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Einstein-Hilbert (EH) action can be separated into a bulk and a surface term, with a specific (‘‘holo-
graphic’’) relationship between the two, so that either can be used to extract information about the other.
The surface term can also be interpreted as the entropy of the horizon in a wide class of spacetimes. Since
EH action is likely to just the first term in the derivative expansion of an effective theory, it is interesting to
ask whether these features continue to hold for more general gravitational actions. We provide a
comprehensive analysis of Lagrangians of the form
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Qa
bcdRabcd, in which Qa

bcd is a
tensor with the symmetries of the curvature tensor, made from metric and curvature tensor and satisfies the
condition rcQa

bcd � 0, and show that they share these features. The Lanczos-Lovelock Lagrangians are a
subset of these in which Qa

bcd is a homogeneous function of the curvature tensor. They are all
holographic, in a specific sense of the term, and—in all these cases—the surface term can be interpreted
as the horizon entropy. The thermodynamics route to gravity, in which the field equations are interpreted
as TdS � dE� pdV, seems to have a greater degree of validity than the field equations of Einstein
gravity itself. The results suggest that the holographic feature of EH action could also serve as a new
symmetry principle in constraining the semiclassical corrections to Einstein gravity. The implications are
discussed.
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I. INTRODUCTION

Holography, in different guises, has been an attractive
and influential concept in high energy physics [1]. This
term is used in different contexts to indicate different
features, with the common thread being the existence of
a relation between the dynamics in (D� 1)-dimensional
space (the ‘‘surface,’’ @V ) and the dynamics in the
D-dimensional space (the ‘‘bulk,’’ V ). In some of the
string theory contexts, ‘‘holography’’ refers to a relation
between two different theories, one living on the surface
and the other on the bulk. In many other contexts (like in
the discussion of holographic bounds on entropy), this term
is used to relate the degrees of freedom of the same theory
in the surface and bulk. In this paper, we adopt the latter
usage and will investigate the existence of relations be-
tween the surface and bulk terms of classical gravitational
action functionals. We will describe some specific features
present in a generic, generally covariant action of gravity,
which could be termed as holography at the classical level.
Our key motivation is the known fact [2] that the Einstein-
Hilbert action can be split into a bulk action and a surface
term with a specific kind of relationship between the two.
(The term holography was previously used in this context.)
In the splitting we destroy the manifest general covariance
of the action; however, the relationship between the bulk
and the surface term and the fact that they add up to
produce a generally covariant action specifies each of

them uniquely. Our aim will be to generalize this feature
to a wider class of gravitational action functionals. We will
review in the next section how this splitting can be
achieved and motivate the relationship between the split
parts from the variational principle. We will further show
how this splitting could be generalized for the case of
Lanczos-Lovelock actions [3]. We obtain a specific func-
tional relationship between the bulk action and the surface
term, which would be a natural generalization of the
Einstein-Hilbert case. This procedure would also specify
the surface term uniquely. Since this is quite in the spirit of
holography, we shall use this term to describe such actions
with the clear understanding that the term is used in a
specific sense.

In the case of the Einstein-Hilbert action with the
Lagrangian LEH�@

2g; @g; g�, the separation into bulk and
surface terms LEH

�������
�g
p

� Lbulk�@g; g� � Lsur�@
2g; @g; g�

is quite obvious because there exists a Lbulk (the usual �2

Lagrangian) which is independent of second derivatives of
the metric. But when we consider more general
Lagrangians, involving higher powers of curvature, say, it
is not possible to affect such a simple separation. In fact, no
Lbulk which is independent of second derivatives of the
metric, will exist for such Lagrangians. What is remark-
able, however, is that there is indeed a natural way of
extending the results [4] obtained for the Einstein-Hilbert
Lagrangian to all Lagrangians of the form

�������
�g
p

L ��������
�g
p

Qa
bcdRabcd in which Qa

bcd is a tensor with the sym-
metries of the curvature tensor, made from metric and
curvature tensor and satisfies the condition rcQa

bcd � 0.
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The Lanczos-Lovelock Lagrangians are a subset of these in
which Qa

bcd is a homogeneous function of the curvature
tensor. They are all holographic, in the sense of the term
defined above, and will be the focus of our attention in this
paper.

The motivation for this analysis is threefold: First, the
Lanczos-Lovelock Lagrangian has an interesting geomet-
rical structure and has been extensively investigated in the
literature [5]. It would be nice to add to this study new
features and new perspectives on previous results. As it
sometimes happens, the study of a general structure sheds
light on the peculiar features of a special case and here, the
study of holographic properties of Lanczos-Lovelock
Lagrangians helps to understand the holography of the
Einstein-Hilbert action.

Second, there is a point of view, shared by many, that the
Einstein-Hilbert action is just the first term in the derivative
expansion in a low energy effective theory. At the present,
we have no general prescription which allows us to restrict
the form of higher order quantum corrections to gravity.
The only known low energy symmetry (under diffeomor-
phism) allows for a wide choice of correction terms. There
is some evidence from string theory that not all these
choices are realized in nature. Any extra symmetry of the
Einstein-Hilbert action (like the action being holographic)
will allow us to restrict higher order correction terms and is
worth investigating.

Third, and probably most interesting, motivation comes
from the relation between gravity and thermodynamics.
The surface term in the Einstein-Hilbert action has a clear
thermodynamic interpretation and will lead to the entropy
of the horizon in a wide class of spacetimes (for a recent
review, see Ref. [6]). The notion of the horizon entropy can
be generalized to an arbitrary, generally covariant
Lagrangian [7] and is often referred to as Wald’s entropy.
In the case of the Einstein-Hilbert action, one could dem-
onstrate that the surface term evaluated at the horizon is
indeed the entropy associated with a very wide class of
spacetimes. The surface term we obtain by splitting the
Lanczos-Lovelock actions also yields the Wald’s entropy
when evaluated at the horizon of spherically symmetric
spacetimes. This result is highly nontrivial in the sense
that, there is no a priori reason that our construction of the
surface term should be related to Wald’s entropy. However,
the fact that it is indeed the Wald entropy, gives credence to
our approach and supports the point of view that signatures
of holographic description of gravity should be present at
the classical level itself. In addition to being an interesting
result by itself, this also allows one to interpret the equa-
tions describing the gravity, including the higher derivative
corrections, in thermodynamic terms [4]. This approach is
in the spirit of what could be called the Sakharov paradigm
[8], in which Einstein’s equations are considered similar to
those describing the equations of elasticity in solid state
physics. (For some of the previous attempts in the same

spirit, see Ref. .) It was known that [10], in the case of
spherically symmetric spacetimes with horizons, standard
Einstein’s equations can be explicitly expressed as TdS �
dE� pdV; recently, this result has been extended to all
Lanczos-Lovelock Lagrangians [11]. This is remarkable
because it makes the thermodynamic paradigm more fun-
damental than a specific set of field equations. Einstein’s
equations will be modified by quantum corrections but
some thermodynamic relation like TdS � dE� pdV
might remain valid to all orders [4,12]. From a practical
point of view this may not seem dramatic since S, E, etc.
will pick up quantum corrections but it certainly has deep
conceptual significance.

The plan of the paper is as follows: Since we will be
dealing with actions which involve second and higher
derivatives of dynamical variables, we shall briefly discuss
some issues related to such actions, in a simple setting, in
Sec. II. Then we will proceed to derive the holographic
relationship in a wide class of actions [Sec. III] after briefly
reviewing the Einstein-Hilbert case. In Sec. IV we will
show that the surface term obtained in our approach cor-
rectly gives the entropy of the horizons, thereby strength-
ening the thermodynamic interpretation. Section V
summarizes the conclusions.

II. WARMUP: TOY MODEL WITH HIGHER
DERIVATIVE ACTION

The Einstein-Hilbert action and Lanczos-Lovelock ac-
tions which we will discuss in the paper contain second
derivatives of dynamical variables but their equations of
motion do not have higher order terms. The purpose of this
section is to demystify this aspect in a simple context and
show how one can construct a large family of Lagrangians
involving second derivatives of dynamical variables but
with the resulting equations still remaining the second
order in time.

Consider a dynamical variable q�t� in point mechanics
described by a Lagrangian Lq�q; _q�. Varying the action
obtained from integrating this Lagrangian in the interval
�t1; t2� and keeping q fixed at the endpoints, gives the
Euler-Lagrange equations for the system �@Lq=@q� �
dp=dt, where we have defined a function p�q; _q� �
�@Lq=@ _q�. (The subscript q on Lq is an indicator of the
variable that is kept fixed at the end points.) The
Lagrangian contains only up to first derivatives of the
dynamical variable and the equations of motion are—in
general—second degree in the time derivative.

When the Lagrangian Lq depends on �q as well, the
theoretical formulation becomes more complicated. For
example, if the equations of motion become higher order,
then more initial conditions are required to pose a well-
defined initial value problem and the corresponding defi-
nition of path integral in quantum theory, using the
Lagrangian, is nontrivial [13]. Interestingly enough, there
exists a wide class of Lagrangians L� �q; _q; q� which depend
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on �q but still lead to equations of motion which are only
second order in time. We will now motivate and analyze
this class which will lead to the holographic actions in field
theory.

To do this, let us consider the following question: We
want to modify the Llagrangian Lq such that the same
equations of motion are obtained when—instead of fixing
q at the end points—we fix some other (given) function
C�q; _q� at the end points. This is easily achieved by mod-
ifying the Lagrangian by adding a term �df�q; _q�=dt
which depends on _q as well. (The minus sign is just for
future convenience.) The new Lagrangian is:

 LC�q; _q; �q� � Lq�q; _q� �
df�q; _q�
dt

: (1)

We want this Lagrangian LC to lead to the same equations
of motion as Lq, when some given function C�q; _q� is held
fixed at the end points. We assume Lq and C are given and
we need to find f. The standard variation gives

 �AC �
Z t2

t1
dt
��
@L
@q

�
�
dp
dt

�
�q�

Z t2

t1
dt
d
dt
��f� p�q�:

(2)

We will now invert the relation C � C�q; _q� to determine
_q � _q�q; C� and express p�q; _q� in terms of �q; C� obtain-

ing the function p � p�q; C�. In the boundary term in
Eq. (2) we treat f as a function of q and C, so that the
variation of the action can be expressed as:
 

�AC �
Z t2

t1
dt
��
@L
@q

�
�
dp
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�
�q

�

�
p�q; C� �

�
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�
C

�
�q
��������
t2

t1

�

�
@f
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�
q
�C

��������
t2

t1

�
Z t2

t1
dt
��
@L
@q

�
�
dp
dt

�
�q

�

�
p�q; C� �

�
@f
@q

�
C

�
�q
��������
t2

t1

(3)

since �C � 0 at the end points by assumption. To obtain
the same Euler-Lagrange equations, the second term
should vanish for any �q. This fixes the form of f to be:

 f�q; C� �
Z
p�q; C�dq� F�C�; (4)

where the integration is with constant C and F is an
arbitrary function.

Thus, given a Lagrangian Lq�q; _q�which leads to certain
equations of motion when q is held fixed, one can construct
a family of Lagrangians LC�q; _q; �q� which will lead to the
same equations of motion when an arbitrary function
C�q; _q� is held fixed at the end points. This family is
remarkable in the sense that LC will be a function of not
only q, _q, but will also involve �q. In spite of the existence
of the �q in the Lagrangian, the equations of motion are still

of second order in q because of the special structure of the
Lagrangian. (The results obtained above have an interpre-
tation in terms of canonical transformations, etc. which we
purposely avoid since we want to stay within the
Lagrangian framework.) So, even though a general
Lagrangian which depends on �q will lead to equations of
higher order, there is a host of Lagrangians with a special
structure which will not.

The analysis extends directly to a multicomponent field
qA�x

a� in a spacetime with coordinates xa where A collec-
tively denotes the tensor indices. Suppose a Lagrangian
Lq�qA; @qA� gives the field equations when the action is
varied keeping qA fixed at the boundary @V of a spacetime
region V . We now want to add to the action a four
divergence @aVa such that the same equations are obtained
when the action is varied keeping some given functions
Ua
A�qA; @qA�na fixed at the boundary where na is the

normal to @V . As before, we will invert the relation Ua
A �

Ua
A�@aqA; qA� to determine @aqA � @aqA�qA;Ui

A� and us-
ing this will express �iA � �@L=@�@iq

A�� � �iA�qA; @aqA�
in terms of qA, Ui

A getting �iA � �iA�qA;U
j
A�. [We are

assuming that there are no constraints in the theory and
such inversions are possible, for the purpose of illustra-
tion.] Then the Lagrangian we are looking for is

 LU�@2qA; @qA; qA� � Lq�qA; @qA� � @aVa�qA; @qA� (5)

with

 Vj�qA;U
b
A� �

Z
�jA�qA;U

b
A�dq

A � Fj�Ub
A�: (6)

So the same classical field theory can be obtained from a
family of Lagrangians involving second derivatives of
dynamical variables, provided some arbitrary function of
the dynamical variables and their normal derivatives are
held fixed at the end points.

When one considers action merely as a tool to obtain the
field equations, the above procedure is acceptable with any
C or Ua

A. But once the dynamical variables in the theory
have been identified, there are two natural boundary con-
ditions which one may impose on the system. The first one
holds q fixed at the end points and the second one keeps the
canonical momenta p fixed at the end points. In the second
case, C � p and Eq. (4) gives f � qp � q�@L=@ _q� (ignor-
ing the integration constant); the corresponding
Lagrangian is:

 Lp � Lq �
d
dt

�
q
@Lq
@ _q

�
: (7)

The Lp will lead to the same equations of motion when
p�q; _q� � �@L=@ _q� is held fixed at the end points as can be
directly verified by explicit variation. In the Hamiltonian
language this is summarized by
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 dA � Lqdt� d�qp� � �Hdt� pdq� d�qp�

� �Hdt� qdp: (8)

Since H treats q, p symmetrically, this is just a trans-
formation from q to p. This result also has a more natural
interpretation in quantum theory: It is easy to show that a
path integral defined with Lp will lead to the transition
amplitude in momentum space G�p2; t2;p1; t1�, just as a
path integral with Lq leads to the transition amplitude in
coordinate space K�q2; t2; q1; t1�. But our interest is in the
existence of higher derivatives of dynamical variables in
the Lagrangian which is not transparent in the Hamiltonian
language and we will continue to use the Lagrangian
picture.

In the case of field theory,Ua
A � �aA is independent of qA

and the integral in Eq. (6) gives Vj � �jAq
A. So the new

Lagrangian is:
 

Lp�@2qA; @qA; qA� � Lq�qA; @qA� � @i

�
qA

� @Lq
@�@iqA�

��

� Lbulk � Lsur: (9)

It is obvious from this structure (which we shall call, for
brevity, the ‘‘d�qp�’’ structure) of the surface term that the
surface and bulk terms in the above action are closely
related and the knowledge of the surface term will put
strong constraints on Lbulk � Lq. The Einstein-Hilbert ac-
tion has precisely this form (except for a dimension de-
pendent proportionality constant which becomes unity in
D � 4!, see Eq. (16) below). This is the key to the holog-
raphy in the action functionals which we will explore later
on.

III. ACTIONS WITH HOLOGRAPHY

We will now describe a class of action functionals which
allow a decomposition in terms of surface and bulk terms
and exhibit a holographic relationship between the two. We
will begin by rapidly summarizing some of the features of
the Einstein-Hilbert action in Sec. III A and then generalize
them for a wider class in Sec. III B.

A. Some features of the Einstein-Hilbert action

In this subsection we will gather together and summarize
several results related to the Einstein-Hilbert action, which
we will need later. We will not bother to give detailed
proofs of these results since we will be providing such
proofs—in a more general context—in the coming sec-
tions. Somewhat longer proofs are presented in the appen-
dix so as not to distract the main discussion.

We begin with the form of the Einstein-Hilbert action for
gravity in D-dimensions, given by

 AEH �
Z
V
dDx

�������
�g
p

LEH �
Z
V
dDx

�������
�g
p

R: (10)

Using the standard text book expressions for the scalar
curvature, one can write the Lagrangian in several equiva-
lent forms, all which will be of interest to us later. The
simplest one is:

 LEH � Qa
bcdRabcd; Qa

bcd � 1
2��

c
ag

bd � �dag
bc�:

(11)

The tensor Qa
bcd is the only fourth rank tensor that can be

constructed from the metric (alone) that has all the sym-
metries of the curvature tensor. In addition it has zero
divergence on all indices, raQabcd � 0, etc. Since the
curvature tensor Rabcd can be expressed entirely in terms
of �ikl and @j�ikl without requiring gab, there is a nice
separation between dependence on the metric (through
Qa

bcd alone) and dependence on connection and its deriva-
tive through Rabcd. This separation is useful in certain
variational calculations when we treat them as indepen-
dent. With gab, �ikl, R

a
bcd (instead of gab and its first and

second derivatives) treated as independent variables, the
vacuum Einstein’s equations take a very simple form:

 

�@ �������
�g
p

LEH

@gab

�
� Rabcd

�@ �������
�g
p

Qa
bcd

@gab

�
� 0: (12)

That is, Einstein’s equations arise through ordinary partial
differentiation of the Lagrangian density with respect to
gab, keeping �ikl and @j�ikl as constant.

If we raise one index of the curvature tensor, the
Einstein-Hilbert Lagrangian can be written in another in-
teresting form as

 LEH � �cdabR
ab
cd ; �cdab �

1
2��

c
a�

d
b � �

d
a�cb�; (13)

where �cdab is the alternating (‘‘determinant’’) tensor. The
importance of this form lies in the fact that it allows the
generalization [3] to a Lagrangian containing a product of,
say, m curvature tensors, which—as we shall see—will
share many properties of the Einstein-Hilbert action.

We will now turn to more nontrivial aspects of the
Einstein-Hilbert action which provide the key motivation
to this work. Since LEH is linear in second derivatives of
the metric, it is clear that

�������
�g
p

LEH can be written as a sum
Lbulk � Lsur where Lbulk is quadratic in the first derivatives
of the metric and Lsur is a total derivative which leads to a
surface term in the action. From Eq. (11) it is easy to obtain
this separation as
 �������
�g
p

LEH � 2@c�
�������
�g
p

Qa
bcd�abd� � 2

�������
�g
p

Qa
bcd�adk�

k
bc

� Lsur � Lbulk (14)

with

 Lbulk � 2
�������
�g
p

Qa
bcd�adk�

k
bc;

Lsur � 2@c�
�������
�g
p

Qa
bcd�abd� � @c�

�������
�g
p

Vc�;
(15)

where the last equality defines theD-component object Vc,
which—of course—is not a vector. (The proof is given in
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the appendix.) Even in this form, the metric dependence is
confined to Qa

bcd. As is well known, one can obtain
Einstein’s equations varying only Lbulk keeping gab fixed
at the boundary.

The first nontrivial result regarding the Einstein-Hilbert
action is a simple relation [6] between Lbulk and Lsur

allowing Lsur to be determined completely by Lbulk. (As
discussed in Sec. I, we call such a relation holographic.)
Using gab and @cgab as the independent variables in Lbulk

one can prove that:

 Lsur � �
1

��D=2� � 1�
@i

�
gab

@Lbulk

@�@igab�

�
: (16)

The ‘‘d�qp�’’ structure of Lsur suggests that LEH is obtained
from Lbulk by a transformation from coordinate space to
momentum space, as has been noticed before in literature
[6]. One of our aims will be to obtain a suitable general-
ization of this result to a wider class of Lagrangians. We
will prove a more general result, viz. Eq. (41) below, of
which Eq. (16) is a special case.

We note, in passing, that there are other ways of stating
the holographic relation. For example, we can write a
relation of the form:

 Lsur � �@p

�
�qr
@Lbulk

@�qpr

�
: (17)

The proof is straightforward but there is one caveat. In
evaluating the partial derivative on the right-hand side we
hold Qa

bcd fixed and treat all components of �kbc as inde-
pendent variables with no symmetry requirements; that is,
we take �@�abc=@�ijk� � �ai �

j
b�

k
c to obtain:

 �qr
@Lbulk

@�qpr
� �qr �2

�������
�g
p

�Qa
prd�adq �Qq

uvp�ruv��

� 2
�������
�g
p

�Qa
prd�adr �Qr

uvp�ruv�: (18)

Obviously, the order of lower indices in �abc in Eq. (15) is
important in arriving at this result. After the derivative is
computed we will impose the condition that the �kbc are
related to the metric by the standard relation. Then, the
symmetry of �adr in d, r makes the first term vanish (since
Qa

prd � �Qa
pdr) and the result becomes

 �qr
@Lbulk

@�qpr
� 2

�������
�g
p

�Qr
uvp�ruv� � �2

�������
�g
p

�Qr
upv�ruv�:

(19)

A comparison with the definition of Lsur in Eq. (15) leads to
Eq. (17).

In the same manner we can also prove the following
results [4] which determine the bulk and total Lagrangians
in terms of the surface term (which is probably truer to the
spirit of the term holography):

 L �
1

2
Rabcd

�
@Vc

@�abd

�
; Lbulk �

�������
�g
p

�
@Vc

@�abd

�
�adk�

k
bc:

(20)

Thus the knowledge of the functional form of Lsur or—
equivalently—that of Vc allows us to determine Lbulk and
even L. The first relation also shows that �@Vc=@�abd� is
generally covariant in spite of the appearance.

The fact that one needs to first treat �abc as independent
and then impose the metric compatibility makes the above
results less attractive than the one stated in Eq. (16). On the
other hand, Eq. (17) and Eq. (20) do not use the explicit
form of Qa

bcd. In the case of the Einstein-Hilbert action,
Qa

bcd is independent of curvature and depends only on
metric but in the next section we will considerQa

bcd that is
made from metric, curvature tensor and possibly covariant
derivatives of the curvature tensor—all of which can be
held fixed while varying �abc, if we choose the metric, the
curvature tensor, its covariant derivatives, and also �abc as
independent variables. All such Lagrangians of the form in
Eq. (14) will satisfy Eqs. (17) and (20). In contrast, Eq. (16)
uses the specific form of Qa

bcd given in Eq. (11) (A
straightforward proof of Eq. (16), starting from Eq. (17)
and changing variables is given in the appendix, thereby
connecting up the two and demonstrating where Eq. (11) is
used.)

Before we conclude this section, we would like to com-
ment on a few other issues related to the surface term. The
separation of the Einstein-Hilbert action into surface and
bulk terms in Eq. (14) is a standard text book result. While
neither term is generally covariant, the variation of either
term with respect to the metric is generally covariant (when
the metric is held fixed at the boundary) so that, for
example, Lbulk can lead to the standard field equations
when the metric is held fixed at the boundary. It is, of
course, possible to add other surface terms to the Einstein-
Hilbert action so that the same field equations are obtained
under variation of the metric, when the metric is held fixed
at the boundary. The most popular one is the Gibbons-
Hawking term AGH which is the integral over the trace of
the extrinsic curvature of the boundary [14]. The Asur in
Eq. (14) is not equal to AGH in general but matches under a
particular coordinate choice (See the appendix of [6] for a
discussion; of course, the variations of the two terms al-
ways match). In the interpretation of Eq. (14) as having the
‘‘d�qp� structure,’’ we have treated all components of gab
at the same footing in the spirit of Lagrangian formulation.
It is well known from the Hamiltonian structure of the
theory that g00 and g0� are constraint variables in the sense
that their time derivatives do not occur in the Lagrangian. If
we integrate the Lsur over a volume bounded by two space-
like surfaces �1;2, we will pick up [g��@Lbulk=@�@0g��� �
g�����] involving only the correct dynamical variables
g�� and their canonical momenta ��� � K�� � g��K on
these surfaces. If we further choose the gauge g0� � 0,
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then we obtain the integral over g����� � �2K, in the
standard D � 4 case, which is the same as AGH. So the
claim that Eq. (14) has the ‘‘d�qp� structure’’ is quite
appropriate even from this perspective.

The AGH has a formal general covariance (which our
term lacks) but this is obtained at the cost of foliation
dependence. The relation between foliation dependence
and general covariance is worth emphasizing: One would
have considered a component of a tensor, say, T00 as not
generally covariant. But a quantity � � Tabu

aub is a gen-
erally covariant scalar which will reduce to T00 in a local
frame in which ua � �1; 0; 0; 0�. It is appropriate to say that
� is generally covariant but foliation dependent. In fact,
any term which is not generally covariant can be recast in a
generally covariant form by introducing a foliation depen-
dence. The AGH uses the normal vector ni of the boundary
in a similar manner. But since our boundary term will
reduce to AGH under a particular coordinate choice, all
the results which we quote will similarly be applicable,
under this coordinate choice, to AGH as well. The situation
becomes more complicated in the case of general
Lagrangians and we will comment on this later.

B. Actions with holography: Generalization

The Einstein-Hilbert action is usually introduced by
using the fact that it is the only generally covariant scalar
that can be built from the metric and its derivatives and is
linear in the second derivatives. This guarantees that the
variational principle could be made to work, albeit with
some unusual boundary conditions. It is, therefore, quite
surprising that the action possesses several other peculiar
properties, in particular, the holographic relations between
the surface and bulk terms.

On the other hand, it is quite possible that the Einstein-
Hilbert action describes the low energy limit of an effective
theory and LEH is just a first term in a series of terms which
will involve other scalars (like R2, RabRab) that can be
constructed from the metric and curvature. Several pos-
sible choices exist for such low energy effective action all
of which are consistent with the diffeomorphism invari-
ance of the low energy theory. Any extra symmetry, like
the holographic relation, could then serve as a powerful
guiding principle in constraining or determining the higher
order corrections to the action principle. This leads us to
ask: What is the most general action for gravity which
satisfies holographic conditions? We will now address this
question.

Since the relations in Eqs. (17) and (20) are linear in the
Lagrangian, it follows that if two Lagrangians individually
satisfy these relations, so will their sum with arbitrary
constant coefficients. This allows us to investigate the
individual terms in a sum of terms separately and also
allows us to ignore relative coupling constants between
them. Further, since our derivation of Eq. (17) (or Eq. (20))
did not use the explicit form ofQa

bcd we already know that

any Lagrangian of the form
 �������
�g
p

L � 2@c�
�������
�g
p

Qa
bcd�abd� � 2

�������
�g
p

Qa
bcd�adk�

k
bc

� Lsur � Lbulk (21)

will satisfy the relations in Eqs. (17) and (20) provided:
(i) Qabcd has all the symmetries of curvature tensor and
(ii) one can keep Qabcd constant while differentiating with
respect to �abc treating all the components as independent.

Let us now consider a general Lagrangian of the form in
Eq. (21) with Qabcd � Qabcd�gab; Rabcd;rjR

a
bcd . . .� de-

pending on the metric, curvature tensor, and its covariant
derivatives. We will follow the standard principle that,
when varying an action, the dynamical variable qA and
each of the higher derivatives @qA; @2qA . . . , etc. are to be
treated as independent. If a Lagrangian L depends on the
metric gab, curvature Rabcd, and its derivatives, the dy-
namical variable and its derivatives are the set
�gab; @cg

ab; @d@cg
ab; . . .� and we treat them as indepen-

dent. Instead of treating �gab; @cgab; @d@cgab; . . .� as the
independent variables, it is convenient to use
�gab;�ikl; R

a
bcd; . . .� as the independent variables and we

trade off the second (and higher) derivatives of the metric
�@d@cg

ab; . . .�, in favor of the curvature tensor and its
derivatives [15]. The curvature tensor Rabcd can be ex-
pressed entirely in terms of �ikl and @j�ikl and is indepen-
dent of gab. Then, we can indeed keep Rabcd and its
derivatives (as well as the metric itself ) constant while
differentiating with respect to @igkl. Therefore, the
Lagrangian in Eq. (21) with Qabcd being a tensor with
the symmetries of curvature tensor, constructed from met-
ric, curvature, and covariant derivatives of the curvature
will satisfy Eqs. (17) and (20).

But, in general, the expression in Eq. (21) will not be a
generally covariant scalar since it is expressed in terms of
�abc, etc. We need to ascertain the condition on Qabcd such
that the Lagrangian is generally covariant. This turns out to
be surprisingly easy and insightful. By straightforward
algebra, one can prove (see the appendix) the following
identity:
 �������
�g
p

L � 2@c�
�������
�g
p

Qa
bcd�abd� � 2

�������
�g
p

Qa
bcd�adj�

j
bc

�
�������
�g
p

Qa
bcdRabcd � 2

�������
�g
p

�abdrcQa
bcd: (22)

Obviously, general covariance only requires the condition
rcQa

bcd � 0. Because of the symmetries of the Qa
bcd its

divergence on any of the indices vanishes. Thus, we shall
hereafter consider Lagrangians of the form:

 

�������
�g
p

L �
�������
�g
p

Qa
bcdRabcd; rcQa

bcd � 0: (23)

We have already proved that all such generally covariant
Lagrangians are holographic; i.e., they allow a separation
into bulk and surface terms which are related by Eqs. (17)
and (20).
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The simplicity of this result suggests that there could be
a more geometric way of interpreting it. This is indeed true
[4]. We know that the one can write the curvature tensor in
terms of the two form by Ra

b � �1=2!�Rabcdw
c ^ wd

where wa are the basis one forms. Similarly one can
introduce a two form for Qabcd with Qa

b �
�1=2!�Qa

bcdw
c ^ wd. Further, using Ra

b � d�ab � �ac ^
�cb where �ab are the curvature forms, we can write the
Lagrangian in Eq. (23) as

 L � 	Qa
b ^Rb

a � 	Q
a
b ^ �d�ba � �bc ^ �ca�

� d�	Qa
b ^ �ba� � 	Q

a
b ^ �bc ^ �ca (24)

provided the Qa
b satisfies the condition: d�	Qa

b� � 0
corresponding to rcQa

bcd � 0. The separation between
bulk and surface terms, just as in the case of Eq. (21), is
obvious.

While discussing the corresponding situation in the case
of the Einstein-Hilbert action we commented on the, alter-
native, Gibbons-Hawking surface term AGH. The situation
becomes more complicated when we move to more general
Lagrangians. The analogue of AGH for more general
Lagrangians is difficult to come by and—as far as the
authors know—there is no algorithmic procedure for find-
ing them. The expressions given in literature for even the
Gauss-Bonnet case [16] are fairly complicated and their
physical meanings are unclear. But our Lsur is well defined
for a wide class of Lagrangians and possesses some of the
attractive properties, which is encouraging. The lack of
manifest general covariance is not of much concern since
this issue exists even for the Einstein-Hilbert action. (In
specific cases, like in asymptotically flat spacetimes pos-
sessing a horizon, the surface term actually turns out to be
generally covariant and gives the horizon entropy; see
Sec. IV.)

The structure of the theory is thus specified by a single
divergence-free fourth rank tensor Qa

bcd having the sym-
metries of the curvature tensor. If we think of gravity as
low energy effective theory, the semiclassical, action for
gravity can now be determined from the derivative expan-
sion of Qa

bcd in powers of the number of derivatives:

 Qa
bcd�g; R� � Q

�0�

a

bcd
�g� � �Q

�1�

a

bcd
�g; R�

� �Q
�2�

a

bcd
�g; R2;rR� � 
 
 
 ; (25)

where�;�; 
 
 
 are coupling constants. At the lowest order,
Qa

bcd has to be built from just the metric and the next order
correction will have Qa

bcd depending on Rabcd linearly as
well as on the metric, etc.

Interestingly enough, the condition rcQa
bcd � 0 en-

compasses all the gravitational theories (in D dimensions)
in which the field equations are no higher than second
degree, though we did not demand that explicitly [4]. To
see this, let us consider the possible fourth rank tensors
Qabcd which (i) have the symmetries of curvature tensor;

(ii) are divergence-free; (iii) are made from gab and Rabcd.
If we do not use the curvature tensor, then we have just one
choice made from the metric given in Eq. (11) and will lead
to the Einstein-Hilbert action. Next, if we allow for Qa

bcd

to depend linearly on curvature, then we have the following
additional choice of tensor with required symmetries:

 Qabcd � Rabcd �Gacgbd �Gbcgad � Radgbc � Rbdgac:

(26)

In four dimensions, this tensor is essentially the double-
dual of Rabcd and in any dimension can be obtained from
Rabcd using the alternating tensor [17] we get

 L � 1
2�giag

bjgckgdl � 4giag
bdgckgjl

� �ca�ki g
bdgjl�RijklR

a
bcd

� 1
2�R

abcdRabcd � 4RabRab � R2�: (27)

This is just the Gauss-Bonnet action which is a pure
divergence in four dimensions but not in higher dimen-
sions. The unified procedure for deriving the Einstein-
Hilbert action and Gauss-Bonnet action [essentially from
the holographic condition and rcQa

bcd � 0] shows that
they are more closely related to each other than previously
suspected. The fact that several string theoretical models
get Gauss-Bonnet-type terms as corrections, after appro-
priate field redefinitions [18], is noteworthy in this regard.

Further, both the Einstein-Hilbert Lagrangian and
Gauss-Bonnet Lagrangian can be written in a condensed
notation using alternating tensors as:

 LEH � �13
24R

24
13; LGB � �1357

2468R
24
13R

68
57; (28)

where the numeral n actually stands for an index an, etc.
The obvious generalization leads to the Lanczos-Lovelock
Llagrangian [3]:

 Lm � �1357...2k�1
2468...2k R24

13R
68
57 . . .R2k�22k

2k�32k�1; k � 2m;

(29)

where k � 2m is an even number. The Lm is clearly a
homogeneous function of the degree m in the curvature
tensor Rabcd so that it can also be expressed in the form:

 L �
1

m

�
@L

@Rabcd

�
Rabcd �

1

m
Pa

bcdRabcd; (30)

where we have defined Pabcd � �@L=@Rabcd� so that
Pabcd � mQabcd. It can be directly verified that for these
Lagrangians (see the appendix):

 rcP
ijcd � 0: (31)

Because of the symmetries, Pabcd is divergence-free in all
indices. These Lagrangians, therefore, belong to the class
described by Eq. (23) and—more importantly for our
purpose—they allow a separation into bulk and surface
terms as given by Eq. (21) with the two parts satisfying
Eqs. (17) and (20). [It may be noted that in proving

HOLOGRAPHY OF GRAVITATIONAL ACTION FUNCTIONALS PHYSICAL REVIEW D 74, 124023 (2006)

124023-7



Eqs. (17) and (20), we treated �abc as independent variables
in the spirit of Palatini variation in Einstein’s theory. This
idea generalizes directly to Lovelock Lagrangians. If we
treat �abc as independent of gab and vary it, keeping gab

fixed, then it is easy to show, (using the results of the
appendix) that �L=��abc � 0 if raPabcd � 0. So this con-
dition allows one to vary �abcs independently of gab as in
Palatini formulation of general relativity. Hence it follows
that one may indeed treat the connection as an independent
variable in the case of these actions as well and the deri-
vation of Eqs. (17) and (20) holds for all these cases.] The
m � 1 and m � 2 give the Einstein-Hilbert and Gauss-
Bonnet Lagrangians. We shall now prove a host of relations
for this class of Lagrangians.

The first result is that, the equations of motion for these
Lagrangians take a particularly simple form. To see this, let
us consider a general action of the form

 A �
Z
V
dDx

�������
�g
p

L�gab; Rabcd� (32)

in which we have ignored higher derivatives of Rabcd for
simplicity. The variation of the action can be easily com-
puted to give the result (see the appendix for details)

 �A � �
Z
V
dDx

�������
�g
p

L

�
Z
V
dDx

�������
�g
p

Eab�gab �
Z
V
dDx

�������
�g
p

rj�vj;

(33)

where

 

�������
�g
p

Eab �
�
@

�������
�g
p

L

@gab
� 2

�������
�g
p

rmrnPamnb

�
;

Pa
bcd � �@L=@Rabcd�

(34)

and

 �vj � �2Pibjd�rb�gdi� � 2�gdi�rcP
ijcd��: (35)

This result is completely general. We now see that the
equations of motion simplify significantly for a subclass
of Lagrangians which satisfy Eq. (31) and are given by

 

@
�������
�g
p

L

@gab
� 0: (36)

That is, just setting the ordinary derivative of Lagrangian
density with respect to gab to zero will give the equations
of motion, as in the case Einstein-Hilbert action.

It also follows that, for the mth Lanczos-Lovelock
Lagrangian, Lm [given by Eq. (29)], the trace of the equa-
tions of motion is proportional to the Lagrangian:

 gabEab � gab
@

�������
�g
p

Lm
@gab

� ���D=2� �m�
�������
�g
p

Lm;

gabE
ab � gab

@
�������
�g
p

Lm
@gab

� ��D=2� �m�
�������
�g
p

Lm:

(37)

This off-shell relation is easy to prove from the fact that we
need to introduce m factors of gab in Eq. (29) to proceed
from Rabcd to Rabcd and that

�������
�g
p

is a homogeneous func-
tion of gab of degree�D=2. Further, we can prove that (see
the appendix for the proof) for any Lagrangian:

 gab
�L

��@igab�
� �2

�������
�g
p

�
@L

@Rnbid

�
�nbd

� �2
�������
�g
p

Pnbid�nbd; (38)

where the Euler derivative is defined as

 

�K��; @i�; . . .�

��
�
@K��; @i�; . . .�

@�

� @a

�
@K��; @i�; . . .�

@�@a��

�
� 
 
 
 (39)

In the case of Lanczos-Lovelock Lagrangians, Pnbid �
mQnbid so that we get the relation:

 @i

�
gab

�L
��@igab�

�
� �mLsur: (40)

This shows that m times the surface term is indeed of the
‘‘d�qp�’’ structure provided the momentum is defined us-
ing the total Lagrangian L and Euler derivative. We also
know that all Lagrangians of the form in Eq. (21) satisfy
Eqs. (17) and (20) as well, with a specific prescription for
evaluation of the derivative. Thus we have established
three different holographic relations for Lanczos-
Lovelock Lagrangians.

Since the Einstein-Hilbert Lagrangian corresponds to
the Lanczos-Lovelock Lagrangian with m � 1, Eq. (40)
is valid for LEH as well. But the relation in Eq. (40) should
be distinguished from Eq. (16) which shows that a similar
relation also holds with bulk Lagrangian Lbulk rather than
with total Lagrangian LEH. We shall now take up the
generalization of the relation Eq. (16) (between Lbulk and
Lsur) for the Lanczos-Lovelock case when Qa

bcd depends
on the metric as well as the curvature. (The result has a
direct generalization even for some cases in which Qa

bcd

depends on the derivatives of the curvature tensor as well
[19]; however, to keep the argument transparent, we will
discuss the simpler case, which—in any case—is more
relevant to us.) We will prove that:

 ��D=2� �m�Lsur � �@i

�
gab

�Lbulk

��@igab�

� @jgab
@Lbulk

@�@i@jgab�

�
: (41)

Before we give the proof, we will make a couple of com-
ments on the result. First, in the case of the Einstein-Hilbert
Lagrangian, the Lbulk does not involve the second deriva-
tives of the metric. Therefore, the second term in the right-
hand side of Eq. (41) is absent and—in the first term—we
can replace the Euler derivative by an ordinary partial
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derivative. This leads to Eq. (16) as it should. Second, the
terms in the right-hand side, for the general case, can be
thought of as one form of generalization of ‘‘d�qp�’’ for
theories with higher derivatives.

The proof of Eq. (41) is based on a simple homology
argument and combinatorics, generalizing a corresponding
proof for Eq. (16) in the Einstein-Hilbert case (given in the
appendix of Ref. [6]). Consider any Lagrangian
L�gab; @igab; @i@jgab� and let Eab�L� denote the Euler-
Lagrange function resulting from L:

 Eab�L� �
@L
@gab

� @i

�
@L

@�@igab�

�
� @i@j

�
@L

@�@i@jgab�

�
:

(42)

Forming the contraction gabE
ab and manipulating the

terms, we can rewrite this equation as:
 

gabE
ab�L� � gab

@L
@gab

� �@igab�
@L

@�@igab�

� �@i@jgab�
@L

@�@i@jgab�

� @i

�
gab

�L
��@igab�

� @jgab
@L

@�@i@jgab�

�
: (43)

We will now apply this relation to the bulk Lagrangian
L�m�bulk � 2

�������
�g
p

Qa
bcd�adj�

j
bc corresponding to themth order

Lanczos-Lovelock Lagrangian. (Hereafter, we will sim-
plify notation by just calling it Lbulk; it is understood that
we are dealing with the mth order Lanczos-Lovelock
Lagrangian throughout.) Since both Lm and Lbulk lead to
the same equations of motion, Eab�Lm� � Eab�Lbulk�.
Hence, using Eq. (37), we find the left-hand side of
Eq. (43) to be ��D=2� �m�

�������
�g
p

Lm. We will next show
that the first three terms in the right-hand side add up to
give ��D=2� �m�Lbulk. Bringing this term to the left-hand
side and using Lsur �

�������
�g
p

L� Lbulk will then lead to
Eq. (41).

To prove this, let us write Lbulk=
�������
�g
p

entirely in terms of
gab, @igab, and @j@igab by multiplying it out completely. In
any given term, let us assume there are n0 factors of gab, n1

factors of @igab, and k factors of @i@jgab. Then homoge-
neity implies that for this particular term (labeled by k,
which is the number of @i@jgab, that occur in it), the first
three terms in the right-hand side of Eq. (43) are given by
 

gab
@L�k�bulk

@gab
� ��D=2� � n0�L

�k�
bulk;

�@igab�
@L�k�bulk

@�@igab�
� n1L

�k�
bulk;

�@i@jgab�
@L�k�bulk

@�@i@jgab�
� kL�k�bulk:

(44)

(In the first relation D=2 comes from the
�������
�g
p

factor and

the sign flip on n0 is because of switching over from gab to
gab.) Since all the indices—the 2 upper indices from each
gab, 3 lower indices from each @igab, 4 lower indices from
each @j@igab—are to be contracted out, we must have
2n0 � 3n1 � 4k which fixes n0 in terms of n1 and k. We
next note that Qa

bcd is made of (m� 1) factors of curva-
ture tensor and each curvature tensor has the structure R ’
�@2g� �@g�2�. If we multiply out (m� 1) curvature ten-
sors, a generic term in the product will have k factors of
@2g and (m� 1� k) factors of �@g�2. In addition, the two
�’s in Lbulk ’ Q�� will contribute two more factors of
(@g). So, for this generic term, n1 � 2�m� 1� k� � 2 �
2�m� k�. Using our relation 2n0 � 3n1 � 4k, we find
n0 � 3m� k. Substituting into Eq. (44) we get

 

gab
@L�k�bulk

@gab
� ��D=2� � 3m� k�L�k�bulk;

�@igab�
@L�k�bulk

@�@igab�
� 2�m� k�L�k�bulk;

�@i@jgab�
@L�k�bulk

@�@i@jgab�
� kL�k�bulk:

(45)

Though each of these terms depends on k, the sum of the
three terms is independent of k leading to the same con-
tribution from each term. So we get:

 

gab
@Lbulk

@gab
� �@igab�

@Lbulk

@�@igab�
� �@i@jgab�

@Lbulk

@�@i@jgab�

� ��D=2� �m�Lbulk: (46)

Substituting this in Eq. (43), transferring these terms to the
left-hand side and using L

�������
�g
p

� Lbulk � Lsur, we get the
result in Eq. (41).

The result in Eq. (41) is the appropriate generalization of
Eq. (16) in the case of the Einstein-Hilbert action and has a
similar (generalized) ‘‘d�qp�’’ structure. We shall now turn
to the task of connecting up the surface term to horizon
entropy so as to provide a thermodynamic interpretation.

IV. THE SURFACE TERM AND THE ENTROPY OF
THE HORIZON

Surface terms in actions sometimes assume special sig-
nificance in a theory and this is particularly true for the
Einstein-Hilbert action. In this case, one can relate the
surface term to the entropy of the horizons, if the solution
possesses bifurcation horizon. This is well known in the
case of the black hole horizons. More generally, if the
metric near the horizon can be approximated as a Rindler
metric, then one can obtain the general result that the
entropy per unit transverse area is 1=4. To see this, we
only need to evaluate the surface contribution
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 Ssur � 2
Z
dDx@c�

�������
�g
p

Qabcd�abd�

� 2
Z
dDx@c�

�������
�g
p

Qabcd@bgad� (47)

for a metric in the Rindler approximation:

 ds2 � �	2x2dt2 � dx2 � dx2
?; (48)

where xm? demotes (D� 2) transverse coordinates. For the
static metric, the time integration in Eq. (47) is trivial and
involves multiplication by the range of integration. Since
the surface gravity of the horizon (located at x � 0) is 	,
the natural range for time integration is �0; �� where � �
2�=	. (This is most easily seen in the Euclidean sector in
which there is a natural periodicity.) Further, it is easy to
verify that only the Q0x

0x term contributes. Then, a simple
calculation shows that

 Ssur � 8�
Z
H
dD�2x?�Q0x

0x�: (49)

In evaluating this contribution, the x integral in Eq. (47)
will range from some x � a to x � b and the result will
depend on the behavior of the integrand at both limits.
What we have evaluated in Eq. (49) is the contribution of
the integral from one surface, which is taken to be the
location of the horizon. Our Rindler approximation is valid
only near the horizon and one cannot say anything about
the other contribution without knowing the detailed form
of the metric. For example, if the second limit is at infinity,
one needs to know whether the metric is asymptotically
flat, etc. We need not bother about these issues by evaluat-
ing the result on the horizon alone, indicated by the sub-
script H in Eq. (49). In the case of the Einstein-Hilbert
action Qabcd � �1=32���gacgbd � gadgbc� so that

 Q0x
0x � �

1

32�
; Ssur � �

1

4
A? (50)

as expected. (The minus sign arises because of the
Minkowski signature we are working with.)

In the context of Einstein’s theory, the thermodynamics
of black holes, say, can be derived in many different ways,
some of which uses boundary terms very crucially [like the
Gibbons-Hawking Euclidean approach] while some do
not. When one proceeds to study generalized theories of
gravity [like the ones considered here], technical complex-
ity prevents one from adopting certain approaches which
works in the case of Einstein gravity. In view of this, results
which arise directly from the nature of action principles are
particularly valuable. We will now show that the above
result, relating the boundary term in the action to the
entropy of horizons, continue to hold for Lanczos-
Lovelock Lagrangians with our definition of Lsur, thereby
providing a thermodynamic underpinning for our holo-
graphic separation of Lanczos-Lovelock Lagrangians.
[Of course, in general, the surface term will not have any
entropic interpretation just as an arbitrary solution to

Einstein’s theory—say, representing a spherical neutron
star—does not have a temperature or entropy associated
with it. As we know, such a thermodynamic connection
emerges only for particular solutions with horizons. In that
context, we will show that the surface term is related to the
entropy for a wide class of spacetimes with horizons.]

In the next subsection, we shall provide a proof by
comparing contribution of the surface term on the horizon
with the Noether charge for these spacetimes. In Sec. IV B
we will give a more direct and explicit calculation in the
case static, spherically symmetric, solution.

A. The surface term and the Noether charge

To do this we need an expression for the entropy of the
horizon in a general context when the Lagrangian depends
on Rabcd in a nontrivial manner. Such a formula has been
provided by Wald in Ref. [7] and can be expressed as a
integral over Pabcd on the horizon, evaluated on shell. It
can also been shown [7] that this definition is equivalent to
interpreting entropy as the Noether charge associated with
diffeomorphism invariance. We shall briefly summarize
this approach and use this definition.

To define the Noether charge associated with the diffeo-
morphism invariance, let us consider the variation xa !
xa � 
a under which the metric changes by �gab �
��ra
b �rb
a�. The change in the action, when eval-
uated on shell, is contributed only by the surface term so
that we have the relation

 �
Ajon shell � �
Z
dDx

�������
�g
p

ra�L

a�

�
Z
dDx

�������
�g
p

ra��
V
a�: (51)

[The subscript 
 on �
 . . . is a reminder that we are con-
sidering the changes due to a particular kind of variation,
viz. when the metric changes by �gab � ��ra
b �
rb
a�.] This leads to the conservation law raJ

a � 0
with Ja � L
a � ��
V

a� � rbJ
ab with the last equality

defining the antisymmetric tensor Jab. For a Lagrangian of
the type L � L�gab; Rabcd� direct computation using
Eq. (33) shows that Jab is given by (also see [20])

 Jab � �2Pabcdrc
d � 4
d�rcPabcd� (52)

with Pabcd � �@L=@Rabcd�. We shall confine ourselves to
Lanczos-Lovelock-type Lagrangians for which

 L �
1

m
Rabcd

�
@L

@Rabcd

�
� RabcdQabcd (53)

with raP
abcd � raQ

abcd � 0 so that Jab �
�2Pabcdrc
d.

We want to evaluate the Noether charge corresponding
to the current Ja for a static metric with a bifurcation
horizon and a killing vector field 
a � �1; 0�. The location
of the horizon is given by the vanishing of the norm

a
a � g00, of this killing vector. Using these facts as
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well as the relations rc
d � �dc0, etc., we find that Jab �
2Pd

0ab�dc0. Therefore the Noether charge is given by

 N �
Z
t
dD�1x

�������
�g
p

J0

�
Z
t
dD�1x

�������
�g
p 1�������

�g
p @b�

�������
�g
p

Jb0�

�
Z
t;rH

dD�2x
�������
�g
p

Jr0 (54)

in which we have ignored the contributions arising from
b � transverse directions. This is justifiable when trans-
verse directions are compact or in the case of Rindler
approximation when nothing changes along the transverse
direction. In the radial direction, we have again confined to
the contribution at r � rH which is taken to be the location
of the horizon. Using Qr0 � 2Pdcr0�dc0 � �2Pdcr0@dgc0

we get

 N � �2
Z
t;rH

dD�2x
�������
�g
p

Pdcr0@dgc0

� 2m
Z
t;rH

dD�2x
�������
�g
p

Qcdr0@dgc0: (55)

Note that the dimension of N is LD�3 which is the area of
transverse dimensions divided by a length. Entropy, which
has the dimensions of transverse area, is given by the
product of N and the interval in time integration. If the
surface gravity of the horizon is 	, the time integration can
be limited to the range �0; �� where � � 2�=	. The en-
tropy, computed from the Noether charge approach is thus
given by

 SNoether��N � 2�m
Z
t;rH
dD�2x

�������
�g
p

Qcdr0@dgc0: (56)

We will now show that this is the same result one obtains
by evaluating our surface term on the horizon except for a
proportionality constant. In the stationary case, the contri-
bution of the surface term on the horizon is given by

 Ssur � 2
Z
dDx@c�

�������
�g
p

Qabcd@bgad�

� 2
Z
dt
Z
rH
dD�2x

�������
�g
p

Qabrd@bgad: (57)

Once again, taking the integration along t to be in the range
�0; �� and ignoring transverse directions, we get

 Ssur � 2�
Z
rH
dD�2x

�������
�g
p

Qabr0@bga0: (58)

Comparing with Eq. (55), we find that

 SNoether � mSsur: (59)

The overall proportionality factor has a simple physical
meaning. Equation (40) tells us that the quantity mLsur,
rather than Lsur, which has the ‘‘d�qp�’’ structure and it is
this particular combination which plays the role of entropy,
as to be expected [21].

B. The direct calculation of horizon entropy from the
surface term

In this section, we shall provide a brief outline of an
explicit computation of the contribution of the surface term
on a horizon and show that it is equal to the standard
expression for entropy, computed previously in the litera-
ture for Lanczos-Lovelock Lagrangians. To this end, we
will consider a metric in D-dimensional spacetime in,
static, isotropic coordinates with the form

 ds2 � �b�r�dt2 � b�1�r�dr2 � r2gmn�x�dx
mdxn: (60)

In general, a static, spherically symmetric metric can have
different functions describing g00 and grr. For our purpose
we have assumed g00grr � �1 since many solutions rele-
vant to us fall in this category and it simplifies the
calculations.

We will now evaluate the surface term for the off-shell
metric discussed above in the Euclidean spacetime. Let the
integrand (the Lsur) of the surface term be @cPc. On inte-
gration over the radial direction, this will have two con-
tributions: one from the horizon, Pr�r�� where the horizon
is at r � r� and the other from the surface at infinity
Pr�1�. We will again concentrate on the contribution
from the horizon. Let � be the surface r � r� � �. Then
we need to compute:
 

I� �
Z
d�nrPr �

����������������
b0�r���

q Z �

0
dtrD�2
�

Z
dD�2�nrPr;

� �
4�

b0�r��
: (61)

We have used the measure d� appropriate for our metric,
restricted the range of integration of t to �0; �� as explained
earlier, and used the fact that the normal to � has the
nonvanishing component nr � �1=

����������������
b0�r���

p
. The horizon

contribution arises from the limit of �! 0. The
���
�
p

term in
the measure cancels with the

���
�
p

term in the normal.
Further, it can be verified that Pr is regular at the horizon.
So the contribution to the surface term from the horizon is

 I� �
4�

b0�r��
rD�2
� Pr�r���D�2; (62)

where �D�2 is the (dimensionless) volume of SD�2.
Evaluating Pr�r� � 2Qabrd@bgad explicitly for our metric,
we find that

 I� � 8
�

b0�r��
�D�2�Q

rtrt@rgtt �Q
rmrm@r�r

2gmm��: (63)

This result is general in the sense that we have not assumed
anything about Qabcd so far.

We will now specialize to the Lanczos-Lovelock-type
Lagrangian, for which explicit evaluation shows that non-
zero components near the horizon give:
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Qtrrt �
1

16�

D�2Lm�1

2r2�m�1�
�O�b�; Qmrmr � O�b�;

Qtmtm � O�b�; (64)

where d�2Lm�1 is the Lanczos-Lovelock Lagrangian of
degree (m� 1) evaluated on the horizon. (The vanishing
of some of the components can be argued from symmetry
considerations. Terms with an odd number of t’s will
vanish in a static situation, because of time reversal sym-
metry. Similarly rotational invariance will forbid terms
which have an odd number of transverse coordinates.
Rotational invariance also implies that Qrmrn � 0 if m �

n.). Using Eq. (64) in Eq. (63) we get the final result to be:

 I� � �
rD�2m
�

4
�D�2�

D�2Lm�1�: (65)

This is just (1=m) times the Wald’s entropy (with a minus
sign due to the choice of Minkowski signature) and has
been computed in the literature before (see e.g. [22]). In
fact whenever Qrmrm vanishes at the horizon, the contribu-
tion of the horizon to the surface term is (1=m) times the
Wald’s entropy.

Finally we would like to make a comment on the general
covariance of the result. It is easy to show that, if one
changes coordinates from xa to ya the results will differ by
a term that is proportional to:

 

����������������
b0�r���

q Z �

0
dtrD�2

Z
dD�2�nr

�
2Qabrd�x�gea�x�

�

�
@2ye

@xc@xd

��
@xc

@yb

��
: (66)

This term has to be evaluated at the horizon as far as the
entropy computation is concerned. On Euclidean continu-
ation, the horizon maps to the origin. For the subset of
coordinate transformations (a) which are regular at the
origin and (b) in which the transformed coordinates also
are like polar coordinates near the origin, this extra con-
tribution vanishes at the horizon. This is because
@2ye=@xc@xd vanishes at the origin, since the only allowed
transformation at the origin is a spacetime independent
scaling of r and t.

Holographic relations in Lagrangians�������
�g
p

L �
�������
�g
p

Qa
bcdRabcd � 2@c�

�������
�g
p

Qa
bcd�abd� � 2

�������
�g
p

Qa
bcd�adk�

k
bc � Lsur � Lbulk

(1) rcQa
bcd � 0 Lsur � �@p

�
�qr

@Lbulk

@�qpr

�

L � 1
2R

a
bcd

�
@Vc
@�abd

�
; Lbulk �

�������
�g
p

�
@Vc
@�abd

�
�adk�

k
bc

(2) Qa
bcd � 1

m
@L

@Rabcd
Lsur � �@p

�
�qr

@Lbulk

@�qpr

�

L � 1
2R

a
bcd

�
@Vc
@�abd

�
; Lbulk �

�������
�g
p

�
@Vc
@�abd

�
�adk�

k
bc

��D=2� �m�Lsur � �@i

�
gab

�Lbulk

��@igab�
� @jgab

@Lbulk

@�@i@jgab�

�

mLsur � �@i

�
gab

�L
��@igab�

�

(3) Qa
bcd � 1

2 ��
c
ag

bd � �dag
bc� Lsur � �@p

�
�qr

@Lbulk

@�qpr

�

L � 1
2R

a
bcd

�
@Vc
@�abd

�
; Lbulk �

�������
�g
p

�
@Vc
@�abd

�
�adk�

k
bc

Lsur � �
1

��D=2��1� @i

�
gab

@Lbulk

@�@igab�

�

Lsur � �@i

�
gab

�L
��@igab�

�

V. CONCLUSIONS

Our key conclusions are summarized in the table, listed
from the most general results to the special case as we
proceed down. The title line defines the Lagrangian we
consider which, under the condition in (1), is generally
covariant and has a specific separation into surface and

bulk terms. The most general results are in the first row,
which does not assume any structure about Qa

bcd other
than that rcQa

bcd � 0. These relations in the table show
that one can determine Lsur and Lbulk in terms of each other
provided we treat �abc as independent during the differen-
tiation, etc., as explained in Sec. III A. The next row deals
with Lagrangians which are of Lanczos-Lovelock type
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[which satisfy both conditions (1) and (2)]. In addition to
the results in the previous row, we obtain two more results
expressing Lsur in terms of L or Lbulk. The ‘‘d�qp� struc-
ture’’ is obvious in this case. The last row discusses the
well-known Einstein-Hilbert Lagrangian which has been
our reference point. In this case, the results for the
Lanczos-Lovelock Lagrangian with (m � 1), of course,
continues to be valid; but, in addition, we can simplify
one of the relations further.

As we discussed before, the surface term (even in the
most general case) has a ‘‘d�qp� structure.’’ In the
Lagrangian picture we have adopted throughout the paper,
we treat all the gabs at the same footing. However, we
know that in any generally covariant theory the choice of
coordinates puts D conditions on the gab which could be
conveniently taken to be on g00 and g0�. Though the
Hamiltonian structure for an arbitrary generally covariant
Lagrangian is complicated (and—as far as we know—not
fully worked out at the same level as, say, the Arnowitt-
Deser-Misner (ADM) description in general relativity), the
contribution of the surface term on t � constant surfaces
will only depend on gab�@L=@�@0gab��. If one can impose a
gauge condition that g00 � 1 and g0� � 0, then this will
give the standard canonical momenta corresponding to the
dynamical variables g�� in the Hamiltonian language. This
is however a rather formal statement in the absence of a
fully developed Hamiltonian formulation for the Lanczos-
Lovelock Lagrangian.
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APPENDIX A: PROOFS FOR DIFFERENT
RELATIONS

In this appendix we outline the proofs of different equa-
tions stated in the text for the sake of completeness.

1. Proof of Eqs. (14) and (22)

Consider a Lagrangian of the form L ��������
�g
p

Qa
bcdRabcd in which Qa

bcd has the algebraic symme-
tries of a curvature tensor. Expressing Rabcd in terms of �ijk
and using the antisymmetry of Qa

bcd in c and d, we can
write
 

L �
�������
�g
p

Qa
bcdRabcd � 2

�������
�g
p

Qa
bcd�@c�

a
db � �ack�

k
db�

� 2
�������
�g
p

Qa
bcd�ack�

k
db � 2@c�

�������
�g
p

Qa
bcd�adb�

� 2�adb@c�
�������
�g
p

Qa
bcd�

� 2
�������
�g
p

Qa
bcd�ack�

k
db � 2@c�

�������
�g
p

Qa
bcd�adb�

� 2
�������
�g
p

�adb@cQa
bcd � 2

�������
�g
p

�adb�jcjQa
bcd: (A1)

We now express @cQa
bcd in terms of rcQa

bcd to obtain

 �adb@cQa
bcd � �adbrcQa

bcd � �adb�bkcQa
kcd

� �adb�kacQk
bcd � �adb�ckcQa

bkd: (A2)

Substituting Eq. (A2) into Eq. (A1) we notice that two pairs
of the terms cancel out leaving the result

 

�������
�g
p

Qa
bcdRabcd � 2@c�

�������
�g
p

Qa
bcd�abd�

� 2
�������
�g
p

Qa
bcd�adj�

j
bc

� 2
�������
�g
p

�abdrcQa
bcd: (A3)

This is essentially our result in Eq. (22). Since rcQa
bcd �

0 for the Einstein-Hilbert action, we get Eq. (14).

2. Connecting up Eqs. (16) and (17)

In the text we proved that, for any Lagrangian of the
form L �

�������
�g
p

Qa
bcdRabcd with rcQa

bcd � 0 there is a
natural separation of the Lagrangian into bulk and surface
terms, related by:

 Lsur � �@m

�
�pn
@Lbulk

@�pmn

�
: (A4)

The key caveat in this relation is that one needs to treat all
components of �pmn as independent while differentiating
and use a particular ordering of indices in the original
expression. The purpose of this subsection is to recast
this relation in terms of the derivatives of the metric and
show the rather special nature of the Einstein-Hilbert
Lagrangian. To convert this into a relation involving the
partial derivatives of the metric we use the result:
 

@�pmn
@�@agbc�

�
1

2
��gpa�bm�cn � gpb�am�cn � gpb�cm�an� (A5)

from which we have the operator identity:

 gbc
@

@�@agbc�
�

1

2
��gpagmn � �

p
n�am � �

p
n�am�

@
@�pmn

:

(A6)

So that:

 gbc
@Lbulk

@�@agbc�
�

1

2
��gpagmn � �

p
n�am � �

p
n�am�

@Lbulk

@�pmn
:

(A7)

Using Eq. (18) to determine �@Lbulk=@�pmn� and manipu-
lating the terms we get, after some algebra:
 

gbc
@Lbulk

@�@agbc�
� �

�������
�g
p

�Qp
bad�pbd

�Qp
bpdgla��lbd � �bdl��

�
�������
�g
p

�@ngad��Q
anid � ginQp

apd

� giaQp
npd�: (A8)

Note that, in the last two terms the indices of Qabcd are
contracted among themselves; hence, in the general case, it
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is not possible to proceed further and relate this result to
Lsur directly. The Einstein-Hilbert Lagrangian is special in
the sense that, for Qp

bad � �1=2���apgbd � �dpgba�, we
have Qp

bpd � �1=2��D� 1�gbd and the last two terms
can be combined with the first to give Eq. (16).

3. Proof of Eq. (31)

For the mth Lanczos-Lovelock Lagrangian L �

Ra1b1

c1d1 . . .Rambm
cmdm�a1b1...ambm

c1d1...cmdm
we have the result:

 Pabcd �
@L

@Rab
cd � mRa2b2

c2d2 . . .Rambm
cmdm�aba2b2...ambm

cdc1d1...cmdm
:

(A9)

Therefore,

 raP
ab
cd � mraRa2b2

c2d2 . . .Rambm
cmdm�aba2b2...ambm

cdc1d1...cmdm
:

(A10)

We note that the derivatives of the curvature tensor appear-
ing in the expression are rendered completely antisymmet-
ric in all the lower indices due to the contraction with the
alternating tensor. But Bianchi identity states that
r�aRa2b2�

c2d2 � 0 and thus we get raPabcd � 0.

4. Proof of Eq. (33)

Consider the variation of the quantity L
�������
�g
p

where L is
a generally covariant scalar made from gab and Rabcd. We
can express its variation in the form

 ��L
�������
�g
p

� �

�
@L

�������
�g
p

@gab

�
�gab �

�
@L

�������
�g
p

@Rabcd

�
�Rabcd

�

�@L �������
�g
p

@gab

�
�gab �

�������
�g
p

Pa
bcd�Rabcd:

(A11)

The term Pabcd�Rabcd is generally covariant and hence can
be evaluated in the local inertial frame using
 

�Rabcd � rc���adb� � rd���acb�

� 1
2rc�g

ai��ri�gdb �rd�gbi �rb�gdi��

� fterm with c$ dg: (A12)

When this expression is multiplied by Pabcd the middle
term gaird�gbi does not contribute because of the anti-
symmetry of Pibcd in i and b. The other two terms contrib-
ute equally and we get a similar contribution from the term
with c and d interchanged. Hence we get

 Pa
bcd�Rabcd � 2Pibcdrcrd��gdi�: (A13)

Manipulating the covariant derivative, this can be reex-
pressed in the form

 

Pa
bcd�Rabcd � 2rc�P

ibcdrb�gdi� � 2rb��gdircP
ibcd�

� 2�gdirbrcPibcd (A14)

Combining this with the first term in Eq. (A11) and rear-
ranging the expression, we get

 �L
�������
�g
p

�

�@L �������
�g
p

@gab
� 2

�������
�g
p

rmrnPamnb

�
�gab

�
�������
�g
p

rj�2P
ibjd�rb�gdi� � 2�gdircP

ijcd�

(A15)

which is the same as Eq. (33).

5. Proof of Eqs. (38) and (40)

To prove Eq. (40) we shall prove that
 

gnp
@L

�������
�g
p

@�@mgnp�
� 2

�������
�g
p

�Pabac�mbc � 2Pnbmd�ndb�;

gnp@s
@L

�������
�g
p

@�@s@mgnp�
� 2

�������
�g
p

�Pa
bac�mbc � P

nbmd�ndb�:

(A16)

The Euler derivative on the left-hand side of Eq. (40) is the
difference between the two quantities evaluated above. On
subtraction, two terms on the right-hand side cancel out
and what remains leads to Eq. (38) for a general
Lagrangian. For Lanczos-Lovelock Lagrangians we are
led to Eq. (40) when we use Pabcd � mQabcd.

Equation (A16) can be proved by direct computation but
a somewhat quicker route is the following: We begin by
noting that (@mgnp) and (@s@mgnp) occurs in L only
through Rabcd. So if we keep �gab � 0 but vary @mgnp
and @s@mgnp in L and get an expression of the form:

 �L � Amnp��@mgnp� � B
smnp��@s@mgnp� (A17)

we can read of the terms we need in Eq. (A16). To do this
we start with Eq. (A13) which gives, when �gab � 0:

 �L �
�
@L

@Rabcd

�
�Rabcd � Pabcd�Rabcd

� 2Pibcdrcrd��gdi�: (A18)

We now expand out rcrd��gdi�, using �gab � 0 repeat-
edly to get:
 

�L � 2Pibcd���@b@cgdi� � �kdb��@cgki� � �kic��@bgdk�

� �kbc��@kgdi��: (A19)

We have also used the fact that when �gab � 0, �@cgab �

0, we can write rj�gab � @j�gab � �@jgab, etc. We can
now read off @L

�������
�g
p

=@�@mgnp� and @L
�������
�g
p

=@�@s@mgnp�
from Eq. (A19) since

�������
�g
p

goes for a ride. Contracting
with gnp and using the symmetries immediately gives the
first of the equations in Eq. (A16) as well as the result
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 gnp@s
@L

�������
�g
p

@�@s@mgnp�
� 2gnp@s�

�������
�g
p

Ppsmn�: (A20)

Finally we use the fact that, when rcPabcd � 0, we have
the relation:

 @c�
�������
�g
p

Pabcd� � �
�������
�g
p

��akcP
kbcd � �bkcP

akcd�: (A21)

Using this to simplify the right-hand side of Eq. (A20)
leads to Eq. (A16).
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