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We study gravitationally collapsing models of pressureless dust, fluids with pressure, and the
generalized Chaplygin gas (GCG) shell in �2� 1�-dimensional spacetimes. Various collapse scenarios
are investigated under a variety of the background configurations such as anti-de Sitter (AdS) black hole,
de Sitter (dS) space, flat and AdS space with a conical deficit. As with the case of a disk of dust, we find
that the collapse of a dust shell coincides with the Oppenheimer-Snyder type collapse to a black hole
provided the initial density is sufficiently large. We also find—for all types of shell—that collapse to a
naked singularity is possible under a broad variety of initial conditions. For shells with pressure this
singularity can occur for a finite radius of the shell. We also find that GCG shells exhibit diverse collapse
scenarios, which can be easily demonstrated by an effective potential analysis.
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I. INTRODUCTION

Over the last few decades, general relativity in �2� 1�
dimensions has fascinated both field theorists and relativ-
ists because of its fertility as a test-bed for ideas about
quantum gravity. One particular feature of interest is mani-
fest when a negative cosmological constant is present.
Despite the fact that the spacetime geometry of this solu-
tion is an anti-de Sitter (AdS) spacetime, possessing nega-
tive constant curvature, a black hole can be present under a
suitable choice of topological identifications [1]. This so-
lution has drawn much attention since its inception from a
wide variety of perspectives [2].

Shortly after the black hole solution was obtained, it
was shown that it can be formed from a disk of pressureless
dust undergoing gravitational collapse [3] (the three-
dimensional analogue of Oppenheimer-Snyder type col-
lapse), generalizing earlier results that suggested matter
could collapse to form conical singularities [4]. Further
study on this subject has been carried out from several
viewpoints, including the formation of a black hole from
colliding point particles [5] and the more recent demon-
stration of critical phenomena in the context of collapse
[6]. These results are consistent with other results in four
dimensions as well as results in two dimensions [7].

Recently, a cosmological model of a (generalized)
Chaplygin gas (GCG) was introduced as a possibile expla-
nation of the present acceleration of the universe, the
existence of dark energy, and the unification of dark energy
and dark matter [8–10]. Historically its original motivation
was to account for the lifting force on a plane wing in
aerodynamics [11]. Afterwards, the same equation of state
was rediscovered in the context of aerodynamics [12,13].
A more interesting feature of this gas was recently renewed
in an intriguing connection with string theory, insofar as its
equation of state can be obtained from the Nambu-Goto

action for d-branes moving in a �d� 2�-dimensional
spacetime in the light-cone frame [14]. In addition, it has
been shown that the Chaplygin gas is, to date, the only fluid
that admits a supersymmetric generalization [15]; the
relevant symmetry group was described in Ref. [16].
Moreover, further theoretical developments of the GCG
were given in terms of cosmology and astrophysics [17].
Inspired by the fact that the Chaplygin gas has a negative
pressure, violating the energy conditions (in particular the
null energy condition (NEC)), traversable wormhole solu-
tions were found in four dimensions [18].

It is natural to ask whether or not a black hole can be
formed from gravitational collapse of this gas in a finite
collapse time. Much of the work on black hole formation
deals with pressureless dust collapse; collapse of this kind
of exotic fluid to black holes so far has not received much
treatment. Recent work [19] involved investigation of
spherically symmetric clouds of a collapsing modified
Chaplygin gas in four dimensions, where it was shown
that it always leads to the formation of a black hole.

In this paper, we investigate some gravitational collapse
scenarios of shells with a variety of equations of state,
including the GCG shell. To set the stage we first consider
the collapse of a shell of pressureless dust. In dust collapse
scenarios the evolution of the system is obtained by match-
ing the inside and outside geometries using the junction
conditions [20–22],

 �gij� � 0; �Kij� � 0; (1.1)

where �h� � h� � h� and (� ) and (� ) represent exte-
rior and interior spacetimes, respectively. However for
shells with pressure the junction condition for the extrinsic
curvature in Eq. (1.1) is no longer valid, since there is a
nonvanishing surface stress-energy tensor on the boundary
of the shell to take into account.

The main result of our investigation is that gravitational
collapse in �2� 1� dimensions does not necessarily lead to
black hole formation for any of the fluid sources we study.
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The end points of collapse depend on the initial conditions,
and can lead to either a black hole or the formation of a
singularity and a Cauchy horizon.1 This singularity is
characterized by the onset of a divergent stress energy in
the shell, whose intrinsic Ricci scalar also diverges in finite
proper time for observers comoving with the shell. For
pressureless dust the singularity develops when the shell
collapses to zero size. However for shells with pressure the
singularity develops at some nonzero size characterized by
the equation of state. A similar scenario holds for the GCG
shell. We also find that collapse is not the only possibility,
but that shells can also expand out to infinity, possibly with
a bounce depending on the initial conditions. Our results
are consistent with earlier work on shell collapse in �2� 1�
dimensions [23,24], generalizing them to include a more
detailed analysis of collapse to naked singularities, and to
situations in which a more general relationship between
density and pressure is assumed.

The outline of our paper is as follows. In Sec. II, we
briefly present a formulation of the shell collapse and
obtain the evolution equation for the dust shell radius. In
Sec. III, the gravitational collapses of pressureless dust
shell are studied and compared to the result of dust cloud
collapse in [3]. In Sec. IV, we study a collapse of a shell
with an arbitrary pressure with no loss of generality. In
Sec. V, the collapse of GCG shell is studied and some
possible collapse conditions are found. Finally, we shall
summarize and discuss our results in Sec. VI. We consider
the construction of some relevant Penrose diagrams and
some basic properties of Jacobian elliptic functions in
appendices.

II. SHELL COLLAPSE

We assume that the metrics in both regions, V� (outside
the shell) and V� (inside the shell) are given by

 �ds�2
V	
� �F	dT2 �

dR2

F	
� R2d�2; (2.1)

where F� and F� are exterior and interior metrics, respec-
tively. The surface stress-energy tensor for a fluid of energy
density � and pressure p is

 Sab � �uaub � phab; (2.2)

where hab � gab � uaub is an induced metric on �, and ua

is the shell’s velocity. For dust p � 0, whereas p �
�A=�� for the generalized Chaplygin gas (GCG). We
employ a coordinate system ��; �� on �; at R �R���
the induced metric is

 �ds�2� � �F	dT
2 �

dR2

F	
�R���2d�2

� �d�2 � r2
0a

2���d�2; (2.3)

Continuity of the metric implies that �gij� � 0 or
F2
	�dT=d��

2 � �dR=d��2 � F	 and R2 � r2
0a���

2.
However there exists a discontinuity in the extrinsic cur-
vature of the shell, �Kij� � 0, since nonvanishing surface
stress-energy tensor exists. The extrinsic curvatures on
V	 are

 K	�� � �
d
dR

�����������������������������
dR
d�

�
2
� F	

s
;

K	�� �
1

R

�����������������������������
dR
d�

�
2
� F	

s
:

(2.4)

The surface stress-energy tensor is defined by

 S ab � ���Kab� � �K�hab�; (2.5)

where hab is the induced metric on �. On the edge of the
shell, the induced dyad and normal vector are

 e�
��� �

�
dT
d�
;
dR
d�

; 0
�
; e�

��� �

�
0; 0;

1

R

�
; (2.6)

and

 n� �
�
�
dR
d�

;
dT
d�
; 0
�
; (2.7)

where � is a coordinate system in the bulk, �T; R; ��. The
surface stress-energy tensor can be straightforwardly eval-
uated

 S�� �
1

R
��� � ���; S�� �

d
dR
��� � ���; (2.8)

where �	 �
�����������������������������������
�dR=d��2 � F	

p
. Using Eqs. (2.2) and

(2.8), we have two relations,

 � � �
1

R
��� � ��� (2.9)

 p �
d
dR
��� � ���: (2.10)

The preceding relations can be written in the form

 �� � �� � �R � 0 (2.11)

 

d
dR
��R� � p � 0 (2.12)

and Eq. (2.11) implies for positive densities that �� <��,
which in turn implies that

 a�R2=‘2 � k� > a�R2=‘2 � k� (2.13)

where the generic form of the metrics we study have F� �
�a�R

2=‘2 � k�� and F� � �a�R
2=‘2 � k��. Here a	

and k	 are constants whose values, respectively, determine
whether or not the spacetime is asymptotically AdS, dS, or
flat, and whether or not the spacetime contains a point mass
or a black hole. Differing magnitudes for a	 correspond to1This latter point has been overlooked in previous studies [4].
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different values of the size of the cosmological constant
inside and outside of the shell. Without loss of generality
we can choose one of these to have unit magnitude, i.e.
ja�j � 1, though we shall not always exercise this option.

III. COLLAPSE OF A PRESSURELESS DUST
SHELL

For the dust shell case, p � 0 and Eq. (2.10) becomes

 0 �
d
dR
��� � ���: (3.1)

Equation (3.1) is easily solved; equating with Eq. (2.9)
yields

 ��� � ��� � ��0 � ��R; (3.2)

where �0 is an integration constant. The density profile is
therefore � � �0=R; if � � 0 then clearly F� � F�.

Equation (3.2) yields the generic differential equation
for the dust shell
 ������������������������������������������������
dR
d�

�
2
�
a�R2

‘2 � k�

s
�

������������������������������������������������
dR
d�

�
2
�
a�R2

‘2 � k�

s
� �0

� 0: (3.3)

Upon redefining t � �=‘, x �R=‘, % � �‘, and %0 �
�0‘, Eq. (3.3) can be written as

 

����������������������������������
_x2 � a�x

2 � k�
q

�
����������������������������������
_x2 � a�x

2 � k�
q

� %0 � 0; (3.4)

which can be alternatively written in the form

 _x 2 � Veff�x� � 0; (3.5)

where the effective potential is given by

 Veff�x� � �
1

4%2
0

�a4x4 � 2a2x2 � a0�; (3.6)

with

 a4 � �a� � a��2

a2 � �a� � a��%
2
0 � �a� � a���k� � k��

a0 � �%
2
0 � �k� � k���

2 � 4k�k�:

(3.7)

Equation (3.4) has the general solution

 x�t� � �
��

ja� � a�j
JacobiSN

�
��
2%0
�t� t0�;

��
��

�
; (3.8)

where

 �2
	 � a2 	

���������������������
a2

2 � a0a4

q
; (3.9)

and

 t0 �
2%0

��
JacobiSN�1

�
ja� � a�j

��
x0;
��
��

�

�
2%0

��
EllipticF

�
ja� � a�j

��
x0;
��
��

�
: (3.10)

The properties of the Jacobi elliptic functions are reviewed
in an appendix.

In the special case that a� � a�, �� � 0 and the solu-
tion becomes

 x�t� � �

��������
a0

2a2

s
sin
� ��������

2a2

p

2%0
�t� t0�

�
: (3.11)

Alternatively, if a0 � 0, then the solution is

 x�t� � �

��������
2a2

a4

s
1

sin�
������
2a2

p

2%0
�t� t0��

: (3.12)

The qualitative behavior of the solutions will depend
upon the relative signs of the four parameters a	 and k	. In
general there are 81 possibilities since each parameter can
vanish, though of course not all of these are allowed. For
example if a� < 0 then k� > 0 in order to preserve the
metric signature. There are additional restrictions that arise
from the reality of the collapse trajectory, which imply that
the quantities �	 must either be pure real or pure imagi-
nary. This yields a2

2 � a0a4 > 0, or

 a�a�%2
0 � �a� � a���a�k� � a�k��

� a�a��%
2
0 � k� � k�� � a

2
�k� � a

2
�k� > 0:

(3.13)

Much of the general behavior of the solution can be
understood by noting that Eq. (3.5) describes the one-
dimensional motion of a point particle of zero energy in
the effective potential Veff given in Eq. (3.6), which is
sketched in Fig. 1. Note that only the x > 0 part of the
potential is relevant; the behavior of the shell will depend
on the number of roots of the effective potential in this
region.

If there are no roots, then the shell will either collapse to
zero size from some finite value, or it will expand indef-
initely, depending upon the initial conditions. If there is
one nondegenerate root then the shell will either expand
indefinitely or contract to some finite size and then expand
(for example Eq. (3.12) describes this situation). If there is
one degenerate root, then the shell can either (a) sit in an
unstable equilibrium at some fixed value x � xE ��������������
a2=a4

p
(provided a2

2 � a0a4), (b) collapse to either a
black hole or a naked singularity provided its initial size
is such that x0 < xE, or (c) exhibit the behavior of the
nondegenerate single root case, provided x0 > xE. If there
are two roots, then there will either be collapse to a black
hole or naked singularity, or else the behavior will be
qualitatively similar to that of the nondegenerate single

GRAVITATIONALLY COLLAPSING SHELLS IN �2� 1� . . . PHYSICAL REVIEW D 74, 124016 (2006)

124016-3



root case. These various cases are illustrated in Fig. 1 by
the arrows that indicate possible trajectories of the shell
and resemble in part the higher-dimensional situation
[25,26]. The key distinction here is the possible of collapse
of the shell either to zero size or to a black hole, depending
on the choice of parameters and the initial conditions. A
discussion of the Penrose diagrams for a number of these
scenarios appears in the appendix.

The preceding analysis assumed a4 � 0. If a4 � 0 (i.e.
a� � a�), then the effective potential is quadratic. If a� >
0 the shell will always collapse provided a0 > 0, whereas if
a� < 0 then the shell will either expand indefinitely or
contract to some finite size and then expand, or—if
a0 < 0—collapse to a naked singularity.

Note that collapse to a point mass is not a possible end
state for the dust shell. One gets a hint of the underlying
problem upon realizing that _x will not be zero at the end
point of collapse. This suggests a bounce, but since the
interior spacetime has shrunk to zero size, the future evo-
lution of the spacetime after such a putative bounce is not

uniquely determined. Instead, as the shell collapses its
induced curvature becomes singular as t! t0, as is clear
from the expansion of the Ricci scalar associated with the
induced metric (2.3)

 R����� �
1

x2�t�

�
x�t�

d2x

dt2
�

�
dx
dt

�
2
�
� �

1

2�t� t0�2
� 
 
 


(3.14)

which diverges quadratically regardless of the values of the
parameters a	 and k	.

If k� < 0 this singularity will be cloaked by an event
horizon. However if k� > 0 the ostensible point mass final
state suggested by the form of the exterior metric will
actually be an incomplete spacetime, with a Cauchy hori-
zon emerging from the singularity. There is nothing a
priori to prevent this choice for k�, and so there will be
a range of initial conditions (even for asymptotically flat
space) in which the final state of collapse yields a naked
singularity, in violation of cosmic censorship.

We shall now consider the evolution of the shell in more
specific terms, categorizing our study by a� > 0 (exterior
AdS space), a� � 0 (exterior flat space) and a� < 0 (ex-
terior dS space).

A. External AdS space

If the spacetime is asymptotically anti-de Sitter, then
a� > 0: The general solution is then given by (3.8)

 x�t� � �
��

j1� a�j
JacobiSN

�
��
2%0
�t� t0�;

��
��

�
(3.15)

where �	 is still given by Eq. (3.9), but with

 a4 � �1� a��2

a2 � �1� a��%
2
0 � �1� a���M� k��

a0 � �%2
0 � �M� k���

2 � 4Mk�:

(3.16)

where we have set a� � 1 without loss of generality and
k� � �M so that a naked singularity is avoided.

Collapse to an AdS3 black hole with no angular momen-
tum and with cosmological constant, � � �1=‘2 will take
place provided

 x�0� � x0 <

���������������������������������������������������������������������������������������������������������������������������������������������������������
�1� a��%2

0 � �1� a���M� k�� � 2%0

�������������������������������������������������������������������
a��%2

0 �M� k�� � k� � a
2
�M

qr
j1� a�j

(3.17)

and that the term under the second square root is positive, which is the condition (3.13). If (3.17) is satisfied, we have an
additional condition for the collapse, _x2

0 � x
2
0 � M � xH >�k (with _x0 the initial velocity of the shell), which means that

the initial radius cannot be smaller than the black hole horizon. If these conditions are satisfied and _x0 > 0 then the shell
will first expand to a maximal size given by the right-hand side of (3.17), and then collapse to a black hole; otherwise the
shell will irreversibly collapse. If (3.17) is violated, then the shell collapses to a minimal radius

 

x

V(x)

x

(a)

xE

V(x)

x

(b)

V(x)

x

(c) (d)

V(x)

FIG. 1 (color online). Plots of the effective potential of the dust
shell for existing roots.
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 xmin �

���������������������������������������������������������������������������������������������������������������������������������������������������������
�1� a��%

2
0 � �1� a���M� k�� � 2%0

�������������������������������������������������������������������
a��%

2
0 �M� k�� � k� � a

2
�M

qr
j1� a�j

(3.18)

and then expands to indefinitely large size (or else sits at a
point of unstable equilibrium if a��%2

0 �M� k�� � k� �
a2
�M � 0 and if the initial conditions are properly set).
If k� � 1, the interior is pure AdS; if 1> k� > 0, then

the interior metric corresponds to a point mass in AdS
spacetime; if k� < 0 then the interior metric corresponds
to a black hole. Since Eq. (2.13) implies that

 %0 �

8<
:

positive; ��a� � 1�x2
0 � k� �M> 0�

negative; ��a� � 1�x2
0 � k� �M< 0�

0; ��a� � 1�x2
0 � k� �M � 0�:

(3.19)

We see for positive energy density that in general the mass
of the interior black hole must be smaller than M provided
0< a� < 1, i.e. the magnitude of the interior cosmological
constant is not as large as that of the exterior space. If a� �
0 then k� > 0 or else the metric signature of the interior is
not properly preserved (alternatively condition (3.13) is not
satisfied). If a� � 1 then the interior black hole will have a
larger mass than M, with the energy of the shell contrib-
uting negatively to the total energy of the spacetime.

The case a� � a� � 1 merits special attention, since it
corresponds to the previously analyzed collapse of a disk
of dust [3]. We recover the solution (3.11), which can be
written as

 x�t� � �
sin�t� t0�

2%0

����������������������������������������������������������������
M2 � 2�%2

0 � k�M� �%
2
0 � k�

2
q

;

(3.20)

where

 t0 � arcsin
�

2%0x0����������������������������������������������������������������
M2 � 2�%2

0 � k�M� �%
2
0 � k�

2
q �

� arcsin
�

x0��������������������
_x0

2 � x0
2

q �
: (3.21)

Collapse to a black hole takes place when x�tH� � xH �
RH=‘ �

�����
M
p

, where

 tH � arcsin
�

x0��������������������
_x0

2 � x0
2

q �
� arcsin

� �����
M
p

��������������������
_x0

2 � x0
2

q �
(3.22)

which is when (in comoving time) the radius of the shell is
coincident with the event horizon.

Note that Eq. (3.20) yields the requirement that x�t� be
real, implying in turn that a0 > 0 or

 M2 � 2�%2
0 � k��M� �%

2
0 � k��

2

� �%2
0 � �k� �M��

2 � 4%2
0M � 0 (3.23)

which is satisfied for all positiveM. The effective potential
is obtained by setting a� � a� � 1, k� � �M in
Eq. (3.6),

 Veff�x� �
1

4%2
0

�4%2
0x

2 � a0� (3.24)

and has a minimum at x � 0 with a0 > 0, which implies
that the shell will inevitably collapse to a black hole,
regardless of the sign of its initial velocity, and it will
shrink to the origin within finite time. Choosing initial
conditions so that _x0 � 0, Eq. (3.4) can be rewritten as

 M � %0�2�x
2
0 � k��

1=2 � %0� � k�; (3.25)

which is analogous to the condition for dust ball collapse
[3]. A black hole can form only if

 %0 > �x2
0 � k��

1=2 � x0 (3.26)

otherwise M< 0 and the shell collapses to a naked singu-
larity and a Cauchy horizon forms. Note that if �M<
k� < 0 then the condition (3.26) is always satisfied. It is
curious that for sufficiently small initial shell density that
cosmic censorship is violated.

The comoving time for the shell radius to become coin-
cident with the event horizon is given by (3.22), and the
time tc for the shell to collapse from xi � x0 to xf �
x�tc� � 0 is always finite for positive M and %0. How-
ever, the coordinate time at which an observer outside
the black hole observes the collapse is not finite since

 T̂ � T0 �
Z x̂

x0

‘dx

�x2 �M�
� T0 �

‘�����
M
p arctanh

�
x�����
M
p

�
x̂

x0

;

(3.27)

where T̂ is a coordinate time at which a signal emitted from
the edge of the shell arrives at a certain point x̂. This
coordinate time is clearly divergent when x̂!

�����
M
p
� xH,

which implies that the collapse to the horizon takes infinite
time, so that observers outside the black hole will not
observe this collapse.

The redshift of light from the edge of the dust shell is

 z �
dT̂
dt
� 1 �

_x
�x� xH��x� xH�

� 1; (3.28)

which obviously diverges at t � tH�x � xH�. Thus the
collapsing shell of dust will fade away from observer’s
sight as time goes by, as with the collapse of the dust ball
[3].
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Note that if M � �m< 0 then Eq. (3.23) is not neces-
sarily satisfied. If �0 > 0 then 1> k>m, and the conical
deficit angle outside the shell is larger than that inside the
shell. In this case the larger the shell density, the larger the
exterior deficit angle relative to the interior one. The
density is bounded by

 %0 < �x2
0 � k�

1=2 � x0 (3.29)

which ensures that the exterior deficit angle is always less
than 2�.

We close this subsection by noting that if k� > 0 then
the shell can collapse to a naked singularity if the initial
conditions are properly set. The alternative to this scenario
is that the shell either expands indefinitely or collapses to a
minimal size and then expands indefinitely. As noted pre-
viously, the specifics depend on the values of the parame-
ters a� and k	.

B. External flat space

Now we turn to shell collapse where Minkowski and/or
conical deficit space describing a point mass is inside and/
or outside the shell, corresponding to the case a� � 0.

Consider first the case where a� � 0 as well, yielding
F	 � k	, representing a flat space with conical deficit
when 0< k	 < 1 (which vanish when k	 � 1), where
k	 > 0 to preserve the sign of the metric. For positive
energy density k� < k�, ensuring that the exterior deficit
angle is greater (corresponding to a larger mass) than the
interior deficit angle as noted above. Then the equation of
motion (3.4) has the solution

 x�t� � x0 � _x0t; (3.30)

which is analogous to dust ball collapse in Minkowski
space [3]. The coefficient of t corresponds to the initial
velocity of the disk, which must be negative if collapse is to
take place (if it is positive then the shell expands outward
without resistance). The initial velocity is

 

_x 0 � 	

�����������������������������������������������������������������������
%4

0 � 2�k� � k��%2
0 � �k� � k��

2
q

2%0
; (3.31)

which is real provided

 %0 >
������
k�

p
�

������
k�

p
: (3.32)

Note that there is no collapse unless the shell is given some
initial inward velocity, i.e. _x0 < 0, in which case the shell
will collapse to a naked singularity with its associated
Cauchy horizon.2.

Next we consider the more general case of an interior
spacetime with cosmological constant. Without loss of

generality we can set a� � 	1. The effective potential is
still a quartic given by Eq. (3.6) and the solution is given by
(3.8), both with a� � 0 and ja�j � 1. Positivity of the
initial density %0 > 0 implies

 

�����������������������
a�x2

0 � k�
q

�
������
k�

p
> 0! a�x2

0 > k� � k� (3.33)

and so either k� > 0 must be sufficiently small if the
interior is AdS or else k� > 0 must be sufficiently large
if the interior is dS. In either case the shell will either
expand indefinitely, undergo a bounce after which it ex-
pands indefinitely, or else collapse to a naked singularity.

C. External dS space

Finally, we assume that the exterior metric function is
that for a dS spacetime, i.e. a� � �1, yielding F� �
���R2=‘2�. The cosmological horizon is located at
Rh �

������
k�
p

‘, where k� � �> 0 in order to have the
metric signature correct. The exterior metric is that of dS
spacetime with a conical deficit unless � � 1, in which
case it is pure dS spacetime.

The general solution is again given by Eq. (3.8), where

 x�t� � �
��

j1� a�j
JacobiSN

�
��
2%0
�t� t0�;

��
��

�
; (3.34)

with

 a4 � �1� a��2

a2 � ��1� a��%
2
0 � �a� � 1���� k��

a0 � �%2
0 � ��� k���

2 � 4�k�;

(3.35)

and again �	 is given by Eq. (3.9).
Positivity of energy now imposes the requirement

 �a� � 1�x2
0 >�� k� (3.36)

which implies that � must be sufficiently small relative to
the other parameters. If the interior is AdS, then a� > 0
and the initial shell size x0 must be sufficiently large
relative to the sum of the masses (if there is a black hole
in the interior, with k� � �M< 0) or their difference (if
there is a point mass in the interior, with 0< k� < 1). The
same analysis holds true if the interior is a dS space with
smaller cosmological constant (i.e. �1< a� < 0), though
in this case k� > 0. If a� <�1 then k� must be suffi-
ciently large for the shell to have any allowed motion.

The possible trajectories of the shell have been covered
at the beginning of this section. If the shell initially con-
tracts, it will either collapse to a naked singularity or else it
will bounce at some finite radius

2Note that even if the energy density of the shell is negative,
collapse can still take place if _x0 < 0. In this case the exterior
deficit angle is smaller than the interior one.
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 xmin �

����������������������������������������������������������������������������������������������������������������������������������������������������������������
��1� a��%

2
0 � �1� a����� k�� � 2%0

����������������������������������������������������������������������
�a��%

2
0 ��� k�� � k� � a

2
��

qr
j1� a�j

; (3.37)

and then expand to indefinitely large size. If the shell initially expands, it will either expand indefinitely or it will bounce at

 xmax �

����������������������������������������������������������������������������������������������������������������������������������������������������������������
��1� a��%

2
0 � �1� a����� k�� � 2%0

����������������������������������������������������������������������
�a��%

2
0 ��� k�� � k� � a

2
��

qr
j1� a�j

; (3.38)

and then collapse to a naked singularity. The remaining
alternative is that of a shell in unstable equilibrium, which
occurs if �a��%2

0 ��� k�� � k� � a
2
�� and if the ini-

tial conditions are properly set. Collapse to a black hole is
never possible.

IV. COLLAPSE OF A SHELLWITH A POLYTROPIC
EQUATION OF STATE

We now consider the collapse of a shell with pressure,
whose equation of state we take to be that of a polytrope

 p � q�
�
�
�0

�
1=n
; (4.1)

where q is a constant, representing diverse choices for the
matter content of the shell [27]. For example, n � 0, n �
1, and n � 2 respectively represent constant energy den-
sity, nonrelativistic degenerate fermions, and nonrelativis-
tic matter or radiation pressure. Moreover, the equation of
state for perfect fluids is achieved by setting n! 1.

The matching conditions (2.9) and (2.10) of the shell
imply that

 

d
dR
��R� � �p � �q��1�1�=n; (4.2)

which yields

 ��R� � �0

�
�q� K

�
R

‘

�
1=n
�
�n
; (4.3)

where K is a constant of integration. For the perfect fluid,
we obtain

 ��R� � �0

�
‘
R

�
1�q

: (4.4)

From these we respectively obtain the equations

 ����������������������������������
_x2 � a�x2 � k�

q
�

����������������������������������
_x2 � a�x2 � k�

q
�

%0x

��q� �1� q�x1=n�n
� 0; (4.5)

for finite n, and

 

����������������������������������
_x2 � a�x2 � k�

q
�

����������������������������������
_x2 � a�x2 � k�

q
�
%0

xq
� 0; (4.6)

for the perfect fluid, where again x �R=‘, %0 � �0‘, and
K � �1� q� so that � � �0 when x � 1.

For all n, the equation of motion can be written as

 _x 2 � Veff�x� � 0; (4.7)

where

 Veff�x� � �
x2

4

�
�2 � 2�a� � a�� �

�a� � a��2

�2

�

�
k� � k�

2
�
�a� � a���k� � k��

�2

�
�k� � k��

2

4�2x2 (4.8)

is the effective potential. In general, it depends on many
parameters, �%0; q; a	; k	� and so is somewhat unwieldy to
analyze in full generality. Furthermore it is hard to obtain
an exact solution of Eq. (4.5) since the equation of motion
is highly nonlinear.

However the structure of the effective potential allows us
to discern some basic features. First, for finite n and non-
zero q, the shell will not collapse to a point, but rather to a
ring of size x � xq � qn=�1� q�n in finite proper time.
Physically we can think of the shell as developing an
increasingly large internal pressure that diverges for
some finite value of the shell radius. For the perfect fluid
the shell can collapse to zero size in finite proper time. In
either case the stress-energy tensor of the shell diverges.
However there is no backreaction since the field equations
force spacetime to have constant curvature in regions
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where the stress-energy tensor vanishes, i.e. everywhere
outside of the shell.

However the intrinsic Ricci scalar can be written in the
form

 R����� �
1

x2 �x _x2 � �x� �
1

2x2

�
d
dx
Veff�x� � 2xVeff�x�

�
(4.9)

by using Eq. (4.7). Since V�xq� ! �1 and dV�xq�=dx!
1, the intrinsic Ricci scalar of the shell diverges at x � xq
as the shell approaches its minimal radius. Physically the
internal pressure forbids the shell to be compressed without
limit. As it shrinks in size, the pressure grows, eventually
diverging (along with the density) at some finite shell
radius.

The shell can exhibit several kinds of behavior, depend-
ing upon the values of the parameters, a	, k	, q, n, and %0.
We illustrate here the generic possibilities for the effective
potential for specific values of these constants in Fig. 2 (for
perfect fluids in Fig. 3). Generically the effective potential
has 2 local maxima and one local minimum, and it diverges
to minus infinity for large x and for some finite x. It is
possible for the rightward local maximum to occur for
positive values of Veff , in which case the shall expands to

infinity, possibly after a bounce if it is given inward initial
velocity. The event horizon for the black hole is always to
the left of this maximum (and occurs where Veff < 0) so for
initial values of the shell radius between the event horizon
and the smaller root of Veff the shell will always collapse
into a black hole, again possibly with a bounce if given
outward initial velocity. If the rightward local maximum of
Veff occurs at Veff < 0 then the shell will either expand
outward to infinity or collapse to a black hole depending on
whether the initial velocity is outward or inward. Variation
of the parameters can cause the local minimum to disap-
pear, leaving a single maximum for the effective potential,
in which case the same qualitative behavior of the shell
takes place as previously described. A numerical search
indicates that there are no values of the parameters for
which both local maxima occur for Veff > 0, and so the
shell can never undergo bouncing oscillations between
maximum and minimum values.

However it is possible for the shell to collapse without
forming an event horizon if k� > 0. In this case the pres-
sure and density diverge in finite proper time at some finite
value of the shell radius (or zero value in the case of a
perfect fluid) as discussed above. The stress-energy tensor
and the intrinsic Ricci scalar of the shell both diverge, and
it is not possible to evolve the shell beyond this point. In

 

FIG. 2 (color online). Some plots of the effective potential of the shell with pressure. The parameters have been chosen so that the
pressure and density diverge at x � 1=2; the effective potential is physically meaningful only for x > 1=2.
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this sense we have a mild violation of cosmic censorship;
although the curvature is finite everywhere outside the
shell, it diverges on the shell, as with the case of pressure-
less dust. The pressure, rather than preventing a singularity,
instead moves it out to finite shell radius.

V. COLLAPSE OF THE GENERALIZED
CHAPLYGIN SHELL

We now turn to consideration of the gravitational col-
lapse of a generalized Chaplygin gas (GCG) shell with an
equation of state, p � � ~A=�� � �A�0��0=��

�. We find
that the density is

 � �
�A���1

0 R��1 � C�1=���1�

R
(5.1)

where C is a constant of integration. Combining Eqs. (2.9)
and (2.10) leads to a simple equation,
 �����������������������������
dR
d�

�
2
� F�

s
�

�����������������������������
dR
d�

�
2
� F�

s

� �A���1
0 R��1 � C�1=���1� � 0; (5.2)

where C has been chosen so that � � �0 when x �
R=‘ � 1.

The setting is like that of a polytrope, but with q < 0 and
n � 1=�1� ��. If we set A � 0 the situation reduces to
that of the collapse of pressureless dust shell investigated in
the previous section. If A> 0 Eq. (5.2) describes a GCG
with a negative pressure. Provided �>�1, the density
will diverge at the origin for C> 0. If C< 0 it will
converge to some finite value at some nonzero value of
the shell radius R, with the pressure diverging at that same
radius. If C � 0 the density and pressure are constant for
all values of R.

We proceed as before by redefining parameters so that
x �R=‘, %0 � �0‘, � � t=‘, and set C � 1� A%���1�

0 ,
so that � � �0 when x � 1. Then Eq. (5.2) becomes
 ����������������������������������

_x2 � a�x
2 � k�

q
�

����������������������������������
_x2 � a�x

2 � k�
q

� %0�Ax��1 � 1� A�1=���1� � 0: (5.3)

The equation of motion can be rewritten as

 _x�t�2 � Veff�x� � 0; (5.4)

where the effective potential is

 Veff�x� �
1

4C2 ��C
2 � ��a� � a��x2 � k� � k���2

� 4�a�x
2 � k���a�x

2 � k���; (5.5)

 

FIG. 3 (color online). Some plots of the effective potential of the shell of perfect fluids, for example, q � 0 (dust), q � 1=3
(radiating matter), and q � �1 (cosmological constant).
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with C � %0�Ax��1 � 1� A�1=���1�, whose shape de-
pends upon several parameters, �, A, a	, and k	. Note
that the effective potential will not diverge for any finite
value of x if A< 1. Otherwise, for all �>�1 it will
diverge quadratically for large x to either positive or nega-
tive infinity, depending on the values of the parameters.

For example, � � 1 describes a Chaplygin gas shell,
whose effective potential is

 Veff�x� � �
1

4%0�!2x2 � c�
�a4x

4 � 2a2x
2 � a0�; (5.6)

where for convenience we have defined!2 � A%2
0 and c �

�1� A�%2
0 so that

 

a4 � �!2 � �a� � a���2 � 4a�a�;

a2 � �k� � k� � c�!2 � �a� � a��c

� �k� � k���a� � a��;

a0 � �c� �k� � k���
2 � 4k�k�:

(5.7)

The effective potential for arbitrary c is plotted in Fig. 4 for
an exterior AdS black hole metric (k� < 0) and an exterior
AdS point mass metric (k� > 0) outside the shell.

A glance at Fig. 4 indicates that the GCG shell will
collapse to an AdS black hole within a finite time for c � 0
while this is always not the case if c < 0. If xH > xs, the
shell will form a black hole while if xH < xs, it will
collapse to a finite size of x � xs, even if the exterior
metric is an AdS black hole. The final state is a rather

unusual state in which the density is finite but the pressure
diverges, again yielding a Cauchy horizon and a violation
of cosmic censorship.

Consider the special case C � 0. This leads to the
simpler form

 

����������������������������������
_x2 � a�x2 � k�

q
�

����������������������������������
_x2 � a�x2 � k�

q
�!x � 0;

(5.8)

or alternatively

 _x 2 � Veff�x� � 0; (5.9)

where Veff�x� is an effective potential with

 Veff�x� � �
1

4!2x2 �a4x4 � 2a2x2 � a0�; (5.10)

where

 a4 � �!2 � a� � a��2 � 4a�a�

a2 � �k� � k��!
2 � �k� � k���a� � a��

a0 � �k� � k��2:

(5.11)

For this case the density and pressure are always con-
stant. The specific shape of the potential will depend upon
the values of a4, a2, and a0 associated with a	, k	, and !.
For example, if a0 � 0 (i.e. k� � k�), it is simply de-
scribed by the usual quadratic function. The shape of the
effective potential for each case is plotted in Fig. 5.

For a0 > 0, the behavior of x! 0 is Veff�x! 0� � �1,
regardless of the value of a4. For a4 > 0, since the potential

has two roots at x �

������������������������������������
a2 	

���������������������
a2

2 � a4a0

qr
=
�����
a4
p

and

Veff�x! 1� � �1, the curve of the potential is concave
down. In this case the shell will expand to infinity for
sufficiently large initial radius (with a bounce if the initial
velocity is negative) or collapse to zero size (leaving
behind a black hole or a naked singularity) for sufficiently
small initial radius (with a bounce if the initial velocity is
positive). For a4 < 0 there is only one root and Veff�x!
1� � 1. In this case the shell always collapses to zero
size, possibly preceded by a bounce if it is initially ex-
panding outward. For a4 � 0 a third possibility exists in
which the shell can expand indefinitely but will continually
decelerate. These scenarios are depicted on the left-hand-
side of Fig. 5.

For k� < 0 (an exterior AdS black hole metric) and
a4 � 0 (middle and bottom lines in Fig. 5(a)], the shell
can either collapse or expand, depending upon the initial
velocity, _x. However for a4 < 0, the shell will either col-
lapse to a black hole or initially expand, bounce and then
collapse to a black hole. For k� > 0 (an AdS point mass
metric) and a4 � 0 (top and middle lines in Fig. 5(b)], the
shell will collapse to a point at x � 0 while if a4 > 0, then
the shell will either collapse to a point or expand indef-
initely or collapse to a certain size and expand indefinitely
again.

 

V(x)

c<0

c<0c=0

c>0

x=xs

x

FIG. 4 (color online). Plot of the effective potential
of the GCG shell with arbitrary c for � � 1, where xs �
%0

������������������
1� 1=A

p
�

�������
�c
p

=! only for c < 0.
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There are three classes of solutions, depending upon the sign of a4: a4 > 0, a4 � 0, and a4 < 0. The general solutions of
Eq. (5.8) are

 x�t�a4>0 �
1�����
a4
p

�
a2

�
1� cosh

� �����
a4
p

!
�t� t0�

��
�

����������
a4a0
p

sinh
� �����
a4
p

!
�t� t0�

��
1=2

(5.12)

 x�t�a4<0 �
1�����
�a4
p

� ���������������������
a2

2 � a0 �a4

q
sin
�

arcsin
�

a2���������������������
a2

2 � a0 �a4

q �
�

�����
�a4

p

!
�t� t0�

�
� a2

�
1=2

(5.13)

 x�t�a4�0 �

�������������������������������������������������������
a0!

2 � a2
2�t� t0 �

����
a0
p

!
a2
�2

2a2!
2

vuut
; (5.14)

where t0 is the collapse time to x � 0, respectively, given by

 ta4>0
0 �

!�����
a0
p arccosh

�a2�a4x2
0 � a2� � a4

�����������������������������������������������
a0�a4x4

0 � 2a2x2
0 � a0�

q
a0a4 � a

2
2

�
(5.15)

 ta4<0
0 �

!�����
�a4
p

�
arcsin

�
a2 � �a4x

2
0���������������������

a2
2 � a0 �a4

q �
� arcsin

�
a2���������������������

a2
2 � a0 �a4

q ��
(5.16)

 ta4�0
0 �

!
a2
�
�����
a0
p
�

������������������������
a0 � 2a2x

2
0

q
�; (5.17)

where �a4 � �a4 > 0.
In order to have a positive and real collapse time in

Eq. (5.15), we should impose that the argument of the
cosine hyperbolic function must be greater than 1, which
leads to a condition,

 a0a4 � a
2
2 > 0; (5.18)

while Eqs. (5.16) and (5.17) is always valid regardless of
parameters.

The intrinsic scalar curvature of the shell can be eval-
uated by an expansion in terms of t� t0 for each case,

 R�����  �
3

8�t� t0�
2 
 
 
 (5.19)

where we see that it is generically singular at the endpoint
of collapse.

An interesting subcase is obtained by setting k� �
k� � k, which yields a4 � �!2 � a� � a��2 � 4a�a�,
a2 � 2k!2, and a0 � 0. The effective potential is now a
quadratic function in the form of

 Veff�x� � �
1

4!2 �a4x
2 � 2a2�; (5.20)

and possible scenarios of collapse, depending upon a4 and
a2, are shown in Fig. 6. For a4 > 0, there are three choices

 

FIG. 5 (color online). Plots of the effective potential of the GCG shell for each a4, setting � � 1, k� � 1, and k� � �4 (left-hand
side) and k� � 0:5 (right-hand side).
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of collapse scenarios depending on the sign of a2. For an
AdS space outside the shell (a� � 1), then a4 � �!

2 �
1� a��

2 � 4a� > 0. When a2 > 0, then k > 0, which
implies that we have the metric of an AdS point mass
outside the shell. The interior space is either (i) an AdS
point mass if a� > 0, (ii) a dS space if a� < 0, or (iii) a
point mass in a flat space if a� � 0. Then the shell will
either bounce at x �

���������������
2a2=a4

p
and expand again if it

initially contracts or expand indefinitely, as shown in
Fig. 6(a). If a2 � 0, then k � 0. Thus a� > 0 to preserve
the metric signature, which describes an AdS vacuum in
and outside of the shell. Then the shell will either expand
indefinitely or contract to zero size, at which point its
intrinsic Ricci scalar diverges, forming a naked singularity
(see 6(b)].

Alternatively the situation a2 < 0 describes two AdS
black holes with k � �M since a� > 0 for preserving
the metric signature. Note that these holes will have differ-
ing masses since a� > a�. In this case, the shell will either
collapse to a black hole or expand, depending upon its
initial motion. [Fig. 6(c)] Finally, for a4 < 0, it is found
that a�a� > 0, i.e. both spaces should be AdS spaces.
Since a2 � 2k!2 < 0, this also describes AdS black holes
of differing mass, even if the shape of the effective poten-
tial is different from above case.

Note that the final state of collapse for all black hole
scenarios is a singularity cloaked by an event horizon.
Since k� � k�, we obtain from Eqs. (5.12) and (5.13)

 R�����a4>0 � �
a4

8!2

�
1�

2

cosh�
����
a4
p

! �t� t0�� � 1

�
;

(5.21)

 R�����a4<0 � �
a4

8!2

�
1�

2

cos�
����
a4
p

! �t� t0�� � 1

�
; (5.22)

for the intrinsic curvature scalars in each case, which are
both singular as t! t0. Consequently [Figs. 6(c) and 6(d)]
once the shell hits zero size a singularity is hit and then we
lose predictability.

Now let us consider a point mass in flat space outside the
shell. Then we have a� � 0 and k > 0, which implies
a4 > 0 and a2 > 0, regardless of the sign of a�. Then the
shell will ultimately expand in this case.

If there is a dS space outside the shell (i.e. a� < 0 and
k > 0), we also have a2 > 0 while a4 can have both signs,
depending upon the choice of a�. If a� � 0 (a point mass
in AdS or flat space), a4 > 0 and this describes an expand-
ing shell as shown in Fig. 6(a). However, if a� < 0, it
describes dS spaces in and outside the shell, which leads to
an indefinitely expanding shell. [Fig. 6(a)]

VI. DISCUSSION

Perhaps the most intriguing result of this paper is that
shell collapse in �2� 1�-dimensional gravity can violate—
albeit somewhat mildly—cosmic censorship for a broad
range of initial conditions, whether we have pressureless
dust shells, shells with pressure, or GCG shells. The situ-
ation is markedly different from that of a scalar field [28],
in which either a black hole is formed or the scalar field
oscillates indefinitely without collapse, neither of which
violates cosmic censorship. Here, as the shell collapses its
density (and pressure, if any) diverge in finite proper time.
Although the exterior spacetime develops no curvature
singularities (since spacetime in (2� 1) dimensions has
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FIG. 6 (color online). Possible collapse scenarios of k� � k� case.
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constant curvature outside of all matter sources), the stress-
energy tensor of the shell diverges in finite proper time and
so the Einstein equations (and the second junction condi-
tion in Eq. (1.1)) break down. Consequently the equation of
motion describing the time-evolution of the shell is no
longer valid. This yields a mild violation of cosmic censor-
ship in that, strictly speaking, there is no definite manner in
which to continue the spacetime beyond this event and its
future light cone.3 A Cauchy horizon forms if this final
state is not cloaked by an event horizon. A classification of
collapse scenarios, depending on the initial conditions, is
shown in the Table I.

We find that dust shells can collapse to zero size in an
AdS background, displaying similar behavior to that of a
pressureless disk of dust [3]. The final state of collapse in
both cases is one in which the shell/disk has finite velocity
when it achieves zero size, with a diverging intrinsic Ricci
scalar. Unlike the situation in higher dimensions, this state
need not be cloaked by an event horizon, in which case a
Cauchy horizon is present. However one might take the
viewpoint that it is natural to consider matching this space-
time to one in which the shell bounces repeatedly from
zero size to a maximal value and back again; the exterior
space will always be that corresponding to an AdS point
mass, with the interior space being one of several possi-
bilities as outlined in the discussion in section III. The
collapse time is always finite. If a black hole is formed, the
edge of the shell and the event horizon coincide in finite
proper time, th.

For shells with pressure, the situation is more intriguing.
In this case the final state of shell collapse has a finite
radius, since the material of the shell is no longer infinitely
compressible. The intrinsic Ricci scalar becomes singular
in finite proper time and the effective potential diverges. In
other words, the shell collapses to a singular ring with a
finite size within finite proper time. If the external geome-
try is initially that of a black hole, that singular ring will be
screened by an event horizon. However this need not be the
case, and a naked singular ring with a finite size can be

formed if the exterior metric is that of a point mass. The
role of pressure is that of shifting the singular point at
x � 0 to some finite radial position, sustaining the shell
with a finite size.

Despite the qualitatively different physics of the GCG
shell, we find that it can exhibit similar behavior to the
other two cases. It also presents a variety of scenarios (such
as a collapse to a black hole or an indefinitely expanding
shell) which depend upon the initial velocity and the shape
of the effective potential. However there are some qualita-
tive differences. It is possible for a GCG shell to collapse to
a shell of finite radius in which the density is finite but the
pressure diverges. There is still a curvature singularity on
the surface of the shell at the radius x � xs. Even if the
initial external geometry is a black hole, the singular ring
need not be cloaked by an event horizon, and scenarios
similar to the previous cases ensue.

While collapsing shells in (2� 1) dimensions are not
easily translatable into realistic scenarios in (3� 1) dimen-
sions, our study is of more than passing interest. From a
general relativistic viewpoint shell collapse highlights the
importance of understanding what limits there may be to
cosmic censorship. Indeed, since there are two possible
final states for collapse (either a black hole or not) then
there should be some kind of critical phenomenon associ-
ated with this scenario as with the scalar field [28]. In this
context it would be interesting to extend our results to
rotating black holes, where it has been shown that cosmic
censorship holds in dust collapse for the addition of a small
amount of angular momentum [23]. From a string-
theoretic viewpoint it would be interesting to understand
the implications of this work for the AdS/CFT
correspondence.
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TABLE I. Properties of collapse scenarios for each initial condition and background space-
time.

intial velocity initial position exterior spacetime properties

_x0 > 0 x0 > xmin all expand
x0 < xmax AdS (�< 0) bounce & collapse to BH=NS4

flat (� � 0) bounce & collapse to NS
dS (�> 0) bounce & collapse to NS

_x0 < 0 x0 > xmin all bounce & expand
x0 < xmax AdS (�< 0) collapse to BH/NS

flat (� � 0) collapse to NS
dS (�> 0) collapse to NS

3For a discussion of possible violations of cosmic censorship
in fluid collapse in higher dimensions, see [29].

GRAVITATIONALLY COLLAPSING SHELLS IN �2� 1� . . . PHYSICAL REVIEW D 74, 124016 (2006)

124016-13



Yee, M. I. Park, G. Kang, S.-J. Sin, and K. Choi for fruitful
discussions.

APPENDIX A: PENROSE DIAGRAMS

We consider here the construction of Penrose diagrams
for the various collapse scenarios. With no loss of general-
ity, the positivity of energy density gives rise to

 �� � �� > 0; (A1)

where j�	j �
������������������
_x2 � F	

p
can each be either positive or

negative and F	 � a	x2 � k	. A wide variety of collapse
scenarios are possible under the constraint of Eq. (A1). For
example, if k� > 0 and k� < 0 (a black hole inside and a
point mass outside the shell), taking �� > 0 for an ex-
panding shell restricts �� > 0 but otherwise provides no
further constraints.

Cases with an AdS-exterior and dS-interior in the con-
text of inflationary models have been treated before [26].
We shall therefore not consider this case, and concentrate
only on a few of the remaining scenarios. While we have
been primarily interested in shell collapse in this paper, we
shall consider scenarios where the shell can expand as well.

Consider first a point mass inside and an AdS black hole
outside the shell. Within this context we can have both
expanding and collapsing shells, depending upon the di-
rection of the initial velocity. For the expanding case, the
positivity condition, Eq. (A1) leads to two possible final
geometries upon matching to the exterior, as shown in
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Figs. 7(c) and 7(d). The former contains Cauchy horizons
(though not from the viewpoint of observers on the right
half of the diagram).

The diagrams for a collapsing shell can be obtained by
considering the same procedure in Fig. 8. Here the shell
forms an event horizon in finite proper time, collapsing into
a black hole; the time-reversed version of this (in which the
shell expands out of a white hole) is also shown in the
diagram.

Inverting the exterior and interior, we obtain the situ-
ation depicted in Figs. 9 and 10 for contracting and ex-
panding cases, respectively. An interesting feature can be
found for the collapsing shell case (Fig. 9). In the com-
bined figure [Fig. 9(c)], we see that an observer external to
the shell will eventually have the singularity within his/her
past light cone, signalling the appearance of a Cauchy
horizon. This can be avoided for special trajectories of
the shell, in which null infinity for the external observer
ends at the endpoint of the shell trajectory in the Penrose
diagram.

For a shell with pressure the stress-energy tensor di-
verges at x � xs (where the effective potential also di-
verges), forming a singular ring and a Cauchy horizon.
The relevant diagrams are shown in Fig. 11 for a collapsing
shell, which also yields a cosmic censorship violation.
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APPENDIX B: JACOBIAN ELLIPTIC FUNCTIONS

In this appendix, we shall briefly introduce Jacobian
elliptic functions and its properties. We can define a doubly
periodic elliptic function with real parameters, m and m1,
where m�m1 � 1, as
 

K�m� � K �
Z �=2

0

d�������������������������
1�msin2�
p ;

iK0�m� � iK0 � i
Z �=2

0

d���������������������������
1�m1sin2�

p ;
(B1)

where 0 � m � 1. Note that K and K0 are real numbers.
Here we denote the points, 0, K, K � iK0, iK0 by s, c, d, n
respectively, which are at the vertices of a rectangle and
show a repeated pattern indefinitely. Now the Jacobian
elliptic functions can be defined with respect to an ingetral,

 u �
Z ’

0

d�������������������������
1�msin2�
p ; (B2)

where the angle ’ is called the amplitude. Then, we define

 JacobiSN �u; k� � sin’; (B3)

 JacobiCN �u; k� � cos’; (B4)

 JacobiDN �u; k� �
�������������������������
1�msin2’

q
: (B5)

Here we simply denote JacobiSN�u; k� as sn�ujm�, here-
after, wherem � k2. There are some useful relations of the
Jacobian functions to the copolar trio, sn, cn, dn, such that
 

cd�ujm� �
cn�ujm�
dn�ujm�

; dc�ujm� �
dn�ujm�
cn�ujm�

;

ns�ujm� �
1

sn�ujm�
sd�ujm� �

sn�ujm�
dn�ujm�

;

nc�ujm� �
1

cn�ujm�
; ds�ujm� �

dn�ujm�
sn�ujm�

nd�ujm� �
1

dn�ujm�
; sc�ujm� �

sn�ujm�
cn�ujm�

;

cs�ujm� �
cn�ujm�
sn�ujm�

:

If the parameter m is a positive number, there are some
useful relations for the negative parameter. Defining new
parameters as� � m=�1�m�,�1 � 1=�1�m�, and v �
u=

������
�1
p

, where 0<�< 1, we have

 sn�uj �m� �
������
�1
p

sd�vj��; (B6)

 cn�uj �m� � cd�vj��; (B7)

 dn�uj �m� � nd�vj��: (B8)

The Jacobian elliptic function is a real function for the real
parameters and variables. If we consider the SN function,
SN�au;m�, where a and m are constants, then the function
has the following properties:

 sn�aujm� 2R �a2R;m2R or a2R;m2 I�

(B9)

 sn�aujm� 2 I �a 2 I ;m2R or a2 I ;m2 I�:

(B10)

There are Jacobi’s imaginary transformations for the
imaginary values of parameters,
 

sn�iujm� � isc�ujm1�;

cn�iujm� � nc�ujm1�;

dn�iujm� � dc�ujm1�;

(B11)

which are useful to convert a function to a simple form.
Moreover, there are some useful relations for real parame-
ters, called Jacobi’s real transformation. For m> 0, defin-
ing � � 1=m and v �

����
m
p

u, then we have

 sn�ujm� �
����
�
p

sn�vj��; (B12)

 cn�ujm� � dn�vj��; (B13)

 dn�ujm� � cn�vj��: (B14)

If m> 1, then m�1 � �< 1, which implies that real
parameters of elliptic functions always lies between 0
and 1. More details on the further properties on the
Jacobian elliptic functions are shown in Ref. [30].
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