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We analyze the motion of massless and massive particles around black holes immersed in an
asymptotically uniform magnetic field and surrounded by some mechanical structure, which provides
the magnetic field. The space-time is described by the Preston-Poisson metric, which is the generalization
of the well-known Ernst metric with a new parameter, tidal force, characterizing the surrounding structure.
The Hamilton-Jacobi equations allow the separation of variables in the equatorial plane. The presence of a
tidal force from the surroundings considerably changes the parameters of the test particle motion: it
increases the radius of circular orbits of particles and increases the binding energy of massive particles
going from a given circular orbit to the innermost stable orbit near the black hole. In addition, it increases
the distance of the minimal approach, time delay, and bending angle for a ray of light propagating near the
black hole.
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I. INTRODUCTION

Black holes in the centers of galaxies are immersed in a
strong magnetic field due to charged matter surrounding
them. The strong magnetic field in the center of galaxies is
stipulated by toroidal currents around galactic black holes
[1]. Therefore an exact solution of Einstein-Maxwell equa-
tions describing a black hole immersed in an asymptoti-
cally uniform magnetic field, known as the Ernst solution
[2], was of considerable interest [3]. The light and particle
motion around the Ernst-Schwarzschild black hole was
analyzed in a few papers [4,5]. In particular, in [4] it was
shown that the Hamilton-Jacobi equation allows the sepa-
ration of variables in the equatorial plane, where the mo-
tion of neutral and charged particles were analyzed. In [5]
the motion of neutral particles were considered for a more
general situation of the electromagnetized Kerr back-
ground. There it was shown that the release of binding
energy is considerably increased because of the presence of
the electromagnetic field, and the binding energy for cir-
cular orbits was calculated. Yet, in a more realistic situ-
ation, the strong magnetic field in the central region near
the black hole is created by some surrounding matter, such
as accretion disk or an active galactic nuclei. This sur-
rounding structure exerts strong gravitational tidal force on
particles moving near black holes, so that the magnetic
influence of the structure might be even much smaller than
its gravitational influence. Therefore a more physical situ-
ation should include into consideration the corrections to
the black hole metric due to that structure. Fortunately,
recently Preston and Poisson [6] have found such a cor-
rected metric. This is the solution to the perturbative
Einstein-Maxwell equations depending on three parame-
ters: the black hole mass M, the magnetic field B, and a
new parameter K, which characterize the above surround-
ing structure. The solution is very accurate for r2B2 �

M=a� 1, and r2K� 1, where r is the distance form the
black hole and a is the length scale of the mechanical
structure. Indeed, a comparison with the exact Ernst solu-
tion shows that next order corrections are of order B4 and
are very small.

In the present paper we generalize the analysis of works
[4,5] and study the motion of test particles near black holes
immersed in an asymptotically uniform magnetic field and
some gravitating surrounding structure, which provides the
magnetic field. The paper is organized as follows: In Sec. II
we reduce the Preston-Poisson metric to the Ernst-like
form, by going over to a new coordinate. Then in Sec. III
we consider the Hamilton-Jacobi equation in the equatorial
plane, and use it for the analysis of massless particles.
There the lens effects for the Preston-Poisson metric are
considered. The motion of massive particles is described in
Sec. IV, where the binding energy for particles on circular
orbits are calculated.

II. PRESTON-POISSON METRIC

Following [6], let us consider a model consisting of a
nonrotating black hole immersed in a uniform magnetic
field, and a large mechanical structure, such as a giant
solenoid, producing the magnetic field of strength B. The
structure has a mass M0 and its linear extension is �a. In
order to have a magnetic field which is uniform for r� M,
one chooses

 A� � 1
2B�

�; (1)

where �� is the rotational Killing vector of the unper-
turbed Schwarzschild metric.

The metric which describes the space-time of the above
model, written in light-cone gauge, is [6]

 ds2 � �gvvdv2 � 2dvdr� gv�dvd�� g��d�2

� g��d�
2; (2)*Electronic address: konoplya@fma.if.usp.br
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where
 

gvv � ��1� �2M=r�� �
1
9B

2r�3r� 8M�

� �19B
2�3r2 � 14Mr� 18M2�

� K�r� 2M�2��3cos2�� 1�; (3)

 gv� � �
2
3B

2�r� 3M� � 2K�r2 sin� cos�; (4)

 g�� � r2 � ��1
3B

2r2 � B2M2 � K�r2 � 2M2��r2sin2�;

(5)

 

g�� � r2sin2�� B2r2���1
3r

2 �M2�

� K�r2 � 2M2�r2�sin4�: (6)

The above metric is accurate through order �B2; K�, when-
ever r2B2 � and r2K� 1. The new parameter K charac-
terizing the mechanical structure, containing the black
hole, can be interpreted as a tidal gravity or Weyl curvature
when r� M. Thus we have a three-parameter solution.

From now on, we shall consider motion in the equatorial
plane � � �=2. Therefore, we shall put � � �=2 in for-
mulas (1)–(5). Then, let us make the following coordinate
transformations:

 v � t� �r� 2M lnj��r=2M� � 1j; (7)

 

r � �r�1� �1=6�B2r2 � �1=3��K � �1=2�B2���r� 2M��r2

�O�B4; K2�: (8)

These transformations are the generalization of transfor-
mations (3.60–3.61) of [6] in the equatorial plane and they
cast the metric (1) into the diagonal form

 ds2 � gttdt2 � gr rd �r2 � g��d�2 � g��d�2; (9)

where the metric components (neglecting ordersO�B4; K2�
and higher) are

 gr r � �1� 2M=�r��1 �
�4M� 3�r��r2

6M� 3�r
K �

2M �r2

6M� 3�r
B2;

(10)

 

gtt � �1� 2M=�r� � �1=3���8M2 � 10M �r� 3�r2�K

� �2=3�M�2M� �r�B2; (11)

 g�� � �r2 � �1=3� �r2��6M2 � 4M �r� 5�r2�K

� �1=3� �r2�3M� �r��M� �r�B2; (12)

 g�� � �r2 � �1=3� �r2��6M2 � 4M �r� 5�r2�K

� �1=3��r2�3M2 � 2M �r� �r2�B2: (13)

This form of the metric does not have nondiagonal com-
ponents in the equatorial plane and is much simpler for the

consideration of motion of test particles. To be exact,
nondiogonal components are of order �B4; K2� and higher,
and therefore can be safely neglected.

III. MOTION OF MASSLESS PARTICLES

From now on we shall write r instead of �r. The four-
momentum is

 p� � g��
dx�

ds
; (14)

where s is an invariant affine parameter. The Hamiltonian
has the form

 H � 1
2g
��p�p�: (15)

The action can be represented in the form:

 S � ��s� Et� L�� Sr�r� � S����; (16)

where E and L are the particle‘s energy and angular
momentum, respectively.

Then, the Hamilton-Jacobi equations for null geodesics
read

 

1

2
g��

@S
@x�

@S
@x�
� �

@S
@s
� �2: (17)

It is evident that the equations of motion allow the
separation of variables in the equatorial plane � � �=2.
The first integrals of motion are

 �grr
dr
ds
� 	

������������������������������������
�
grr
gtt
�E2 �U2

eff�

s
; (18)

 p� � �g��
d�
ds
� L; (19)

 pt � �gtt
dt
ds
� �E; (20)

 U2
eff � �gtt�

2

�
1�

L2

�2g��

�
: (21)

The trajectory and propagation equations take the form

 

�
dr
dt

�
2
� �

gtt
grr

�
1�

gtt
g��

�p�
pt

�
2
� gtt

m2

p2
t

�
; (22)

 

�
dr
d�

�
2
� �

g��
grr

�
1�

g��
gtt

�
pt
p�

�
2
� g��

m2

p2
�

�
: (23)

For massless particles, from the above Eqs. (22) and
(23), one can see that propagation and trajectory equations
contain only the ratio b � L=E, which is called the impact
parameter. The qualitative description of the motion of
massless particles can be made by considering the effective
potential of the motion (21, where � � 0). The equation
for the radii of circular orbits can be found from the
condition dUeff=dr � 0:

 gttg��;r� g��gtt;r : (24)
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This gives the algebraic equation for r:
 

� 6�B2 � 2K�M3 � 2r� 10�B2 � 2K�M2r

� �4=3��B2 � K�r3 �M�6� 6B2r2 � 4Kr2� � 0: (25)

When B2 � M and K� M, we have, that above some
critical region of values of B and K, there are two null
circular orbits with radii

 r1 � �3M� 12M3K � �3M3 � 120M5K�B2; (26)

 r2 �
2K�

���
6
p
� 6

����
K
p

M��1� 2KM2� � B2�
���
6
p
�

����
K
p

M��15� 13
�������
6K
p

M� 6KM2��

4�K�3=2
: (27)

When B � K � 0, r1 takes its Schwarzschild value 3M.
Unfortunately, we cannot find accurate values for the criti-
cal region �Bcr; Kcr�, because the values we get are quite
large, and, for instance, for K � B2=2, it is about 0:189M,
which is on the boundary of applicability of the approxi-
mate metric under consideration. The physical situation
corresponds to some tidal force K, which is larger than its
pure Ernst value B2=2. Therefore, we shall further consider
the new parameter h, which is given by the relation:

 K �
B2

2
� h:

Now, let us consider the effect of tidal gravitational attrac-
tion of the surrounding structure upon such lens effects as a
light bending angle and time delay. For this, let us follow
the approach of [7].

If we know the distance of minimal approach rmin with
great accuracy, we can perform integrations for finding the
bending angle:

 � � �s ��o � �
Z rmin

rs

d�
dr

dr�
Z ro

rmin

d�
dr

dr� �:

(28)

Here ro is the radial coordinate of an observer and rs is
the radial coordinate of the source.

In a similar fashion one can find the time delay, which is
the difference between the light travel time for the actual
ray, and the travel time for the ray the light would have
taken in the Minkowskian space-time:

 ts � to � �
Z rmin

rs

dt
dr
dr�

Z ro

rmin

dt
dr
dr�

ds�o
cosB

: (29)

Here the term ds�o
cosB represents the propagation time for a ray

of light, if the black hole is absent. The distance of minimal
approach is the corresponding root of the equation
dr=dt � 0. For pure Schwarzschild black hole it would
be the largest root, yet in our case it the second largest root
of the equation:
 

r3��3� B2�3M2 � 2Mr� r2� � K��6M2 � 4Mr� r2��

� �2M� r��3� 2B2Mr� Kr��4M� 3r�b2 � 0: (30)

Looking numerically for the solution of Eq. (30) one can
see that the tidal force K pulls out the radius of the minimal
approach further from the black hole. We also can see from
Table I, that the presence of the mechanical structure leads
to the increasing of the banding angle and time delay near
the black hole.

IV. MOTION OF MASSIVE PARTICLES

The effective potential for the massive neutral particles
(21) is shown in Figs. 1 and 2 for zero and nonzero angular
momentum L of the particle.

From the above figures one can see that the effective
potential can have the form of the barrier or of a mono-
tonically increasing function.

TABLE I. Bending angle � and propagation time � for Ernst-
Schwarzschild space-times (in geometrical units, M � 1) for
b � 6. ‘‘Observer’’ and ‘‘source’’ are supposed to be situated
not far from the black hole in order to estimate the influence of a
magnetic field in the central region of the black hole: ro � rs �
20, b � 6.

B h �� � ts � to � ds�o= cosB

0 0 4.252 334 56.845 54
0 5
 10�4 4.406 231 57.252 24
0 10�3 4.577 176 57.720 44
5
 10�4 0 4.252 388 56.845 67
5
 10�4 5
 10�4 4.406 293 57.252 40
5
 10�4 10�3 4.577 247 57.720 63
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FIG. 1 (color online). Effective potential for neutral particles:
M � 1, B � 0:001, � � 0:1, L � 0. K � 0:001 (lower), K �
0:01 (middle), K � 0:02 (upper).
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For circular orbits the equation Veff ;r� 0 gives

 � L2�gtt;r g�� � g��gtt;r � ��2gtt;r g2
�� � 0: (31)

If one solves (27) for L, and uses it in the equation
dr=dt � 0, or, equivalently, in

 U2
eff � E2; (32)

one obtains a rather cumbersome system of the equation
for determination of the parameters of orbits of massive
particles.

The values L=� and E=� as functions of the radius of
circular orbits are presented in Figs. 3 and 4. They are
found there from accurate Eqs. (31) and (32). From Figs. 3
and 4, one can see that the particle angular momentum and
energy per units mass is monotonically growing as func-
tions of the radius of circular orbit rc, starting from some
minimal value. This minimum value of the test particle
angular momentum corresponds to the orbit with the inner-
most stable circular radius ric. The largeK, the more radius

of the innermost stable circular orbit ric is pulled toward
the black hole.

The binding energy is defined as the amount of energy
that is released by the test particle going from a stable
circular orbit rc, to the innermost stable orbit of radius ric,
i.e.

 Binding energy �
�E=��rc � �E=��ric

�E=��rc
: (33)

A test particle in an unstable circular orbit will fall into
the black hole and the infall time is small compared to the
radiative time, so that the particle energy will be brought to
the black hole almost completely.

From Fig. 5 one can see two features: first, the binding
energy is greater for a larger radius of circular orbit, and
this dependence on the radius is strictly monotonic.
Second, the larger the tidal force K, the larger the binding
energy for a given radius of the circular orbit of the particle
rc. The last feature means that in the presence of the
surrounding attracting structure a test particle, when going
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FIG. 2 (color online). Effective potential for neutral particles:
M � 1, B � 0:001, � � 0:1, L � 5. K � 0:001 (lower), K �
0:01 (middle), K � 0:02 (upper).
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FIG. 3 (color online). E=� as a function of the radius of the
circular orbit rc M � 1, B � 0:0001, K � �B2=2� (bottom), K �
�B2=2� � 0:001, K � �B2=2� � 0:003 (top).
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FIG. 4 (color online). L=� as a function of the radius of the
circular orbit rc M � 1, B � 0:0001, K � �B2=2� (bottom), K �
�B2=2� � 0:001, K � �B2=2� � 0:003 (top).
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FIG. 5 (color online). Binding energy as a function of the
radius of the circular orbit rc M � 1, B � 0:0001, K � �B2=2�
(bottom), K � �B2=2� � 0:001, K � �B2=2� � 0:002, K �
�B2=2� � 0:003 (top).
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from its stable orbit to the innermost stable one, releases
more energy than it would release without the above
structure.

Finally, let us give the explicit form of Eqs. (31) and (32)
through the orders B2, K,

 

E2

�2 �
1

3

�
r� 2M
r� 3M

�
2
�
3

r
�3M� r� � 2K�9M2 � 10Mr

� 3r2� �M�9M� 4r�B2

�
; (34)

 

L2

�2 �
1

3

�
r

r� 3M

�
2
�3r�r� 3M� � 18M4 � 6M3r

� 19M2r2 � 14Mr3 � 3r4

�M�9M3 � 3M2r� 2Mr2 � r3�B2�: (35)

These expressions are much simpler than the exact
Eqs. (31) and (32).

For massive charged particles in the vicinity of un-
charged black holes, one should change the angular mo-
mentum of the particle L to the generalized momentum:

 L! L� g��
eB
2
: (36)

The effective potentials for the case of charged particles
are shown in Figs. 6–9. The situation is dependent on the
sign of the charge, because the Lorentz force acting on the
charged particles has opposite directions for positive and
negative charges.

There are two reasons why we do not analyze the case of
charged particles in detail: First, the magnetic field used for
derivation of the considered metric is given only through
the first order in B. Second, the effect of the strong mag-
netic field for charged particles is stipulated by the factor
eB=� (whenM � 1), and is very large even for small B�
M, because of the large ratio e=�. Therefore, it is generally
accepted, to neglect ‘‘geometric’’ influence on the propa-
gation of charged particles, and to consider the more
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FIG. 8 (color online). Effective potential for charged particles:
eB � 0:006 (top), 0, �0:006, �0:038 (bottom), h � 0, �M �
1, L � 5.
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FIG. 6 (color online). Effective potential for charged particles:
e � 0:6 (top), 0,�0:6,�3:8 (bottom), h � 0, �M � 1, L � 30.
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FIG. 7 (color online). Effective potential for charged particles:
e � 0:6 (top), 0, �0:6, �3:8 (bottom), h � 0:005, �M � 1,
L � 30.

 

4 6 8 10
r

1.05

1.1

1.15

1.2

1.25
Ueff

FIG. 9 (color online). Effective potential for charged particles:
eB � 0:006 (top), 0, �0:006, �0:038 (bottom), h � 0:005,
�M � 1, L � 5.
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realistic decaying magnetic fields on the black hole back-
ground [8].

V. CONCLUSION

We have considered the motion of massless and massive
test particles near black holes immersed in an asymptoti-
cally uniform magnetic field and some surrounding struc-
ture which provides this field. The tidal force from the
surrounding structure has considerable influence on the
parameters of the test particle motion. Let us enumerate
them: (a) it pulls radius of the circular orbits off the black
hole, (b) it increases the radius of the minimal approach for
light, (c) it increases the time delay and bending angle for

light, (d) it increases the energy and momentum (per unit
mass) for a circular orbit of a given radius, (e) it increases
the binding energy of massive particles, which releases
when a particle goes from a given stable circular orbit to
the innermost stable circular orbit, and (f) the radius of the
innermost stable circular orbit is pulled closer to the black
hole.

The used Preston-Poisson metric gives an excellent
opportunity to investigate the motion of test particles in
the vicinity of a supermassive ‘‘dirty’’ black hole, sur-
rounded by some distribution of matter and the uniform
magnetic field, and to approach, thereby, a more realistic
situation than that given by the Ernst solution.
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