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Conformally invariant wave equations in de Sitter space, for scalar and vector fields, are introduced in
the present paper. Solutions of their wave equations and the related two-point functions, in the ambient
space notation, have been calculated. The Hilbert space structure and the field operator, in terms of
coordinate independent de Sitter plane waves, have been defined. The construction of the paper is based
on the analyticity in the complexified pseudo-Riemannian manifold, presented first by Bros et al.
Minkowskian limits of these functions are analyzed. The relation between the ambient space notation
and the intrinsic coordinates is then studied in the final stage.
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I. INTRODUCTION

Recent astrophysical data indicate that our universe
might currently be in a de Sitter (dS) phase. Quantum field
theory in dS space-time has evolved as an exceedingly
important subject, studied by many authors in the course
of the past decade. The importance of dS space has been
primarily ignited by the study of the inflationary model of
the universe and the quantum gravity. The importance of
the ’’massless’’ spin-2 field in the de Sitter space (dS linear
quantum gravity) is due to the fact that it plays the central
role in quantum gravity and quantum cosmology. Massless
field equations in de Sitter space, similar to the flat space
counterparts, have the conformal invariance properties.
The massless field equations with s � 1 are also gauge
invariant. In this paper, the conformally invariant aspects of
the massless scalar field and the massless spin-1 field
(vector field) in dS space are studied. This formulation
establishes the base for conformally invariant wave equa-
tion of massless spin-2 field.

Bros et al. [1,2] presented the quantum field theory
(QFT) of the scalar field in dS space that closely mimics
the QFT in Minkowski space. They have introduced a new
version of the Fourier-Bros transformation on the hyper-
boloid [3], which allows us to completely characterize the
Hilbert space of a ‘‘one-particle’’ state and the correspond-
ing irreducible unitary representations of the de Sitter
group. In this construction, correlation functions are
boundary values of analytical functions. It should be noted
that the analyticity condition is only preserved in the case
of Euclidean vacuum. In a series of papers, we generalized
the Bros construction to the quantization of the various spin
free fields in dS space [4]. Here we have applied the Bros
construction to the conformally invariant massless scalar
and vector fields in dS space.

The massive and massless conformally coupled scalar
fields, respectively, correspond to the principal and com-
plementary series representation of the de Sitter group [2].

The massive and massless vector fields in dS space have
been associated with the principal series and the lowest
representation in the vector discrete series representation
of the dS group, respectively [5,6]. These representations
have the physical meaning in the null curvature limit. The
massless vector field, however, with the divergencelessness
condition, is singular [5]. This type of singularity is ac-
tually due to the divergencelessness condition needed to
associate this field with a specific unitary irreducible rep-
resentation (UIR) of the dS group. To solve this problem,
the divergencelessness condition must be dropped. The
field equation is then gauge invariant [6]. Hence, the vector
field is associated with an indecomposable representation
of the dS group. By fixing the gauge, this field can be
quantized. In this case, emergence of states with negative
or null norms necessitates indefinite metric quantization
[6]. In order to eliminate these unphysical states, certain
conditions must be imposed on the field operators and on
the vacuum state, similar to the pattern of Minkowskian
space theories [7]. Physical states propagate on the light
cone and correspond to the vector massless Poincaré field
in the null curvature limit. It has been proven that the use of
an indefinite metric is unavoidable if one insists on the
preservation of causality (locality) and covariance in gauge
quantum field theories [8]. The generalization of the
Wightman axioms to the QFT in de Sitter space, for scalar,
spinor, and vector fields, has been studied by Bros, Gazeau,
and others [2,4–6].

The free massless de Sitter vector field in the flat coor-
dinate system has been studied previously [9]. This covers
only one-half of the dS hyperboloid. In 1986, Allen calcu-
lated the massless vector two-point functions in terms of a
maximally symmetric bitensor. His simple choice of gauge
broke the conformal invariance and led to the appearance
of logarithmic singularity [10].

In Sec. II, we have briefly recalled the main result of the
previous paper [6], i.e. the gauge invariant dS vector field
equation in terms of the Casimir operator. The six-cone
formalism is presented in Sec. III. Following the descrip-
tion of de Sitter coordinates, the projection techniques have*Electronic address: takook@razi.ac.ir
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been introduced. Conformally invariant wave equations
have been obtained in the next stage. Section IV is devoted
to the solutions of the field equations in terms of a de Sitter
plane wave and a polarization vector E�. Because of the
presence of a multivalued phase factor and the presence of
a singularity, these solutions are not globally defined.
Extending these solutions to the complex dS space has
allowed us to circumvent these problems altogether [2].
The two-point functions are calculated in Sec. V. The
‘‘Hilbert’’ space structure and the field operators, in terms
of coordinate independent dS plane waves, have been
defined in this section. The null curvature limit of the
two-point functions and the relation between the ambient
space notation and the intrinsic coordinates are studied in
the next stage. Finally, a brief conclusion and an outlook
have been given in Sec. VI.

II. DE SITTER FIELD EQUATIONS

The de Sitter space-time can be defined by the one-
sheeted four-dimensional hyperboloid:
 

XH � fx 2 R5: x2 � ���x
�x� � �H�2g;

�; � � 0; 1; 2; 3; 4;
(2.1)

where ��� � diag�1;�1;�1;�1;�1�. The de Sitter met-
ric is
 

ds2 � ���dx
�dx�jx2��H�2 � gdS

��dX
�dX�;

�;� � 0; 1; 2; 3;
(2.2)

where X� are the 4 space-time coordinates in the dS
hyperboloid and x� are the 5-dimensional coordinates in
the ambient space notation. For simplicity one can put
H � 1. The wave equation for massless conformally
coupled scalar field is

 ��H � 2�� � 0; (2.3)

where �H is the Laplace-Beltrami operator on dS space. In
the ambient space notation, the wave equation is written in
the following form [2]:

 �Q�0� � 2�� � 0; (2.4)

where Q�0� is the second order scalar Casimir operator of
de Sitter group SO0�1; 4�. The covariant derivative of a
tensor field, T�1...�n , in the ambient space notation is

 r�T�1...�n �
�@�T�1...�n �

Xn
i�1

x�iT�1...�i�1��i�1...�n ; (2.5)

where �@� � ���@� � @� � x��x � @� and ��� is the trans-
verse projector (��� � ��� � x�x�). In terms of the co-
variant derivative, the second order scalar Casimir operator
is Q�0� � � �@2. The wave equation for massless vector

fields A��X� propagating on dS space gives [10]

 ��H � 3�A��X� � r�r � A � 0: (2.6)

This field equation is invariant under the gauge transfor-
mation A� ! Agt

� � A� �r��g, where�g is an arbitrary
scalar field. The gauge-fixed wave equation is [10]

 ��H � 3�A��X� � cr�r � A � 0; (2.7)

where c is a gauge-fixing parameter. It is an arbitrary
positive real number.

In order to simplify the relation between the field and the
representation of the dS group, we have adopted the vector
field notation K��x� in ambient space notation. Pursuing
this notation, the solutions of the field equations are easily
written in terms of scalar fields. Consequently, a gauge
transformation has vividly appeared. The 4-vector field
A��X� is locally determined by the five-vector field
K��x� through the relation

 A��X� �
@x�

@X�
K��x�X��: (2.8)

Using Eq. (2.8) and the transversality condition (x � K �
0), we have

 r�r�A� �
@x	

@X�
@x�

@X�
@x�

@X�
� �@	� �@�K� � x�K��

� x�� �@	K� � x�K	� � x�� �@�K	 � x	K��	:

(2.9)

Using the above equations, the field equation (2.6), in the
ambient space notation, gives [5,6]

 �� �@�2 � 2�K�x� � 2x �@ � K�x� � �@@ � K � 0: (2.10)

In terms of the second order vector Casimir operator Q�1�,
one obtains [5,6]:

 Q�1�K�x� �D1@ � K � 0; x � K � 0; (2.11)

where D1 � �@. The Casimir operator Q�1�1 is defined by

 Q�1�1 � �
1
2L

��L�� � �
1
2�M

�� � S����M�� � S���;

where M�� � �i�x�@� � x�@�� � �i�x� �@� � x� �@��
and the action of the spin generator S�� is defined by

 S��K	 � �i���	K� � ��	K��:

The field equation is gauge invariant, i.e.

 K ! Kgt � K �D1�g ) Q�1�Kgt�x� �D1@ � Kgt � 0;

(2.12)

where�g is an arbitrary scalar field. The gauge-fixed wave
equation in the ambient space notation is
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 Q�1�K�x� � cD1@ � K � 0: (2.13)

This could be directly obtained from (2.7).
If we consider the physical subspace of solutions with

@ � K � 0, we have

 Q�1�K�x� � 0 � �Q�0� � 2�K�x�; (2.14)

which is similar to Eq. (2.4). This field can be associated
with the UIR’s �


1;1 of the dS group. For obtaining the
solution of the equation (2.14) following the massive field
case, the principal series parameter (�) must be replaced by

 i

2 [6]. Replacement of the principal series parameter by
the discrete series results in appearance of singularities in
vector field solution. This singularity is actually due to the
divergencelessness condition needed to associate this field
with a specific UIR of the dS group [6]. In Sec. IV, we
calculate the general solutions of the field equations for the
different values of c. In the next section we have obtained
the specific value of c, which makes the wave equation
conformally invariant.

III. CONFORMALLY INVARIANT WAVE
EQUATIONS

In the Minkowski space, the massless field equations are
conformally invariant. For every massless representation of
the Poincaré group, there exists only one corresponding
representation in the conformal group [11,12]. In the de
Sitter space, for the vector field, only two representations
in the discrete series (�


1;1) have a Minkowskian interpre-
tation. The signs 
 correspond to two types of helicity for
the massless vector field. The representation ��

1;1 has a
unique extension to a direct sum of two UIR’s C�2; 1; 0� and
C��2; 1; 0� of the conformal group SO0�2; 4�. Note that
C�2; 1; 0� and C��2; 1; 0� correspond to positive and nega-
tive energy representation in the conformal group, respec-
tively [11,12]. The concept of energy cannot be defined in
de Sitter space. The latter restricts to the vector massless
Poincaré UIR’s P>�0; 1� and P<�0; 1� with positive and
negative energies, respectively. The following diagrams
illustrate these connections:

 

C�2; 1; 0� C�2; 1; 0�  - P>�0; 1�

��
1;1 ,! � !

H�0
� �

C��2; 1; 0� C��2; 1; 0�  - P<�0; 1�;

 

C�2; 0; 1� C�2; 0; 1�  - P>�0;�1�

��
1;1 ,! � !

H�0
� �

C��2; 0; 1� C��2; 0; 1�  - P<�0;�1�;

where the arrows ,! designate unique extension.
P_�0;�1� are the massless Poincaré UIR with positive
and negative energies and negative helicity. In this section,
the conformal invariance of massless scalar and vector
fields in de Sitter space is studied. Conformally invariant
wave equations are best obtained by the use of Dirac’s null
cone in R6, followed by the projection of the equations to
the de Sitter space [13].

A. Dirac’s six-cone formalism

Dirac’s six-cone is a 5-dimensional supersurface
 

u2 � �abuaub � 0;

�ab � diag�1;�1;�1;�1;�1; 1�;
(3.1)

in R6, where a, b � 0, 1, 2, 3, 4, 5. An operator Â which
acts on the field�, over R6, is said to be intrinsic if [14–16]

 Âu2� � u2Â0�; for any �: (3.2)

The following are examples of the intrinsic operators:
(1) Fifteen generators of the conformal group SO0�2; 4�,

 Mab � i�ua@b � ub@a�:

(2) The conformal-degree operator N5

 N5 � ua@a:

(3) The intrinsic gradient

 Grad a � ua@b@
b � �2N5 � 4�@a:

(4) The powers of d’Alembertian

 �@a@
a�p;

which acts intrinsically on fields of conformal de-
gree (p� 2).

The following conformally invariant set of equations, on
the cone, has been used most commonly:

 

�
�@a@

a�p� � 0;

N5� � �p� 2��;
(3.3)

where � is a tensor field of a definite rank and of a definite
symmetry. The other conformally invariant conditions can
be added to the above system in order to restrict the space
of the solutions. The following conditions are introduced to
achieve the above goal:

(1) transversality

 ua�ab... � 0;

(2) divergencelessness
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 Grad a�ab... � 0;

(3) tracelessness

 �a
ab... � 0:

B. Projective of the six-cone

In order to project the coordinates on the cone u2 � 0, to
the 4� 1 de Sitter space we chose the following relation:

 

�
x� � �u5��1u�;

x5 � u5:
(3.4)

Note that x5 becomes superfluous when we deal with the
projective cone. Various intrinsic operators introduced in
the previous section now read as

(1) the ten SO0�1; 4� generators

 M�� � i�x�@� � x�@��; (3.5)

(2) the conformal-degree operator (N5)

 N5 � x5
@
@x5

; (3.6)

(3) the conformal gradient (Grad�) [16]
 

Grad� � �x
�1
5 fx��Q

�0� � N5�N5 � 1�	

� 2 �@��N5 � 1�g; (3.7)

(4) the powers of d’Alembertian �@a@a�p, which act
intrinsically on the field of conformal degree (p�
2),

 �@a@a�p � �x
�2p
5

Yp
j�1

�Q�0� � �j� 1��j� 2�	:

(3.8)

C. Conformally invariant equations

For scalar field, the simplest conformally invariant sys-
tem is obtained from (3.3) with p � 1,

 

�
�@a@

a�� � 0;

N5� � ��;
(3.9)

where � is a scalar field on the cone. We introduce the
scalar de Sitter field by � � x5�. This obeys the confor-
mally invariant equation derived from (3.8) and (3.9):

 �Q�0� � 2�� � 0; (3.10)

which is a massless conformally coupled scalar field in de
Sitter space [Eq. (2.4)].

Similarly, the conformally invariant system for vector
field is obtained from (3.3) with p � 1. In this case � is a
tensor of rank one, and it is assumed to be the solution of

 

�
�@a@a��a � 0;

N5�a � ��a:
(3.11)

We classify the 6 degrees of freedom of the vector fields on
the cone by

 K� � x5��� � x�x ���; �1 � x5�5;

�2 � x5x ��;
(3.12)

where K� is a vector field on de Sitter space (x � K � 0).
Using the equations (3.8) and (3.11), these fields are proved
to obey the following conformal system of equations:

 Q�1�K� �
2
3D1�

�@ � K � 1
6D1�Q

�0� �@ � K � 0; (3.13)

 �Q�0� � 2��1 � 0; (3.14)

 �2 �
x5

12
�Q�0� � 4� �@ � K: (3.15)

The divergence of (3.13) leads to

 Q�0��Q�0� � 2� �@ � K � 0: (3.16)

Adding the conformal invariance condition

 ua�a � x5�x ����5� � 0 (3.17)

to the above relations, we obtain the following conformal
systems:

 Q�1�K� �D1�
�@ � K � 0; (3.18)

 �Q�0� � 2�@ � K � 0; (3.19)

which correspond to the gauge fixing c � 1 in (2.13). This
is not a fully gauge invariant case, since condition (3.19)
restricts the gauge field space. Nonetheless it preserves the
null-cone propagation of the solutions. Under the gauge
transformation Kgt � K �D1�g, the equation (3.19) re-
quires the scalar field �g to satisfy the following equation
(this is indeed not an arbitrary scalar field):

 Q�0��Q�0� � 2��g � 0: (3.20)

The general solutions of the field equations are calculated
in the next section.

IV. CONFORMALLY INVARIANT SOLUTIONS

A general solution of Eq. (2.13) can be written in terms
of two scalar fields �1 and �2:

 K� � �Z��1 �D1��2; (4.1)

where Z is a constant five-vector and �Z� � ���Z�. The
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vector field solution was obtained in terms of a ’’massless’’
conformally coupled scalar field � [6],
 

Kc �

�
�Z�

c
2�1� c�

D1�x � Z� Z � �@	

�
2� 3c
1� c

D1�Q
�0�	�1x � Z

�
�; c � 1: (4.2)

If we use the scalar dS plane wave for massless confor-
mally coupled scalar field [2], i.e.

 � � �x � 
��; � � �1;�2;

dS vector-plane wave (4.2) could not be properly defined
since its last term is singular,
 

�Q�0�	�1x � Z�x � 
�� �
�1

��� 1���� 4�
x � Z�x � 
��;

� � �1:

The five-vector 
 lies on the null cone C � f
 2 R5; 
2 �
0g. For c � 2

3 , however, it can be properly defined [6]:
 

K��x� �
�

�Z� � ��� 1�
Z � 


�x � 
�2
�
� � ��� 1�

Z � x
x � 


�
�

�


 �x � 
��; (4.3)

where �
� � ���

�. It is clear that this method could not

be used for the conformally invariant case, i.e. c � 1.
An alternative pattern is presented here for other values

of c corresponding to the conformally invariant case (c �
1) and the physical state (@ � K � 0 or c � 0). The general
solution of the field equation can be written in terms of a
generalized polarization five-vector and a dS plane wave

 K��x� � E��x; 
; Z; ���x � 
�
�:

Using the pattern of Eq. (4.3), we introduce two constant
parameters b1 and b2 to define the following polarization
vector:

 E � �

�
�Z� � b1

Z � 


�x � 
�2
�
� � b2

Z � x
x � 


�
�

�
:

This vector satisfies the condition x � E � 0. Imposing the
condition @ � K � 0 to meet the criterion of a physical
state, i.e. divergenceless condition, it is shown that the
two constant parameters are

 b1 �
1� �
2� �

; b2 � �1:

In this case, the divergence of the polarization five-vector
is

 @ � E � ��
�
 � E
x � 


�
�3�
2� �

Z � 

x � 


:

The choice of Z � 
 � 0, which results in @ � E � 0, is a
suitable restriction on the arbitrary five-vector Z�, since it
renders a simplified solution and in the null curvature limit

it embarks on the Minkowskian solution of the two-point
function. By the use of this condition (Z � 
 � 0), the
degrees of freedom for the arbitrary five-vector field Z�

reduce to 4. The generalized polarization vector then be-
comes

 E d
� �

�
�Z� �

Z � x
x � 


�
�

�
�

�
Z� �

Z � x
x � 



�

�
:

This polarization vector satisfies the interesting relation:

 Q�0�Ed�� � Ed�Q�0��:

If the vector field K does not satisfy the divergenceless
condition, by the choice of Z � 
 � 0, it takes the following
form:
 

K��x� � E��x; 
; Z; ���x � 
�
�;

E� �

�
�Z� � a

Z � x
x � 


�
�

�
� Ed� � �1� a�

Z � x
x � 


�
�;

where a is an arbitrary constant parameter. This parameter
depends on the gauge parameter c and homogenous degree
�. If K satisfies the vector field equation (2.13), the arbi-
trary constant parameter a is fixed at once. The divergence
of the vector field, through the condition Z � 
 � 0, is

 @ � K�x� � �1� a���� 4�x � Z�x � 
��:

This equation is itself a scalar field with the homogenous
degree (�� 1)

 Q�0�@ � K�x� � ���� 1���� 4�@ � K�x�:

Implementation of K in the wave equation (2.13) together
with the identity,

 Q�0�x � Z�x � 
��x� � ���� 2���� 5�x � Z�x � 
��x�

� 2
�
Z� � �

Z � x
x � 



�
�
�x � 
��;

results in the following system of equations:

 

8>><
>>:
a����� 3� � 2	 � �1� a����2� c�� 4c� � 0; �I�

���� 3� � 2� �1� a���2� c�� 4c� � 0; �II�

�1� a���� 1���� 4��1� c� � 0: �III�

(4.4)

All other values of a and � can be categorized in terms of
various choices of the gauge parameter c. In the present
chapter, three values of c �c � 0; 1; 2

3� have been studied.
For c � 2

3 , the solutions of the system of the equa-
tions (4.4) are

 

�� � �1; a � arbitrary;

� � �2; a � �1:

For the case � � �1, value a � 0 leads to the previous
solution Eq. (4.3). In this gauge, the solution of the wave
equation becomes
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 K� �
�

�Z� � ��� 1�
Z � x
x � 


�
�

�
�x � 
��

�

�
�Z� �

�� 1

�
Z � x �@�

�
�x � 
��: (4.5)

For c � 0, the two solutions of the system of the equa-
tions (4.4) are

 

�� � �1; a � �1;

� � �2; a � �1:

In this gauge the solution of the wave equation becomes

 K� �
�

�Z� �
Z � x
x � 


�
�

�
�x � 
��

�

�
�Z� �

1

�
Z � x �@�

�
�x � 
��; (4.6)

which is clearly divergenceless. This field can be associ-
ated with the UIR’s �


1;1 of the dS group and corresponds
to the physical state.

For c � 1, the solutions of the system of the equa-
tions (4.4) are

 

8>>>><
>>>>:

� � 0; a � 0;

� � �1; a � �1;

� � �2; a � arbitrary;

� � �3; a � �3:

(4.7)

In this gauge, fixing a to be�2 while� � �2, the solution
results in

 K� �
�

�Z� � �
Z � x
x � 


�
�

�
�x � 
��

� � �Z� � Z � x �@���x � 
��:

Equation (3.19) restricts the solutions to the values � �
�2;�3, which are the conformally invariant solutions.

It is more suitable to represent entire solutions of the
field equation in the following form:

 K� �
�

�Z� � a�c;��
Z � x
x � 


�
�

�
�x � 
��

�

�
�Z� �

a�c;��
�

Z � x �@�

�
�x � 
��: (4.8)

In contrast to the Minkowskian case, the generalized po-
larization vector E��x; 
; Z; c; �� is a function of the space-
time x. These solutions, however, are problematic as well.
In contrast to the ‘‘massive’’ field case in de Sitter space,
the two solutions are not complex conjugate of each other.
We shall return to this point when we construct the quan-
tum field in the forthcoming chapter. There also appears an

arbitrary constant five-vector Z (with one constraint Z �

 � 0) in the solution of the field equation. This is remi-
niscent of the problem of the vacuum state in the curved
space. For simplicity, we impose the condition that the
solution in the limit H � 0 must be exactly the
Minkowskian solution. This condition in the massive sca-
lar, spinor, and vector cases, results in the choice of
Euclidian vacuum. The limit H � 0 for the ‘‘massless’’
conformally coupled scalar field, however, cannot be de-
fined in this notation [2]. In order to obtain the proper
behavior of the massless conformally coupled scalar field
in the limit H � 0, we must use a system of bounded
global coordinates (X�, � � 0, 1, 2, 3) well suited to
describe a compactified version of dS space, namely S3 

S1 (Lie sphere) [6]. This mode defines the Euclidian vac-
uum [17]. The above procedure, however, cannot be used
for the massless vector field, since the polarization vector
which depends on the de Sitter plane wave could not be
defined in the null curvature limit. It is important to note
that the two-point function of the conformally coupled
scalar field, obtained by the two different methods are
one and the same. Proper choice of vacuum could also be
achieved by imposing the condition that in the null curva-
ture limit, the two-point function takes the form of its
Minkowskian counterpart. By imposing the following con-
ditions:

(i) setting the vector two-point function to have a maxi-
mally symmetric form of bivectors in the ambient
space notation and,

(ii) its exact equivalence with the Minkowskian coun-
terpart in the null curvature limit,

the constant vector Z and the normalization of the vector
field are fixed,

 Z� � Z�
0
� ���

0
;

X3

��0

Z��Z
�
� � ����: (4.9)

� takes four values for different polarizations. Henceforth
the polarization vector can be defined as

 E �x; 
; Z; c; �� �
�

�Z� � a�c;��
Z� � x
x � 


�

�

� E��x; 
; c; ��: (4.10)

This polarization vector satisfies the following relation:

 E ��x; 
; c; �� � �
 � �a� 1��Z� � x��x � 
�: (4.11)

It can be shown that, by the use of Eq. (4.9), the properties
of the dS polarization vector are very similar to the
Minkowskian case:

 

X3

��0

E���x; 
; c; �1�E
�
�0 �x

0; 
; c; �2� � �

�
�� � �0�0 � a2

�� � x
0

x0 � 

�
0�0 � a1

�0�0 � x

x � 

�
� � a2a1

x0 � x
�x � 
��x0 � 
�

�
� �
0�0
�
: (4.12)
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Because of the presence of a singularity on the three-dimensional lightlike manifold, the dS vector-plane wave solutions
(4.8) are not globally defined [2]. For a complete determination of the solutions (4.8), one may consider the solutions in the
complex de Sitter space-time X�c�H . The complex de Sitter space-time is defined as

 X�c�H � fz � x� iy 2 C5;���z�z� � �z0�2 � ~z � ~z� �z4�2 � �1g � f�x; y� 2 R5 
 R5; x2 � y2 � �1; x � y � 0g:

(4.13)

Let T
 � R5 � iV
 be the forward and backward tubes in
C5. The domain V� (respectively V�� stems from the
causal structure on XH:

 V
 � fx 2 R5; x0 <>
��������������������������
k ~xk2 � �x4�2

q
g: (4.14)

Respective intersections with X�c�H are

 T 
 � T
 \ X�c�H ; (4.15)

which will be called forward and backward tubes of the
complex dS space X�c�H . Finally, we define the ‘‘tuboid’’ on
X�c�H 
 X

�c�
H by

 T 12 � f�z; z
0�; z 2 T �; z0 2 T �g: (4.16)

Details are given in [2]. When z varies in T � (or T �) and

 lies on the positive cone C�,

 
 2 C� � f
 2 C; 
0 > 0g;

the plane wave solutions are globally defined, since the
imaginary part of (z � 
) has a fixed sign. The phase is
chosen such that

 boundary value of �z � 
��jx�
>0 > 0: (4.17)

Therefore we have

 K
;�
�;c�z� � E����z; 
; �; c��z � 
��; (4.18)

in which z 2 X�c�H and 
 2 C�.

V. THE TWO-POINT FUNCTION

The two-point function of the massless conformally
coupled scalar field is studied first, in this section. The
field operator and the vacuum states are defined properly to
result in this two-point function. The massless vector two-
point function is then calculated. The vector field operator
and the vacuum state are defined to suit the above two-
point function in the next stage. The null curvature limits of
the two-point functions are then discussed. The relations
between the ambient space notation and the intrinsic coor-
dinates are studied in the final stage.

A. Scalar two-point function

The Wightman two-point function for a conformally
coupled scalar field is [2]

 

W 0�x; x
0� � c0

Z
T
d�T�
���x � 
�

�1
� � e

i
�x � 
��1
� 	


 ��x0 � 
��2
� � e

�2i
�x0 � 
��2
� 	

� bvW0�z; z0� � bvC0P
�5�
�1�z � z

0�; (5.1)

where C0 �
��2���1�

24
2 � 2
2c0 and

 W0�z; z0� �
1

8
2

�1

1�Z�z; z0�
; Z�z; z0� � �z � z0:

(5.2)

The function P�5�� is the generalized Legendre function of
the first kind given by the following integral representation
(valid for cos� 2 Cn	 �1;�1�) [2]:

 P�5�� �cos�� �
4



�sin���2

Z �

0
cos

��
��

3

2

�
�
�



��������������������������������
2�cos�� cos��

p
d�: (5.3)

This has the interesting property of P�5�� � P�5��3��. By
determining the boundary values of the equation (5.2),
we obtain [4,18]

 

W 0�x; x0� �
�1

8
2

�
1

1�Z�x; x0�

� i
��x0 � x00���1�Z�x; x0��
�
: (5.4)

In the theorem 4.2 of [2], it has been shown that this two-
point function satisfies the following conditions: (i) posi-
tivity, (ii) locality, (iii) covariance, and (iv) normal analy-
ticity. A de Sitter free field can be defined at this stage.

Using the superposition principle and two solutions of
the scalar field equation, globally defined in the complex
de Sitter space, the general solution of the scalar field is
thoroughly defined:

 ��z� �
Z
T
fa�
;�1��z � 
�

�1 � b�
;�2��z � 
�
�2gd�T�
�;

(5.5)

where T denotes an orbital basis of C� and�1 � �1,�2 �
�3� �1 � �2. d�T�
� is an invariant measure on C� [2].
The boundary value of this equation is the scalar field,
defined globally in the de Sitter space
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 ��x� �
Z
T
fa�
; �1���x � 
�

�1
� � e

�i
�1�x � 
��1
� 	

� b�
;�2���x � 
�
�2
� � e

i
�2�x � 
��2
� 	gd�T�
�;

(5.6)

where [19]

 �x � 
�� �
�

0 for x � 
 � 0
�x � 
� for x � 
 > 0:

Since the measure satisfies d�T�l
� � l3d�T�
�, a and b
must satisfy the homogeneity condition

 a�l
; �� � l���3a�
�; b�l
; �� � l���3b�
; ��:

Implementation of these conditions results in the integral
representation (5.6) that is independent of the orbital basis
T [2].

As far as irreducible unitary representations of the de
Sitter group are concerned, the two solutions of the wave
equation [�x � 
��1 and �x � 
��2��3��1 ] are equivalent to
one another. Naturally, the solutions are a complex con-
jugate of each other (��1 � �2) for the principal series
representation, since the homogeneity degree of functions
(�) is complex in this case. In the case of the complemen-
tary series representation, however, the homogeneity de-
gree is real and as a result the two solutions, in spite of the
equivalence of their corresponding representation (�1,
�2 � �3� �1), are not complex conjugates of each other.

Now we define the conformally scalar field operator,
which results in the above two-point function

 ��x� �
Z
T
fa�
;�1���x � 
�

�1
� � e

�i
�1�x � 
��1
� 	

� ay�
;�2���x � 
�
�2
� � e

i
�2�x � 
��2
� 	gd�T�
�:

(5.7)

The vacuum state is defined as follows:

 a�
; ��j�i � 0;

which is fixed by imposing the condition that, in the null
curvature limit, the Wightman two-point function becomes
exactly the same as its Minkowskian counterpart. This
vacuum, j�i, is equivalent to the Euclidean vacuum.
‘‘One particle’’ states are

 ay�
;��j�i � j
;�i: (5.8)

The field operator (5.7) gives the above two-point function
(5.1)

 W 0�x; x0� � h� j ��x���x0� j �i:

For the hyperbolic-type submanifold, T4, the measure is
d�T4

�
� � d3 ~
=
0 and the canonical commutation rela-
tions are represented by

 �a�
;��; ay�
0; �0�	 �
�����
c0
p

��;��0�3

0�3� ~
� ~
0�: (5.9)

B. Vector two-point function

The general vector two-point function is calculated ex-
plicitly at this stage in the ambient space notation. The
vector two-point function, which is invariant under the
conformal group, is then calculated and the Minkowskian
limits are discussed. Finally, the relation between the am-
bient space notation and the intrinsic coordinates are
determined.

Similar to the field solution (4.1), the vector two-point
function W ��0 �x; x

0�, which is a solution of the wave
equation (2.13), can be found simply in terms of scalar
Wightman two-point functions,

 W ��0 �x; x
0� � h�; K��x�K�0 �x

0��i

� �� � �0�0W 1�x; x0� � �@� �@0�0W 2�x; x0�;

(5.10)

where �@� �@0�0 � �@0�0 �@�. The vector two-point function was
obtained in terms of a massless conformally coupled scalar
two-point function W 0�x; x

0� [6],
 

W ��0 �x; x0� � �� � �0�0W 0�x; x0�

�
c

2�1� c�
�@�� �@ � �0�0 � x � �

0
�0 	W 0

�
2� 3c
1� c

�@��Q�0�	�1x � �0�0W 0

� D��0 �x; x0; c�W 0; c � 1: (5.11)

We can write this equation in the following form:

 W c
��0 �W 2=3

��0 �
2
3� c

�1� c�
�@��Q

�0�	�1@ �W 2=3
�0 ; (5.12)

where
 

@ �W 2=3
�0 � 3�x � �0�0 � � �@ � �

0
�0 � x � �

0
�0 	�W 0;

Q�0�@ �W 2=3
�0 � 0:

These two-point functions can only be defined properly for
the gauge c � 2

3 since the term �Q�0�	�1@ �W 2=3
�0 becomes

singular.
Now, we consider the case c � 1, i.e. the conformally

invariant two-point function, and c � 0, i.e. the physical
part of the two-point function. The massless vector two-
point function, which satisfies the field equation, is ob-
tained as the boundary value of the analytic two-point
function W��0 �z; z0�:
 

W��0 �z; z
0� � cs

Z
T

X
�

E���z; 
; c; �1�E
�
�0 �z

0; 
; c; �2�


 �z � 
��1�z0 � 
��2d�T�
�; (5.13)

where �1 � �2 � �3. With the help of Eq. (4.10), the
vector two-point function is easily expanded in terms of
the analytic scalar two-point function Ws�z; z0�:
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 W��0 �z; z
0� � cs

Z
T

X
�

�
�Z�� � a1

Z� � z
z � 


�
�

��
�Z0��0 � a2

Z� � z0

z0 � 

�
�0
�
�z � 
��1�z0 � 
��2d�T�
�

�
X
�

�
�Z�� �

a1

�1
Z� � z �@�

��
�Z0��0 �

a2

�2
Z� � z0 �@0�0

�
cs
Z
T
�z � 
��1�z0 � 
��2d�T�
�

�
X
�

�
�Z�� �

a1

�1
Z� � z �@�

��
�Z0��0 �

a2

�2
Z� � z0 �@0�0

�
Ws�z; z0�: (5.14)

We define the arbitrary constant tensor T of rank-2 as

 T�	 �
X
�

Z��Z
�
	:

The equation (5.14) in terms of this arbitrary tensor can be written in the following form:

 W��0 �z; z
0� � T�	

�
����

0
�0	 �

a1

�1
�0�0	z� �@� �

a2

�2
���z

0
	

�@0�0 �
a1a2

�1�2
z�z

0
	

�@� �@0�0
�
cs
Z
T
�z � 
��1�z0 � 
��2d�T�
�

� D��0 �z; z0; c; ��Ws�z; z0�; (5.15)

where T�	 and cs are arbitrary constants andWs�z; z
0� is the

scalar two-point function.
In the previous paper [20], we showed that a maximally

symmetric bivector in the ambient space notation has the
following form:

 M��0 �z; z0� � �� � �0�0f�Z� � ��� � z
0���0�0 � z�g�Z�:

(5.16)

By imposing the following conditions:
(i) setting the vector two-point function to have a maxi-

mally symmetric form of bivectors in the ambient
space notation and,

(ii) its exact equivalence with the Minkowskian coun-
terpart in the null curvature limit,

the constant tensor T and the normalization constant cs are
fixed:

 Z� � Z�
0
� ���

0
;

X3

��0

Z��Z
�
� � ����;

cs � ei
����3=2�� �������3� ��

25
4
;

where �1 � �. Note that the choice of normalization
constant corresponds to the Euclidean vacuum. Ws�z; z0�
can be written as a hypergeometric function (see [2]):
 

Ws�z; z0� � Cs 2F1

�
��; 3� �; 2;

1�Z

2

�
� CsP5

���Z�

with Cs �
�������3� ��

24
2 :

The two-point function, as the boundary value of the
analytic two-point functions, can be attained explicitly in
terms of the following class of integral representation:

 W ��0 �x; x
0� � cs

Z
T
d�T�
���x � 
�

�
� � e

�i
��x � 
���	


 ��x0 � 
��3��
� � ei
���3��x0 � 
��3��

� 	



X3

��0

E���x; 
; c; ��E
�
�0 �x

0; 
; c;�3� ��:

(5.17)

This relation defines the two-point function in terms of
global plane waves on XH. Its explicit form is
 

W ��0 �x; x
0� � �� � �

0
�0

�
1�

a1a2

�1�2
Z
d
dZ

�
W s�Z�

� ��� � x
0���0�0 � x�

�
a1a2

�1�2
Z
d2

dZ2

�

�
a1

�1
�
a2

�2

�
d
dZ

�
W s�Z�; (5.18)

where we have used the identity �@�W s�Z� � ���� �
x0� ddZW s�Z�. For c � 1, W s is a conformally coupled
scalar two-point function and for c � 2

3 , the previous result
is obtained [6].

The vector two-point functions could be constructed by
dS plane wave functions �x � 
�� and �x � 
��3�� that are
directly related to irreducible scalar representation of de
Sitter group, i.e. discrete, complementary, and principal
series representations. The two plane waves are equivalent
as far as irreducible representation is concerned. In the case
c � 1, four sets of solutions are obtained, all related to
different values of � [Eq. (4.7)]. Two solutions (� �
�1;�2) are related to the conformally coupled scalar field.
The other solutions (� � �3; 0) are related to the mini-
mally coupled scalar field. In the above formalism,
Eq. (5.18), two different vector two-point functions can
be defined, which are not covariant under the conformal
transformation. A conformally covariant vector two-point
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function must satisfy Eq. (3.19). This equation restricts the
solutions of the wave equation corresponding to the values
� � �2;�3, which are not equivalent as far as irreducible
representation is concerned. In this case, the integral rep-
resentation (5.15) cannot be properly defined, i.e. it de-
pends on the orbits of integration.

To obtain a conformally covariant vector two-point
function, the two-point functions in the form of (5.10)
can be utilized to satisfy the two equations (3.18) and
(3.19) simultaneously. After some algebra, we obtained
W 1, which satisfies

 

d2

dZ2
W 1 � 0; or W 1 � C1 � C2Z:

In order to obtain a regular solution in the large Z domain,
we impose the condition C2 � 0. This results in the fol-
lowing equation for W 2:

 Q�0��Q�0� � 2�W 2 � 24C1Z;

where

 Q�0� � �1�Z2�
d2

dZ2 � 4Z
d
dZ

:

These solutions are simultaneously covariant under the
conformal group transformation as well as the de Sitter
group. These solutions are associated with a reducible
representation of the de Sitter group. By imposing the
condition that the vector two-point function should propa-
gate on the light cone, we obtained
 

C1 � 0; W 2 �W 0;

W ��0 �x; x
0� �

�
��� � �

0
�0
d
dZ
� ��� � x

0���0�0 � x�
d2

dZ2

�


W 0 � D��0W 0; (5.19)

where W 0 is a conformally scalar two-point function.
The vector field commutation relation is

 

iG��0 �x; x0� �W ��0 �x; x0� �W �
��0 �x; x

0�

� �K��x�; K�0 �x0�	 � D��0 ���x�; ��x0�	

� D��0iG�x; x0�; (5.20)

where iG�x; x0� is the commutation relation of the confor-
mally coupled scalar field [2,4,18],

 i���x�; ��x0�	 �
H2

4
��x0; x00���Z�x; x0� � 1�; (5.21)

where Z�x; x0� � �H2x � x0 � 1� H2

2 �x� x
0�2 and

 ��x0; x00� �

8><
>:

1 x0 > x00

0 x0 � x00

�1 x0 < x00:
(5.22)

We obtain

 �K��x�; K�0 �x
0�	 �

H2

4i
D��0��x

0; x00���Z�x; x0� � 1�:

(5.23)

This field propagates on the light cone (Z � 1) and the
logarithmic singularity does not appear. Similar to the
scalar field [2], the retarded and advance propagators are
defined, respectively, by

 Gret
��0 �x; x

0� � ���x0 � x00�G��0 �x; x
0�; (5.24)

 Gadv
��0 �x; x

0� � ��x00 � x0�G��0 �x; x0�

� Gret
��0 �x; x

0� �G��0 �x; x
0�: (5.25)

The ‘‘Feynman propagator’’ is also defined by
 

iG�F���0 �x; x
0� � h�; TK��x�K�0 �x0��i

� ��x0 � x00�W ��0 �x; x
0�

� ��x00 � x0�W �0��x0; x�: (5.26)

Using the Wightman two-point function that satisfies the
conditions: (i) positivity, (ii) locality, (iii) covariance,
(iv) normal analyticity, (v) transversality, and
(vi) divergencelessness, we have already constructed the
covariant quantum massive vector field in dS space [5]. In
the previous paper [6], it has been shown that, for the
massless vector field, we do not have necessarily the
divergenceless condition and as a result we cannot asso-
ciate this field with a UIR’s of the dS group. To maintain
the covariant condition in field quantization, we must use
an indecomposable representation of dS group. In this case,
however, we do not have the positivity condition and there
appear unphysical negative and null norm states which are
considered as the longitudinal ‘‘photons’’ and the scalar
photons [6]. In order to remove the above problems it is
necessary to impose some new conditions similar to
Minkowskian vector field. Following this procedure, pos-
itivity and divergenceless conditions are simultaneously
avoided. In contrast to the massive vector field, it is not
evident that two-point function could be used for construc-
tion of massless quantum vector field.

However, in order to obtain the above two-point func-
tions, the vector field operators are defined as

 K��x� �
Z
T

X
�

fa�
; �1; ��E
���
� �x; 
; c; �1���x � 
�

�1
�

� e�i
�1�x � 
��1
� 	 � a

y�
;�2; ��E
���
� �x; 
; c; �2�


 ��x � 
��2
� � e

i
�2�x � 
��2
� 	gd�T�
�:

(5.27)

The vacuum state is defined as follows:

 a�
; �; ��j�i � 0:

This vacuum, j�i, is equivalent to the Euclidean vacuum.
‘‘One particle’’ states are
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 ay�
; �; ��j�i � j
;�; �i: (5.28)

For the hyperbolic type submanifold T4, the measure is
d�T4

�
� � d3 ~
=
0 and the canonical commutation rela-
tions are
 

�a�
;�; ��; ay�
0; �0; �0�	

� �
�����
cs
p

��;��0�3���
0

0�3� ~
� ~
0�: (5.29)

It is important to note that the null curvature limit of this
vector field operator is not defined, however, it does exist
for the vector two-point function.

The Minkowskian limit is now established for the above
problem. First, the two-point function of the massless
conformally coupled scalar field is considered. In contrast
to the field operator, where the null curvature limit (H � 0)
exists only in the intrinsic notation, the two-point function
[Eq. (5.4)] has a Minkowskian limit in both notations
(intrinsic notations [18] and ambient space notations [4]).
The limit H � 0 of this equation is
 

lim
H�0

W 0�x; x
0� �W �M��X;X0�

�
�1

8
2

�
1

�
� i
��t� t0�����

�
;

2� � �X� X0�2: (5.30)

This is exactly the two-point function for a massless scalar
field in Minkowski space. For the null curvature limit, the
vector two-point function of the Minkowski space is ob-
tained in the same gauge c � 0,

 lim
H�0

W ��0 �x; x
0� � ���W

�M��X;X0� �W �M�
�� �X;X0�:

Finally, let us write the intrinsic expression of the two-
point functions. In the previous paper [20], we presented
the following relations between the ambient space and
intrinsic notations:

 Qab0 �
@x�

@Xa
@x0�

0

@X0b
0 W ��0 �x; x0�;

where

 

@x�

@Xa
@x0�

0

@X0b
0 �� � �

0
�0 � gab0 � �Z� 1�nanb0 ;

@x�

@Xa
@x0�

0

@X0b
0

H2��0�0 � x���� � x
0�

1�Z2 � nanb0 :

na, nb0 , and gab0 are defined in terms of the geodesic
distance ��x; x0�, which is the distance along the geodesic
connecting the points x and x0. Note that ��x; x0� can be
defined by a unique analytic extension even when no
geodesic connects x and x0. In this sense, these fundamen-
tal tensors form a complete set. They can be obtained by
differentiating the geodesic distance:

 na � ra��x; x0�; na0 � ra0��x; x0�

and the parallel propagator

 gab0 �
���������������
1�Z2

p
ranb0 � nanb0 :

The geodesic distance is implicitly defined [2] for Z �
�H2x � x0 by

 

Z � cosh��H� for x and x0 timelike separated;

Z � cos��H� for x and x0 spacelike separated such that jx � x0j<H�2:

Therefore, the two-point function in the intrinsic coordinates is

 Qaa0 � �gaa0 � �Z� 1�nana0 �
�
1�

a1a2

�1�2
Z
d
dZ

�
W s�Z� � �1�Z2�nana0

�
a1a2

�1�2
Z
d2

dZ2 �

�
a1

�1
�
a2

�2

�
d
dZ

�
W s�Z�:

(5.31)

This equation can be written in the following form:
 

Qaa0 � gaa0
�
1�

a1a2

�1�2
Z
d
dZ

�
W s�Z� � nana0

�
�Z� 1�

�
1�

a1a2

�1�2
Z
d
dZ

�

� �1�Z2�

�
a1a2

�1�2
Z
d2

dZ2 �

�
a1

�1
�
a2

�2

�
d
dZ

��
W s�Z�: (5.32)

If we have the two-point function in the intrinsic coordi-
nate

 Qaa0 �X;X
0� � gaa0��Z� � nana0��Z�; (5.33)

where ��Z� and ��Z� are introduced by Eq. (4.22) in [10],
the two-point function in the ambient space notation can be

obtained:
 

W ��0 �x; x0� �
�
�� � �0�0 �

H2��0�0 � x���� � x
0�

1�Z

�
��Z�

�

�H2��0�0 � x���� � x
0�

1�Z2

�
��Z�; (5.34)
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W ��0 �x; x0� � �� � �0�0��Z� �H
2��0�0 � x���� � x

0�




�
��Z�
1�Z

�
��Z�

1�Z2

�
: (5.35)

VI. CONCLUSION

In a series of papers we have shown that the quantization
of various free fields in de Sitter space has a similar pattern
of field quantization as in the Minkowski space. The estab-
lishment of the above similarity between the two spaces is
based on the analyticity in the complexified pseudo-
Riemannian manifold. The dS plane wave solution and
the Fourier-Bros transformation in the dS space play an
essential role in the above construction. In this paper, the
conformally invariant wave equations in de Sitter space,
for scalar and vector fields, are introduced and their solu-
tions and their related two-point functions have been cal-
culated. We have defined the covariant vector field operator
and the ’’particle states’’ in the ambient space notation. It is
important to note that, although the null curvature limit of
this vector field operator is not defined, the limit of the two-
point function does exist.

The irreducible unitary representations of the de Sitter
group, which are associated with rank-2 massless tensor
fields, have nonambiguous extensions to the conformal
group SO�4; 2�. On the other hand, the irreducible unitary
representations of conformal group are precisely the
unique extension of the massless Poincaré group represen-
tations with helicity
2. In the quantization process, due to
the zero mode problem of the Laplace-Beltrami operator,
de Sitter covariance is broken. To avoid this problem, a
new method was presented for quantization of the massless
minimally coupled scalar field in dS space-time [4,21,22].
Using this method for linear gravity, the two-point function
is covariant and free of any infrared divergence [23,24]. In
the forthcoming paper, we shall generalize this construc-
tion to the traceless rank-2 massless tensor field (conformal
linear quantum gravity in dS space).
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Garidi et al., gr-qc/0608004.

[7] A. S. Wightman and L. Garding, Ark. Fys. 28, 129 (1964).
[8] F. Strocchi, Phys. Rev. D 17, 2010 (1978).
[9] G. Börner and H. P. Dürr, Nuovo Cimento LXIV, 669
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