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Chaos in the orbits of black hole pairs has by now been confirmed by several independent groups. While
the chaotic behavior of binary black hole orbits is no longer argued, it remains difficult to quantify the
importance of chaos to the evolutionary dynamics of a pair of comparable mass black holes. None of our
existing approximations are robust enough to offer convincing quantitative conclusions in the most highly
nonlinear regime. It is intriguing to note that, in three different approximations to a black hole pair built of
a spinning black hole and a nonspinning companion, two approximations exhibit chaos and one
approximation does not. The fully relativistic scenario of a spinning test mass around a Schwarzschild
black hole shows chaos, as does the post-Newtonian Lagrangian approximation. However, the approxi-
mately equivalent post-Newtonian Hamiltonian approximation does not show chaos when only one body
spins. It is well known in dynamical systems theory that one system can be regular while an approximately
related system is chaotic, so there is no formal conflict. However, the physical question remains: Is there
chaos for comparable mass binaries when only one object spins? We are unable to answer this question
given the poor convergence of the post-Newtonian approximation to the fully relativistic system. A
resolution awaits better approximations that can be trusted in the highly nonlinear regime.
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I. INTRODUCTION

Isolated black holes are beautifully simple, as are the
orbits of test particles around them. The elegance of the
Kerr metric for a rotating black hole is impressive.
Impressive too is Carter’s [1] characterization of the orbits
of a test particle in the Kerr spacetime. Carter [1] found
enough constants of motion to prove that the geodesics
around a Kerr black hole were perfectly regular; that is to
say, integrable. However, general relativity no longer looks
simple once we begin to consider two black holes. Two
black holes pose a notoriously difficult problem and as yet
have defied all attempts at a solution. Even more, the
dynamics of two spinning black holes shows chaotic epi-
sodes [2–5].

In retrospect, it is no surprise that there is chaos in the
orbits of two spinning black holes. The inner orbits around
a nonspinning Schwarzschild black hole, although abso-
lutely integrable, already provide prime terrain for the
onset of chaos. Most notable is the presence of a hyperbolic
fixed point, better known as an unstable circular orbit, with
which is associated a homoclinic orbit—an orbit that
approaches the circular orbit both in the infinite past and
the infinite future. It is well known that under perturbation
homoclinic orbits can give rise to a homoclinic tangle, an
infinite intersection of the stable and unstable manifolds of
a hyperbolic fixed point. The presence of a spinning com-
panion can give rise to a homoclinic tangle and in the
increasingly complicated set of bound orbits that results
one finds chaos.

Although, in retrospect it is no surprise, the existence of
chaos in the orbits of two spinning black holes has met with
intense resistance. Still, there it is. Chaos was originally
found and confirmed in several different approximations to

the two-body problem [2–8]. Whether or not chaos will
affect future detections from the gravitational wave ob-
servatories is still a cloudy issue but it is fair to say the
experiments will not be very adversely affected and in an
ideal world we might even have the opportunity one day to
witness the onset of chaos.

A fascinating subtlety which deserves a little attention is
the following: In three different approximations to the
same physical system, two exhibit chaos and one does
not. The physical system is one nonspinning black hole
with a spinning companion. The three different approxi-
mations are (1) the extreme-mass-ratio limit of a
Schwarzschild black hole orbited by a spinning companion
(2) the post-Newtonian (PN) Lagrangian formulation of
the two-black hole system with one body spinning, and
(3) the PN Hamiltonian formulation of the two-black hole
system with one body spinning. All three systems are
purely conservative, so radiation reaction is effectively
turned off.

Saying this another way, there is chaos in the full rela-
tivistic system when only one body spins. The chaos is
absent in the PN Hamiltonian approximation to this fully
relativistic system—at least it is absent up to order 3PN
[9–11]. This is a reflection of the PN expansion’s poor
convergence to the full nonlinearities of general relativity.
The chaos appears in an approximation to the approxima-
tion, namely, the PN Lagrangian formulation but at an
order higher than the approximation can be trusted.

There is actually no explicit conflict between these
results. They can all be correct. There can be chaos in
the full system that goes away in an approximation to the
system. The chaos that went away in an approximation can
reappear in a related system. It is well known in dynamical
systems theory that a regular, that is to say nonchaotic,
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system can become chaotic under a small perturbation.
In fact there is a famous theorem that helped identify the
locus of chaos under small perturbations, the Kolmogorov-
Arnol’d-Moser (KAM) theorem [12–14].

A quick sketch of the argument begins with a regular
Hamiltonian system H0 with N coordinates and N conju-
gate momenta. If there are N constants of motion, then the
system is decidedly integrable and not at all chaotic. A
canonical transformation to action-angle coordinates,
��; I�, can be performed so that each of the new conjugate
momenta are set equal to one of the N constants of motion
and the Hamilton equations become

 

_I � 0; _� �
@H
@I
� !�I�: (1)

The angular frequencies only depend on the constant I and
so are also constant. Therefore the motion in each coor-
dinate direction is cyclical and orbits are confined to an
N-dimensional torus. Now the KAM theorem shows that,
under a small perturbation, the motion will remain quasi-
periodic for most initial data and that the remaining orbits
that do not remain quasiperiodic occupy a region of phase
space as small as the perturbation is small. Generally
speaking, these latter orbits correspond to resonant tori
which are destroyed under perturbation and allow for the
onset of chaos. The gist is that one system can be regular
while an approximately related system is chaotic. So, for
instance, the Lagrangian formulation of the PN two-black
hole dynamics can show chaos while the approximately
equivalent Hamiltonian formulation does not. (It should be
emphasized that the Lagrangian and Hamiltonian equa-
tions of motion are related by a gauge transformation
and an approximation.)

The deeper question that emerges is this: If there is
chaos in one formulation of the dynamics but not in an
approximately equivalent formulation, which one is right?
That is, is there chaos for one spinning body or not? The
answer is this: The full relativistic system exhibits chaos
when only one body spins [5]. That should be the final
story. The absence of chaos in the PN Hamiltonian ap-
proximation to the case of one body spinning must be a
consequence of the slow convergence of the PN expansion
to the fully relativistic system. Some of the nonlinearity is
omitted in the approximation. So physically, the fully
relativistic result is the correct result.

However, it was also shown in Ref. [5] that around a
Schwarzschild black hole a spinning test particle will
become chaotic only for unphysically large spins. If the
heavy black hole has mass m1 and the light companion has
mass m2, then the spin of the light companion must be
S2 > 1�M � 1m2

2�m1=m2�, where M � m1 �m2 and
� � �m1m2�=M. This spin is much larger than maximal
given the extreme mass ratio m1=m2 � 1. The physical
question we can worry about now is: Will there be chaos
for comparable mass binaries at a physical value of the

spin, S � m2, when only one object spins? This has yet to
be determined.

For comparable mass systems with physically accessible
spins, the 2PN Hamiltonian dynamics says no, there is no
chaos if only one object spins, while the 2PN Lagrangian
dynamics says yes, there can be chaos even if only one
body spins. Neither is definitive. After all, the 2PN Hamil-
tonian approach says there is no chaos in the extreme mass
ratio case when we know that there is chaos in the fully
relativistic system. On the other hand, the chaos seen in the
2PN Lagrangian system is of higher order than the ap-
proximation can be trusted.

The physical question can only be resolved when the
chaos appears or disappears consistently at the same order
as the approximation is valid. So I do not claim to resolve it
here. Instead, I take a moment in the following section to
give a quick demonstration of the difference between the
Hamiltonian and Lagrangian approaches and to show that
the former is regular and the latter allows chaos when only
one body spins.

II. THE PN HAMILTONIAN FORMULATION

The absence of chaos in the Hamiltonian formulation
was recently argued in Ref. [9] for the dynamics of two
compact objects when only one of the bodies spins. (They
find similarly that there can be no chaos when the binaries
are of equal mass.) To be clear, the dynamics is conserva-
tive, computed to second order in the post-Newtonian
expansion, and spin effects are limited to the spin-orbit
couplings only. In all other situations, there can be chaos—
if both objects spin and are not of equal mass and/or spin-
spin couplings are included. When (i) only one body spins
or (ii) when the binaries are equal mass, the argument
against chaos in the Hamiltonian dynamics is that there
are enough (exactly conserved) constants of motion to
prove that the system is integrable in these two simplified
cases. Even more, the authors were able to find parametric
solutions to the Hamiltonian dynamics if only one body
spins. In accord with their claim, the technique of fractal
basin boundaries used in Refs. [2,3,7] indeed confirms that
there is no chaos in the Hamiltonian formulation when only
one body spins, as will be shown here. We will confirm that
the basin boundaries for this case are smooth and not
fractal and therefore are entirely consistent with regular,
nonchaotic dynamics.

The Hamiltonian is currently available to 3PN order.
However, for comparison with the Lagrangian formulation,
we will only write the Hamiltonian explicitly up to 2PN
order. The reduced 2PN-Hamiltonian in ADM coordinates
is (with r measured in units of M and p measured in units
of �)

 H � HN �H1PN �H2PN (2)

with terms
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 HN �
p2

2
�

1

r
; (3)

 

H1PN �
1

8
�3�� 1��p2�2 �

1

2
��3� ��p2 � ��n 	 p�2


1

r

�
1

2r2 ; (4)

 

H2PN �
1

16
�1� 5�� 5�2��p2�3

�
1

8
��5� 20�� 3�2��p2�2 � 2�2�n 	 p�2p2

� 3�2�n 	 p�4

1

r
�

1

2
��5� 8��p2

� 3��n 	 p�2

1

r2 �
1

4
�1� 3��

1

r3 : (5)

The spin-orbit Hamiltonian is

 HSO �
L 	 Seff

r3 (6)

with the reduced angular momentum L � r� p and

 S eff �

�
2�

3m2

2m1

�
S1 �

�
2�

3m1

2m2

�
S2: (7)

Spin-spin coupling terms are not included. The spins Si are
measured in units of M2. To be clear, Si � Ai�mi=M�

2

with physical values of the amplitude j ~Aij � 1.
The equations of motion are given by

 

_r �
@H
@p

; _p � �
@H
@r

(8)

and the evolution equation for the spins and the angular
momentum can be found from the Poisson brackets:

 

_S 1 � fS1; Hg �
�

2�
3m2

2m1

�
L� S1

r3 (9)

 

_S 2 � fS2; Hg �
�

2�
3m1

2m2

�
L� S2

r3 (10)

 

_L � fL; Hg �
Seff �L

r3 : (11)

A parametric solution for the equations of motion in-
cluding spin-orbit coupling (but not including spin-spin
coupling) has been found for one body spinning [9].
Even without a solution, a count of conserved quantities
shows that motion must lie on a torus. Therefore this one
case is integrable and should show no evidence of chaos.
The fractal basin boundary method [15] confirms that there
is no chaos when only one body spins. Figure 1 shows the
smooth basin between outcomes for such a black hole pair.
The pair is evolved using the 2PN Hamiltonian including
spin-orbit couplings for 40 000 different initial conditions.

The orbits differ in initial pr and initial p�. If the pair
merges, the initial condition is color-coded black. If the
pair executes more than 50 windings, the initial condition
is color-coded white. The boundary between initial ba-
sins—merger and stability—is smooth. There is no evi-
dence of chaos in this slice through phase space nor any of
the others surveyed. Chaos manifests as an extreme sensi-
tivity to initial conditions and a mixing of trajectories. A
smooth boundary shows no such sensitivity or mixing of
orbits; that is, stable orbits remain on one side of the clean
boundary and do not mix with unstable orbits, which
remain on the other side of the smooth boundary.

The exact location and shape of the boundary can de-
pend on the exit criteria, but the criteria cannot turn a
smooth basin into a fractal. For instance, the criteria used
are that merger occurs when the coordinate r � 1 and
stability corresponds to more than 50 windings. It is worth
noting that the basin boundaries remain smooth when the
3PN-Hamiltonian is used as well.

It should be emphasized that, while the presence of
fractal basin boundaries provides an unambiguous signal
of chaos, the absence of fractals at the basin boundary does
not prove the system is integrable. We only show the
smooth basins here to demonstrate consistency between
the two different approaches of Refs. [2,3,7,9]. As no
fractals were found despite many scans of various regions
of phase space, the basin boundaries are consistent with the

 

FIG. 1. Basin boundaries in the 2PN-Hamiltonian system with
spin-orbit couplings. The pair has mass ratio m2=m1 � 1=3. The
heavier black hole is maximally spinning (S1 � m2

1) with an
initial angle with respect to the ẑ-axis of 95� while the lighter
companion is not spinning (S2 � 0). The initial center of mass
separation in ADM coordinates is ri=M � 5. The orbital initial
conditions vary along the x-axis from 0:02 � pr � 0:05 and
along the y-axis from 0:1195 � p� � 0:1200. 200� 200 orbits
are shown. Initial conditions that are color-coded white corre-
spond to stable orbits and those color-coded black correspond to
merging pairs. The basin boundary is clearly smooth and not
fractal. Therefore, there is no evidence of chaos.
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system being integrable, although it does not provide a
proof of integrability.

An orbit drawn from near the smooth basin boundary of
Fig. 1 is shown in Fig. 2. A Poincaré surface of section
could be taken to verify that the motion is confined to a
torus in phase space. However this is not necessary since
even a projection of the full phase space motion onto the
�r; pr� plane lies on a line with the topology of a torus. That
projection is also shown in Fig. 2. As must be the case, both
the collective behavior of orbits and the individual behav-
ior of orbits is regular and not chaotic.

III. THE PN LAGRANGIAN FORMULATION

There is chaos in the approximately equivalent
Lagrangian formulation of the dynamics when only one
body spins—for a very narrow range of parameters [3].
The chaos appears in some sense at higher than second
order in the PN parameters.

The equations of motion in harmonic coordinates
[16,17] do not correspond to a conventional Lagrangian
[18,19] but can be derived from a generalized Lagrangian
that depends on the coordinates, the velocities, as well as a
relative acceleration. In the following, the variables (r, p)
will continue to refer to ADM coordinates and their con-
jugate momenta while harmonic coordinates and their
velocities are denoted �x; v� with v � _x.

The generalized Lagrangian can be expressed in terms of
the ADM Hamiltonian. In Ref. [20], the map between the
ADM coordinates and the harmonic coordinates is given
explicitly. Notice that the derivative on r in the ADM
Lagrangian will generate higher derivative acceleration
( �x) terms when reexpressed in harmonic coordinates:

 L�x; _x; �x� � p�x; _x
 	 _r�x; _x; �x
 �H�r�x; _x
;p�x; _x
�:
(12)

Reference [20] presents the expression for the harmonic
Lagrangian derived from Eq. (12) explicitly. The Euler-
Lagrange equations are

 

d
dt

�
@L
@ _x
�
d
dt
@L
@ �x

�
�
@L
@x

: (13)

For our purposes it is important to recognize that in order to
derive the Lagrangian equations of motion of Refs. [16,17],
wherever the acceleration appears in higher-order terms in
the Euler-Lagrange equation, the lower-order equation of
motion is substituted in its place. This is an essential point.
As a result of this substitution, the Lagrangian formulation
and the Hamiltonian formulation are only approximately
related. Higher-order terms that make them exactly equal
are explicitly discarded to render them only approximately
equal. According to the KAM theorem, while most tori
survive and therefore lead to nonchaotic orbits, there is a
complement set related to the size of the perturbation
between them for which tori are often destroyed leading
to chaos.

Furthermore, it is worth noting that for similar reasons
the ‘‘constants of motion’’ are only approximately con-
served in the Lagrangian system. This is to be contrasted
with the Hamiltonian system for which no such substitu-
tion is required and the equations of motion that result from
Hamilton’s equations exactly conserve the constants of
motion. Therefore there can never be chaos in the ADM-
Hamiltonian formulation when only one body spins but
there can be chaos in the harmonic-Lagrangian equations
when only one body spins. The chaos must be at a higher
order than the order at which the equations are valid since
the constants of motion are only violated at higher orders.
This is consistent with the KAM theorem statement that
tori will only be destroyed for a set of size related to the
size of the perturbation.

Put yet another way, the ADM-Hamiltonian equations of
motion and the harmonic-Lagrangian equations of motion
are equivalent to 2PN order. However, from a dynamical
systems theory perspective, one can take these two sets of
equations and ask if they are identical, which would re-
quire that they are identical to all orders. Since they are not
identical to all orders, they can show different features and
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FIG. 2. Left: An orbit taken from the stable basin of Fig. 1. The initial conditions for the orbit are pr � 0:03 and p� � 0:206 45.
Right: A projection of the phase space motion onto the �r; pr� plane. The topology of the projection confirms that the motion clearly
lies on a torus and therefore is not chaotic.
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they do. The different features must be higher than 2PN
order, and they are. So a numerical integration of the two
sets of equations of motion will show higher order
differences.

The resultant Lagrangian equations of motion in x, v
with spins added are (with x �

����������
x 	 x
p

the harmonic radial
coordinate) [16,17]

 

_x � v (14)

 

�x � aN � a1PN � a2PN � aSO (15)

and

 

aN � �
n
x2 ;

a1PN � �
n
x2

�
�1� 3��v2 � 2�2� ��

1

x
�

3

2
� _x2

�
�

v
x2 2�2� �� _x;

a2PN � �
n
x2

�
3

4
�12� 29��

1

x2 � ��3� 4���v2�2 �
15

8
��1� 3�� _x4

�
3

2
��3� 4��v2 _x2 �

1

2
��12� 4��

v2

x
� �2� 25�� 2�2�

_x2

x

�

�
v
x2

�
�

_x
2

�
��15� 4��v2 � �4� 41�� 8�2�

1

x
� 3��3� 2�� _x2

��
:

(16)

The spin-orbit contribution to the acceleration is

 

aSO �
1

x2

�
6n
�
�n� v� 	

�
2S�

�M
M

�
��

�

�
v�

�
7S� 3

�M
M

�
��

� 3 _x
�

n�
�

3S�
�M
M

�
���

; (17)

with � � M�S2=m2 � S1=m1�, � � �=M, and �M �
m1 �m2. There are also spin-spin terms but they vanish
in the event that one of the black holes is spinless and so are
omitted here in the comparison. Finally, the spins precess
according to

 

_S1 �
�x��v� � S1

x3

�
2�

3m2

2m1

�
;

_S2 �
�x��v� � S2

x3

�
2�

3m1

2m2

�
:

(18)

Equations (14)–(18) constitute the Lagrangian dynamical
system.

Figure 3 shows fractal boundaries at the basins of stabil-
ity and merger in a slice through phase space. The fractal
boundaries prove that there is chaotic scattering in this
region of phase space for the Lagrangian approximation
[21]. Two basins are shown for black holes with a mass
ratiom2=m1 � 1=3. For the basin boundaries shown on the
left of Fig. 3, the heavier black hole is maximally spinning
while the lighter companion has no spin. For the basin
boundaries on the right of the figure, the lighter black hole
is maximally spinning while the heavier black hole has no

spin. In both cases, the boundaries show extreme sensitiv-
ity to initial conditions and a mixing of orbits.

To be clear, this is the same physical system (although it
is not the exact same slice through phase space) as that
shown in Fig. 1 for the Hamiltonian approximation. But
unlike the Hamiltonian approximation, which always had
smooth boundaries, the Lagrangian approximation shows
fractal boundaries. It is also essential to note that these

 

FIG. 3. The pair has mass ratio m2=m1 � 1=3. The initial
center of mass separation in harmonic coordinates is 5M.
Using the notation x � �x�1�; x�2�; x�3��, the orbital initial condi-
tions vary along the x-axis from 0 � _x�1� � 0:035 and along the
y-axis from 0:425 � _x�2� � 0:443 125. 200� 200 orbits are
shown. Initial conditions that are color-coded white correspond
to stable orbits and those color-coded black correspond to
merging pairs. The basin boundary is fractal indicating at least
a thin region of chaos. Left: A reproduction of Fig. 4 from
Ref. [3]. The heavier black hole is maximally spinning (S1 �
m2

1) with an initial angle with respect to the ẑ-axis of 95� while
the lighter companion is not spinning (S2 � 0). Right: The
heavier black hole is not spinning (S1 � 0) while the lighter
object is maximally spinning (S2 � m2

2) with an initial angle
with respect to the ẑ-axis of 95�.
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boundaries are extremely thin. For the slice through phase
space in Fig. 3, 1PN corrections are roughly v2 < 0:2, 2PN
corrections are roughly v4 < 0:04, and so corrections
higher than the order at which the approximation is valid
appear around v6 < 0:008. The sensitivity to initial con-
ditions seen in the boundaries only appears for differences
in initial velocity of  0:005, which indicates that 3PN
corrections are at least this large. The 2PN approximation
is being pushed beyond its limits. Again, this speaks to the
consistency of the two approximations at the 2PN level.
The conclusion can only be that there is chaos in the 2PN
Lagrangian approximation when only one body spins but it
is difficult to draw physical conclusions since it only
appears at such high decimal places.

An orbit drawn from the stable basin of Fig. 3 is shown
in Fig. 4. Also shown is a detail of the projection of the
motion onto the radial �x; _x� plane, where again x �����������

x 	 x
p

. The projection does not lie on a line with the
topology of a torus, indicating that the motion may not
be regular. Now being careful, it might be the case that the
spread off of a torus shown in this detail is an artifact of
projecting the multidimensional coordinate space down to
the radial �x; _x� plane. Consequently, this does not prove
that the motion is lifted off of a torus, it only suggests that it
has diffused off of a torus. It is therefore not proof of chaos,
only a suggestion of chaotic motion. A proper Poincaré
surface of section in a properly defined phase space would
need to be taken to prove the orbit is chaotic. Instead,
however, we confirmed that this orbit does have a positive
Lyapunov exponent [6,7], which proves that this orbit is
indeed chaotic.

Not all of the orbits drawn from the stable basin will be
chaotic. Some will remain on tori in phase space and will
have zero Lyapunov exponent. Those that do show chaos
seem to lie very close to the already thin fractal basin
boundary. This again confirms the expectation that those

tori that are destroyed occupy a very thin region of phase
space corresponding to perturbations to the Hamiltonian
system that are higher than second order.

IV. SUMMARY

In the previous section, it was shown that the same
methods applied to the 2PN-Hamiltonian formulation and
the 2PN-Lagrangian formulation found no chaos in the
former and chaos in the latter. There is no conflict between
these results as the Hamiltonian approach and the
Lagrangian approach are only approximately related.
One of the very underpinnings of the development of chaos
theory is the realization that a regular Hamiltonian system
can become chaotic under small perturbation. The
Lagrangian formulation can be viewed as a small pertur-
bation to the Hamiltonian system and so the emergence of
chaos is permitted—if subtle.

It could be argued that the Hamiltonian approach is more
appealing analytically since the constants of motion are
exactly conserved. This is always an advantage, particu-
larly in numerical studies in which the constants can be
tracked and their constancy continually checked. The deri-
vation of the equations of motion is also cleaner and more
direct. Regardless, we have not resolved the physical ques-
tion: Is there chaos in the orbits of comparable mass
binaries when only one spins? It is highly likely that
when spin-spin terms are included, the Hamiltonian ap-
proximation will also show chaos even for the special case
of one body spinning—although the effect may continue
to appear at orders higher than the approximation can be
trusted. All we can be sure of at this point is that we have
another reflection of the poor convergence of the PN
expansion to the full relativistic system. In our hopes to
provide gravitational wave templates for the gravitational
wave observatories, we are tempted to push these approx-
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imations into regimes where they are not faring well [22].
In an ideal world, we would have an excellent approxima-
tion that remained valid at small separations, near the
innermost stable circular orbit, and in the most highly
nonlinear regime. That we do not have. In the interim, all
we can do is treat the approximations as dynamical systems
and see what emerges. Quite fascinatingly, what has
emerged is two different claims on the chaotic behavior
of comparable mass binaries.

Just to be clear, there is inarguably chaos at physically
accessible values of the spins when both objects spin. This
was shown in the initial papers [2,3,7] and was verified in
the Hamiltonian formulation in Ref. [4]. The authors of
Ref. [4] were able to investigate a wide range of parameters
to conclude that chaos did not appear to have a huge impact
on gravitational waves in the LIGO bandwidth. Similarly,
we have shown that the damping effects of dissipation
when the radiation reaction is included [6–8] can squelch

chaos. One can imagine that these conclusions will remain
more or less intact even at higher order. But we cannot
know for certain. One can also imagine that the chaos will
worsen as our currently poor approximations to the full
relativistic problem improve. My projection is that the
chaos will worsen a bit but will not plague the ground-
based gravitational wave observatories in a detrimental
way. Regardless, chaos will continue to be important pri-
marily at very late stages of inspiral, such as the transition
from inspiral to plunge, and cannot be disregarded in our
theoretical attempts to understand the dynamics of black
hole pairs.
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