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We give an argument for deriving analytically the infrared Abelian dominance in a gauge-invariant way
for the Wilson loop average in SU(2) Yang-Mills theory. In other words, we propose a possible mechanism
for realizing the dynamical Abelian projection in the SU(2) gauge-invariant manner without breaking
color symmetry. This supports validity of the dual superconductivity picture for quark confinement. We
also discuss the stability of the vacuum with magnetic condensation as a by-product of this result.
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I. INTRODUCTION

Quark confinement is still an unsolved and challenging
problem in theoretical particle physics, as is well known.
Though the approach to this problem is not unique, we
have a promising scenario for explaining quark confine-
ment, the so-called dual superconductivity picture [1] for
the vacuum of the non-Abelian gauge theory [2]. This
scenario proposed long ago is intuitively quite appealing.
Indeed, the relevant data supporting the validity of this
picture have been accumulated by numerical simulations
especially since 1990 and some of the theoretical predic-
tions [3,4] have been confirmed by these investigations:
infrared Abelian dominance [5], magnetic monopole domi-
nance [6], and nonvanishing off-diagonal gluon mass [7] in
the maximal Abelian gauge [8], which are the most char-
acteristic features for the dual superconductivity. In spite of
these facts, the theoretical justification is not yet reached to
a satisfactory level. In this paper, we demonstrate analyti-
cally the infrared Abelian dominance in the Wilson loop
average for a large Wilson loop of the SU(2) Yang-Mills
theory [2].

For this purpose, we need to answer how to define and
extract the ‘‘Abelian’’ part V� from the original non-
Abelian gauge field A�, which is responsible for the
area decay law of the Wilson loop average. This must be
done without spoiling gauge invariance. The conventional
Abelian projection [3] looks too naive to realize this re-
quirement. In Secs. II and III, we achieve this goal by using
a non-Abelian Stokes theorem and a nonlinear change of
variables (NLCV).

At the same time, we must answer why the ‘‘remaining’’
part X��X� �A� � V�� in the non-Abelian gauge field
A� decouple in the low-energy (or long-distance) regime.
To answer this question, we argue in Secs. IVand V that the
remaining part X� acquires the mass MX to be decoupled
in the low-energy region. The fundamental mechanism for
the X�-mass generation is that the gauge-invariant com-
posite operator X2

� develops a nonvanishing vacuum ex-
pectation value hX2

�i, in other words, the gauge-invariant

dimension-two condensation takes place, i.e., hX2
�i � 0. In

fact, it was recently proposed in [9–11] that dimension-two
vacuum condensations composed of a gluon field are rele-
vant to the realization of quark confinement and the exis-
tence of mass gap in Yang-Mills theory. We also discuss
some implications of dimension-two condensate hX2

�i for
the low-energy description of Yang-Mills theory.

Moreover, in Sec. V we point out that the existence of
such a condensation stabilizes the vacuum of the Savvidy
type [12] with the magnetic condensation by eliminating a
tachyon mode causing the Nielsen-Olesen instability [13].
This is a by-product of the above result. The stability of the
magnetic vacuum is desirable for the magnetic monopole
dominance. Thus the nonperturbative Yang-Mills vacuum
is characterized by two vacuum condensations, i.e., the
condensation hX2

�i � 0 and the magnetic condensation
hHi � 0, both of which realize the vacuum energy lower
than that of the perturbative vacuum.

II. NON-ABELIAN STOKES THEOREM FOR THE
WILSON LOOP OPERATOR AND INTRODUCTION

OF COLOR FIELD

For the non-Abelian gauge potential, A��x� �
AA

��x�TA, the Wilson loop operator WA�C� for a closed
loop C is defined by

 WA�C� :�N �1 tr
�
P exp

�
ig
I
C
dx�A��x�

��
; (2.1)

where P denotes the path-ordered product and the normal-
ization factor N is equal to the dimension of the repre-
sentation R, to which the probe of the Wilson loop belongs,
i.e., N � dim�1R� � tr�1R�. Then the Wilson loop aver-
age W�C� :� hWA�C�iYM, i.e., the vacuum expectation
value of the Wilson loop operator, is given by the func-
tional integration:
 

W�C� :� hWA�C�iYM � Z�1
YM

Z
DA� exp�iSYM�WA�C�

�

R
DA� exp�iSYM�WA�C�R

DA� exp�iSYM�
; (2.2)

where SYM is the Yang-Mills action. This expression is*Electronic address: kondok@faculty.chiba-u.jp
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rather formal. For this to be a precise definition, we must
specify the gauge-fixing procedure to give a well-defined
functional integration measure DA�, as will be discussed
later.

The Wilson loop operator is rewritten into a surface-
integral form which is called the non-Abelian Stokes theo-
rem (NAST). We adopt in this paper the Diakonov-Petrov
version [14] of NAST1 which does not include the path
ordering along the loop or the surface ordering in sharp
contrast to the other versions [19] of NAST, at the price of
an additional integration over all gauge transformations of
the given non-Abelian background field.

The Diakonov-Petrov NAST is nothing but a path-
integral representation of the Wilson loop operator. This
representation is obtained according to the usual procedure
of obtaining the path-integral representation:
(i) partitioning the closed loop C into N infinitesimal seg-
ments, (ii) inserting the complete set at each partition
point, (iii) taking the limit N ! 1 appropriately. As the
complete set to be inserted, we use the coherent state which
is described by introducing an auxiliary vector field n�x�.
The vector field n�x� is hereafter called color field in
relation to the Yang-Mills theory by the reason to be
clarified later.

In what follows, we use a notation F � G :� FAGA �
2 tr�FG�, F2 :� F � F, and �F�G�A :� �ABCFBGC �
�2i tr�TA�F;G�� with the normalization for the
Hermitian generators TA of the Lie algebra G of the gauge
group G: tr�TATB� � 1

2�
AB. For the gauge group G �

SU�2�, the color field n�x� is the unit vector field with
three components, i.e.,
 

n�x� � �n1�x�; n2�x�; n3�x��;

n�x� � n�x� :� nA�x�nA�x� � 1;
(2.3)

and the path-integral representation reads
 

WA�C� �
Z
d�C�n� exp

�
igJ

I
C
dx�ftr��3UA�Uy�

	 ig�1 tr��3U@�Uy�g
�
; (2.4)

where J � 1
2 ; 1;

3
2 ; 2; � � � is the index, say ‘‘spin,’’ charac-

terizing the representation R, to which the probe of the
Wilson loop belongs, and d�C�n� is the product measure
of the normalized invariant Haar measure d��n�x�� on
SU�2�=U�1� 
 S2 at a spacetime point x:

 d�C�n� :�
Y
x2C

d��n�x��;

d��n�x�� � d3n�x���n�x� � n�x� � 1�:
(2.5)

Here the unit vector field n�x� is defined through an SU(2)
matrix field U�x� by

 n̂�x� :� nA�x��A � Uy�x��3U�x� �A � 1; 2; 3�;

(2.6)

with Pauli matrices �A�A � 1; 2; 3�. Then, by using the
Euler-angle representation

 U�x� � ei��x��3=2ei��x��2=2ei��x��3=2; (2.7)

the color vector field n�x� is expressed by two Euler-angle
fields ��x� and ��x�:

 n �x� � �nA�x��A�1;2;3

� �sin��x� cos��x�; sin��x� sin��x�; cos��x��;

(2.8)

and an explicit form of the Haar measure is given by

 d��n�x�� �
2J	 1

4�
sin��x�d��x�d��x�: (2.9)

Since the argument of the exponential is Abelian, we can
use the ordinary Stokes theorem to rewrite the line integral
to the surface integral:

 WA�C� �
Z
d�S�n� exp

�
ig
J
2

Z
S:@S�C

d2S�	G�	

�
;

(2.10)

where S is an arbitrary surface spanned on the loop C, the
antisymmetric tensor G�	 is the curvature defined by

 G�	�x� � @��n�x� �A	�x�� � @	�n�x� �A��x��

� g�1n�x� � �@�n�x� � @	n�x��; (2.11)

and d�S�n� is the product measure over the surface S:

 d�S�n� :�
Y
x2S

d��n�x��: (2.12)

See e.g., [15,20] for details of the derivation.

III. NONLINEAR CHANGE OF VARIABLES FOR
GLUON FIELDS

Since the loop C can have arbitrary shape and arbitrary
location in spacetime, the surface S spanned by the loop C
may sweep the whole spacetime. In view of this, the color
field n�x�must be introduced over all the spacetime points.
This is easily achieved by inserting the unity,

 1 �
Z

D��n� �
Z

Dn��n � n� 1�

:�
Y
x2RD

Z
�dn�x����n�x� � n�x� � 1�;

(3.1)

into the functional integration. Therefore, we arrive at the
expression:

1We adopt the coherent state representation for a derivation of
the Diakonov-Petrov NAST as given in Sec. III of [15] for SU(2)
and in [16] for SU�N�, N � 3. See also [17] for more informa-
tion. It was claimed that some care must be taken in using this
version of NAST [18].
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W�C� � ~Z�1
YM

Z
D��n�

Z
DA� exp�iSYM� ~WA�C�

�

R
D��n�

R
DA� exp�iSYM� ~WA�C�R

D��n�
R
DA� exp�iSYM�

; (3.2)

where we have introduced the reduced Wilson loop opera-
tor ~WA�C� defined by

 

~WA�C� � exp
�
ig
J
2

Z
S:@S�C

d2S�	G�	

�
; (3.3)

and the new partition function ~ZYM has been defined by
inserting the unity: 1 �

R
D��n� into the original Yang-

Mills partition function:

 

~Z YM �
Z

D��n�
Z

DA� exp�iSYM�A��: (3.4)

At this stage, the color field n�x� is regarded as an auxiliary
field introduced into the Yang-Mills theory in addition to
the gauge field A��x�. We call this modified theory the
master Yang-Mills theory, which is written in terms of
A��x� and n�x�. Thus we regard the vacuum expectation
value of the Wilson loop in Yang-Mills theory as that of the
reduced Wilson loop in the master Yang-Mills theory. The
master Yang-Mills theory has more independent degrees of
freedom than the original Yang-Mills theory. For a while,
we put this issue aside, until we will discuss how to reduce
the master Yang-Mills theory to the original Yang-Mills
theory shortly after introducing the nonlinear change of
variables. See Fig. 1.

We proceed to perform the (nonlinear) change of varia-
bles of the original gauge field A� by making use of the
color field n�x�. This will help us to clarify which variables
are responsible for the area law of the Wilson loop average.
Given a color field n�x�, the Yang-Mills gauge field A��x�
can be cast into the equivalent form:

 A � � �n �A��n	A� � �n �A��n

� �n �A��n	 �n � n�A� � �n �A��n

� �n �A��n	 n� �A� � n�

� �n �A��n� g�1n� @�n

	 g�1n� �@�n	 gA� � n�

� �n �A��n	 g
�1@�n� n	 g

�1n�D��A�n;

(3.5)

where we have used only the relation n�x� � n�x� � 1 in the
second equality and introduced the covariant derivative in
the last step:

 D��A�n�x� :� @�n�x� 	 gA��x� � n�x�: (3.6)

Thus the Yang-Mills gauge field A��x� is decomposed as

 A ��x� � c��x�n�x� 	 g
�1@�n�x� � n�x� 	 X��x�;

(3.7)

where we have used the identification:

 c��x� � n�x� �A��x�;

X��x� � g�1n�x� �D��A�n�x�:
(3.8)

The first term on the right-hand side of (3.7) is denoted by
C��x� :� c��x�n�x� � B��x�, which is parallel to n�x�, and
is called the restricted potential. The second term is de-
noted by B��x� :� g�1@�n�x� � n�x� � B��x�, is perpen-
dicular to n�x�, and is called the magnetic potential. For
later convenience, we define V��x� by V��x� :� C��x� 	
B��x�:

 V ��x� :� c��x�n�x� 	 g�1@�n�x� � n�x�: (3.9)

As a way of specifying the separation of variables:

 A ��x� � V��x� 	 X��x�; (3.10)

the color field n�x� is required to be a covariant constant in
the background field V�x�:

 D��V�n�x� :� @�n�x� 	 gV��x� � n�x� � 0: (3.11)

In fact, solving this equation for V��x� leads to (3.9). On
the other hand, the remaining variable, i.e., the covariant
potential X��x� is required to be perpendicular to n�x�:

 n �x� � X��x� � 0: (3.12)

This decomposition (3.7) was once called the Cho-
Faddeev-Niemi-Shabanov decompositions [21–24] in the

 

I: II:

FIG. 1 (color online). The relationship between the original
Yang-Mills (YM) theory and the master Yang-Mills (M-YM)
theory. The master Yang-Mills theory has a larger (local and
global) gauge group ~G than the original gauge group G of the
original Yang-Mills theory and becomes equivalent to the origi-
nal Yang-Mills theory after a constraint (new MAG) is imposed.
The resulting gauge theory is denoted by M-YM at new MAG
with gauge group G0.
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literatures. It is regarded as a NLCV for the original Yang-
Mills field variables.

For our purposes, it is a remarkable fact that the curva-
ture tensor F �	�V� obtained from the connection V� is
parallel to n and its magnitude G�	 coincides exactly with
the curvature tensor G�	 appearing in the Wilson loop
operator (2.11) by way of the NAST:
 

F �	�V��x� :� @�V	�x� � @	V��x� 	 gV��x� � V	�x�

:� n�x�G�	�x� � G�	�x�;

G�	�x� � @�c	�x� � @	c��x�

� g�1n�x� � �@�n�x� � @	n�x��: (3.13)

Therefore, we have succeeded to separate the original
variables

 �A��x�;n�x�� ! �c��x�;X��x�;n�x��; (3.14)

with the identification (3.8) such that only n�x� and c��x�
in the combined form V� are responsible for the Wilson
loop average and that the remaining variable X��x� is
redundant for calculating the Wilson loop average. In other
words, V� can be identified with the Abelian part of A�,
suggesting the Abelian dominance in the Wilson loop
average. This fact has been already pointed out in the paper
[25]. However, this fact alone is not sufficient to guarantee
the infrared Abelian dominance, since the theory has in-
teractions between n, c�, and X�. In order to confirm the
infrared Abelian dominance, we must show that the vari-
able X��x� is actually irrelevant for calculating the Wilson
loop average. This follows if these degrees of freedom
decouple at least in the low-energy or long-distance region
corresponding to the large Wilson loop. A possible mecha-
nism is discussed in what follows.

The SU(2) Yang-Mills Lagrangian density for the gluon
field A�,

 L YM�A� :� �1
4�F �	�A��

2

� �1
4�@�A� � @	A� 	 gA� �A��

2;

(3.15)

is rewritten in terms of the new variables �n; c�;X�� into
 

~LYM�n; c;X� � �
1
4�G�	 	 gX� � X	�

2

� 1
4�D��V�X	 �D	�V�X��

2; (3.16)

where we have used a fact that G�	 and gX� � X	 are
parallel to n, and this is also the case for the sum G�	 	

gX� � X	, while D��V�X	 �D	�V�X� is orthogonal to
n (which follows from the fact n � X� � 0).

By collecting the terms in X�, the Lagrangian reads

 

~L YM�n; c;X� � �
1
4G

2
�	 �

1
2X

A
�WAB

�	XB	 �
1
4�gX� � X	�

2;

(3.17)

where

 WAB
�	 :� ���	�D
�V�D
�V��

AB 	 2g�ABCnCG�	

	 �D��V�D	�V��
AB: (3.18)

In this derivation, we have used the relation:
�D��V�; D	�V��

AB � �g�ABCGC
�	.

We return to the issue raised above: how to reduce the
master Yang-Mills theory to the original Yang-Mills the-
ory. If we treated the color field n�x� as the fundamental
field in addition to the original gauge field A��x�, the
resulting theory, say, the master Yang-Mills theory, had
more independent degrees of freedom than those in the
original Yang-Mills theory. In other words, the master
Yang-Mills theory had the gauge symmetry ~G :�
SU�2�! � �SU�2�=U�1��� larger than the original gauge
symmetry G � SU�2�!. Here the latter symmetry
�SU�2�=U�1��� is carried by the color field n�x� while the
former SU�2�! by the gauge field A��x�. In order to
obtain the equivalent theory to the original Yang-Mills
theory, we must impose necessary and sufficient numbers
of constraints which eliminate the extra degrees of freedom
and restrict the larger gauge symmetry to the SU(2) gauge
symmetry. A suitable procedure was given in [26] by
giving an explicit form of the constraint, which we called
the new maximal Abelian gauge (nMAG), although this
naming is somewhat misleading. The nMAG is performed
by minimizing the functional

R
dDx 1

2g
2X2

� with respect to
the enlarged gauge transformations:

 0 � �!;�
Z
dDx1

2g
2X2

� � �!;�
Z
dDx�D��A�n�

2:

(3.19)

This determines the color field n�x� as a functional of a
given configuration of A��x�. The local gauge transfor-
mation of X2 is calculated as [26]

 �!;�
1
2X

2
� � g�1�D��A�n� � fD��A��!? � �?� � ng;

(3.20)

and the average over the spacetime of (3.20) reads

 �!;�
Z
dDx1

2X
2
� � �

Z
dDx�!? � �?� �D��V�X�:

(3.21)

Hence, imposing (3.19) for arbitrary !? � �? yields a
constraint in the differential form:

 � :� D��V�X� � 0: (3.22)

This constraint yields two conditions, since n �

D��V�X� � 0. Imposing nMAG to the master Yang-
Mills theory breaks the enlarged ~G :� SU�2�! �
�SU�2�=U�1��� gauge symmetry down to the diagonal
SU(2) gauge symmetry: G0 � SU�2�!0 � SU�2�II, a sub-
group of ~G (! � � :� !0). The respective new variable
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transforms under this gauge transformation, say the local
gauge transformation II as follows [26].

Local gauge transformation II (the active or background
gauge transformation):
 

�0!n�x� � gn�x� �!0�x�; (3.23a)

�0!c��x� � n�x� � @�!
0�x�; (3.23b)

�0!X��x� � gX��x� �!0�x�; (3.23c)

) �0!V��x� � D��V�!
0�x�; (3.23d)

�0!A��x� � D��A�!
0�x�: (3.23e)

Therefore, X2
� is invariant under the local gauge

transformation II:

 �0!X
2
��x� � 0: (3.24)

The gauge transformation for the field strength is calcu-
lated using this result. The curvature G�	 :� F �	�V� is
subject to the adjoint rotation

 �0!G�	�x� � gG�	�x� �!0�x�: (3.25)

Hence, the squared field strength has the SU�2�II invariance

 �0!G�	�x�
2 � 0: (3.26)

The inner product of G�	 with n, i.e., the magnitude of
G�	, is also SU�2�II invariant:

 �0!�n�x� �G�	�x�� � �0!G�	�x� � 0: (3.27)

Thus the Abelian field strength G�	 is invariant under the
SU(2) gauge transformation II, in sharp contrast to the
original field strength F �	 which transforms in the adjoint
representation.

In the functional integral formulation, we must specify
the integration measure for the new variables. We must
take into account the constraints ��n�x� � n�x� � 1� and
��n�x� � X��x�� in the integration measure
Dn�x�Dc��x�DX��x�,
 

d��n�DA��x� �Dn�x���n�x� � n�x� � 1�Dc��x�

�DX��x���n�x� � X��x��: (3.28)

To avoid complications coming from constraints in per-
forming the integration, we rewrite the integration measure
in terms of the independent variables and calculate the
Jacobian associated to this change of variables. For this
purpose, we introduce the orthonormal basis
(n1�x�;n2�x�;n3�x�� � �e1�x�; e2�x�;n�x�), i.e., nj�x� �
nk�x� � �jk, nj�x� � nk�x� � �jk‘n‘�x�, (j, k � 1, 2, 3),
or equivalently

 ea�x� � eb�x� � �ab; n�x� � ea�x� � 0;

n�x� � n�x� � 1; ea�x� � eb�x� � �abn�x�;

n�x� � ea�x� � �abeb�x�; �a; b � 1; 2�:

(3.29)

The gauge transformation II for the basis vector nj�x� is
given by

 

�0!nj�x� � gnj�x� �!0�x� , �0!ea�x� � gea�x� �!0�x�;

�0!n�x� � gn�x� �!0�x�: (3.30)

It is easy to show that the Jacobian is equal to one for the
transformation from the original variables nA, AB

� to the
new variables nA, c�, Xb	 in this basis �e1�x�; e2�x�;n�x��
where (see Appendix A 3 for the derivation):

 

X��x� � Xa��x�ea�x� $ XA��x� � Xa��x�e
A
a �x�

or Xa��x� � X��x� � ea�x� � XA��x�e
A
a �x�

�A � 1; 2; 3; a � 1; 2�; (3.31)

so that the integration measure is written as

 d��n�DA��x� �Dna�x�Dc��x�DXa��x�: (3.32)

Thus, we have given a reformulation of Yang-Mills
theory in term of new variables obtained by using the
nonlinear change of variables. In this reformulated Yang-
Mills theory, the Wilson loop average is given by

 W�C� � ~Z�1
YM

Z
Dna�x�Dc��x�DXa��x� exp�i~SYM�n; c;X�� ~WA�C�

�

R
Dna�x�Dc��x�DXa��x� exp�i~SYM�n; c;X�� ~WA�C�R

Dna�x�Dc��x�DXa��x� exp�i~SYM�n; c;X��
; (3.33)

where we have omitted the gauge-fixing term correspond-
ing to nMAG (regarded as the condition for the partial
gauge fixing from ~G to G0) and associated the Faddeev-
Popov ghost and antighost term, see [27] for details.

By making use of the gauge-invariant Abelian field
strength G�	, we can define the SU(2) gauge-invariant
monopole current by

 k��x� :� @
	G�	�x� � �1=2���	
�@	G
��x�: (3.34)

Then the magnetic charge is defined by the volume integral
of k0:

 qm :�
Z
V
d3xk0: (3.35)
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This is cast into the surface integral over the closed surface
S as the boundary of the volume V, S � @V:

 qm �
I
S
d2S
‘G

0‘ �
I
S
d2S‘

1
2�
‘jkGjk �

I
S
d�jkGjk:

(3.36)

It is easy to show that the gauge-invariant magnetic charge
qm defined in this manner satisfies a charge quantization
condition of the Dirac type:

 qm �
4�
g
n �n � 0;�1;�2; � � ��: (3.37)

Lattice formulations based on new variables of SU(2)
Yang-Mills theory were for the first time constructed in
[28,29] so that they reduce in the (naive) continuum limit
to the reformulated SU(2) Yang-Mills theory written in
terms of new variables obtained through NLCV from the
original gauge field [27]. Two lattice formulations, non-
compact [28] and compact [29], enable one to define the
magnetic monopole in the gauge-invariant way keeping
color symmetry in Yang-Mills theory on a lattice without
introducing fundamental scalar fields. This is a remarkable
result, since the conventional approach of defining the
magnetic monopole in Yang-Mills theory without funda-
mental scalar fields heavily relies on a specific choice of
gauge fixing, the so-called maximal Abelian gauge [8].
The MAG breaks the local SU(2) gauge symmetry into
the maximal torus group U(1) and simultaneously SU(2)
color symmetry into U(1). Therefore, only U(1) local and
global gauge symmetry remain if MAG is imposed. In the
noncompact formulation [28], however, the magnetic
charge resulting from the magnetic monopole defined in
this way is not guaranteed to be integer-valued. The com-
pact formulation [29] was constructed so that the magnetic
monopole defined on a lattice by the similar way to (3.36)
is integer-valued and satisfies the quantization condition
(3.37). In fact, these features were directly confirmed by
numerical simulations [29].

IV. DYNAMICAL MASS GENERATION FOR THE
GLUON FIELDS X� THROUGH THE VACUUM
CONDENSATION OF MASS DIMENSION-TWO

hX2
�i

We can introduce the gauge-invariant mass term which
is invariant under the local SU(2) gauge transformation II
as pointed out in [26]:

 L m �
1
2M

2
XX

2
�: (4.1)

This gauge-invariant mass term is rewritten in terms of the
original variables A�:

 L m �
1

2
M2
X�A� � V��

2

�
1

2
M2
X�A� � c�n	 g�1@�n� n�2

�
1

2g2 M
2
X�D��A�n�

2; (4.2)

under the understanding that the color field n is expressed
in terms of the original gauge field A� by solving the
nMAG constraint. Therefore, V� (or c� and n) plays the
similar role to the Stückelberg field to recover the local
gauge symmetry. Note that c�, n, and X� are treated as
independent variables after the nonlinear change of varia-
bles and the mass term is a polynomial in the new variable
X�, although they might be nonlocal and nonlinear com-
posite operators of the original variables A�.

The proposed mass term (4.1) or (4.2) for the gluon
should be compared with the conventional gauge-invariant
mass term of the Kunimasa-Goto type [30]:

 L KG � M2 trf�A� � ig�1U@�Uy�2g

� M2 trf�UD��A�Uy�2g;

U�x� � e�i��x�=v:

(4.3)

This mass term is nonpolynomial in the Stückelberg field
��x�. This fact makes the field theoretical treatment very
difficult.

We proceed to argue that there occurs a novel vacuum
condensation of mass dimension-two for the field X�, i.e.,
h�X2

�i � 0,2 and that the field X� acquires the mass
dynamically through this condensation. A naive way to
see this is to use the mean-field like argument or the
Hartree-Fock approximation which leads to the gauge-
invariant mass term for X� gluons:
 

�1
4�gX� � X	� � �gX

� � X	�

! 1
2g

2XA
��h�X

2

i�

AB � h�XA

X

B

i�X

�B

� 1
2M

2
XX� � X

�;

M2
X �

2
3g

2h�X2

i: (4.4)

Now we make this idea more precise. First, we decom-
pose the field X� into the background field X� and the
quantum fluctuation field ~X� around it, i.e., X� � X� 	
~X�. Then, we expand the Yang-Mills action for the
Lagrangian density (3.17) in ~X� around X�. The fact
that the classical background field X� satisfies the equation

of motion, �~SYM�n;c;X�
�XA�

jX�X � 0, yields up to quadratic in
~X�:

2We adopt the Minkowski metric g�	 � diag�1;�1;�1;�1�.
After the Wick rotation to the Euclidean region, the Minkowski
metric tensor g�	 is replaced by ���	�diag��1;�1;�1;�1�.
Therefore, we have �X2

� ! �X
E
��

2 > 0.
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~S YM�n; c;X� � ~SYM�n; c;X� �
1
2

~XA� ~XB	K
AB
�	 	O�~X3�;

(4.5)

where the quartic self-interaction term generates additional
quadratic terms in X�:
 

KAB
�	 :� �

�2 ~SYM�n; c;X�

�XA��X
B
	

��������X�X

�
1

2
�WAB

�	 	WBA
	�� 	 g2�g�	�AB�X
�

2 � g�	XA
XB


� �ABXC�XC	 	 2XA�XB	 � XB�XA	 �jX�X; (4.6)

with3 WAB
�	 defined by (3.18). Hereafter, we neglect the

quantum fluctuation parts of the other fields n�x� and
c��x� by identifying them entirely with low-energy slowly
varying modes: n�x� � n�x� and c��x� � c��x�. This ap-
proximation will be improved by including also the high-
energy modes for n�x� and c��x� in a subsequent paper
[31], although such an analysis has been tried in a some-
what different context in [32].

By expanding the field X��x� in the basis (e1�x�; e2�x�)
which is perpendicular to n�x�,

 

~X ��x� � ~Xa��x�ea�x�; or ~XA��x� � ~Xa��x�eAa �x�

�A � 1; 2; 3:a � 1; 2�;
(4.7)

the quadratic form is rewritten in terms of the independent
fields Xa��a � 1; 2�:

 

1
2

~XA�KAB
�	

~XB	 �
1
2

~Xa�Kab
�	

~Xb	; Kab
�	 :� eAaeBbK

AB
�	: (4.8)

Including the additional parts coming from quartic self-
interactions among X� gluons is equivalent to modify the
two-point gluon Green function (full gluon propagator)
Dab

�	 by taking into account the tadpole contribution
�ab
�	 of the background field:

 Kab
�	 � �D

ab
�	�
�1 � �Dab

�	�
�1 	�ab

�	; (4.9)

 �Dab
�	�
�1 � Qab

�	; �ab
�	 � Vabcd�	
�Xc
Xd�; (4.10)

where the X�-independent part Qab
�	�x� is defined by4

 

Qab
�	�x� :� 1

2�W
AB
�	�x� 	WBA

	��x��eAa �x�eBb �x�

� g�	R
ab�x� 	 2gG�	�x��

ab;

Rab�x� :� �ab��@2 	 g2G
�x�
2�

	 g�ab�@
G

�x� 	 2G
�x�@
�; (4.11)

and Vabcd�	�� is the four-point vertex for off-diagonal gluons
[33]

 Vabcd�	
� � g2��ab�cdI�	;
� 	 �
ac�bdI�
;	�

	 �ad�bcI��;	
�;

I�	;
� :� �g�
g	� � g��g	
�=2:

(4.12)

In deriving (4.11), we have used (3.29) to obtain

 D��V�ea�x� � gG��x��abeb�x�; (4.13)

whereG� is the SU(2) gauge-invariant Abelian gauge field
defined by

 G��x� � c��x� 	 h��x�;

h��x� � g�1@�e1�x� � e2�x� � �g�1@�e2�x� � e1�x�:

(4.14)

These relations are shown to hold in Appendix A 1.
Equation (4.10) is nothing but the Schwinger-Dyson equa-
tion for the full gluon propagator in this approximation.
This is a gap equation similar to that of the four-fermion
model of the Nambu-Jona-Lasinio type where the fermion
mass is dynamically generated in a self-consistent way.

Suppose that neither color symmetry nor Lorentz sym-
metry are spontaneously broken. Then we cannot orient the
component Xa� to a specific direction and the vacuum
condensate is to be caused isotopically in color and
Lorentz indices:

 �ab
�	 � Vabcd�	
�hX

c

X

d
�i � Vabcd�	
�

1
8�

cdg
�hX
e

X

e

i

� 3
8g

2g�	�abhX2

i: (4.15)

Thus, we conclude that the existence of the vacuum con-
densation h�X2


i generates the mass term for the gluon
field ~X�:
 

�1
2

~Xa�K
ab
�	

~Xb	 � �
1
2

~Xa�Q
ab
�	

~Xb	 	
1
2M

2
X

~X� � ~X�;

M2
X :� 3

8g
2h�X2


i; (4.16)

where X2
� � XA�X

A
� � Xa�X

a
�. Then the X� gluon modes

decouple in the low-energy (or long-distance) region below
the mass scale MX. Consequently, the infrared Abelian
dominance for the large Wilson loop average follows
immediately from the fact that the Wilson loop operator
is written in terms of V� alone.

The numerical simulations on a lattice [29] have dem-
onstrated the infrared Abelian dominance and magnetic

3KAB
�	 should be always understood in the quadratic form,

1
2

~XA� ~XB	K
AB
�	. Therefore, 1

2 �W
AB
�	 	W

BA
	�� is equal to WAB

�	 under
this understanding.

4In defining Qab
�	, we have dropped the last term

�D��V�D	�V��
AB coming from WAB

�	 . If we introduce a gauge-
fixing parameter � for nMAG, we have the gauge-fixing term of
the form:

R
dDx 1

2� �D
	�V�X	�

2 � �
R
dDx 1

2�X
A
��

�D��V�D	�V��ABXB
	 which cancels the contribution

1
2 X

A
��D��V�D	�V��ABXB

	 for � � 1. Or, such a contribution
vanishes by taking into account the nMAG condition
D	�V�X	 � 0, which corresponds to � � 0. Therefore, the
following calculations should be understood to be performed
exclusively in these cases. Moreover, it is worth remarking that
the exact satisfaction of nMAG condition (3.19) is realized only
in the case � � 0.
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monopole dominance in the string tension within our com-
pact lattice formulation, although such phenomena were
found for the first time in the MAG [5,6]. In fact, the string
tension calculated from the magnetic part of the Wilson
loop average according to (3.3), (3.4), and (3.33) in this
formulation reproduces 90%� 95% of the full string ten-
sion calculated from the original Wilson loop average in
the conventional lattice formulation. More numerical
simulations [34] have shown that the remaining field X�

defined on a lattice acquires the mass MX 
 1:2 GeV
which is obtained as the exponential decay rate of the
two-point correlation function hX��x� � X��y�iYM mea-
sured on a lattice: hX��x� � X��y�iYM � jx� yj

���

exp��MXjx� yj�. This value agrees with that of the off-
diagonal gluon mass in the MAG [7]. On the other hand,
the same analysis applied to the Abelian gluon V� leads to
the result MV 
 0:6 GeV. This is consistent with the
Abelian dominance.

V. EFFECTIVE POTENTIAL AND THE VACUUM
CONDENSATION

In order to study which type of the vacuum is realized in
Yang-Mills theory, we need to calculate the effective po-
tential. In particular, we pay attention to see whether such a
dimension-two vacuum condensation occurs or not. First,
we integrate out the fluctuation field ~X� in the functional
integration. This is easily done for Xa� field with a trivial
Jacobian for the change of variables:

 

Z
D ~Xa� exp

�
�i

1

2
~Xa�Kab

�	
~Xb	

�
� �detKab

�	�
�1=2

� exp
�
�i

1

2i
lndetKab

�	

�
: (5.1)

Therefore, we are to calculate the effective potential

 V�X2; G� �
1

4
G2
�	 	

g2

4
�X� � X	�

2 	
1

2i
tr lnKab

�	

�
1

i
tr lnRab; (5.2)

where the quartic term in X� is decomposed into two
gauge-invariant pieces:
 

g2

4
�X� � X	� � �X

� � X	� �
g2

4
�X� � X

��2

�
g2

4
�X� � X	�

2: (5.3)

Hereafter the underline for X� will be omitted for simpli-
fying the notation. The final term in (5.2) comes from the
integration over the ghost and antighost fields which are
necessary to implement the nMAG correctly according to
the Becchi-Rouet-Stora-Tyutin (BRST) method, see [27]
for details. It should be remarked that this effective poten-
tial is SU(2) gauge invariant, since the Abelian gauge field

G� is SU(2) gauge invariant as well as the Abelian field
strength G�	, see Appendix A 2. This is an advantage of
our formulation, contrary to the conventional approach.

For our purposes, we examine the effective potential as a
function of two vacuum condensates X2

� and G�	:

 V�X2; G� �
1

4
G2
�	 	

g2

4
�X2�2 	

1

2i
tr lnKab

�	 �
1

i
tr lnRab;

(5.4)

where Kab
�	 is shifted from Qab

�	 defined in (4.11) as

 Kab
�	 � Qab

�	 	
3
8g

2X2g�	�
ab: (5.5)

In calculating the effective potential, G�	 and X2 are
assumed to be constants uniform in space and time.

In the limit of vanishing Abelian condensationG�	 � 0,
the effective potential V�X2; 0� is written in the closed
form:
 

V��; 0� �
16

9

1

g2 �
2 	

2

�4��2
�2

�
ln
�

�2 �
3

2

�
;

� :�
3

8
g2X2:

(5.6)

This is calculated as follows. The dimensional regulari-
zation yields
 

lndetf��@2 	��g � tr lnf��@2 	��g

� �
���D=2�

�4��D=2
�D=2

� �
���2	 ��

�4��2��
�2��

� �
1

2

�2

�4��2

�
��1 	 ln4�� �E

� ln
�

�2 	
3

2
	O���

�
; (5.7)

where � :� �4�D�=2 and �E is the Euler constant. Then
we obtain
 

V��; 0� �
16

9

1

g2 �
2 �

2�2

�4��2

�
��1 	 ln4�� �E

� ln
�

�2 	
3

2
	O���

�
: (5.8)

We introduce renormalization constants for � and g as

 � � Z1=2
� �R; g � ZggR: (5.9)

Then the effective potential reads
 

V��; 0� �
16

9

1

g2
R

�2
RZ
�2
g Z� �

2�2
RZ�
�4��2

�
��1 	 ln4�

� �E � ln
�RZ

1=2
�

�2 	
3

2

�
: (5.10)
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From the observation,

 

1

g2 �
2 �

1

g2
R

�2
RZ
�2
g Z� �

1

g2
R

�2
R �

1

g2
R

�2
R�1� Z

�2
g Z��; (5.11)

and
 

�2
RZ�
�4��2

�
��1 	 ln4�� �E � ln

�RZ
1=2
�

�2 	
3

2

�
�

�2
R

�4��2

�
��1 	 ln4�� �E � ln

�RZ
1=2
�

�2 	
3

2

�

	
�2
R

�4��2
�Z� � 1�

�
��1 	 ln4�� �E � ln

�RZ
1=2
�

�2 	
3

2

�

�
�2
R

�4��2

�
� ln

�R

M2 	
3

2

�
	

�2
R

�4��2

�
��1 	 ln4�� �E � ln

M2

�2

�

	
�2
R

�4��2

�
�Z� � 1�

�
��1 	 ln4�� �E � ln

�RZ
1=2
�

�2 	
3

2

�
� lnZ1=2

�

�
;

(5.12)

these renormalization constants are chosen so that the
counterterm 1

g2
R
�2
R�1� Z

�2
g Z�� cancels the divergence in

the bare effective potential, namely, to the lowest order of
the coupling g2

R,
 

16

9

1

g2
R

�1� Z�2
g Z�� 	

2

�4��2

�
��1 	 ln4�� �E � ln

M2

�2

�

� 0; (5.13)

where we have used Z�, Zg � 1	O�g2�. Thus we obtain
the renormalized effective potential:

 VR��R; 0� �
16

9

1

g2
R

�2
R 	

2

�4��2
�2
R

�
ln
�R

M2 �
3

2

�
; (5.14)

which satisfies the renormalization condition: V00��R �
M2; 0� � �32=9�=g2: Indeed, the potential V��R; 0� has a
minimum at �R � �0

R � 0 away from the origin:

 �0
R � M2e1=2 exp

�
�

�4��2

�9=8�g2
R�M�

�
; (5.15)

see Fig. 2. This result shows that X2
� condensates indeed. In

order to establish this condensation, this one-loop result
should be improved.

Operating the differential operator � @
@� to (5.13) and

defining the �-function ��gR� and the anomalous dimen-
sion ���gR� as functions of gR by

 ��gR� � �
@gR
@�
� �gR�

@ lnZg
@�

;

���gR� �
1

2
�
@ lnZ�
@�

� ��
@ ln�R

@�
;

(5.16)

we obtain a relationship between ��gR� and ���gR� up to
O�g3�:

 ��gR� 	 gR���gR� �
9
8

�4��2
g3
R: (5.17)

This is consistent with the asymptotic freedom [35],
��gR� � �

b0

�4��2
g3
R with b0 �

22
3 , provided that

 ���gR� � g�1
R

� 9
8

�4��2
g3
R � ��gR�

�
�

9
8	 b0

�4��2
g2
R: (5.18)

In other words, the renormalized effective potential satis-
fies the renormlization group equation:

 

�
M

@
@M
	 ��gR�

@
@gR
� ���gR��R

@
@�R

�
VR��R� � 0:

(5.19)

Calculating the anomalous dimension �� in consistency
with this relation will be given elsewhere [31].

This result should be compared with the effective po-
tential V��� calculated in [36] for the gluon-ghost mixed
composite operator of mass dimension two, 1

2A
a
�A

a
� 	

i� �CaCa, which is shown [10] to be on-shell BRST and
anti-BRST invariant in the modified MA gauge [20].
However, the vacuum energy E � V��0� reached at the

 

0.5 1 1.5 2

-0.002

0.002

0.004

0.006

FIG. 2. The effective potential V��; 0� where M � 1 and g �
10.
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minimum depended strongly on the gauge-fixing parame-
ter � of the MA gauge. This indicates that the vacuum
realized at �0 does not correspond to the true vacuum. Our
effective potential V��;G� is guaranteed to be gauge in-
variant by construction. Therefore, we can choose any
value of gauge-fixing parameter for nMAG. In particular,
the choice � � 1 simplifies the calculations so that the
final term in Wab

�	 cancels with a gauge-fixing term of
nMAG. This choice is also preferred from a fact that the
mixed composite operator for � � 1 reduces to the gauge-
invariant part of the gluon composite operator 1

2A
a
�Aa�, as

demonstrated in [11]. The choice � � 0 is the best for
realizing the nMAG condition exactly. The true vacuum
should be obtained at which the potential V��;G� takes the
minimum. Thus the total effective potential could be gauge
parameter independent, if the contribution from the
Abelian part is included, even in the MA gauge.

In the lattice formulation, the effective potentials for
various composite operators of mass dimension two [9–
11] were calculated numerically on a lattice [37]. The
result shows that the numerically obtained effective poten-
tial for X2

� has a minimum away from the origin, suggest-
ing the existence of nonvanishing vacuum condensates
hX2

�i � 0. However, it should be remarked that they are
unrenormalized quantities. We need to perform the non-
perturbative renormalization to obtain the definite result
for the existence of such a dimension-two condensate.
Therefore, it is not yet confirmed whether they survive in
the continuum limit.

VI. STABILITY OF THE MAGNETIC
CONDENSATION

Finally, we examine the contribution from the Abelian
part G�	 � �E;H�. We distinguish two cases:
(I) E �H � 0, (II) E �H � 0, characterized by two
Lorentz invariants defined by

 F :� �E2 �H2�=2 � �1
2G�	G

�	 � �a2 � b2�=2;

(6.1)

 G :� E �H � �1
4G�	


G�	 � ab; (6.2)

where a �
������������������������������������������������������
F 2 	 G2

p
	F

q
and b �

������������������������������������������������������
F 2 	G2

p
�F

q
:

(I) If E �H � 0, i.e., G � 0, it is possible to transform
to a Lorentz frame in which E and H are parallel or
antiparallel depending on the signature ofE �H. We
can choose the z axis as the direction of the vector
without loss of generality: E � �0; 0; E� and H �
�0; 0; H�. The self-dual (or anti-self-dual) case is a
special case of (I):G�	 �


G�	 (orG�	 � �

G�	),

i.e., E � �0; 0; E� � H � �0; 0; H� (or E �
�0; 0; E� � �H � �0; 0;�H�).

(II) If E �H � 0, i.e., G � 0 in a Lorentz frame, a � 0
or b � 0; E and H are also perpendicular in any
other Lorentz frame, since E �H is a Lorentz invari-

ant. If E2 >H2, i.e., F > 0, then the situation is as
for the purely electric field with a vacuum instability,
as is well known in QED. On the other hand, ifH2 >
E2, i.e., F < 0, then the system behaves like the case
of a purely magnetic field. IfE2 � H2, then we have
a trivial case F � 0.

The trace of the logarithm of a matrix is calculated, once
all the eigenvalues of the matrix are known. In the pure
magnetic case of (I), we can obtain the closed form of the
effective potential, since the eigenvalues for Rab and ~Qab

�	

are exactly obtained to be capable of summing up all the
contributions coming from all the eigenvalues. By using
the same method as in [38–40], we obtain
 

V��;H� �
1

4g2 �gH�
2 	

16

9

1

g2 �
2 �

1

�4��2
1

4
�gH�2

�

�
8
�
�
�
�1;

3	 r
2

�
	 �

�
�1;
�1	 r

2

�

	 �
�
�1;

1	 r
2

�
� �

�
�1;

1

2

���
ln
gH

�2 	 c
�

	 8
�
� 0
�
�1;

3	 r
2

�
	 � 0

�
�1;
�1	 r

2

�

	 � 0
�
�1;

1	 r
2

�
� � 0

�
�1;

1

2

���
;

r :�
�
gH

; (6.3)

where c :� �1	 �E 	 ln2 with a Euler constant �E �
0:5772 � � � , and ��s; z� is called the generalized zeta func-
tion or Hurwitz � function defined by
 

��s; z� :�
X1
n�0

�n	 z��s; <�s�> 1;

z � 0;�1;�2; � � � :

(6.4)

The generalized zeta function has an integral representa-
tion:
 

��s; z� �
1

��z�

Z 1
0
dt
e�ztts�1

1� e�t
; <�s�> 1;

<�z�> 0;

(6.5)

and its prime denotes the differentiation with respect to the
first variable: � 0�s; z� :� d

ds ��s; z�. The zeta function is a
special case of z � 0 of the generalized zeta function:
��s� � ��s; 0�. The generalized zeta function can be ana-
lytically continued in the complex s plane to define an
analytic function with a single simple pole at s � 1.

In the limit r! 0, i.e., neglecting the effect of vacuum
condensation for off-diagonal gluons X, we recover the
Nielsen-Olesen result [13]:

 V�0; H� �
1

4
H2 	

1

�4��2
1

4
g2H2

�
22

3

�
ln
gH

�2 	 c
0 	 4�i

��
;

(6.6)
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where c0 :�c	24
11�
0��1;32���1	�E	 ln2	24

11�
0��1;32��

�0:94556��� with � 0��1; 3
2� � �0:817 409 � � � . Here we

have used

 �
�
�1;

3

2

�
� �

11

24
� �

�
�1;�

1

2

�
; (6.7)

 8
�
�
�
�1;

3

2

�
	 �

�
�1;
�1

2

��
� �

22

3
; (6.8)

 

8
�
� 0
�
�1;

3

2

�
	 � 0

�
�1;
�1

2

��
� 8

�
2� 0

�
�1;

3

2

�
� i

�
2

�

� 16� 0
�
�1;

3

2

�
� i4�: (6.9)

This potential V�0; H� exhibits the instability due to the
nonvanishing pure imaginary part, i

4�
11
3 g

2H2. This is the
so-called Nielsen-Olesen instability [13] to the magnetic
vacuum of the Savvidy type [12].

The Nielsen-Olesen instability survives as long as r < 1.
If r � 1, however, the pure imaginary part vanishes and the
effective potential V��;H� becomes a real number. This is
because the four terms in front of lngH=�2 can be sim-
plified by using

 ���1; z� � �1
2�z

2 � z	 1
6�; (6.10)

as 8����1; 3	r
2 � 	 ���1;�1	r

2 � 	 ���1; 1	r
2 � � ���1; 12�� �

� 22	9r2

3 and the primed zeta function � 0��1; z� is real for
z � 0. The last statement is checked by using the identity
[41]:

 � 0��1; z� � � 0��1� �
z
2

ln�2�� �
z
2
�1� z�

	
Z z

0
dx ln��x�; (6.11)

following from an integration of Binet’s integral represen-
tation [42,43] of ln��x� and the Taylor expansion
[42,44,45] of ln��x�

 ln��x� � � lnx� �x	
X1
n�2

��1�n

n
��n�xn; (6.12)

where � 0��1� � � 0��1; 0� � �0:1654 � � � .
The absolute minimum for V��;H� exists in the region

r > 1, and the value of r is determined as the point at which
the potential takes the minimum. See the plot of V��;H� in
Fig. 3. Thus, the existence of dimension-two condensate
hX2i � 0 guarantees as a by-product the stability of the
magnetic condensation hHi � 0 of the Savvidy type. In
other words, the existence of dimension-two condensate
hX2i � 0 shifts the gluon spectrum upward and eliminates
the tachyonic mode causing the Nielsen-Olesen instability
to recover the stability of the vacuum with magnetic
condensation.

VII. CONCLUSION AND DISCUSSION

In this paper, we have separated the original SU(2) gluon
field variables A� into V� and X� so that the variables V�

are responsible for quark confinement and the remaining
variables X� could decouple in the low-energy region. The
former comes from a fact that a version of the non-Abelian
Stokes theorem enables us to rewrite the non-Abelian
Wilson loop operator entirely in terms of the SU(2) invari-
ant Abelian field strength G�	 defined from the variable
V�. For the latter, we have argued that the gluon X�

acquires the gauge-invariant mass dynamically through
the nonvanishing vacuum condensation of mass dimension
two hX2

�i � 0.
We have given a first analytical calculation of the effec-

tive potential of the composite gluon operator of mass
dimension two X2

� demonstrating the occurrence of the
condensation as realized at the minimum located away
from the origin. See [37] for numerical simulations for
the effective potential on a lattice. Note that the composite
operator X2

� is gauge invariant and the resulting mass term
for X� can be induced keeping the original SU(2) gauge
invariance intact, contrary to the conventional wisdom.

 

0.05 0.1 0.15 0.2

0.0001

0.0002

0.0003

r =1.0

0.02 0.04 0.06 0.08 0.1 0.12 0.14

-0.004

-0.002

0.002

0.004

0.006

r =10.0

FIG. 3. The effective potential V��;H� vs gH with a fixed value of r :� �=�gH�. (Left panel) r � 1:0, 1.5, 2.0, 3.0, 4.0, 5.0 from
right to left. (Right panel) r � 10:0, 20.0.
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Consequently, the decoupling of these degrees of freedom
is characterized as a gauge-invariant low-energy phenome-
non. In other words, this is a dynamical Abelian projection,
suggesting the validity of the dual superconductor picture
for quark confinement. Thus the infrared Abelian domi-
nance immediately follows in the gauge-invariant manner

A next issue to be investigated is to derive analytically
the area law for the Wilson loop average rewritten in term
of new variables V�, since the area law with a string
tension reproducing the full string tension was already
shown numerically on a lattice [29], confirming the infra-
red Abelian dominance in the numerical way. The mag-
netic monopole is defined through V��x� namely c��x� and
n�x� in the gauge-invariant way even in the Yang-Mills
theory without introducing any scalar field as a fundamen-
tal field, just as the ’tHooft and Polyakov monopole in the
Georgi-Glashow model. Therefore, the monopole domi-
nance in the string tension can be in principle investigated,
as confirmed by numerical simulations on a lattice [29].

Moreover, the existence of a dimension-two condensate
eliminates a tachyon mode causing the Nielsen-Olesen
instability of the vacuum with magnetic condensation.
Therefore, the restoration of the vacuum with magnetic
condensation is obtained as a by-product of the above
result. Furthermore, the existence of this condensate en-
ables us to derive the Faddeev model describing glueballs
as knot solitons as a low-energy effective theory of the
Yang-Mills theory, as already pointed out in [38,46]. These
are advantages of our reformulation of the Yang-Mills
theory based on the nonlinear change of variables.
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APPENDIX: NEW VARIABLES IN THE
ORTHONORMAL BASIS �e1; e2; n�

1. Covariant derivative in the orthonormal basis

For V� � c�n	 g�1@�n� n, we have
 

V� � e1 � c�n� e1 	 g
�1�@�n� n� � e1

� c�e2 	 g
�1��@�n � e1�n� @�n�n � e1��

� c�e2 	 g
�1�@�n � e1�n: (A1)

Then the covariant derivative of e1 in the background V�

reads
 D��V�e1 :� @�e1 	 gV� � e1

� @�e1 	 gc�e2 	 �@�n � e1�n

� gc�e2 	 @�e1 � �n � @�e1�n: (A2)

Now we define f� :� @�e1 � �n � @�e1�n. Then we can
show easily that f� is orthogonal to e1 and n, and hence
f� is proportional to e2. Therefore f� is expressed as
 

f� � �f� � e2�e2 � �e2 � @�e1�e2 �: gh�e2;

h� � g�1�e2 � @�e1�:
(A3)

Thus we obtain
 

D��V�e1 � gc�e2 	 gh�e2 � gG�e2;

G� � c� 	 h�:
(A4)

In the similar way to the above, we can show that
 D��V�e2 � �gG�e1: (A5)

If X� is written in terms of the orthonormal frame
�e1; e2;n�,

 X � � X1
�e1 	 X

2
�e2; (A6)

then we obtain

 D
�V�X� � D
�V��X1
�e1 	 X2

�e2�

� X1
�D
�V�e1 	 X

2
�D
�V�e2 	 @
X

1
�e1

	 @
X2
�e2

� X1
�gG
e2 � X

2
�gG
e1 	 @
X

1
�e1

	 @
X2
�e2; (A7)

and

 

�D
�V�D
�V�X� � �X
1
�gG
D
�V�e2 	 X

2
�gG
D
�V�e1 �D
�V��@
X

1
�e1� �D
�V��@
X

2
�e2� � @
�X

1
�gG
�e2

	 @
�X
2
�gG
�e1

� �X1
�gG
D
�V�e2 	 X

2
�gG
D
�V�e1 �D
�V��e1�@
X

1
� �D
�V��e2�@
X

2
� � @
�@
X

1
��e1

� @
�@
X
2
��e2 � @
�X

1
�gG
�e2 	 @
�X

2
�gG
�e1

� g2G
G
X
1
�e1 	 g

2G
G
X
2
�e2 � gG
n2@
X

1
� 	 gG
n1@
X

2
� � @
�@
X

1
��e1

� @
�@
X2
��e2 � @
�X1

�gG
�e2 	 @
�X2
�gG
�e1: (A8)
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Thus we obtain

 

X� � ��D
�V�D
�V��X� � g2G
G
X� � X� 	 ��X
1
�@

2X1
� � X

2
�@

2X2
�� � X

2
�gG
@
X

1
� 	 X

1
�gG
@
X

2
�

� X2
�@
�gG
X

1
�� 	 X

1
�@
�gG
X

2
��

� Xa���@
2�ab 	 g2G
G
�

ab 	 2g�abG
@
 	 g�
ab@
G
�X

b
�

� X	� ��@
2 	 g2G
G
 	 i�2gG
@
 	 g@
G
��X

�
�

	 X�� ��@
2 	 g2G
G
 � i�2gG
@
 	 g@
G
��X

	
�

� X	� ���@
 � igG
�2�X�� 	 X�� ���@
 	 igG
�2�X	� : (A9)

2. New variables and conventional Abelian projection

For the orthonormal basis �e1�x�; e2�x�;n�x��, we have

 X � � X1
�e1 	 X

2
�e2; X1

� � e1 � X�;

X2
� � e2 � X�;

(A10)

 B � � B1
�e1 	 B

2
�e2; B1

� � g�1@�n � e2;

B2
� � �g�1@�n � e1;

(A11)

 h� � g�1@�e1 � e2 � �g�1@�e2 � e1: (A12)

For this basis, two gauge transformations are expressed as
follows.

Gauge transformation I: !�x� � !1�x�e1�x� 	
!2�x�e2�x� 	 ��x�n�x�

 �!c� � @��	 ig�X��!� � X��!��; (A13)

 �!X�� � �@� 	 ig�c� 	 h���!� � igX���; (A14)

 �!h� � 0; (A15)

Gauge transformation II: !0�x� � !01�x�e1�x� 	
!02�x�e2�x� 	 �0�x�n�x�

 �!0c� � @��0 	 ig�B��!0� � B��!0��; (A16)

 �!0X
�
� � 0; (A17)

 �!0h� � ��!0c�; (A18)

where we have defined O� :� 1��
2
p �O1 	 iO2�:

In this basis, the nMAG reduces to the conventional
MAG apparently:

 D��V�X� � 0, @�X
a
� � g�c� 	 h���

abXb� � 0;

(A19)

provided that the Abelian part a� in the conventional
Abelian projection is identified as

 a� $ c� 	 h� :� G�; Aa� $ Xa�; (A20)

since D��V�X	 � e1�@�X1
	 � g�c� 	 h��X2

	� 	

e2�@�X
2
	 	 g�c� 	 h��X

1
	�. It should be remarked that

a� is invariant under the SU(2) gauge transformation II:

 �!0G� � 0: (A21)

This is also the case for Xa�:

 �!0X
a
� � 0: (A22)

This shows that this is different from the naive Abelian
projection.

3. Jacobian for the nonlinear change of variables

The Jacobian is calculated as follows.5 By using the
above bases, the field AA

� is decomposed as
 

A� � c�n	 B� 	 X� � c�n	 �B
a
� 	 X

a
��ea;

AA
� � c�n

A 	 �Ba� 	 X
a
��e

A
a : (A23)

We consider the change of 3D	 2 variables:

 �AA
�; nB� ! �c	; Xa	; nC�

�a � 1; 2;A;B;C � 1; 2; 3;�; 	 � 0; � � � ; D� 1�:

(A24)

Here nB and nC should be understood as denoting two
independent degrees of freedom obtained after solving
the constraint nAnA � 1. However, if we choose specific
components (directions), the color symmetry is apparently
broken. Therefore, we keep this notation in the followings,
keeping this convention in mind.

The Jacobian is the determinant for the �3D	 2� �
�D	 2D	 2� matrix:
 

dAA
�dnB � Jdc	dXa	dnC;

J �

������������
@AA

�

@c	

@AA
�

@Xa	

@AA
�

@nC

@nB
@c	

@nB
@Xa	

@nB

@nC

������������: (A25)

Since c	, Xb	, nC are independent, we have

5The author is indebted to Toru Shinohara for completing this
part of the appendix.
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@nB

@c	
� 0;

@nB

@Xa	
� 0;

@nB

@nC
� �BC: (A26)

Then the Jacobian reduces to the determinant for the 3D�
�D	 2D� matrix:

 J �
��������
@AA

�

@c	

@AA
�

@Xa	

@AA
�

@nC

0 0 1

��������� j @A
A
�

@c	

@AA
�

@Xa	
j: (A27)

Making use of (A23), we have

 

@AA
�

@c	
� ��	nA;

@AA
�

@Xa	
� ��	eAa ; (A28)

and we conclude

 J � j��	nA ��	eAa j � j nA eAa j � jne1e2j

� jn � �e1 � e2�j � 1: (A29)
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