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The coalescence of a binary black hole system is one of the main sources of gravitational waves that
present and future detectors will study. Apart from the energy and angular momentum that these waves
carry, for unequal-mass binaries there is also a net flux of linear momentum that implies a recoil velocity
of the resulting final black hole in the opposite direction. Due to the relevance of this phenomenon in
astrophysics, in particular, for galaxy merger scenarios, there have been several attempts to estimate the
magnitude of this velocity. Since the main contribution to the recoil comes from the last orbit and plunge,
an approximation valid at the last stage of coalescence is well motivated for this type of calculation. In this
paper, we present a computation of the recoil velocity based on the close-limit approximation scheme,
which gives excellent results for head-on and grazing collisions of black holes when compared to full
numerical relativistic calculations. We obtain a maximum recoil velocity of �57 km=s for a symmetric
mass ratio � � M1M2=�M1 �M2�

2 � 0:19 and an initial proper separation of 4M, where M is the total
Arnowitt-Deser-Misner (ADM) mass of the system. This separation is the maximum at which the close-
limit approximation is expected to provide accurate results. Therefore, it cannot account for the
contributions due to inspiral and initial merger. If we supplement this estimate with post-Newtonian
(PN) calculations up to the innermost stable circular orbit, we obtain a lower bound for the recoil velocity,
with a maximum around 80 km=s. This is a lower bound because it neglects the initial merger phase. We
can however obtain a rough estimate by using PN methods or the close-limit approximation. Since both
methods are known to overestimate the amount of radiation, we obtain in this way an upper bound for the
recoil with maxima in the range of 214–240 km=s. We also provide nonlinear fits to these estimated upper
and lower bounds. These estimates are subject to uncertainties related to issues such as the choice of initial
data and higher effects in perturbation theory. Nonetheless, our estimates are consistent with previous
results in the literature and suggest a narrower range of possible recoil velocities.
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I. INTRODUCTION

The inspiral and merger of binary black holes systems is
one of the most interesting sources of gravitational waves
that both earth-based interferometric antennas (LIGO [1],
VIRGO [2], GEO600 [3], and TAMA [4]) and space-based
ones (LISA [5]) will detect. These waves carry both energy
and momentum away from the system, leading to the
adiabatic shrinking of the orbit, due to the former, and a
recoil of the merged object by conservation of momentum,
due to the latter. The magnitude of this recoil is of astro-
physical importance because it determines whether the
merged hole will be ejected from its host galaxy.

Possible observational evidence for such a recoil may be
the observations of faint galaxies [6,7] where the lack of a
dense nucleus has been associated with the central black
hole being ejected after merger [8]. There is also evidence
of an ejection of a supermassive black hole in ongoing
galaxy mergers, either because of recoil or because of
slingshot due to the presence of 3 or more supermassive
black holes in the merger [9]. The gravitational recoil has
also been shown to have important consequences in hier-
archical merging scenarios and the observable structure of
galaxy nuclei. Recoil velocities of a few hundred km/s

could be large when compared to escape velocities of
dwarf galaxies, globular clusters, and dark matter halos
[8,10]. For supermassive black holes at the centers of
galaxies, a kick of this magnitude could potentially transfer
energy to the stars in the nucleus [8]. There are thus very
important astrophysical aspects that can be refined or
clarified with a better understanding of the black hole
kicking process.

Mass distributions without symmetries that undergo
gravitational collapse of any sort will exhibit momentum
ejection and recoil of the center of mass of the remnant due
to the strong emission of gravitational radiation [11–15].
Of particular interest is the case of unequal-mass black
hole binary systems. An intuitive picture of how the system
gets a kick after the merger is the following [16,17]: From
the center of mass point of view, the lighter black hole will
move faster than the heavier one, and hence it will beam
forward gravitational radiation stronger. Then, there will
be a net flux of linear momentum carried by the gravita-
tional radiation in the direction of the lighter black hole,
and this will cause a recoil of the center of mass in the
opposite direction. The first analytic studies of this subject
were carried out by Fitchett and Detweiler [18,19]; Oohara
and Nakamura [20]; Nakamura and Haugan [21]; and
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Wiseman [16]. Because of the strong nonlinearity of the
merger phase, analytic studies have difficulties in obtaining
an accurate estimate of the recoil velocity. The first quasi-
Newtonian analytic calculations were presented in [18,19],
while a post-Newtonian (PN) analysis has been carried out
in [16,22,23]. Estimates using black hole perturbation
theory have been given in [17,24], and an estimate that
combines full numerical relativity and perturbation theory,
the Lazarus approach, is given in [25].

Full numerical relativistic simulations are a natural ap-
proach to this problem since they can in principle handle
the nonlinearities of the gravitational field during the
merger. The challenge is the resolution that the computa-
tional resources impose. Some calculations have already
been carried out in different scenarios to estimate recoil
velocities. The first one was done by Anninos and Brandt
[26] for the case of the head-on collision of two unequal-
mass black holes. Their numerical calculations were effec-
tively 2-dimensional since they made use of the axisym-
metry of the configuration. Using the same type of
numerical calculations they also estimated the gravita-
tional radiation recoil from highly distorted black holes
[27]. More recently, and due to the significant advances in
3-dimensional numerical relativity in the binary black hole
problem [28–30], estimates of the radiation recoil velocity
have also appeared [31,32].

Each of the approaches described above has its own
limitations. Analytic approaches are able to provide accu-
rate estimates in their region of validity. However, the
largest contribution to the recoil velocity occurs during
merger, precisely where the approximation methods break
down. Numerical simulations, in principle, have the oppor-
tunity of producing estimates with a minimal number of
assumptions. However, as we have mentioned, these cal-
culations have also limitations and use initial data that is
only an approximation to the actual astrophysical configu-
rations. Therefore, the error bars on the computed distri-
bution of recoil velocities relative to the distribution
present in nature are believed to be large and, even worse,
are difficult to estimate. It is then not surprising to find
disagreements on the estimated recoil velocity as calcu-
lated with different methods.

In this paper, we present estimates of the recoil velocity
using an approach not used before, the close-limit approxi-
mation (CLA), which combines both analytical and nu-
merical techniques. The CLA was introduced by Price and
Pullin [33], who showed that this approximation method
provides accurate results compared to those obtained from
numerical relativity [34] for head-on collisions of two
black holes (see also [35]). The CLA scheme is based on
the assumption that in the last stage of coalescence, when
the black holes are sufficiently close to each other, the
system behaves, up to a certain degree of approximation,
as a single distorted hole. Then, the CLA scheme consists
of establishing an appropriate correspondence between the

binary black hole system and a single perturbed hole. Once
this correspondence is made, one can extract initial data
that can be evolved by the perturbative relativistic equa-
tions. From the outcome of the evolution, one can estimate
the fluxes of energy, angular momentum, and linear mo-
mentum carried away to spatial infinity by the gravitational
radiation emitted. The CLA scheme has been developed
and applied by a number of authors [36–43]. In particular,
Andrade and Price [44] used the CLA to estimate the recoil
velocity of a head-on collision of unequal-mass black holes
starting from rest.

Since the CLA applies to the last stage of the merger of
two black holes, it is very appealing to use it to estimate the
recoil velocity of the merger of an unequal-mass black hole
binary system. With this scheme, we obtain a maximum
recoil velocity of�f17; 31; 57g km=s for a symmetric mass
ratio � � M1M2=�M1 �M2�

2 � 0:19 and initial proper
separations of f3; 3:5; 4gM, with M the total Arnowitt-
Deser-Misner (ADM) mass. Beyond a proper separation
of 4M the CLA is not expected to provide accurate results
[44]. Therefore, this method cannot account for the con-
tributions during the inspiral and initial merger phase.
Supplementing this estimate with PN calculations up to
the innermost stable circular orbit (ISCO), we obtain a
lower bound for the recoil velocity, with a maximum of
�80 km=s. This lower bound neglects the initial merger
phase, for which we can obtain an approximate estimate by
using either PN methods or the CLA. Since both methods
are known to overestimate the amount of radiation during
the early merger phase, we obtain, thus, an upper limit for
the recoil with maxima in the range of 214–240 km=s. We
also perform nonlinear fits to these bounds and obtain

 vfit � a�2
���������������
1� 4�

p
�1� b�� c�2�; (1)

where a � 6907 km=s, b � �2:46, and c � 3:03 for the
lower bound and a � 13 927 km=s, b � �1:10, and c �
1:55 for the upper bound.

The plan of this paper is as follows: Sec. II describes the
main procedure of our calculation; Sec. III constructs
initial data for a quasicircular binary black hole system
in the 3� 1-formalism; Sec. IV maps these initial data to a
single perturbed black hole spacetime, such that it is suit-
able for a CLA evolution; Sec. V describes the numerical
implementation and presents results from the evolution
within the CLA scheme; Sec. VI estimates the lower and
upper bounds, as well as constructing the nonlinear fits to
these bounds; we finish in Sec. VII with a summary and
discussion of the main results and points to future research
to obtain improved estimates.

The conventions that we use throughout this work are
the following: For the 4-dimensional spacetime, we use
Greek letters for the indices and a semicolon for the
covariant derivative. The Schwarzschild metric admits a
2� 2 decomposition consisting of the warped product of a
Lorentzian 2-dimensional manifold with the 2-sphere (see
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[45,46]). On the 2-dimensional Lorentzian manifold indi-
ces are denoted by capital Latin letters, the covariant
derivative associated with the 2-dimensional metric is
represented by a vertical bar, and the Levi-Civita antisym-
metric tensor by �AB. On the 2-sphere indices are denoted
by the lowercase Latin letters a; b; . . . ; h, the covariant
derivate by a colon, and the Levi-Civita antisymmetric
tensor by �ab. When using the 3� 1 decomposition of
spacetime quantities, spatial indices are denoted by the
lowercase Latin letters i; j; k; . . . . Uncontrolled remainders
are denoted with O�A� or O�A;B�, which stands for terms
of order A and terms of order A or B, respectively.
Although usually, when dealing with order symbols, A
and B must be dimensionless, here they will not be, but
can be made to be dimensionless through division by the
appropriate factor. We also use physical units in which
G � c � 1.

II. DESCRIPTION OF OUR CALCULATION

In this paper, we use the CLA scheme to calculate the
recoil velocities after the merger of an unequal-mass bi-
nary black hole system. Because of the complexity of the
calculation, we discuss here the different steps involved,
while getting a glimpse of the general scheme. First, we
need to construct initial data corresponding to a nonspin-
ning binary black hole system in quasicircular orbital
motion. The method employed to construct the data is
the standard one: we solve the constraints on an initial
slice using the York-Lichnerowicz conformal decomposi-
tion. Then, the solution needs to be expanded in two
parameters: the separation of the two black holes, based
on the main assumption of the CLA, that is, small separa-
tion between the holes; and their linear momenta, rooted in
an additional slow-motion approximation [47].

The second step is to establish a map between this initial
data and the generic initial data corresponding to a per-
turbed single black hole. In this work we only consider the
case in which the single black hole is a nonrotating
Schwarzschild hole. There is also the possibility of con-
sidering a Kerr black hole (see [47] for details), but the
CLA machinery in that case is more intricate. After ex-
panding the initial data in the separation and linear mo-
menta, it is straightforward, after some coordinate changes,
to identify a Schwarzschild background and its
perturbations.

Once the perturbations have been identified, we need to
calculate initial data suitable for evolving the linearized
(around the Schwarzschild background) Einstein equa-
tions. The spherical symmetry of the background allows
us to separate the linearized equations. Then, by decom-
posing the perturbations in spherical harmonics we obtain
decoupled equations for each mode. Moreover, by appro-
priately reparametrizing the perturbations, we can de-
couple the equations for each individual mode, so that
the problem reduces to solving a master equation for a

complex combination of the metric perturbations. These
master equations (usually known as the Regge-Wheeler
and Zerilli-Moncrief equations) are 1-dimensional wave-
type equations containing a potential that accounts for the
effect of the background spacetime curvature. Therefore,
the problem of providing initial data reduces to finding
initial conditions for these master functions.

The initial data contains three parameters that we need
to specify. These parameters are associated with the initial
distance between the holes, the mass ratio, and the initial
linear momentum. The mass ratio is an independent pa-
rameter that will be used to study the functional behavior
of the recoil velocity. The distance and linear momentum
parameters determine the dynamical character of the bi-
nary and, therefore, they must be chosen carefully. To that
end, we use the standard method of minimizing the binding
energy of the system, so that the binary is in a quasicircular
orbit. The expressions that we obtain are formally the same
as in Newtonian theory, although they cannot be assigned
the same interpretation, since they are expressed in terms
of bare parameters. In order to relate these parameters to
meaningful physical ones, we must introduce a proper
separation and a physical mass ratio. The proper separation
can be calculated by evaluating the minimum proper dis-
tance between the marginally trapped surfaces surrounding
each individual hole.

The final step is to solve the master equations and
evaluate the different physical quantities of interest. The
metric waveforms h� and h�, together with the fluxes of
energy, angular and linear momentum carried away by
gravitational waves can be computed in terms of the master
functions and their first time derivatives. In this paper, we
include the general formulae for the linear momentum
fluxes in terms of the perturbation master functions. We
present several plots of these quantities, together with plots
of the recoil velocities for different initial separations.

III. INITIAL DATA

In this section, we begin the initial data construction for
an unequal-mass binary black hole system suitable to the
CLA scheme. To that end, we extend the results of Andrade
and Price [44], who carried out the calculation for un-
boosted head-on collisions, and also extend the results of
Khanna et al. [47], who constructed data for equal-mass
black holes in a quasicircular orbit. Our calculation not
only allows for arbitrary mass ratios, but it also includes
higher-order terms in the expansion of the initial data,
which are essential in the calculation of the recoil.

In order to solve the Hamiltonian and momentum con-
straints, we use the conformal transverse-traceless method
of Lichnerowicz, York, and others [48–52]. The 3-metric
�ij is decomposed in terms of a conformal factor � and an
auxiliary metric �̂ij; �ij � �4�̂ij;which here we assume to
be conformally flat:
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 ds2 � �ijdxidxj � �4�dR2 � R2d�2�; (2)

where d�2 � d�2 � sin2�d’2 is the line element of the 2-
sphere. For the extrinsic curvature Kij, we choose a maxi-
mal initial slice, that is, Kij is trace free: �ijKij � 0. Then,
we also conformally decompose the trace-free extrinsic
curvature Kij as

 Kij � ��2K̂ij; (3)

and we further make the choice that the longitudinal part of
K̂ij vanishes, so that K̂ij is a symmetric transverse-
traceless tensor. Then, the momentum and Hamiltonian
constraints reduce to

 r̂ jK̂ji � 0; (4)

 r̂ 2� � �1
8�
�7K̂ijK̂

ij; (5)

where r̂i and r̂2 denote the covariant derivative and
Laplacian associated with the flat 3-metric �̂ij. The mo-
mentum constraint [Eq. (4)] can be exactly solved using the
method of Bowen and York [53]. For a single black hole
located at R � Ro with linear momentum P it can be
written as follows:

 K̂ one
ij �

3

2jR� Roj
2 �2P�inj� � ��̂ij � ninj�P

knk	; (6)

Pi is the ADM momentum of a single hole, while ni is a
unit vector in flat 3-dimensional space directed from the
location of the single hole to an arbitrary point, namely

 ni �
Ri � Rio
jR� Roj

; (7)

and the vertical bars, j 
 j, denote the norm of vector in the
flat 3-dimensional space. In order to construct a solution
for two holes, we can simply superpose two solutions of
the type of Eq. (6).

Before constructing the extrinsic curvature, it will be
useful to first describe the initial physical configuration.
The system we are modeling consists of two black holes
with massesM1 andM2 located on the X-axis, a coordinate
distance d apart, as shown in Fig. 1. In this figure. R1, R2,
andR are radial vectors that point from the origin to hole 1,
hole 2, and an arbitrary point, respectively. Moreover,
R12 � R2 � R1 is also a vector that points from hole 1
to 2, and P and�P are the linear momenta associated with
holes 1 and 2, respectively. Since the linear momenta are
parallel to the Y-axis, the orbital angular momentum is
directed along the Z-axis. With such a physical scenario,
the solution of Eq. (4) can be written as (see also [47]):

 K̂ ij � K̂one
ij �R0 � R1;P	 � K̂

one
ij �Ro � R2;�P	; (8)

where we have defined P � Pŷ. The ADM momentum

corresponding to K̂one
ij is simply P and the one associated

with K̂ij is zero.
Let us now concentrate on the solution to the

Hamiltonian constraint. Using Eq. (8) in the Hamiltonian
constraint leads to a source term quadratic in P. We now
introduce a slow-motion approximation, where we assume
that the linear momentum P is small, in the sense that terms
of O�v2� are much smaller than terms of O�v�, where v is a
measure of the orbital velocity. We, thus, neglect terms of
O�P2�, so that the Hamiltonian constraint reduces to the
Laplace equation

 r2� � 0: (9)

The solution of this equation depends on our choice of
topology. If we choose the initial slice to have a single
asymptotically flat region, the solution to the conformal
factor is the Misner solution [54], but if one chooses the
slice to have three asymptotically flat regions, the solution
is the Brill-Lindquist [55] one. In this paper, we adopt the
latter and the conformal factor takes the form of the
Newtonian potential:

 � � 1�
m1

2jR� R1j
�

m2

2jR� R2j
; (10)

wherem1 andm2 denote the bare masses of each individual
hole. One reason for choosing the Brill-Lindquist (BL)
solution is that it is simpler to manipulate, while it has
also been shown [44] to lead to essentially the same results
when calculating recoil velocities for head-on collisions.
We remark that, although terms of O�P2� have been ne-
glected, they can be straightforwardly added in a perturba-
tive fashion, but this will be studied elsewhere.

Let us comment further on the topology of the initial
slice associated with the BL solution, as it is important in
some calculations. As we have already mentioned, this
solution has three asymptotically flat regions: one of

 

MR12

R

P
M2

1

−P

Y

Z

X

FIG. 1 (color online). Schematic diagram of the initial physi-
cal configuration. The linear momenta are parallel to the Y-axis
and span the X-Y plane, so that the angular momentum is aligned
with the Z-axis.
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them, �0, corresponds to the region far from the two holes,
R � jRj � jR1j � R1 and R� jR2j � R2; the other two,
�1 and �2, are associated with hole 1 and 2, respectively.
By simple inspection of the conformal factor [Eq. (10)], the
solution seems ill-behaved at the location of the holes,R �
R1 andR � R2, although it is actually not. Near each hole,
the geometry is invariant under the transformation: jR�
R�j ! m2

�=�4R
0
�� (� � 1; 2). The value m�=2 coincides

with the intersection of the event horizon with the initial
slice for a single hole and it is a fixed point in the trans-
formation. This value is sometimes referred to as the
throat, joining two asymptotically flat regions. Therefore,
the points R � R1 and R � R2 are just an image of the
infinities of �1 and �2. For a single hole, there are two
asymptotically flat regions, and its mass, equal to m, is the
same independent of which region we evaluate it on. In the
case of a binary system, the gravitational interaction be-
tween the holes will change the value of the individual
masses. Actually, there is not an invariant measure of them
in �0, but such a measure does exist on �1 and �2. Doing
the calculation yields the following result [55]

 M1 � m1

�
1�

m2

2d

�
; M2 � m2

�
1�

m1

2d

�
; (11)

where d � jR12j. In �0, we can compute the total mass of
the binary system, the ADM mass of the system. We call
the result M and it is given by

 M � m1 �m2: (12)

Equations (3), (8), and (10) are the initial data. We should
note that, apart from our choice of initial data (BL confor-
mal factor and Bowen-York extrinsic curvature), there are
other possible choices that can be used in the CLA scheme.
Some examples of other possible data sets are the follow-
ing: a Misner conformal factor with a Bowen-York extrin-
sic curvature with inversion symmetry through the throats;
Kerr-Schild initial data [42].

The next step in the construction of the initial data is to
put it in a form suitable for the CLA scheme. Before doing
so, however, it is convenient to study the parameters that
determine the configuration described by the data. To begin
with, let us introduce the bare mass ratio

 q �
m2

m1
: (13)

The initial configuration can then be fully specified in
terms of the parameters �q; d; P�. Since q and d are bare
parameters, in the sense that we cannot give them a physi-
cal meaning, we are going to introduce analogous parame-
ters, which can be given a physical interpretation. First, we
introduce the mass ratio between the individual masses of
the holes as computed in their respective asymptotically
flat regions:

 Q �
M2

M1
: (14)

The quantities q and Q are related through d via [44]:

 Q � q
1� ��1� q�=2	�M=d�

1� ��1� q�q=2	�M=d�
; (15)

 q �
Q� 1

2

�
1�

M
2d

�
�

����������������������������������������������������
Q�

�
Q� 1

2

�
1�

M
2d

��
2

s
:

(16)

Defining a useful distance is a more difficult matter. In this
paper, we use the same distance as Andrade and Price [44],
which is the proper distance between the points where the
marginally trapped surfaces, surrounding each individual
hole, cross the X-axis (we obviously refer to crossing
points closer to the opposite hole). When the initial con-
figuration does not present a common apparent horizon,
these marginally trapped surfaces are the individual com-
ponents of the apparent horizon. If x1 and x2 stand for these
crossing points, the distance we have just defined is given
by D �

R
x1
x2

�2dx, which yields

 D � �x
�
1�

m2
1

4�X1 � x1��X1 � x2�

�
m2

2

4�x1 � X2��x2 � X2�

�
�M1 ln

�
X1 � x1

X1 � x2

�

�M2 ln
�
x1 � X2

x2 � X2

�
; (17)

where �x � x1 � x2 > 0, and X1�� R1� and X2�� �R2�
are the x-coordinate locations of holes 1 and 2, respec-
tively, in the conformal space. In summary, we can deter-
mine our initial configuration either by specifying the set
�q; d; P� or the set �Q;D;P�.

The CLA scheme assumes that the black holes are
sufficiently close enough, which allows us to expand the
initial data in R� R1 and R� R2. In this sense, it is
useful to choose the coordinate origin, R � 0, in such a
way that it coincides with the bare center of mass of the
binary black hole, that is:

 m1R1 �m2R2 � 0: (18)

We can write then R1 and R2 in terms of the separation
vector R12 via

 R 1 � �1R 12; R2 � �2R12; (19)

where we have defined

 �1 � �
q

1� q
; �2 �

1

1� q
: (20)

Then, it is natural to expand the initial data in the following
dimensionless parameter �

 � � j�j �
d
R
; � �

R12

R
: (21)
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A key formula for performing these expansions is the
following:

 

1

jR� RAj
N �

1

R

X1
‘�0

C�N=2�
‘ ��̂ 
 R̂���A��‘; (22)

where we have introduced the following unit vectors

 R̂ �
R

R
; �̂ �

�

�
; (23)

and where C�N=2�
‘ denote the Gegenbauer polynomials.

These polynomials, also known as ultraspherical polyno-

mials, are a generalization of the Legendre polynomials to
�N=2� 2�-dimensional spaces, which are common in an-
gular momentum theory [56,57]. For the special cases of
N � 0, 1, 2, these polynomials reduce to Legendre poly-
nomials and Chebyshev polynomials of type 1 and 2,
respectively. We refer to Appendix A for more details on
these polynomials.

We now use all these definitions and results to expand
the conformal extrinsic curvature given by Eq. (8) in � to
arbitrary order. The result we obtain can be written as
follows:

 

K̂ij �
3

2R2

X1
‘�0

�
d
R

�
‘�1
��‘�1

1 � �‘�1
2 �fC�3=2�

‘�1 �2P�iR̂j� � �P 
 R̂��̂ij	 � C
�5=2�
‘�1 �P 
 R̂�R̂iR̂j � C

�3=2�
‘ ��P 
 �̂��̂ij � 2P�i�̂j�	

� C�5=2�
‘ ��P 
 �̂�R̂iR̂j � 2�P 
 R̂�R̂�i�̂j�	g �

�
d
R

�
‘�2
��‘�2

1 � �‘�2
2 �C�5=2�

‘ ��P 
 R̂��̂i�̂j � 2�P 
 �̂�R̂�i�̂j�	

�

�
d
R

�
‘�3
��‘�3

1 � �‘�3
2 �C�5=2�

‘ �P 
 �̂��̂i�̂j; (24)

where for simplicity we have omitted the argument of the Gegenbauer polynomials, which still is �̂ 
 R̂. It is worth noting
that the �0 term has identically vanished due to the choice of coordinate origin, which coincides with the bare center of
mass. Another interesting fact is that only combinations of the (3=2)- and (5=2)-Gegenbauer polynomials appear due to the
combination of odd powers in the denominators of the extrinsic curvature.

In this paper we are going to consider terms up to O��3�, which is enough to get a gravitational recoil effect and actually
the dominant part of it (see, e.g. [44]). Extensions of our calculations to higher order are in principle straightforward, but
we are not going to present them here. Then, up to this order of approximation we can rewrite Eq. (24) as follows:

 

K̂ij �
9

2

d

R3

�
R̂ 
 �̂�

1

2

d
R

1� q
1� q

�5�R̂ 
 �̂�2 � 1	
�
��P 
 R̂��̂ij � 2P�iR̂j�	

�
3

2

d

R3

�
1� 3

d
R

1� q
1� q

R̂ 
 �̂

�
��P 
 �̂��̂ij � 2P�i�̂j�	 �

15

2

d

R3

�
R̂ 
 �̂�

1

2

d
R

1� q
1� q

�7�R̂ 
 �̂�2 � 1	
�
�P 
 R̂�R̂iR̂j

�
3

2

d

R3

�
1� 5

d
R

1� q
1� q

R̂ 
 �̂

�
��P 
 �̂�R̂iR̂j � 2�P 
 R̂�R̂�i�̂j�	 �

3

2

d2

R4

1� q
1� q

��P 
 R̂��̂i�̂j � 2�P 
 �̂�R̂�i�̂j�	

�O�Pd3�: (25)

The lowest-order contribution is of O�Pd� and it is the only
contribution used by Khanna et al. [47] for grazing colli-
sions of equal-mass black holes. The next contribution is of
O�Pd2� and, as far as we know, this is the first time it has
been considered.

Let us now look at the conformal factor [Eq. (10)]. Using
Eq. (22), we can also expand � in Gegenbauer polyno-
mials to obtain

 � � 1�
M
2R
�
X1
‘�2

C�1=2�
‘ �R̂ 
 �̂��‘�m1�

‘
1 �m2�

‘
2�: (26)

It is important to recall that in solving the Hamiltonian
constraint we have used a slow-motion approximation,
neglecting terms of O�P2�. The terms we are, thus, neglect-
ing are of O�P2d2�. This expression can also be written in
terms of the parameters �q; d� and M, and in terms of

Legendre polynomials. In this way we obtain

 � � 1�
M
2R
�
X1
‘�2

�‘

�
M
R

�
‘�1

P‘�R̂ 
 �̂� �O�P2d2�;

(27)

where P‘ denotes the Legendre polynomials and where the
coefficients �‘ are given by

 �‘ �
1

2
f��1�‘ � q‘�1g

q

�1� q�‘�1

�
d
M

�
‘
: (28)

The ‘ � 1-term vanishes due to the choice of the origin of
coordinates in Eq. (18). Finally, the expansion of the
conformal factor up to third order in d is given by
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� � 1�
M
2R
�

1

2

q

�1� q�2
Md2

R3 P2�R̂ 
 �̂�

�
1

2

q�1� q�

�1� q�3
Md3

R4 P3�R̂ 
 �̂� �O�P2d2; d4�: (29)

With this, we finish the construction of initial data to be
used in the CLA scheme. To summarize, we remark that
this construction is based on expansions on two different
parameters: P (related to the slow-motion approximation)
and d (related to the assumption that the holes are close to
each other). Since P and d have dimensions, the meaning
of these expansions is that terms of order dN and/or PM are
smaller than terms of order dN�1 and/or PM�1. As we are
going to see later, these expansions will provide the leading
contribution of the multipoles ‘ � 2 and ‘ � 3.

IV. THE CLOSE-LIMIT APPROXIMATION

The next stage in our computation is to recast the initial
data just constructed into data for a perturbed
Schwarzschild black hole, which is the essence of the
CLA scheme. In this way we can extract initial data to
be evolved by the corresponding perturbation equations.
Thanks to the expansions performed in the previous sec-
tion, the main task now becomes the extraction of the
different multipoles from the data.

The 3-metric on the initial slice is conformally flat and
hence determined by the conformal factor �. If we look at
the lowest-order contribution [see Eq. (29)] we realize that
it coincides with the 3-metric of Schwarzschild spacetime
associated with the ft � constg-slicing in isotropic coordi-
nates, being t the Schwarzschild time coordinate. However,
in order to make the connection with perturbation theory, it
is very convenient to reexpress the initial data in
Schwarzschild coordinates:

 ds2 � f�1dr2 � r2d�2; f � 1�
2M
r
; (30)

where we recall that M is the total ADM mass. The trans-
formation from isotropic coordinates to Schwarzschild
coordinates is given by the following relations:

 R �
1

4
�
���
r
p
�

����������������
r� 2M
p

�2; r � R
�
1�

M
2R

�
2
: (31)

Applying this transformation to the 3-metric of our initial
data we obtain:

 ds2 � F 4�f�1dr2 � r2d�2�; (32)

where

 F �
�

1� M
2R

: (33)

In order to construct initial data for the perturbations,
evolve it, and compute from the result all the relevant
physical information, in the next subsections we give a

summary of (nonrotating) black hole perturbation theory
and the main tools needed for the application of the CLA
scheme. Afterwards, we apply this machinery to the con-
struction of the initial data and describe how the energy,
angular momentum, and linear momentum fluxes carried
away by the gravitational waves are evaluated.

A. Black hole perturbation theory

The CLA is based on the fact that, in the last stages of
coalescence, the gravitational field can be modeled, to a
good degree of approximation, as the gravitational field of
a single perturbed black hole. Thus, perturbation theory
plays a key role in our calculations and it is worth review-
ing its main concepts and tools. The starting point is the
assumption that the spacetime metric g�� can be written as:
g�� � gSch

�� � h��, where gSch
�� denotes the background

Schwarzschild metric and h�� the first-order perturbations.
Then, we can take advantage of the spherical symmetry of
the Schwarzschild metric to simplify the structure of the
perturbations and of the equations that govern them. We
can do this by expanding the perturbations in tensor spheri-
cal harmonics. It turns out that the linearized Einstein
equations (in this case, around the Schwarzschild back-
ground) decouple for each harmonic. Not only this, we can
distinguish between the perturbative modes with polar
parity, which pick up a factor of ��1�l under parity trans-
formations, and the ones that have axial parity, which pick
up a factor of ��1�l�1. This distinction is important be-
cause polar and axial modes also decouple.

Following this discussion, we split the metric perturba-
tions h�� into polar and axial perturbations, h�� � ha

�� �

hp
��. And these perturbations can be expanded in tensor

spherical harmonics as

 ha
�� �

X
‘;m

ha;‘m
�� ; hp

�� �
X
‘;m

hp;‘m
�� ; (34)

where

 ha;‘m
�� �

0 h‘mA S
‘m
a


 H‘mS‘mab

 !
; (35)

 hp;‘m
�� �

h‘mABY
‘m p‘mA Y

‘m
a


 r2�K‘mY‘mab �G
‘mZ‘mab �

 !
; (36)

where asterisks are used to denote components that are
given by the symmetry of these tensors. Y‘m are the scalar
spherical harmonics [see Appendix A 2 for the conventions
that we use and other details]. Y‘ma and S‘ma are vector
spherical harmonics and are defined (for l � 1) in terms
of the scalar spherical harmonics by

 Y‘ma � Y‘m:a ; S‘ma � �abY‘mb : (37)

Finally, Y‘mab , Z‘mab , and S‘mab are (symmetric) tensor spherical
harmonics, which can also be defined (Z‘mab and S‘mab only
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for l � 2) in terms of the scalar spherical harmonics by

 Y‘mab � Y‘m�ab; Z‘mab � Y‘m:ab �
‘�‘� 1�

2
Y‘m�ab;

(38)

 S‘mab � S‘m�a:b�: (39)

Here, the sign convention for the Levi-Civita tensor asso-
ciated with the metric of the 2-sphere is: ��’ � sin�. In
Appendix A 2, we give the orthogonality relations for the
different harmonic objects. All perturbative quantities,
scalar (h‘mAB), vectorial (p‘mA and q‘mA ), and tensorial (K‘m,
G‘m, and q‘m2 ), are functions of t and r only.

The metric perturbations are in general not invariant
under transformations of the mapping between the back-
ground and perturbed spacetimes, or in other words, they
are in general not invariant under gauge transformations.
However, for the case of a spherically symmetric back-
ground, like the Schwarzschild metric, there is a complete
set of perturbative quantities that are gauge invariant. For
polar modes this set can be chosen as follows

 

~h ‘mAB � h‘mAB � 2v‘mAjB; (40)

 

~K ‘m � K‘m �
‘�‘� 1�

2
G‘m � 2

rjA

r
v‘mA ; (41)

where v‘mA � p‘mA � �r
2=2�G‘m

jA . And for axial modes

 

~h ‘mA � h‘mA �
1

2
H‘m
jA �

rjA
r
H‘m: (42)

The equations for the metric perturbations decouple in
terms of complex master functions, so that once we solve
the decoupled equations for these master functions all the
metric perturbations can be reconstructed from them. In the
case of axial modes, it was first done by Regge and
Wheeler [58], and for polar modes by Zerilli [59] and later
by Moncrief [60]. These functions are made out of metric
perturbations and their first derivatives and they are gauge
invariant. It is also possible to express them in a covariant
form. In the case of polar modes, the Zerilli-Moncrief
function can be written as follows [61]

 �‘m
ZM �

r
1� 	‘

�
~K‘m �

1

�‘
�rjArjB ~h‘mAB � rr

jA ~K‘m
jA 	

�
; (43)

where 	‘ � �‘� 2��‘� 1�=2 and �‘ � 	‘ � 3M=r. For
axial modes, instead of using the well-known Regge-
Wheeler master function

 �‘m
RW � �

f
r
rjA ~h‘mjA ; (44)

we are going to use the master function introduced by
Cunningham, Price, and Moncrief [62], in the form used
in [61,63]. The main reason for this choice is that it is
simpler to evaluate the fluxes of energy, angular momen-

tum, and linear momentum. Moreover, the contributions of
axial modes to these physical quantities have the same
form as the one of polar modes. Nevertheless, for the
sake of completeness, we provide formulae for both master
functions. The Cunningham-Price-Moncrief master func-
tion can be written in covariant form as [61]

 �‘m
CPM �

r
	‘
�AB

�
~h‘mBjA �

2

r
rjA ~h‘mB

�
: (45)

In Schwarzschild coordinates these functions take the fol-
lowing form (the connection with the Regge-Wheeler pa-
rametrization of the perturbations is given in Appendix B)
 

�‘m
ZM �

r
1� 	‘

�
K‘m � �1� 	‘�G

‘m

�
f

�‘

�
fh‘mrr � r@rK‘m �

2

r
�1� 	‘�p‘mr

��
; (46)

 �‘m
RW � �

f
r

�
h‘mr �

1

2
@rH‘m �

1

r
H‘m

�
; (47)

 �‘m
CPM � �

r
	‘

�
_h‘mr � @rh‘mt �

2

r
h‘mt

�
: (48)

These master functions obey the following wave-type
equation with a potential:

 ��@2
t � @2

r
 � V
RW=ZM
‘ �r�	�‘m

CPM=ZM � 0; (49)

where r
 is the so-called tortoise coordinate (r
 �
r� 2M ln�r=�2M� � 1�). The potential for the axial modes
is the Regge-Wheeler potential

 VRW
‘ �r� �

f

r2

�
‘�‘� 1� �

6M
r

�
; (50)

and the one for polar modes is the Zerilli potential
 

VZM
‘ �r� �

f

r2�2

�
2	2

‘

�
1� 	‘�

3M
r

�
� 18

M2

r2

�
	‘�

M
r

��
:

(51)

Once the different master functions have been computed
we can estimate the energy and angular momentum carried
out by the radiation field to infinity. We can do this by using
the expressions of the energy and angular momentum
fluxes at infinity obtained from the Isaacson’s averaged
energy-momentum tensor for gravitational waves [64,65]
(see also [66,67]). In terms of the axial and polar master
functions the expressions are

 

_E GW �
1

64


X
‘�2;m

�‘� 2�!

�‘� 2�!
�j _�‘m

CPMj
2 � j _�‘m

ZMj
2�; (52)

 

_L GW �
1

64


X
‘�2;m

im
�‘� 2�!

�‘� 2�!
� ��‘m

CPM
_�‘m

CPM �
��‘m

ZM
_�‘m

ZM�:

(53)

SOPUERTA, YUNES, AND LAGUNA PHYSICAL REVIEW D 74, 124010 (2006)

124010-8



We can also construct the metric waveforms by using

 h� � ih� �
1

2r

X
‘�2;m

�����������������
�‘� 2�!

�‘� 2�!

s
��‘m

ZM � i�
‘m
CPM��2Y

‘m;

(54)

where �2Y
‘m denotes the spherical harmonics of spin

weight �2 (see, e.g. [68] and Appendix A 3 for details).
In this work we are interested in studying the gravitational
recoil due to the merger of unequal-mass black hole binary
systems and therefore, we want to evaluate the flux of
linear momentum emitted in gravitational waves. This
quantity can also be computed from the Isaacson’s
energy-momentum tensor and can be written in terms of
the metric waveforms as follows:

 

_P k
GW �

r2

16


Z
d�r̂kobs�

_h2
� � _h2

��; (55)

where r̂kobs is a unit vector that points from the source to the

observer. We can then express the components of r̂kobs in
terms of scalar spherical harmonics as

 r̂ kobs � �2

�������
2

3

s �
<�Y1;1�;=�Y1;1�;�

Y1;0���
2
p

�
; (56)

where < and = denote the real and imaginary parts of a
complex number. By simple inspection of the linear mo-
mentum flux in Eq. (55), and taking into account the
harmonic structure of the metric waveforms in Eq. (54)
and of r̂kobs in Eq. (56), we realize that all terms in the flux
contain the product of three spherical harmonic objects.
Therefore, in order to obtain a practical expression for _PkGW
we need to use the machinery for studying coupled angular
momenta common in quantum physics [56,57]. The calcu-
lation goes along the lines described in [67], and some
details are given in Appendix C. The result can be written
in the following form

 

_PxGW � �
1

64


X
‘�2;m

�‘� 3�!

�‘� 2�!

1

�‘� 1�
�����������������������������������
�2‘� 3��2‘� 1�

p f
���������������������������������������������������
�‘�m� 2��‘�m� 1�

p
� _�‘m

ZM
_��
‘�1;m�1
ZM � _�‘m

CPM
_��
‘�1;m�1
CPM �

�
���������������������������������������������������
�‘�m� 2��‘�m� 1�

p
� _�‘m

ZM
_��
‘�1;m�1
ZM � _�‘m

CPM
_��
‘�1;m�1
CPM �g; (57)

 

_PyGW �
i

64


X
‘�2;m

�‘� 3�!

�‘� 2�!

1

�‘� 1�
�����������������������������������
�2‘� 3��2‘� 1�

p f
���������������������������������������������������
�‘�m� 2��‘�m� 1�

p
� _�‘m

ZM
_��
‘�1;m�1
ZM � _�‘m

CPM
_��
‘�1;m�1
CPM �

�
���������������������������������������������������
�‘�m� 2��‘�m� 1�

p
� _�‘m

ZM
_��
‘�1;m�1
ZM � _�‘m

CPM
_��
‘�1;m�1
CPM �g; (58)

 

_P z
GW �

1

32


X
‘�2;m

�‘� 3�!

�‘� 2�!

����������������������������������������������������
�‘�m� 1��‘�m� 1�

�2‘� 3��2‘� 1��‘� 1�2

s
� _�‘m

ZM
_��
‘�1;m
ZM � _�‘m

CPM
_��
‘�1;m
CPM �: (59)

In conclusion, all we need to extract relevant physical
information is the master functions. In the next subsec-
tions, we extract initial data for these master functions.

B. Relation between ADM variables and metric
perturbation

In Sec. III, we constructed initial data for a binary black
hole system in coalescence. The procedure used for this
construction was based on the 3� 1 ADM formalism [69]
and, hence, the initial data is given in terms of ADM
variables [Eqs. (3), (25), and (29)]. Then, in order to build
initial data for the evolution of the master functions, we
need to first find the relation between the ADM variables
and the metric perturbations (see, e.g. [70]). This means
that we need to use the relations between the components
of the 3-metric �ij and the metric perturbations, and also
the relations between the metric perturbations and their
first derivatives and the components of the extrinsic curva-
ture Kij. For the former, we use the fact that the compo-
nents of the 3-metric are the spatial components of the

orthogonal projection operator on the hypersurfaces of the
spacetime slicing, described by a normal n�:

 ��� � g�� � n�n�: (60)

Then, the different modes of the harmonically decomposed
3-metric are related to the metric perturbations via

 �‘mtt � �f�
0;0; (61)

 �‘mtr � h‘mtr Y‘m; (62)

 �‘mta � p‘mt Y‘ma � h‘mt S‘ma ; (63)

 �‘mrr � f�1�0;0 � h‘mrr Y
‘m; (64)

 �‘mra � p‘mr Y
‘m
a � h

‘m
r S

‘m
a ; (65)

 �‘mab � r2�ab�0;0 � r2�K‘mY‘mab �G
‘mZ‘mab � �H

‘mS‘mab :

(66)
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The first three equations are related to the choice of slicing,
that is, to the choice of shift vector �i and lapse 
.
Actually, the lapse and shift at first order are given by

 
2 � f�1� fhtt� � f� htt �O�h2�; (67)

 �i � hit �O�h2�: (68)

The relation between the extrinsic curvature and the
metric perturbations can be found through the relation
between the 3-metric and the extrinsic curvature

 K�� � �
1
2Ln���; (69)

where the symbol L denotes Lie differentiation, and
Eq. (60) between the 3-metric and the spacetime metric.
In this way, we find that the different modes of the har-
monically decomposed extrinsic curvature are related to
the metric perturbations by the following expressions:

 K‘m
rr �

1

2
���
f
p

�
_h‘mrr � 2h‘m0tr �

f0

f
h‘mtr

�
Y‘m; (70)

 

K‘m
ra �

1

2
���
f
p

��
_p‘mr � p

‘m0
t �

2

r
p‘mt � h

‘m
tr

�
Y‘ma

�

�
_h‘mr � h‘m0t �

2

r
h‘mt

�
S‘ma

�
; (71)

 K‘m
ab �

r2

2
���
f
p

��
_K‘m �

‘�‘� 1�

r2 p‘mt �
2f
r
h‘mtr

�
Y‘mab

�

�
_G‘m �

2

r2 p
‘m
t

�
Z‘mab �

1

r2 �
_H‘m � 2h‘mt 	S‘mab

�
;

(72)

where the dots and primes denote partial differentiation
with respect to time t and radial coordinate r, respectively.

C. Initial data for the metric perturbations

Before computing initial data for the master functions,
we must find data for the metric perturbations, that is, find
�h��; _h���, in the parametrization given in Eqs. (35) and
(36) on the initial slice t � to. To begin with, since our 3-
metric is conformally flat, the following metric perturba-
tions vanish on the initial slide:

 p‘mr � G‘m � 0; h‘mr � H‘m � 0: (73)

We have also seen that the conformal factor, the physical
and the conformal extrinsic curvatures can be formally
expanded in powers of d and P as follows

 � � ��0� ���2�d2 ���3�d3 �O�P2d2; d4�; (74)

 K̂ ij � PdK̂�1�ij � Pd2K̂�2�ij �O�Pd3�; (75)

where K̂�1�ij and K̂�2�ij are the coefficients of the terms of
order Pd and Pd2, respectively, in the expansion of K̂ij.

Then, the physical extrinsic curvature, Kij, given by
Eq. (3), can be formally expanded in the form

 Kij � ��2
�0� �PdK̂�1�ij � Pd

2K̂�2�ij� �O�Pd3�; (76)

which means that in order to obtain the physical extrinsic
curvature up to O�Pd2�we only need the zeroth order piece
of the conformal factor. The explicit expressions of the
coefficients of these expansions are given by Eqs. (3), (25),
and (29).

With this in mind, we are going to extract the remaining
modes of the initial data. To that end, we use the expression
of the separation vector �̂ in spherical coordinates, namely

 �̂ i �
�
sin� cos’;

cos� cos’
R

;�
sin’
R cos�

�
: (77)

Then, the nonzero components of the 3-metric on the initial
slice are given by
 

�rr � f�1

�
1� 2

q

�1� q�2
Md2

r3

1

�5
P2���

� 2
q�1� q�

�1� q�3
Md3

r4

1

�7 P3���
�
�O�P2d2; d4�; (78)

 

�ab � r2�ab

�
1� 2

q

�1� q�2
Md2

r3

1

�5
P2���

� 2
q�1� q�

�1� q�3
Md3

r4

1

�7 P3���
�
�O�P2d2; d4�; (79)

where we have introduced the following definitions

 � � sin� cos’; � �
1�

���
f
p

2
: (80)

We can now rewrite the 3-metric in terms of spherical
harmonics as follows
 

�rr � f�1f1� 2

����


5

r
q

�1� q�2
Md2

r3

1

�5
�Y2;0�

���
6
p
<�Y2;2�	

� 2

����


7

r
q�1�q�

�1� q�3
Md3

r4

1

�7 �
���
3
p
<�Y3;1��

���
5
p
<�Y3;3�	g

�O�P2d2; d4�; (81)

 

�ab � r2�ab� 2

����


5

r
q

�1� q�2
Md2

r
1

�5
�Y2;0
ab �

���
6
p
<�Y2;2

ab �	

� 2

����


7

r
q�1�q�

�1�q�3
Md3

r2

1

�7 �
���
3
p
<�Y3;1

ab ��
���
5
p
<�Y3;3

ab �	

�O�P2d2; d4�: (82)

In order to repeat this procedure with the extrinsic
curvature, we first need to compute the components of
the conformal extrinsic curvature with the separation vec-
tor �̂ of Eq. (77). The components of the conformal ex-
trinsic curvature are given by
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 K̂ RR � 3
Pd

R3 sin2� sin�2’� � 3
1� q
1� q

Pd2

R4

� sin’ sin��5sin2�cos2’� 2� �O�Pd3�; (83)

 K̂ R� �
3

4

1� q
1� q

Pd2

R3 cos� sin’�5sin2�cos2’� 3�

�O�Pd3�; (84)

 K̂ R’ � 3
Pd

R2 sin2��
3

4

1� q
1� q

Pd2

R3

� sin� cos’�sin2��5cos2’� 14� � 3	

�O�Pd3�; (85)

 K̂ �� �
3

8

Pd
R

sin�2’��cos�2�� � 5	 �
3

4

1� q
1� q

Pd2

R2

� sin� sin’�5cos2’�cos2�� 3� � 3	 �O�Pd3�;
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Here we have checked that the terms of O�Pd� agree with
those in [47] (up to a typo in their value of the f�;’g
component). The next step is the calculation of the physical
extrinsic curvature in terms of spherical harmonics and
Schwarzschild coordinates. This quantity is given by
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(91)

Equations (81), (82), and (89)–(91) give the complete
harmonic decomposition of the initial data ��ij; Kij�. We
must now extract the initial values of the metric perturba-
tions and their time derivative by comparing these expres-
sions with Eqs. (64)–(66) and (70)–(72). To simplify
notation, we now drop the truncation error in all equations,
since it has already been given in the main expansions.
Comparison of Eqs. (81) and (82) with Eqs. (64)–(66)
yields the nonvanishing initial metric perturbations,
namely

 K2;0 � fh2;0
rr � �2

����


5

r
q
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; (92)
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r4
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�7 : (95)

As we can see, all the axial metric perturbations initially
vanish. Now, in order to obtain the initial values of the time
derivative of the metric perturbations, we must compare
Eqs. (89)–(91) with Eqs. (70)–(72). It is important to
realize that in Eqs. (70)–(72) there are terms that are
associated with the gauge freedom of choosing the slicing,
more specifically, terms associated with components of the
shift vector [see Eq. (68)]. Moreover, there is no unique
way of assigning values to the different time derivatives of
the metric perturbations and the metric perturbations them-
selves. This reflects the fact that the values of the metric
perturbations are gauge dependent, since in general the
components of the metric perturbations (and their time
derivatives) are not gauge invariant. Keeping this in
mind, we have assigned the following initial values to the
time derivatives of the metric perturbations: the nonvanish-
ing polar modes are
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and the axial ones are
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By using the correspondence between our parametrization
of the metric perturbations and that of Regge-Wheeler
[Eqs. (B1)–(B5) in Appendix B] we have checked that
up to O�d2� and O�Pd� our expressions agree with those
found in [47] (up to a typo in their _h1;0

r ). We have decided to
assign values to the time derivatives of the metric pertur-
bations and the metric perturbations themselves by the
following usual convention: all modes with ‘ � 1 are
assigned to metric perturbations associated with the shift

vector. These perturbations represent either translations or
rotations of the observers associated with the normal to the
initial slice with respect to our coordinate system. In our
case, these perturbations are given through the following
relationships
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Here, two comments are in order. First, one can see that
these equations are consistent in the sense that the deriva-
tive of Eq. (112) with respect to r can be reduced to a trivial
identity by using Eqs. (110) and (111). Second, from these
equations we can immediately see that the shift vector is
different from zero [see Eq. (68)]. A nonzero shift could in
principle be a problem if we wanted to place observers at
constant r (in the wave zone), evaluate the linear momen-
tum flux, and then infer a recoil velocity of the final black
hole after the merger. If we were to do this, the measured
velocity would have a component due to the motion of the
observers with respect to the position of the final black
hole, as described by the shift vector. This contribution
would then have to be subtracted, but it can be seen that the
shift vector decays quite fast as r becomes large and,
hence, this effect would be negligible.

D. Initial data for the master functions

Using the initial data for the metric perturbations
[Eqs. (92)–(109)] in the master functions [Eqs. (46)–
(48)], we can compute initial data for them: ��‘m

ZM; _�‘m
ZM�,

��‘m
RW; _�‘m

RW�, and ��‘m
CPM;

_�‘m
CPM� on the initial slice t � to.

The results for the Regge-Wheeler master function are:
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and for the Cunningham-Price-Moncrief master function
are
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CPM � 0: (116)
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In the same way, the nonvanishing initial data for the
Zerilli-Moncrief master functions is given by
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Note that the master equations do not have the same
uncontrolled remainders as their derivatives, since they
come from different components of the initial data. In the
case of unboosted head-on collisions [44], the initial data
scales in powers of dN . Therefore, one only needs to
perform one single numerical evolution of the master
functions for some reference value of d � d?, and the
results for any other value of d can be found using the
scaling relation. For non-time-symmetric data, such as for
quasicircular or boosted sets, such scaling does not exist. In
our case, for example, although �‘m

ZM still scales as dN , its
time derivative _�‘m

ZM scales as PdN . Therefore, the master
functions themselves are not straightforwardly scalable
and several runs with different values of the initial parame-
ters must be performed.

V. RESULTS FROM THE CLA

In this section, we evolve the master functions with the
initial data obtained in the previous sections in the CLA
scheme and report the results for the main physical quan-
tities, in particular, for the gravitational recoil velocities.
We first need to choose appropriately the parameters that
completely determine the initial data, such that it describes
a binary black hole system merging from a quasicircular
orbit (subsection VA). Then, in subsection V B, we use a
numerical code to evolve the different master equations
[Eqs. (49)] and compute the relevant physical quantities.

We discuss the results and compare with previous ones in
the literature when possible.

A. Determining the parameters of the initial data

Our initial data depends on the following parameters:
(i) The total (ADM) mass of the system, M;
(ii) The mass ratio, where one can use either the bare

mass ratio q or the physical one Q, related by
Eqs. (15) and (16).

(iii) The initial separation, where again one can use the
bare separation d or the physical one D, related by
Eq. (17);

(iv) The linear momentum parameter P of each individ-
ual hole.

Within the family of initial data spanned by these four
parameters, we need to single out the subset that corre-
sponds to configurations in quasicircular orbital motion. In
numerical relativity this is done by looking at the minimum
in the binding energy of the system with respect to the
distance, while keeping the total ADM angular momentum
constant (see, e.g. [52]). We here follow the same proce-
dure without using the slow-motion approximation. The
binding energy that we minimize is

 Eb �MADM �M1 �M2; (124)

where MADM is the total ADM mass and it is computed in
the asymptotically flat region containing the two holes
(�0). This mass is given by (see, e.g. [71])

 M ADM � M�
5P2

8�
; (125)

where M is given in Eq. (12) and � is the reduced bare
mass, i.e. � � m1m2=M. Moreover, in Eq. (124), M1 and
M2 denote the masses computed in the asymptotically flat
regions �1 and �2. These masses are given by (see, e.g.
[71])

 M � � M� �
P2

8m�
�� � 1; 2�; (126)

where M� is given in Eq. (11). Then, the binding energy
can be written in the following form

 Eb � �
m1m2

d
�

J2

2�d2 ; (127)

where J is the ADM angular momentum, given by J � Pd.
This binding energy is formally the same as the one
corresponding to a binary system in Newtonian gravity.
One can then minimize this binding energy with respect to
d, while keeping J fixed, to obtain the condition for qua-
sicircular motion (note that in our context there is no such
thing as an ISCO)

 d �
J2

�2M
: (128)
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In the same way, one can calculate the associated orbital
frequency of such orbital motion by differentiating the
binding energy with respect to J, while keeping d fixed.
The result is

 � �
J

�d2 : (129)

From Eq. (128) we can write the linear momentum P is
terms of the other parameters of our initial data as

 P � �

�����
M
d

s
: (130)

The binding energy and other quantities derived from it
have a Newtonian form because of the particular type of
initial data that we are using: a conformally flat 3-metric
with a Bowen-York extrinsic curvature and a Brill-
Lindquist conformal factor. The PN metric produced by a
binary system differs from conformal flatness at O�v4� (see
[72,73] for the argument in the case of time-symmetric
initial data), and, hence, the binding energy used above
differs from the PN binding energy at that order. Note,
however, that although the binding energy, linear and
angular momentum used here have a Newtonian form,
they are not strictly Newtonian. This is mainly because
the distance parameter d is not the physical distance D,
which is related to the parameter d via Eq. (17).

Adopting Eq. (130) for the linear momentum parameter
in our initial data and leaving the total massM fixed (which
defines a system of units), we reduce our initial parameter
space to a 2-dimensional one. The final parameter space
can be parametrized either by the bare quantities �q; d� or
by the physical quantities �Q;D�. The range of q, or Q, is
the obvious one, i.e. [0, 1], while the range for the bare
distance parameter d is �dmin; dCLA	, where dCLA is an
estimate of the maximum distance for which the CLA is
expected to be valid. For the case of equal-mass head-on
collisions, it has been shown [36], by comparing with
second-order calculations and with fully numerical relativ-
istic simulations, that dCLA � 1:7M, which roughly corre-
sponds toDCLA � 4M. On the other hand, in principle dmin

could be just zero, however, if we adopt the prescription
(130) for the linear momentum parameter, then we are
limited by the slow-motion approximation that we are
using, which means that dmin should be bigger than
qM=�1� q�2. Finally, we should remark that the CLA
also is expected to fail in the point-particle limit [74],
but, as we will see, the recoil is very small when Q� 1.

In order to study the gravitational recoil in the CLA
scheme, we are going to evaluate the recoil velocity for a
representative number of (physical) mass ratios for a given
fixed physical distance D. In particular, we study the cases
D � 3; 3:5; 4M and instead of using Q we use the physical
symmetric mass ratio

 � �
M1M2

�M1 �M2�
2 �

Q

�1�Q�2
: (131)

The inverse relation is given by

 Q �
1

2�
�1�

���������������
1� 4�

p
� � 1: (132)

However, the parameters that appear in our expressions for
the initial data are the bare ones. Then, in order to obtain a
plot of the recoil velocity in terms of the physical mass
ratio, we need to translate from the set �Q;D� to �q; d�.
This, however, is not a trivial calculation because the
definition of D [Eq. (17)] is quite intricate, involving x1

and x2. These numbers are the values of the coordinate x in
the conformal flat space of the intersections of the extremal
surfaces (marginally trapped surfaces or apparent horizons
depending on the parameters of each particular configura-
tion) surrounding each individual hole with the X-axis. The
translation has to be done numerically through the follow-
ing iteration scheme in which the physical distance D is
kept fixed:

(1) Given a value of � we pick an initial guess for the
bare distance, say d
.

(2) By solving the equations that determine the ex-
tremal surfaces surrounding each individual holes
(they are given in Appendix D) we find some inter-
section points x
1 and x
2. This requires another itera-
tion, since we do not know a priori where these
surfaces are located. What we do is to start, for each
individual hole, with an initial guess for the inter-
section of the extremal surface at the other end of
the X-axis (the intersection more distant from the
other hole) and integrate the corresponding ordinary
differential equations (ODEs) by using an extrapo-
lation Bulirsch-Stoer scheme [75–77]. Then we
study whether the integration ends far away from
the X-axis or converges towards it. We repeat the
iteration until we find the intersection points x
1 and
x
2 with enough accuracy.

(3) Using Eq. (17) we compute the physical distance
associated with these values of the intersection
points and �q
; d
� [where q
 is computed in terms
of � and d
 using expressions (16) and (132)], D
.

We compareD
 andD and stop the iteration if the absolute
difference between them is smaller than 10�4M.
Otherwise, we go back to point (i) changing the ansatz
depending on whether D
 is bigger or smaller than D.

We have carried out this iteration for 101 values of �.
The coordinate distance (in the conformally related flat
space) from the holes to the intersection points of the
extremal surfaces is shown in Fig. 2. Here, we observe
how these distances move from equal values (top right) to
the values corresponding to the point-particle limit, M2 !
m2 ! 0 (top left). The bare distance as a function of � is
shown in Fig. 3 for the three values of fixed proper
separation.
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B. Results from the numerical evolution of the master
equations

We now have initial data for the master equations and
also a method to prescribe the initial data parameters in a
meaningful way. Then, the next step is to evolve the master
equations [Eq. (49)]. In this paper we use a numerical code,

based on finite element methods, that was developed in
[78] for calculations of the gravitational radiation emitted
by a point particle orbiting a nonrotating black hole. This
method is based on linear elements and hence it has a
second-order convergence rate with respect to the spatial
resolution. The time-evolution algorithms that it uses are
second order and unconditionally stable, since they are
based on implicit methods. Apart from the tests of the
numerical code carried out in [78], we have also done
some checks to validate the additional infrastructure added
for the gravitational recoil calculations in the CLA scheme.
First, we have checked that the energy and angular mo-
mentum emitted in an equal-mass grazing collision coin-
cide with the ones found by Khanna et al. in [47]. Second,
we have checked that the recoil velocities that we obtain
are consistent with the plots shown by Andrade and Price
[44] for the case of head-on collisions from rest of unequal-
mass black holes using BL initial data.

We have then performed evolutions for 101 equally
spaced values of the symmetric mass ratio � covering the
whole range [0, 0.25] for the three values of the physical
distance mentioned above, i.e. D � 3; 3:5; 4M. The proce-
dure to calculate the bare distance d has been described in
the previous subsection. Finally, the linear momentum
parameter P is obtained through Eq. (130). For each evo-
lution we have computed the fluxes of energy, angular
momentum, and linear momentum carried by the gravita-
tional waves to infinity.

Our initial data only has a few nonzero multipoles
contributing to the gravitational radiation emitted. Thus,
the expressions for the different fluxes simplify dramati-

 

FIG. 2. Plot of the coordinate distance between the holes and
the intersection points of the extremal surfaces with the X-axis in
terms of the symmetric mass ratio � for three values of the
physical distance: D � 3; 3:5; 4M.

 

FIG. 3. Plot of the bare distance d in terms of the symmetric
mass ratio � for three values of the physical distance: D �
3; 3:5; 4M.

 

FIG. 4. Energy radiated to infinity in terms of the symmetric
mass ratio � for three values of the physical distance: D �
3; 3:5; 4M.
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cally. The energy flux is given by
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2�	: (133)

Figure 4 shows the total energy to infinity, given by the
integral of Eq. (133) over time, as a function of the sym-
metric mass ratio. The angular momentum flux also sim-
plifies greatly and becomes
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(134)

Note that Eq. (134) does not contain any contributions
from the axial modes, since the only nonzero axial mode,
�2;1

CPM, is purely real. Figure 5 shows the total angular
momentum radiated to infinity, given by the integral of
Eq. (134), as a function of the symmetric mass ratio.
Finally, the gravitational waveform also simplifies, and
we obtain
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���
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<��2;1

CPM�<��2Y2;1�; (136)

where the definition and some properties of the spin-
weighted spherical harmonics sY‘m are given in
Appendix A 3. Note that the�-polarization consists purely
of the axial modes, while the �-polarization contains only
polar contributions. Figure 6 shows a typical metric wave-
form, namely h� as a function of time, for an observer
located at �300M on the Z-axis (the cross polarization
vanishes on this axis).

Let us now concentrate on the main physical quantity of
interest, namely, the linear momentum flux, given in
Eqs. (57)–(59). These expressions reduce to
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(137)

 

FIG. 5. Angular momentum radiated to infinity in terms of the
symmetric mass ratio � for three values of the physical distance:
D � 3; 3:5; 4M.

 

FIG. 6. Metric waveform h� for the case D � 3:5M and � �
0:185 as a function of time. The observer is located at�300M on
the Z-axis
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(138)

 

_P z
GW � 0: (139)

As we can see, there are only contributions from the over-
lap of polar modes with different ‘ and m. From this flux,
the recoil velocity can be obtained by performing the
following integration

 virecoil � �
1

M

Z tf

ti
dt _Pi; (140)

where the integration times, ti and tf, are such that the time
interval includes essentially all the contribution from the
waves to the flux. We can then calculate the magnitude of
the recoil velocity simply by

 vrecoil �
��������������������������������������������
�vx�2 � �vy�2 � �vz�2

q
; (141)

where vz � 0 in our case, due to the choices made in the
initial setup. Figure 7 shows the time derivatives of the
master functions that contribute to the recoil velocity for a
typical evolution. In this figure, we have separated the real
(bottom panel) and the imaginary (top panel) parts of these
time derivatives. Observe that the magnitude of the ‘ � 2

modes is much bigger than the one of the ‘ � 3 modes, as
expected. This also gives an indication that the superposi-
tion of the ‘ � 2 and ‘ � 3 is going to be the dominant
contribution to the gravitational recoil. The contribution
from superpositions involving higher ‘’s is going to be
much smaller. Figure 8 shows the linear momentum flux as
a function of time. Observe that the magnitude of the

 

FIG. 7. Time derivate of the Zerilli-Moncrief master function
as a function of time, for the caseD � 3:5M and � � 0:185. The
plots in the top panel represent the imaginary parts whereas the
ones in the bottom panel represent the real parts.

 

FIG. 8. Linear momentum fluxes, _PxGW and _PyGW, as a function
of time, for the case D � 3:5M and � � 0:185.

 

FIG. 9. Magnitude of the recoil velocity in terms of the sym-
metric mass ratio � for three values of the physical distance:
D � 3; 3:5; 4M.
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x-component is bigger than the y-component, which re-
flects the fact that our configuration corresponds to the
transition from merger to plunge. Finally, Fig. 9 presents
the magnitude of the recoil velocity as a function of the
symmetric mass ratio, for the following initial physical
separations: D � 3; 3:5; 4M. For all cases studied, the
maximum velocity is reached for a symmetric mass ratio
of �� 0:19, which agrees with the value reported in
Refs. [22,23] up to uncontrolled remainders. Observe that
this maximum is not a strong peak, but instead resembles a
plateau, where this maximum is spread out for a number of
etas, as also seen in other calculations [22,23].

VI. ESTIMATING THE TOTAL RECOIL

In this section, we discuss the recoil velocities obtained
from the evolution of the master functions and produce
lower and upper limits for the total recoil velocity. In
particular, we will provide analytic approximations to the
data and we will also compare these results to other ones
already present in the literature.

One of the limitations, and at the same time an advan-
tage, of the CLA scheme is that the initial separation of the
black holes must be sufficiently small in some well-defined
sense. Apart from numerical relativity, this method is the
only known one to be capable of producing accurate esti-
mates of physical quantities near plunge. This advantage,
however, is a double-edged sword since the method cannot
account for the inspiral phase. Actually, the initial separa-
tion must even be smaller than that for which the last ISCO
exists. Thus, not only is the inspiral phase neglected but
also the beginning part of the merger phase.

Because of these limitations, an approximate value for
the total recoil velocity cannot be provided by the CLA
alone, without supplementing it with some other scheme
valid when the system is well separated. The PN scheme is
well suited for this task and extensive studies have been
recently carried out [22,23] to estimate the recoil velocity.
The approximate recoil velocity accumulated from infinity
up to some final separation in the PN scheme is given by
[22]

 vPN �
464

105
�2 �mPN

mPN
x4
f

�
1�

�
452

87
�

1139

522
�
�
xf

�
309

58

x3=2

f �

�
71 345

229 968
�

36 761

2088
�

�
147 101

68 904
�2

�
x2
f

�
; (142)

with remainders of O�v5�. In Eq. (142), xf � �m!f�
2=3 is a

PN parameter, mPN � m1;PN �m2;PN is the total mass,
m1;2;PN are the masses of the PN point particles, � �
m1m2=m

2 is the symmetric mass ratio, and �mPN �
m1;PN �m2;PN is the mass difference. The PN masses
m1;2;PN have been shown to agree, within the PN approxi-
mation, with the horizon massesM1;2 [72,73] and we make

this identification here. The angular velocity ! is given to
O�v4� by

 !2 �
mPN

b3

�
1�

mPN

b
��� 3� �

m2
PN

b2

�
6�

41

4
�� �2

��
;

(143)

and !f is the angular velocity evaluated at some final
coordinate separation bf. Post-Newtonian theory is usually
carried out in harmonic coordinates, which are different
from the Schwarzschild coordinate system we use in the
CLA scheme. However, sufficiently far from the holes,
D� b, to O�v2�.

Supplementing the CLA estimate with the PN estimate,
we can obtain upper and lower limits on the possible values
of the magnitude of the recoil velocity. A lower limit can be
obtained via

 vlow � vCLA�0; 4M	 � vPN�6M;1	; (144)

where vPN�D2;1	 is the PN estimate for the recoil velocity
of Eq. (142) evaluated at bf � D2. For this lower limit, we
evaluate the PN estimate at the edge of the region of
validity of the PN approximation, i.e. bf � 6M, or equiv-
alently xf � 6�3=2, as done in Ref. [22]. This location
corresponds to the ISCO of a test particle around a
Schwarzschild hole of mass M. One obtains this value of
xf�bf � 6M� by neglecting terms of O�v2� and higher in
Eq. (143). If we had included these higher-order terms in
!f and xf, the upper bounds would have decreased by
approximately 50 km=s. These higher-order terms, how-
ever, become large as b becomes smaller, and thus we
choose to neglect them to have a conservative upper bound.
In Eq. (144), vCLA�0; D1	 is the estimate of the recoil
velocity in the CLA approximation with an initial proper
separation of D � D1.

The estimate of vlow is a lower limit because it does not
take into account the contribution to the gravitational recoil
in the region b 2 �4; 6�M. In this region neither the CLA,
nor the PN scheme, is guaranteed to provide an accurate
estimate for the recoil. However, it is possible to construct
upper limits by modelling either the entire region or part of
it with PN and CLA estimates. Such upper limits are given
by

 vup;1 � vCLA�0; 4M	 � vPN�4M;1	; (145)

 vup;2 � vCLA�0; 5M	 � vPN�5M;1	: (146)

These expressions are upper limits because the contribu-
tion to the recoil estimated either with PN theory or the
CLA approximation in the region bf 2 �4; 6�M is mono-
tonically increasing with bf.

Equations (144)–(146) require some extra justification
and clarification. In general, it is not true that the magni-
tude of the total recoil can be estimated by adding the
magnitude of the integrated momentum flux in the region
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�4M;1	 to that in the region �0; 4M	. The important point
is that the cut is made at a separation, D � 4M, in the
regime where the main contribution to the recoil comes
from. Then, the main contribution to each recoil velocity
vector comes from the region near the cut and hence, the
error we made by adding the norms will be relatively small.
Independent of this argument we have the inequality
v�0;1	 � v�0; Dcut	 � v�Dcut;1	 (with equality when
v�0; Dcut	 and v�Dcut;1	 are aligned). In this sense, the
proposed upper limit is indeed always an upper limit,
irrespective of the orientation of the vectors. As for the
lower limit, neglecting the accumulated recoil in the region
�4M; 6M	 is a very conservative estimate, because there the
recoil accumulates greatly. Thus, the issue of the orienta-
tion of the vectors will not affect the fact that this is a lower
limit, as other recent estimates in the literature confirm.

Figure 10 shows the behavior of these upper limits
(dotted and dashed lines, respectively) and the lower limit
(solid curve as a function of �). The maximum in these
curves occurs roughly at the same symmetric mass ratio,
namely �� f0:19; 0:2g. The slight disagreement in this
maximum is within error bars and rooted in that PN theory
predicts it at approximately �� 0:2, while the CLA pre-
dicts it at �� 0:19. We should note that the maximum
recoil from vCLA�0; 4M	 and vCLA�0; 5M	 is approximately
60 km=s and 190 km=s, while the maximum recoil from
vPN�4M;1	, vPN�5M;1	 and vPN�6M;1	 is approxi-
mately 160 km=s, 50 km=s, and 20 km=s respectively.

A nonlinear fit can be performed to these curves via
Eq. (1)

 vfit � a�2
���������������
1� 4�

p
�1� b�� c�2�;

where the fitting parameters a, b, and c are listed in Table I.
Observe that the mean square error for all cases is small,

which is an indication that Eq. (1) is a good analytic model
for the functional form of the recoil velocity. In this table,
we also present the values corresponding to the estimates
of Refs. [22] (BQW) and [23] (DG.) Since the predictions
of these references are based on analytic formulae, the
mean square error can be made arbitrarily small by in-
creasing the number of points in the discretization of the
analytic curve.

With the analytic fits to the upper and lower limits, we
can construct a curve that is in between these limits with an
error given by the distance from the curve to the upper or
lower bound. Such a curve is given by Eq. (1) with the
following fitting parameters

 a �
alow � aup

2
; (147)

 b �
alowblow � aupbup

alow � aup
; (148)

 c �
alowclow � aupcup

alow � aup
; (149)

while the error on this curve is also given by Eq. (1) with
the following fitting parameters

 a �
alow � aup

2
; (150)

 b �
alowblow � aupbup

alow � aup
; (151)

 c �
alowclow � aupcup

alow � aup
; (152)

where the subscript low and up stand for the fitting pa-
rameters of the lower or upper limit, respectively. This
curve is only an alternative way to visualize the upper
and lower limits of Fig. 10. The curve is not to be inter-
preted as the best guess in this work, since in principle, the
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FIG. 10 (color online). Estimated lower (solid curve) and
upper limits 1 (dotted line) and 2 (dashed line) for the recoil
velocity after a binary black hole merger as a function of the
physical symmetric mass ratio. Note that the maximum occurs
roughly in the same place, namely �? � f0:19; 0:2g.

TABLE I. Values of the parameter of the nonlinear fitting for
the following models: the CLA with initial separations of D �
f3; 3:5; 4gM; the lower and upper limits of Eqs. (144)–(146);
Taylor PN (BQW) and EOB PN (DG) calculations [22,23].

Model a (km/s) b c Mean square error

vCLA�0; 3M	 1651 �2:94 3.41 0.001
vCLA�0; 3:5M	 3092 �3:02 3.69 0.003
vCLA�0; 4M	 5701 �3:01 3.66 0.008
vlow 6907 �2:46 3.03 0.008
vup;1 13 927 �1:10 1.55 0.008
vup;2 20 897 �2:40 2.83 0.06
vBQW 12 891 0.25 0 10�8

vDG 4483 �0:95 2.68 10�10
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recoil velocities present in nature could be closer to either
upper or lower limit.

We can now compare these estimates of the recoil
velocity with those present in the literature. Figure 11
shows the recoil velocity in units of km/s as a function of
the physical symmetric mass ratio as estimated in the
literature and by this paper. As is clear from the figure,
there are many approaches to calculate this velocity and
not all of them agree. The symbols used are the following:
squares and triangles stand for the results obtained using
black hole perturbation theory in the extreme-mass ratio
approximation in Refs. [17,19], respectively; circles stand
for the calculations carried out via the Lazarus approach
[25]; stars and crosses correspond to the results coming
from a full numerical relativistic simulation (PSU stands
for Ref. [31] and NASA stands for Ref. [32]); the dotted
line and the dashed line correspond to the 2 PN Taylor
expansion approach [22] and the 2 PN effective-one-body
(EOB) approach [23], respectively. The solid line with
error bars is the estimate of Eqs. (149) and (152) that
properly condenses the lower and upper limits into one
curve. We briefly describe each approach below.

In the PN calculations of Ref. [22], the recoil velocity
(dotted line in the figure) and momentum flux are estimated
by studying the 2 PN Taylor-expanded radiative moments
of a binary system of compact objects, while in Ref. [23] an
effective-one-body approach is used (dashed line in the

figure.) Post-Newtonian calculations are usually valid only
when the binary is weakly gravitating, or equivalently
when the orbital separation is greater than the ISCO. In
this regime, the recoil velocity (Eq. (142)) has been found
to be small for any mass ratio (usually less than 20 km=s),
since, as expected, most of the contribution to the recoil
comes from the merger part of the inspiral. In Ref. [22] the
calculation is extended through the merger by integrating
the 2 PN Taylor-expanded momentum flux along a geode-
sic of the Schwarzschild metric. On the other hand,
Ref. [23] uses the effective-one-body Hamiltonian to ex-
tend the inspiral through the merger. Both of these ap-
proaches have inherent errors that are difficult to estimate
without calculating the 3 PN contributions to the recoil
velocity.

Black hole perturbation theory has also been used to
estimate the recoil velocity in Refs. [17,19]. In these
studies, the extreme-mass ratio approximation is adopted
(i.e., Q� 1) and then the system is approximated as a
point particle orbiting a black hole. The first study of the
recoil velocity using this formalism was performed in
Ref. [19] (squares in the figure), but there the gravitational
force was treated as Newtonian and only the lowest multi-
poles were considered. In Ref. [17], these relativistic ef-
fects were taken into account, as well as spin, and the
velocity estimates were improved (triangles in the figure.)
The extreme-mass ratio approximation, however, requires
Q� 1, which allows the exploration of a limited section
of the �-space.

A combination of black hole perturbation theory and full
numerical relativity (the so-called Lazarus approach) has
also been implemented to estimate the recoil velocity [25].
In this case, a full numerical relativistic simulation is
carried out until the black holes merge and a single per-
turbed spinning black hole has formed. Then, this space-
time is used as initial data in a Teukolsky evolution to
determine the recoil velocity (circles in the figure.) The
error in this calculation is rooted in the interpretation of the
initial data as that of a perturbed Kerr spacetime. Finally,
there have also been recently full numerical relativistic
simulations of binary black hole coalescence [31,32]
(shown as stars and crosses, respectively, in the figure.)
In this case, the error shown in the figure is assumed to be
given only by finite differencing, while the error due to
initial data is neglected.

Even though there has been much work in the calcula-
tion of the recoil velocity there is still some disagreement.
In Fig. 11 we observe that there seem to be three groups of
results: one that clusters around the 2 PN Taylor-expanded
result; another that is close to the 2 PN effective-one-body
result; and a third one that is in between the first two. This
disagreement, however, is misleading in several ways.
First, some estimates of the recoil velocity quote no error
bars, as is the case of the first perturbation theory approach
[19] and the 2 PN effective-one-body approach [23].
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FIG. 11 (color online). Estimates for the recoil velocity (km/s)
of the inspiral and merger of a binary system of compact object
as a function of the physical symmetric mass ratio parameter.
The symbols used are the following: squares and triangles stand
for black hole perturbation theory results [17,19]; circles stand
for Lazarus results [25]; stars and crosses correspond to full
numerical relativistic simulation [31,32]; the dotted line and the
dashed line correspond to 2 PN Taylor expansions [22] and 2 PN
effective-one-body expansions [23], respectively. The solid
black line corresponds to the estimate of this paper, which,
together with the error bars, condense both upper and lower
limits. Other error bars, when present, correspond to an estimate
of some of the error contained in the calculation.
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Second, the error bars that do exist in other calculations are
only estimates and could very well have been underesti-
mated. A surprising disagreement is between the PN ap-
proaches, since when used to calculate other quantities,
such as the angular frequency at the ISCO, they do agree.
This disagreement seems to be rooted in the fact that the
greatest contribution to the recoil velocity comes from the
merger part of the inspiral, where neither extension of the
PN approach is guaranteed to be accurate.

Our estimates seem to agree with most results if one
accounts for error bars. The results of Refs. [17,19,25]
(squares, triangles, and circles in the figure) seem to over-
estimate the recoil, which is expected in the case of the
extreme-mass ratio approximation. The PN results of
Refs. [22,23] seem to overestimate and underestimate the
recoil, respectively, but they are consistent with our bounds
if one takes their error bars (not shown in the figure) into
account. The full numerical relativity results seem to over-
lap with our bounds, although there are only a few of them.
We should note that our bound seems to disagree with the
full numerical relativistic result for �� 0:18, but that
result seems to be an underestimate because of the small
initial separation [79].

VII. CONCLUSIONS AND DISCUSSION

We have calculated the recoil velocity after the merger
of an unequal-mass binary black hole system using the
CLA scheme. This approximation assumes that the black
holes are close enough that the system can be approxi-
mated by a single perturbed black hole spacetime. In
contrast to other approaches, except for full numerical
relativity, this approximation allows us to make a valid
statement about physical process when the system is close
to plunge. Therefore, it is of great interest to use this
method for the study of gravitational recoil. However, the
CLA has the disadvantage that it cannot be used during the
beginning of the merger or the inspiral phases.

Initial data for the CLA can be constructed analytically
by mapping data suitable for a binary black hole inspiral to
that of a single perturbed hole. With such initial data, the
Cunningham-Price-Moncrief and the Zerilli-Moncrief
master functions can be numerically evolved from some
initial proper separation through ringdown. These gauge-
invariant master functions contain all the information nec-
essary to evaluate the gravitational metric waveforms and,
thus, the energy, angular momentum, and linear momen-
tum fluxes carried away from the system.

The results obtained can be summarized as follows.
First, the maximum recoil velocity obtained in the CLA
scheme is of v� 57 km=s for the maximum initial sepa-
ration allowed by this method (D � 4M). This maximum
occurs at a symmetric mass ratio of �� 0:19. By supple-
menting this estimate with PN ones valid in the inspiral
regime, we obtain lower and upper bounds with maxima of
v� 80 km=s and v� 215 km=s, respectively. We have

further provided nonlinear analytic fit functions that con-
veniently parametrize these bounds, together with the re-
sults from the CLA, and other results in the literature.
These results also suggest that there is a region aroundD�
f4; 6gM that greatly contributes to the recoil, but can only
be poorly modeled by current approximation schemes.

Ultimately, the estimates presented here suffer from the
same predicaments as other calculations. Because of its
analytical nature, the CLA relies on certain assumptions
that do not hold over the entire history of the binary. Such
assumptions introduce an error in the estimated recoil that
is difficult to quantify. In particular, the assumptions made
here are the following: close separations; slow motion;
simple initial data. The close-limit assumption is essential
to allow a mapping of a binary inspiral to a single perturbed
spacetime. The slow-motion approximation supplements
the close-limit assumption and can, in principle, be im-
proved on in future extensions of this work. The choice of
initial data is assumed to represent the gravitational content
of some initial slice, although we know that this fails even
at large separation because it does not agree with the
deviations from conformal flatness predicted by PN theory.
Moreover, it does not contain any radiation, which is not
what it should be expected for initial data corresponding to
a snapshot of the orbital evolution. Because of these as-
sumptions, the estimate of the recoil velocity will be con-
taminated by some error. However, experience in CLA
calculations indicates that the error made only overesti-
mates the physical quantities calculated, relative to full
numerical simulations [39,47,80].

Future work will concentrate on extending this approach
to second order in P and to other, more realistic, initial data
sets [81,82]. Ultimately, it would be interesting to compare
the CLA approach directly to full numerical relativistic
simulations in an attempt to determine the region of valid-
ity of the CLA more accurately. Another possibility is to
use a multiparameter perturbation scheme (see [83–86])
where perturbations in the linear momentum and separa-
tion parameters can be cleanly separated at the different
perturbative orders.
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APPENDIX A: CONVENTIONS FOR SPECIAL
FUNCTIONS

In this appendix, we describe the conventions we use for
the special functions presented in this paper, and we also
present some important properties of such functions.

1. Special polynomials

The expression for the associated Legendre polynomials
that we are using in this paper is the following

 Pm‘ �x� �
��1�‘�m

2‘‘!
�1� x2�m=2 d

‘�m

dx‘�m
�1� x2�‘; (A1)

where ‘ is a non-negative integer and m is an integer
restricted to the following range: m 2 ��‘;��‘�
1�; . . . ; ‘� 1; ‘�.

Gegenbauer polynomials, also known as ultraspherical
harmonics [57], are generalization of the Legendre poly-
nomial for higher dimensional spaces. They can be written
in terms of other special functions, as in

 C�	�n �
��	� 1=2�

��2	�
��n� 2	�

��n� 	� 1=2�
P�	�1=2;	�1=2�
n ; (A2)

where 	 is a real number, n is a positive integer, � is the
Gamma function, and P�	1;	2�

n are the Jacobi polynomials
[57]. There are also recursion relations for these polyno-
mials, but we will not present them here. Instead, we will
provide the first few Gegenbauer polynomials

 C�	�0 �x� � 1; (A3)

 C�	�1 �x� � 2	x; (A4)

 C�	�2 �x� � �	�1� 2�1� 	�x2	; (A5)

 C�	�3 �x� � �2	�1� 	�x
�

1�
2

3
�2� 	�x2

�
: (A6)

These polynomials allow for the far field expansion of
potentials that scale as j ~x� ~x0j

�
 to arbitrary order.

2. Spherical harmonics

The scalar spherical harmonics are solutions of the
eigenvalue problem described by the following equation

 �abY‘m:ab � ‘�‘� 1�Y‘m � 0; (A7)

where �‘;m� have the same range of values as in the
associated Legendre polynomials above. In this paper we
use the conventions of [77,87] to define specifically the
solutions of Eq. (A7). The precise expression is given by

 Y‘m��; ’� �

����������������������������������
2‘� 1

4

�‘�m�!
�‘�m�!

s
Pm‘ �cos��eim’: (A8)

The scalar spherical harmonics form an orthonormal basis
on the two-sphere, that is

 

Z
S2
d�Y‘m �Y‘

0m0 � �‘‘
0
�mm

0
; (A9)

where �ab denotes the Kronecker delta. The vector spheri-
cal harmonics are defined in terms of the scalar ones as in
Eq. (37), and from this definition we can derive the follow-
ing orthogonality relations:

 

Z
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0m0
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0
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�mm

0
; (A11)

 

Z
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d� �abY‘ma �S‘

0m0
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The (symmetric) tensor spherical harmonics used in this
paper are also constructed from the scalar ones by means of
Eqs. (38) and (39), from where the following orthogonality
relations can be deduced:
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2�‘� 2�!
�‘‘

0
�mm

0
; (A14)

 

Z
S2
d� �ac�bdS‘mab �S‘

0m0
cd �

�‘� 2�!

2�‘� 2�!
�‘‘

0
�mm

0
; (A15)

 

Z
S2
d� �ac�bdZ‘mab �S‘

0m0
cd � 0; (A16)

and

 �ac�bdZ‘mab Y
‘0m0
cd � �ac�bdS‘mab Y

‘0m0
cd � 0: (A17)

3. Spin-weighted scalar spherical harmonics

Spin-weighted scalar spherical harmonics are another
basis to expand functions on the 2-sphere. They can be
defined by the following general formula [88]
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 sYlm��; ’� �

8>><
>>:
��l�s�!
�l�s�!	

1=2@̂sYlm; 0< s< l;

��1�s��l�s�!
�l�s�!	

1=2 	@�sYlm; �l < s < 0;
0; l < jsj;

(A18)

where @̂ ( 	@) is a ladder operator, usually called the edth
operator, that raises (lowers) in a unity the spin weight of
any quantity. Its action on a scalar Q can be expressed in
the following way [88,89]

 @̂Q � ma@aQ�
s
2
� �mambrbma�Q; (A19)

 

	@Q � �ma@aQ�
s
2
�ma �mbrb �ma�Q; (A20)

where s is the spin weight of Q and �ma; �ma� is a null
complex basis on the 2-sphere (�abmamb � 0;
�abma �mb � 1). It is worth noting that the action of the
edth depends explicitly on the spin weight of the quantity
on which it acts. Taking ma � 1��

2
p �1; i

sin�	, we can write the

edth operator as [89]

 @̂ �
1���
2
p

�
@� �

i
sin�

@’ �
s
2

cos�
sin�

�
; (A21)

 

	@ �
1���
2
p

�
@� �

i
sin�

@’ �
s
2

cos�
sin�

�
: (A22)

It is important to mention that these definitions are appli-
cable only to integer powers of the spin weight. A gener-
alized definition for half-integer powers of s exists but will
not be discussed here (see [88]).

In this paper we are interested in the s � �2 case, for
which the definition of the spin-weighted spherical har-
monics reduces to [90]

 �2Y
‘m � 2

�����������������
�‘� 2�!

�‘� 2�!

s
Z‘mab �ma �mb: (A23)

APPENDIX B: RELATIONS WITH THE REGGE-
WHEELER PARAMETRIZATION OF THE

PERTURBATIONS

For the sake of completeness, we give here the relations
between our parametrization of the metric perturbations
and the one used by Regge and Wheeler [58]. For polar
modes (our notation is on the left column and the one of
Regge and Wheeler is on the right one) we have

 �h‘mAB� $
fH‘m

0 H‘m
1


 f�1H‘m
2

 !
; (B1)

 p‘mA $ �h
‘m
t ; h‘mr �; (B2)

 K‘m $ K‘m �
‘�‘� 1�

2
G‘m; (B3)

 G‘m $ G‘m; (B4)

and for axial modes

 �h‘mA � $ ��h
‘m
0 ; h‘m1 �; (B5)

 H‘m $ �h‘m2 : (B6)

The expressions for the master functions, in
Schwarzschild coordinates, in terms of the parametrization
of Regge and Wheeler are:
 

�‘m
ZM �

r
1� 	‘

�
K‘m �

f
�‘
�H‘m

2 � r@rK
‘m�

�

�
2f
�‘

�
h‘m1 �

r2

2
@rG‘m

�
; (B7)

 �‘m
RW �

f
r

�
h‘m1 �

1

2
@rh‘m2 �

1

r
h‘m2

�
; (B8)

 �‘m
CPM �

r
	‘

�
_h‘m1 � @rh

‘m
0 �

2

r
h‘m0

�
: (B9)

APPENDIX C: ON THE DERIVATION OF THE
LINEAR MOMENTUM FLUX FORMULA

In order to obtain Eqs. (57)–(59) from Eq. (55) we need
to use the decompositions of products of spherical harmon-
ics in single harmonics typical of problems that deal with
angular momentum coupling (for accounts dealing with
this problem see [67], where multipole expansions of
gravitational radiation in different sets of harmonics are
described; see [91] for a recent systematic treatment of
higher-order perturbation theory where these issues are
also treated).

Introducing Eq. (54) into Eq. (55), using that any spheri-
cal harmonic S‘m has the property S‘;�m � ��1�m �S‘m,
and the fact that Z‘mab is symmetric and traceless we get

 

_P k
GW �

1

32


X
‘�2;m
‘0�2;m0

� _�‘m
ZM

_��
‘0m0

ZM � _�‘m
CPM

_��
‘0m0

CPM�

�
Z
S2
d�r̂kobsZ

‘m
ab

�Z‘
0m0
cd �ac�bd: (C1)

At this point everything reduces to evaluate the integral on
the 2-sphere. To that end, the starting point is the well-
known formula [92]
 

Y‘mY‘
0m0 �

X
L;M

�������������������������������������������������������
�2‘� 1��2‘0 � 1��2L� 1�

4


s

�
‘ ‘0 L

m m0 M

 !
‘ ‘0 L

0 0 0

 !
�YLM; (C2)
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where the objects with the round brackets are the
3j-Wigner symbols, which are related to the Clebsch-
Gordon coefficients. They are subject to certain selection
rules, namely, �‘;m�, �‘0; m0�, and �L;M� are integers with
the usual ranges of values; m�m0 �M � 0; and the

triangular inequality j‘� ‘0j � L � ‘� ‘0. By using
(C2) and the definition of Z‘mab [Eq. (38)] we find the
following relationship

 Z‘mab �Z‘
0m0
cd �ac�bd �

X
L;M

C�‘; ‘0; L�

�������������������������������������������������������
�2‘� 1��2‘0 � 1��2L� 1�

4


s
‘ ‘0 L
m m0 M

� �
‘ ‘0 L
0 0 0

� �
�YLM; (C3)

where C�‘; ‘0; L� is a constant given by

 C�‘; ‘0; L� �
1

4
fL2�L� 1�2 � ‘2�‘� 1�2 � ‘02�‘0 � 1�2 � 2L�L� 1� � 2�‘�‘� 1� � ‘0�‘0 � 1�	�L�L� 1� � 1	g:

(C4)

Then, since the components of r̂kobs are linear in Y1;m, the integral that appears in Eq. (C1) is now straightforward. In order
to get Eqs. (57)–(59) we just need to use the selection rules of the 3� j Wigner symbols and the following additional
properties:

 

j1 j2 j1 � j2

m1 m2 �M

� �
� ��1�j1�j2�M

�
�2j1�!�2j2�!

�2j1 � 2j2 � 1�!

�j1 � j2 �M�!�j1 � j2 �M�!
�j1 �m1�!�j1 �m1�!�j2 �m2�!�j2 �m2�!

�
1=2
; (C5)

 

j1 j2 j
0 0 0

� �
�

�
��1�g

�
�2g�2j1�!�2g�2j2�!�2g�2j�!

�2g�1�!

�
1=2

g!
�g�j1�!�g�j2�!�g�j�!

; if J � 2g;

0; if J � 2g� 1;
(C6)

where J � j1 � j2 � j.

APPENDIX D: DETERMINING EXTREMAL
SURFACES IN THE BRILL-LINDQUIST BINARY

BLACK HOLE DATA

We are interested in finding the location of the extremal
surfaces that surround the individual holes in the BL binary
black hole initial data that we are using in this paper. When
the holes are separated enough these surfaces form the
apparent horizon of the initial data (since we are neglecting
the extrinsic curvature the data is time symmetric). If we
put the two holes close enough, another maximal surface
enclosing the two holes appears and becomes the apparent
horizon, and then, the two individual maximal surfaces are
called marginally trapped surfaces.

Following Bishop [93,94], in order to look for maximal
surfaces in the BL data it is very convenient to exploit the
cylindrical symmetry of the configuration by expressing
the metric in cylindrical coordinates (for coherence with
the conventions of the paper we choose the axis of sym-
metry to be the X-axis): x � x, y � � cos#, z � � sin#.
Then, the line element of Eq. (2) becomes:

 ds2 � �4��; x��d�2 � �2d#2 � dx2�; (D1)

where now

 � � 1�
m1

2
��������������������������������
�2 � �x� X1�

2
p �

m2

2
��������������������������������
�2 � �x� X2�

2
p : (D2)

Moreover, the problem of finding the extremal surfaces

reduces to that of finding a path ���	�; x�	�� in the sub-
space ��; x�. The area of a surface with cylindrical sym-
metry can be written as

 A � 2

Z 	2

	1

��4
�����������������
_�2 � _x2

q
d	; (D3)

where the dots denote differentiation along the path, that is
d=d	, and �	1; 	2� are the intersections of the surface with
the symmetry axis X. The equations for the path
���	�; x�	�� are found by extremizing the area, �A � 0,
Bishop [93,94] took 	 to be an affine parameter, that is,
such that A � 2
�	2 � 	1�. We have fixed 	 in such a
way the ordinary differential equations for ���	�; x�	�� are
simple and amenable for numerical computations. In par-
ticular, we have chosen 	 so that

 

�����������������
_�2 � _x2

q
� ��4; (D4)

which is a constraint preserved by the Euler-Lagrange
equations that we obtain from �A � 0:

 
� � �@�V ; (D5)

 
x � �@xV ; (D6)

where the potential V is given by

 V ��; x� � 1
2�

2�8: (D7)
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