a
brief review here. Start by taking a basis of the homology
3-cycles �AI; BJ� with I, J � 0; 1; . . . ; h2;1 and a dual co-
homology basis of 3-forms ��I; �J� such that

 

Z
AJ
�I �

Z
M
�I ^ �J � �JI ;

Z
BI
�J �

Z
M
�J ^ �I � ��JI :

(1)

Define the periods of the holomorphic 3-form � on M by

 ZI �
Z
AI

�; FI �
Z
BI

�: (2)

The periods ZI can be regarded as coordinates on the
complex structure moduli space. Since � can be multiplied
by an arbitrary complex number without changing the
complex structure, the ZI are projective coordinates. The
remaining periods FI can then be regarded as functions
FI�Z�. One can further show that FI is the gradient of a
function F�Z�, known as the prepotential, that is homoge-
neous of degree two in the coordinates, i.e. FI � @IF�Z�
with F��Z� � �2F�Z�. The quantity FIJ�Z� � @I@JF�Z�
will also play an important role. Nonprojective coordinates
can then be given by taking e.g. zi � Zi=Z0 with i �
1; . . . ; h2;1. The Kähler potential of the complex structure
moduli space is K � � ln�i

R
M � ^ ���. Given the ex-

pansion of � in terms of the periods

 � � ZI�I � FI�
I; (3)

the Kähler potential is determined in terms of the prepo-
tential F�Z� according to

 K � � ln�i�ZI �FI � �ZIFI��: (4)

The so-called period matrix N IJ is defined by

 N IJ � �FIJ � 2i
NIKZ

KNJLZ
L

ZPNPQZQ
� �IJ � i�IJ (5)

where NIJ � Im�FIJ�, �IJ�JK � �IK, and ��; �� are real
matrices.

The derivation of the Lagrangian for the bosonic fields
of the D � 5 theory is sketched in [16] and detailed in [4].
The bosonic part of the D � 11 action is the familiar:
 

S11 �
1

2�2
11

Z
d11x

��������
�G
p �

R�
1

48
F2

�

�
1

12�2
11

Z
A ^ F ^ F; (6)

where F is given by F � dA; A being the usual 11 dimen-
sional 3-form gauge field. The dimensional reduction of (6)
is done over the metric:
 

ds2 � e2�=3g	
dx	dx
 � e��=3k~I ~Jdx
~Idx~J;

	; 
 � 0; . . . ; 4 ~I; ~J � 1; . . . ; 6
(7)

where k~I ~J is a fixed Ricci-flat metric on the Calabi-Yau
space M. The D � 11 3-form is expanded in terms of the
cohomology basis as follows A � 1

3!A	
�dx
	 ^ dx
 ^

dx��

 A �
1

3!
A	
�dx	 ^ dx
 ^ dx� �

���
2
p
��I�I � ~�I�I�; (8)

and
 

F � dA �
1

4!
F	
��dx	 ^ dx
 ^ dx� ^ dx�

�
���
2
p
��@	�I��I � �@	 ~�I��I� ^ dx	: (9)

The resulting D � 5 bosonic action is
 

S5 �
1

2�2
5

Z
d5x

�������
�g
p

�
R�

1

2
�@	���@

	��

�Gi �j�@	z
i��@	z �j� �

1

48
e�2�F	
��F

	
��

�
1

24
"	
���F	
��K���; ~�� � e�L		��; ~��

�
; (10)

where we have defined:
 

K���; ~�� � ��I�@� ~�I� � ~�I�@��I��

L	
��; ~�� � ���IJ � �
KL�IK�JL��@	�

I��@
�
J�

� �IJ�@	 ~�I��@
 ~�J� � 2�IK�KJ�@	�J��@
 ~�I�:

(11)

The scalar fields (zi, z�i) with i � 1; . . . ; h2;1 are complex
coordinates on the complex structure moduli space with
metric Gi �j � @i@ �jK. The pseudoscalar axions �I, ~�I arise
from the dimensional reduction of the D � 11 3-form
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gauge potential. The scalar field � is the overall volume
scalar of M and F	
�� is the D � 5 4-form field strength.
Each hypermultiplet has 4 scalar fields. The scalars
�zi; z�i; �i; ~�i� make up h2;1 of the hypermultiplets, while
the additional universal hypermultiplet is comprised of the
fields �a; �; �0; ~�0�, where the so-called universal axion a is
the scalar dual to the 3-form gauge potential A	
�.

Further study of the structure of the theory (see [16] and
the references within) reveals that the hypermultiplets
define a (h2;1 � 1)-dimensional quaternionic space. This
structure, in five dimensions, is dual to the special Kähler
geometry of the D � 4 vector multiplets sector via the so-
called c-map (e.g. [17]). This duality justifies the use of
special Kähler geometry techniques as opposed to the
explicit quaternionic form.

Furthermore, one finds that the theory is invariant under
the symplectic group Sp�2h2;1;R�, i.e. (10) actually defines
a family of Lagrangians that differ from each other only by
a rotation in symplectic space that has no effect on the
physics. In fact, if we define

 V �
LI

MJ

� �
� eK=2 ZI

FJ

� �
(12)

satisfying

 r�iV �
�
@�i �

1

2
�@�iK�

�
V � 0; (13)

then V is a basis vector in symplectic space that satisfies
the inner product

 ihVj �Vi � i� �LIMI � L
I �MI� � 1: (14)

An orthogonal vector may be defined by

 Ui �
fIi
hJji

� �
� riV; (15)

such that

 hVjUii � hVjU�ii � 0: (16)

Based on this, the following identities may be derived:

 N IJL
J � MI; N IJf

J
i � hIji (17)

 �r �jf
I
i � � Gi �jL

I; �r �jhiI� � Gi �jMI (18)

 �IJLI �LJ �
1

2
; Gi �j � 2fIi�IJf

J
�j ; (19)

as well as the very useful:

 �IJ � 2�Gi �jfIi f
J
�j � L

I �LJ� (20)

 ��IJ � �
KL�IK�JL� � 2�Gi �jhiIh �jJ �MI

�MJ� (21)

 �IK�KJ � 2�LI �MJ � �LIMJ�: (22)

Such detail follows directly from the topology of the
underlying compact manifold, and it is indeed a wonder

that we can understand so much about it with little need for
the explicit form of a metric on M.

III. WRAPPED M5-BRANES AND D � 5 2-BRANES
WITH HYPERMULTIPLETS

The proposition we are attempting to analyze in this
paper is that M5-branes wrapping SLAG cycles of a CY 3-
fold dimensionally reduce to 2-branes coupled to the hy-
permultiplets of N � 2 D � 5 ungauged SUGRA. In this
section we summarize both constructions as they were
presented in Refs. [8,10].

A. The D � 5 2-brane

Based on the notation established in x II, the D � 5 2-
brane spacetime metric coupled to the hypermultiplets may
be written as follows [8]:
 

ds2 � ��dt2 � dx2
1 � dx

2
2� � e

�2��abdxadxb;

a; b � 3; 4:
(23)

We define a number (h2;1 � 1) of harmonic functions

 HI � hI � qI lnr; ~HI � ~hI � ~qI lnr;

I � 0; . . . ; h2;1;
(24)

where h and ~h are constants, r is the radial coordinate in the
two dimensional space transverse to the brane, and �q; ~q�
are electric and magnetic charges. The SUSY equations
yield the following constraints on the scalar fields:

 �@a�� � �2e�=2�LI�@aHI� �MI�@a ~HI��

� �2e�=2� �LI�@aHI� � �MI�@a ~HI�� (25)

 �@azi� � �e�=2Gi �j�fI�j�@aHI� � h �jI�@a ~HI��

�@az
�i� � �e�=2G�ij�fIj�@aHI� � hjI�@a ~HI��

(26)

 �@a�I� � 	"ac�@c ~HI� �@a ~�I� � 	"ac�@cHI�; (27)

and F	
�� � 0. Using a well-known relationship between
the charges q and ~q and the central charge Z of the theory
as follows [18]:

 Z � �LIqI �MI~qI� �Z � � �LIqI � �MI~qI�; (28)

Eqs. (25) and (26) may be simplified to

 

d�
dr
� �2e�=2 Z

r
dzi

dr
� �e�=2r

i �Z
r

dz�i

dr
� �e�=2r

�iZ
r
;

(29)

which may further be shown to satisfy [19]

 HI � i�FI � �FI� ~HI � i�ZI � �ZI�: (30)
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B. The wrapped M5-brane

The spacetime metric derived by Fayyazuddin and
Husain in reference [10] may be written as follows:

 ds2 � H�1=3��dt2 � dx2
1 � dx

2
2� � g~I ~Jdx

~Idx~J

�H2=3�abdx
adxb

~I; ~J � 1; . . . ; 6 a; b � 3; 4;

(31)

representing a M5-brane wrapping a Calabi-Yau 3-fold
with metric g~I ~J. The brane’s tension distorts the compact
space such that it is no longer strictly Calabi-Yau. The
scale factor H is a function in the two dimensional trans-
verse space.

The brane is naturally coupled to the 11 dimensional 7-
form field strength which was constructed in the same
reference. For our purposes, its dual 4-form field strength
(which they also gave) may be more useful. It is

 F�4� �
1

4
H1=6"ab ?6 d6�H

1=2�Re��� ^ dxa ^ dxb

�
i
2
H�1=2"a

b@b�H
1=2�Im��� ^ dxa; (32)

where � is a globally defined holomorphic form which
turns out to be the usual Calabi-Yau 3-form and ?6 is the
Hodge dual operator on M.

Dictated by SUSY preservation, certain constraints on
the compact manifold were also found

 

�� ^ ?6d6� � 0 (33)

 d6��� ��� � 0 (34)

 det�g~I ~J� � g � H (35)

 �~I ~J ~K�@a ��~I ~J ~K� � 12@a lng: (36)

IV. DIMENSIONAL REDUCTION AND ANALYSIS

We now show that the D � 5 2-brane of Sec. III A is the
dimensional reduction of the SLAG-wrapped M5-brane of
Sec. III B. Since we already have a dimensional reduction
scheme, as given in Sec. II, one can simply merge the D �
11 equations into that scheme and see if what we retrieve is
consistent with the D � 5 results.

We begin by considering the metric (31). Rearranging

 ds2 � H�1=3��dt2 � dx2
1 � dx

2
2 �H�abdx

adxb�

� g~I ~Jdx
~Idx~J; (37)

and comparing with the form of the metric (7) used for the
dimensional reduction of the theory, one is forced to con-
clude that

 H � e�2�; g~I ~J � H1=6k~I ~J � e��=3k~I ~J (38)

Based on this, one immediately sees that the five dimen-
sional metric is

 g	
dx
	dx
 � ��dt2 � dx2

1 � dx
2
2� �H�abdx

adxb

� ��dt2 � dx2
1 � dx

2
2� � e

�2��abdx
adxb;

(39)

which is exactly the D � 5 result (23).
Next, we turn to the field strength. To begin with, we

argue that as the compact subspace is shrunk to a point,
variations on M vanish and expressions such as
d6�H1=2�Re��� can be neglected, so we set the first term
of (32) to zero. We also identify � as the holomorphic
Calabi-Yau 3-form. To facilitate the calculation, we make
the assumption that � �K, where the Kähler potential K
is defined by (4),1 and make use of (3) as follows:
 

� � �ZI�I � FI�
I�

� e��=2�LI�I �MI�I� and c:c:

�@a�� � e��=2��@aL
I��I � �@aMI��

I�

�
1

2
e��=2�@a���LI�I �MI�I� and c:c:;

(40)

where c.c. means the complex conjugate of each of these
equations. We find
 

F � �
i
4
"a

b��@b�� � �@b ���� ^ dxa

�
i
4
"ab�@b����� ��� ^ dxa (41)

 

�
i
4
"abe��=2

�
��@bLI� � �@b �LI� �

1

2
�@b��LI

�
1

2
�@b�� �LI

�
�I ^ dx

a

�
i
4
"abe��=2

�
�@bMI� � �@b �MI� �

1

2
�@b��MI

�
1

2
�@b�� �MI

�
�I ^ dxa: (42)

It is straightforward to show that [4]

 �@bLI� � fIi �@bz
i�; �@bMI� � hiI�@bzi� and c:c:

(43)

For vanishing universal axion, Eq. (9) becomes

 F �
���
2
p
��@a�

I��I � �@a ~�I��
I� ^ dxa; (44)

which we compare with (42) to conclude

1This is essentially the assumption made by [19] in the context
of solving the attractor equations of four dimensional black holes
coupled to the vector multiplets.
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�@a�
I� �

i

4
���
2
p "a

be��=2

�
�fIi �@bz

i� � fI�i �@bz
�i�

�
1

2
�@b��LI �

1

2
�@b�� �LI

�
(45)

 

�@a ~�I� �
i

4
���
2
p "abe��=2

�
hiI�@bzi� � h�iI�@bz

�i�

�
1

2
�@b��MI �

1

2
�@b�� �MI

�
: (46)

The crucial step is to insert the constraints (25) and (26)
in their respective slots in (45) and (46) and see if we can
retrieve (27). Doing so for (45) and rearranging
 

�@a�I� �
i

4
���
2
p "ab��fIi f

J
�jG

i �j � LI �LJ� � �fJj f
I
�iG

j�i � LJ �LI��


 �@bHJ� �
i

4
���
2
p "ab��fIih �jJG

i �j � LI �MJ

� fI�i hjJG
�ij � �LIMJ��@b ~HJ�: (47)

The first term cancels out, while for the second we can
use the identities (17) as well as the definition (5) to get
 

�@a�I� �
i

4
���
2
p "ab���fIi f

K
�j G

i �j � LI �LK��KJ

� �fI�i f
K
j G

�ij � �LILK��KJ (48)

 

� i�fIi f
K
�j G

i �j � LI �LK��KJ � i�fI�i f
K
j G

�ij � �LILK��KJ�


 �@b ~HJ�: (49)

Once again, the terms in � cancel out, while, using (20),
the terms in � add up to

 �@a�
I� �

i

4
���
2
p "a

b��i�IK�KJ��@b ~HJ�

�
1

4
���
2
p "ab�IJ�@b ~HJ� �

1

4
���
2
p "ab�@b ~HI�; (50)

which, up to a difference in numerical constants due to
different normalization conventions, is the expression (27)
for (@a�I) found using the five dimensional equations! The
calculation for (@a ~�I) is very similar, and is only different
in the usage of (21) instead of (20) in the appropriate steps,
giving

 �@a ~�I� �
1

4
���
2
p "ab�@bHI�: (51)

Finally, we look at the geometric significance of the
constraints (33)–(36). It is clear that in the far field limit,
(33) and (34) vanish identically. Condition (35), on the
other hand, may be understood as follows: From (38), one
sees that g � Hk, where k � det�k~I ~J�. From (35) one then
concludes that k � 1, i.e. constant, which is simply the
statement that k~I ~J is Ricci-flat. For the last condition (36),
we proceed in the following way:

 �~I ~J ~K�@a ��~I ~J ~K� � 12�@a lng� � 12�@a lnH�

� �24�@a��: (52)

Since the dilaton is a real field, then this is the statement
that �~I ~J ~K�@a ��~I ~J ~K� is a real quantity. Then by setting its
imaginary part equal to zero, we may proceed with a bit of
algebra as follows:

 �~I ~J ~K�@a ��~I ~J ~K� � Re�~I ~J ~K�@a Re ��~I ~J ~K�

� Im�~I ~J ~K�@a Im ��~I ~J ~K�

� �24�@a��

� ��
~I ~J ~K�@a�~I ~J ~K� ��~I ~J ~K�@a ��~I ~J ~K�� � �48�@a��:

(53)

Since
 

� ��
~I ~J ~K�@a�~I ~J ~K� ��~I ~J ~K�@a ��~I ~J ~K�� � @a��

~I ~J ~K ��~I ~J ~K�

� 3!�@aj�j
2�; (54)

then

 �@a�� � �
1

8
�@aj�j

2�: (55)

In other words, (36) is simply the statement that the
dilaton field is proportional to the norm of the Calabi-Yau
3-form, which is a constant on M but is not necessarily so
at any point in the transverse space, due to the variation of
the complex structure moduli of M.

V. CONCLUSION

We have explicitly shown that the dimensional reduction
of a M5-brane wrapping special Lagrangian 3-cycles of a
Calabi-Yau manifold deforming the complex structure [10]
excites only the hypermultiplets sector of ungauged five
dimensional N � 2 supergravity. The D � 5 universal
axion a (or its dual 3-form gauge field) vanishes and the
result is a 2-brane coupled to the hypermultiplet fields [8].
This constitutes a proof of this relationship, often quoted in
the literature, as well as further confirmation of both re-
sults. In addition, it provides further confirmation of the
interpretation of [10] as a wrapped brane. This paper may
be thought of as the sequel to an argument presented in [8]
where a, much shorter, calculation has shown that a certain
configuration of M-branes wrapping SLAG cycles of a
Calabi-Yau with constant complex structure moduli excite
only the universal hypermultiplet and result in a special
case of the more general five dimensional 2-brane with full
hypermultiplets discussed therein and here.

Along with [13], our calculation provides more hints to
open questions concerning compactification mechanisms,
what classes of Calabi-Yau metrics are relevant and so on.
Calculations such as these may also help analyze other
brane configurations wrapping SLAG-calibrated cycles, as
well as other supersymmetric cycles in spaces with re-
stricted holonomy. For example, it would be interesting
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to see what lower dimensional results could arise from the
dimensional reduction of M-branes wrapping manifolds
with G2 or spin(7) holonomy. More interesting than the
result perhaps, as often happens, is the manner with which
the result arises. We plan to explore this in future work.
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