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We study the phase space of the spherically symmetric solutions of the system obtained from the
dimensional reduction of the six-dimensional Einstein-Gauss-Bonnet action. We show that all the
physically significant solutions are either asymptotically flat or asymptotically anti–de Sitter.
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I. INTRODUCTION

The possibility that higher-derivative corrections should
be added to the Einstein-Hilbert (EH) Lagrangian of gen-
eral relativity in order to obtain a better behaved theory has
often been considered. Among the various possibilities, a
prominent role is played by the so-called Gauss-Bonnet
(GB) terms.

GB Lagrangians were introduced in [1] as the only
possible generalization of the EH Lagrangian in higher
dimensions that gives rise to field equations which are
second order in the metric, linear in the second derivatives,
and divergence free. Another important property is that GB
corrections do not introduce any new propagating degrees
of freedom in the spectrum of gravity [2]. However, since
they vanish in lower dimensions unless nonminimally
coupled to scalar fields, they are mainly useful in the
context of higher-dimensional gravity, and especially
Kaluza-Klein theories [3–5]. It must however be men-
tioned that GB contributions also appear in the low-energy
limit of string theories, [2,6], and may also play an im-
portant role in the context of the braneworld scenario [7].

The introduction of GB terms in the action of Kaluza-
Klein theories allows spontaneous compactification of
higher-dimensional models without the need of introduc-
ing external fields. For example, GB models admit ground
states in the form of the direct product of two maximally
symmetric spaces [4]. They also have interesting applica-
tions in higher-dimensional cosmology [5].

In order to explore further the physical implications of
the dimensional reduction of higher-dimensional models
of gravity including GB corrections, it is interesting to
study the existence of black hole solutions of the dimen-
sionally reduced theory, with compact internal space. In
the case of pure Einstein gravity, this investigation was
performed in [8], where it was shown that the only solution
of physical interest is the four-dimensional Schwarzschild
metric with flat internal space. In the GB case, one may
expect the existence of a greater variety of solutions, and,
in particular, also black holes with anti–de Sitter
asymptotics.

Some black hole solutions of the Einstein-GB field
equations are already known in different physical situ-
ations, as spherical symmetry in higher dimensions [9] or
GB-scalar coupling in four dimensions [10,11]. In these
cases it results a modification with respect to the Einstein
case of the short-distance behavior of the solutions near the
singularities, but also asymptotic or global properties of the
black hole may be altered.

In this paper, our aim is to classify all solutions of the
Einstein-GB system taking the form of a direct product of a
four-dimensional spherically symmetric black hole with a
maximally symmetric internal space. Since a general dis-
cussion would be too involved, we shall limit ourselves to
the case of six dimensions, where the only relevant GB
correction is quadratic in the curvature and has the form
S �R����R���� � 4R��R�� �R2.

A powerful technique for investigating this topic is the
study of the phase space of the solutions of the field
equations. This method has been used for example in the
Einstein case [8]. In particular, the classification of the
critical points of the dynamical system placed at infinity
of the phase space allows one to deduce the asymptotics of
all possible solutions. However, as mentioned above, when
a GB term is added to the action, the field equations are still
second order, and linear in the second derivatives, but no
longer quadratic in the first derivatives. This fact gives rise
to several technical problems. In particular, the potential of
the dynamical system is no longer polynomial, but presents
poles for some values of the variables [11].

Not all the solutions of the dynamical system are physi-
cally relevant. We require that they are regular everywhere,
except possibly for coordinate singularities associated to
horizons, and spherically symmetric. Moreover, the size of
the internal space (or equivalently the Kaluza-Klein scalar
field) must go to a constant at spatial infinity, in order to
avoid decompactification. The result of our investigation is
that the solutions fulfilling these requirements are either
asymptotically flat or asymptotically anti–de Sitter, dis-
carding the possibility of more exotic behavior.

Our starting point is the (n� 4)-dimensional action

 I �
Z �������
�g
p

d�n�4�x�R�n�4� � �S�n�4��; (1.1)
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where R�n�4� is the curvature scalar and S�n�4� the qua-
dratic GB term of the manifold and � is a coupling
constant of dimension �L�2.

We want to perform a dimensional reduction which casts
the metric in the form of a direct product of a four-
dimensional manifold with an n-dimensional space of
constant curvature, whose size is parametrized by a scalar
field �. In general, contrary to the Einstein case, it is not
possible to find an ansatz for the metric of the Einstein-GB
system that completely disentangles the scalar field� from
the curvature in the dimensionally reduced action, except

when the internal space is flat. Therefore we maintain the
usual ansatz

 ds2
�n�4� � e�n�ds2

�4� � e
2�g�n�abdx

adxb; (1.2)

where ds2
�4� is the line element of the four-dimensional

spacetime and g�n�ab is the metric of the n-dimensional
maximally symmetric internal space, with R�n�

ab � �ig
�n�
ab .

The action is dimensionally reduced to

 

I �
Z �������
�g
p

d4x
�
�1� 2��ie�2��R�4� � �en�S�4� � 4n�en�G�4���r��r��

�

�
n�n� 2�

2
� �n2 � 2n� 12���ie

�2�
�
�r��2 �

n�n� 2��n2 � n� 3�

3
�en��r��4 � �ie

��n�2��

� �n� 2��n� 3���2
i e
��n�4��

�
: (1.3)

The dimensionally reduced action contains the Einstein and the GB terms nonminimally coupled to a scalar field, and a
standard kinetic term and a potential for the scalar field. In addition, one has a nonstandard quartic correction to the kinetic
term and a coupling between the Einstein tensor G�� and derivatives of the scalar field. Of course, both these terms yield
second order field equations. The action (1.3) displays some similarity with the string effective action studied in [11], but
contains additional terms.

In the following discussion, it is important to fix the possible ground states for the model. These are taken to be the direct
product of a four-dimensional and an n-dimensional maximally symmetric space, i.e. R�4�

���� � �e�g
�4�
��g

�4�
�� � g

�4�
��g

�4�
���,

R�n�
���� � �i�g

�n�
��g

�n�
�� � g

�n�
��g

�n�
���. Substituting this ansatz into the field equations derived from (1.1), one obtains

 

���n� 1��n� 2��n� 3��n� 4��2
i � 24�2

e � 24�n� 1��n� 2��e�i� � �n� 1��n� 2��i � 12�e � 0;

��n�n� 1��n� 2��n� 3��2
i � 12n�n� 1��i�e� � n�n� 1��i � 6�e � 0:

(1.4)

The system always admits the solution �e � �i � 0, as in
the Einstein case, but one can also obtain solutions with
nonvanishing curvature, namely, de Sitter or anti–de
Sitter.1 Consequently, black hole solutions of (1.1) may
have anti–de Sitter behavior at spatial infinity. In the
following we shall concentrate on the case n � 2.
Equation (1.4) then admits a solution �e � �

1
2� , �i �

� 3
10� , i.e. AdS�H2 for �> 0, or dS� S2 for �< 0.

II. THE DYNAMICAL SYSTEM

Let us consider the case n � 2. For the four-dimensional
metric we adopt the ansatz [8]

 ds2
�4� � �e

2�dt2 � ��2e4��2�d	2 � e2��2�gijdxidxj;

(2.1)

where �, � and � as well as � are functions of 	 and gab is
the metric of a two-dimensional maximally symmetric
space, with Rij � �egij. The ansatz (2.1) enforces radial
symmetry. Of course, the solutions of physical interest are
the spherically symmetric ones, i.e. those with �e > 0.

It is then convenient to define new variables

 
 � 2� � ���; � � 2� � �� 2� (2.2)

Substituting the ansatz (1.2) and (2.1) into the action,
performing some integrations by parts, and factoring out
the internal space, the action can be cast in the form

1We are only interested in black hole with asymptotic regions,
so we shall not consider the de Sitter case further.
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I � �8�
Z
d4x

�
��6
02 � 3� 02 � 3�02 � 8
0� 0 � 8
0�0 � 4� 0�0� �

1

�
��ee2� � �ie2��

� 4�e�2

�
���0 � 
0��4� 0 � 3�0 � 5
0��ee2� � ��� 0 � 
0��3� 0 � 4�0 � 5
0��ie2�

� �3�� 0 � 
0���0 � 
0��11
02 � 4� 02 � 4�02 � 7� 0�0 � 13
0� 0 � 13
0�0� � �e�i
e2�����

�

��
: (2.3)

As usual, the action (2.3) does not contain derivatives of �,
which acts therefore as a Lagrangian multiplier enforcing
the Hamiltonian constraint. Another relevant property of
(2.3) is that, in spite of the presence of the higher-derivative
GB term, it contains only first derivatives of the fields,
although up to the fourth power, and therefore gives rise to
second order field equations. A further interesting property
is that, due to our choice of variables, the action is invariant
under the interchange of � and �.

One can now vary (2.3) and then write the field equations
in first order form in terms of the new variables,

 

W � 
0; X � � 0; Y � �0;

U � e
; Z � e� ; V � e�;
(2.4)

which satisfy

 U0 � WU; Z0 � XZ; V 0 � YV: (2.5)

Varying with respect to � and then choosing the gauge
� � 1, one obtains the Hamiltonian constraint

 E 	 P2 � �eZ2 � �iV2 �
4�

U2 ��e�iZ
2V2 � �eZ2�Y �W�A� �iV2�X�W�B� 3�X�W��Y �W�C2� � 0; (2.6)

where

 P2 � 6W2 � 3X2 � 3Y2 � 8WX� 8WY � 4XY; C2 � 11W2 � 4X2 � 4Y2 � 7XY � 13WX� 13WY;

A � 4X� 3Y � 5W; B � 3X� 4Y � 5W:

Variation with respect to 
, � and � gives rise to the other field equations

 

2X0 � 2Y0 � 3W0 �
�
2�

U2 ��eZ
2�2X� 4Y � 5W� � �iV

2�4X� 2Y � 5W� � 22W3 � 2X3 � 2Y3 � 36W2X� 36W2Y

� 12X2Y � 12Y2X� 17WX2 � 17WY2 � 44XYW�
�
0

�
2�

U2 ���e�iZ
2V2 � �eZ2�Y �W�A� �iV2�X�W�B� �X�W��Y �W�C2�; (2.7)

 

X0 � 2Y0 � 2W0 �
�
4�

U2 ��eZ
2�2X� 2Y � 3W� � �X�W��10W2 � 2X2 � 5Y2 � 6XY � 9WX� 14WY � �iV2��

�
0

� �eZ
2 �

4�

U2 ��iV
2�X�W�B� �X�W��Y �W�C2�; (2.8)

 

2X0 � Y0 � 2W0 �
�
4�

U2 ��iV
2�2X� 2Y � 3W� � �Y �W��10W2 � 5X2 � 2Y2 � 6XY � 14WX� 9WY � �eZ2��

�
0

� �iV
2 �

4�

U2 ��eZ
2�Y �W�A� �X�W��Y �W�C2�: (2.9)

In the variables (2.4), the problem takes the form of a six-
dimensional dynamical system, subject to a constraint.
Notice that the function E defined in (2.6) is a constant
of the motion of the system (2.5), (2.7), (2.8), and (2.9),
whose value vanishes by virtue of the Hamiltonian con-
straint. Since the system is obviously symmetric for V !

�V, Z!�Z, U ! �U, we shall only consider positive
values of these variables.

The Einstein limit

In the Einstein limit, � � 0, one recovers the results of
[8]. We summarize them in terms of the variables intro-
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duced above: when � � 0, the dynamical system reduces
to Eqs. (2.5) and
 

2X0 � 2Y0 � 3W0 � 0; X0 � 2Y0 � 2W0 � �eZ
2;

2X0 � Y0 � 2W0 � �iV
2; (2.10)

subject to the constraint

 E � P2 � �eZ2 � �iV2 � 0: (2.11)

The physical trajectories lie on the four-dimensional hy-
perplane E � 0. Moreover, the system is independent of
the variable U, and one may restrict the analysis to U � 0.
It is evident that 2X� 2Y � 3W is a constant of the motion
for the system (2.10) and therefore one of the variables, say
W, could be eliminated, but we keep it for comparison with
the GB case.

The structure of the phase space can be studied by
classifying the critical points. These are the points where
the trajectories of the solutions start or end, and their
position is determined by the condition that the derivatives
of all the phase space variables vanish there. The location
of the critical points is therefore related to the behavior of
the metric at infinity or near the horizon (or singularity),
while the discussion of the linearized equations near the
critical points permits to deduce which trajectories start or
end at a specific point [8].

In particular, the critical points at finite distance in phase
space correspond to the small radius limit of the solutions
[8]. They lie on the surface Z0 � V0 � P0 � 0, but only
points with X0 � Y0 � W0 correspond to regular horizons,
while the others give rise to naked singularities. The ei-
genvalues of the linearized equations around the critical
points are 0, with multiplicity 3, X0, Y0 and W0

Since we are interested in solutions with asymptotic
regions, we are led to study the phase space at infinity,
which corresponds to the large radius limit of the solutions
[8]. This can be investigated defining new variables
 

t �
1

W
; x �

X
W
; y �

Y
W
;

u �
U
W
; z �

Z
W
; v �

V
W
:

(2.12)

In terms of these variables, the field equations at infinity
are then obtained for t! 0, and read

 

_t � �2�v2 � z2�t; _x � z2 � 2v2 � 2�v2 � z2�x

_y � 2z2 � v2 � 2�v2 � z2�y; _u � �1� 2v2 � 2z2�u;

_z � �x� 2v2 � 2z2�z; _v � �y� 2v2 � 2z2�v;

where a dot denotes td=d	.
The critical points at infinity are found at t0 � 0 and

a) �iv2
0 � �ez2

0 � 0, x � x0, y � y0, with 3x2
0 � 3y2

0 �
4x0y0 � 8x0 � 8y0 � 6 � 0.

b) �iv2
0 � 0, �ez2

0 � 1=4, x0 � 1=2, y0 � 1.

c) �ez2
0 � 0, �iv2

0 � 1=4, x0 � 1, y0 � 1=2.

d) �iv2
0 � �ez

2
0 � 3=16, x0 � y0 � 3=4.

Points a) are the endpoints of the hypersurface V � Z �
0, points b) of the hypersurface V � 0, points c) of the
hypersurface Z � 0. Exact solutions with endpoints b), c)
and d) are discussed in the appendix.

The eigenvalues of the linearized equations around the
critical points with their degeneracy in parentheses are:

a) 0�3�, 1, x0, y0.
b,c) �1, � 1

2 �3�,
1
2 �2�.

d) � 3
2 , � 3

4 �2�,
1
4 , � 3


��
1
p

5
8 .

The asymptotic behavior of the solutions can be deduced
from the location of the critical points at infinity [8].
Excluding points a) that do not correspond to physical
trajectories, one has, in terms of a radial variable r:

b) ds2 ��dt2 � dr2 � r2d�2
�, e2� � const

c) ds2 ��r2dt2 � r2dr2 � r2d�2
0, e2� � r2.

d) ds2 ��rdt2 � dr2 � r2d�2
�, e2� � r.

Here, we have denoted with d�2
� the metric of a unitary

2-sphere, and with d�2
0 that of a flat 2-plane. The solutions

ending at points b) are asymptotically flat, while the others
have more exotic behavior.

The phase space portrait is the following: solutions with
regular horizons start at Z0 � V0 � 0; X0 � Y0 � W0 �
a, for some value of the parameter a, and end at points b) if
�i � 0, or d) if �i > 0. These last solutions, however,
decompactify for r!1, since e2� diverges in such limit.
Also cylindrical solutions with �e � 0 exist, which end at
points c). The only spherically symmetric solutions with
constant scalar field at infinity are therefore asymptotically
flat.

III. THE GAUSS-BONNET PHASE SPACE

As discussed in Sec. I, in the GB case Eqs. (1.4) admit
the ground state solution �e � �1=2�, �i � �3=10� in
addition to flat space, and therefore black holes with anti–
de Sitter asymptotic behavior may be expected if �> 0.
The phase space of the system can be studied by the same
methods used in the Einstein case. As usual in the presence
of Gauss-Bonnet terms, some care must be taken because
of the poles at U � 0. The limit U ! 0 must be therefore
taken, when necessary, at the end of the calculations.

Equations (2.7), (2.8), and (2.9) must be solved for the
variables X0, Y0 and W0 in order to put the system in its
canonical form. One can then find the critical points at
finite distance by requiring the vanishing of the derivatives
of the fields. As in the Einstein case, they lie on the
hypersurfaceU0 � Z0 � V0 � 0. However, in the GB sys-
tem, the other variables must satisfy the constraint W0 �

X0 � Y0, or X0 �
4


��
5
p

5 W0, Y0 �
4�

��
5
p

5 W0. Only the first
case corresponds to regular horizons. In that case the
eigenvalues of the linearized equations near the critical
points are identical to those found in the Einstein limit.
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The critical points at infinity are obtained by writing the
dynamical systems in terms of the variables (2.12) and
requiring the vanishing of their derivatives as t! 0.
They are listed in Table I.

In case a), the curve of the previous section reduces to a
single point. Furthermore, the points d) have disappeared,
except in the limit �! 0 (i.e. t! 1). The points with
u0 � 0 are attained by taking the limit u0 ! 0 at the end of
the calculation. It is also evident that points e)-h) exist only
if �> 0.

It is interesting to notice that the location of the critical
points at infinity is very similar to that of the pure Einstein
system with a cosmological constant, investigated in [12],
except for the presence of the new points i), l) and m
).

It seems therefore that one of the main ingredients in
fixing the structure of the phase space at infinity, and hence
the asymptotic behavior of the solutions, is the relative
dimension of the terms in the action. For a detailed dis-
cussion see [13].

From the eigenvalues and the eigenvectors of the line-
arized equations, one can deduce the nature of the trajec-
tories attracted by the various critical points at infinity. The
eigenvalues of the linearized equations near the critical
points and their degeneracy are listed in Table II, together
with the nature of the trajectories attracted, for W > 0.

The points a) do not attract any trajectory from finite
distance. Moreover, the points i), l) and m
) attract only
trajectories on the hypersurface U � 0, corresponding to
the limit �! 1. These are therefore solutions of the pure
Gauss-Bonnet theory, without the presence of the Einstein-
Hilbert term.

The critical points b)–c) generalize those found in the
Einstein case, and have the same asymptotic behavior. For
what concerns the other points,

e) ds2 ��r2dt2 � r�2dr2 � r2d�2
�, e2� � const.

f) ds2 ��r4dt2 � dr2 � r2d�2
�, e2� � r2.

g) ds2 ��r2dt2 � r�2dr2 � d�2
�, e2� � const.

h) ds2 ��r2dt2 � r�1dr2 � r2d�2
0, e2� � r.

i) ds2 ��r2dt2 � dr2 � r2d�2
�, e2� � const.

l) ds2 ��r4dt2 � r2dr2 � r2d�2
0, e2� � r2.

m
) ds2 ��r2

��
5
p

dt2 � r��2

��
5
p
�dr2 � r2d�2

0, e2� �

r1�
��
5
p

.

Here d�2
� denotes the metric of a two-dimensional space

H2 with constant negative curvature.
Of particular interest are the solutions that end at the

critical point e), which arise for positive �. These asymp-
tote to the exact ground state solution AdS4 �H2, cited
previously, that in the present coordinates takes the form

 

ds2 � �

�
r2

2�
� 1

�
dt2 �

�
r2

2�
� 1

�
�1
dr2 � r2d�2

�;

e2� �
10�

3
: (3.1)

Also interesting is the solution g), that asymptotes the
exact solution AdS2 �H2 �H2. Its four-dimensional sec-
tion is analogous to a Bertotti-Robinson metric. The other
solutions have less common behavior.

The results of the study of the phase space of the
dynamical system can be summarized as follows: solutions
with regular horizon start at the points U � V � Z � 0,
X � Y � W and terminate at one of the critical points
listed in Table I, depending on the values of �, �e and �i
(see Table II). These trajectories exhaust all the possible
black hole solutions of the system, and their asymptotic
behavior depends solely on their endpoints at infinity of
phase space. The various possibilities that can arise are
discussed above.

As explained in the introduction, the relevant solutions
from the Kaluza-Klein point of view are those with �e > 0
and e2� asymptotically constant. From the previous dis-
cussion, it is evident that the only solutions satisfying these
requirements are the asymptotically flat (Schwarzschild-

TABLE II. The eigenvalues of the linearized equations near
the critical points at infinity and the nature of the trajectories
attracted.

Eigenvalues (with degeneracy) Trajectories attracted

a) 0�3�, 1�3�

b) � 1
2 �3�, �1, 1

2 �2� �e > 0, �i � 0

c) � 1
2 �3�, �1, 1

2 �2� �e � 0, �i > 0

e) �1�2�, �2, � 1
3 , � 1


��������
11=3
p

2 any �e, �i < 0

f) �1�2�, �2, � 1
3 , � 1


��������
11=3
p

2 �e < 0, any �i

g) �1, �2�2�, 1, � 1
i
������
5=3
p

2 �e < 0, �i < 0

h) �1�3�, �2, � 1
5 �2� any �e, �i

i) � 2
3 , � 1

3 , �1, 1
3 �3� �e > 0, �i � 0

l) � 2
3 , � 1

3 , �1, 1
3 �3� �e � 0, �i < 0

m�) � 2
3 �2�, 0, 1

3 , 2
3
��
5
p

15 �e > 0, �i � 0

m�) � 2
3 �2�, 0, 1

3 , 2
3
��
5
p

15 �e � 0, �i < 0

TABLE I. Location of the critical points at infinity.

x0 y0 u2
0=� �ez

2
0 �iv

2
0

a) 1 1 0 0 0
b) 1=2 1 0 1=4 0
c) 1 1=2 0 0 1=4
e) 2=3 1 2=9 0 �1=15
f) 1 2=3 2=9 �1=15 0
g) 1 1 2 �1 �1
h) 4=5 4=5 6=25 0 0
i) 2=3 1 0 1=3 0
l) 1 2=3 0 0 1=3
m
) 4


��
5
p

5
4�

��
5
p

5 0 0 0
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like) solutions with flat internal space ending at the critical
points b) and the asymptotically anti–de Sitter solutions
with internal space of negative curvature ending at the
critical points e).2 We can therefore deduce that the only
physically relevant black hole solutions of the dimension-
ally reduced six-dimensional Einstein-GB system with
asymptotic regions are either asymptotically flat or asymp-
totically anti–de Sitter.

IV. CONCLUSIONS

Higher-dimensional models of gravity naturally admit
Gauss-Bonnet terms in the Lagrangian. Our study has
shown that the compactification of the simplest model
admits black hole solutions displaying a variety of asymp-
totic behaviors. However, all physically reasonable solu-
tions (i.e. spherically symmetric and with internal space of
finite size) have either flat or anti–de Sitter asymptotics,
and internal space of vanishing or negative curvature,
respectively. This behavior actually reproduces that of
the possible ground states.

It turns out that the phase space of the model is quite
similar to that of pure Einstein gravity with a cosmological
term [12]. It would be interesting therefore to consider the
effect of adding a cosmological constant to our model. This
topic is currently under study [13].
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APPENDIX A

In the pure Einstein case, exact solutions corresponding
to the vanishing of �i or �e where obtained in [8] for
generic spacetime dimensions. In our six-dimensional set-
ting, the solutions take the following form: for �i � 0 one
obtains of course the Schwarzschild metric with constant
scalar field,

 ds2 � ��1� 2M=r�dt2 � �1� 2M=r��1dr2 � r2d�2
�;

e2� � const

For �e � 0, one has instead a solution of the form
 

ds2 ��r2�1� 2M=r�dt2� r2�1� 2M=r��1dr2� r2d�2
0;

e2� � r2:

In our case, a family of exact solutions with asymptotic
behavior d) can also be obtained, if one makes the ansatz
� � � . In fact, in this case, the field equations reduce to

 4� 00 � 3
00 � 0; 3� 00 � 2
00 � e2� ;

subject to the constraint 6
02 � 10� 02 � 16
0� 0 � 2e2� �
0. Integrating the first equation, one obtains 
0 � 4�� 0 �
c�=3, and hence e
 � Ae4���c	�=3 for constant A and c.
Substituting in the second equation, one obtains

 � 00 � 3e2� ;

which is solved by

 e� �
2aea	���

3
p
�1� e2a	�

:

Regular black hole solutions satisfying the constraint are
obtained for c � a=4. For � � � , the metric functions of
(2.1) are related to our variables by

 e� � e3��2
; e� � e
�� :

Using these relations with A � 1, defining r �
R
e2�d	,

r0 � 2a=3, and substituting in (2.1), one finally obtains
 

ds2 � �
r� r0

r1=3
dt2 �

r1=3

r� r0
dr2 � r4=3d�2;

e2� � r2=3;

or, in different coordinates,
 

ds2 ��R
�
1�

r0

R3=2

�
dt2�

27

4

�
1�

r0

R3=2

�
�1
dR2�R2d�2;

e2� � R:

A more familiar expression can be obtained by writing
the metric in its six-dimensional form:
 

ds2 � �

�
1�

r0

r̂3

�
dt2 �

�
1�

r0

r̂3

�
�1
dr̂2 �

r̂2

3
�d�2

i � d�2
e�:

This is a variant of the well known six-dimensional
Tangherlini metric, where the 4-sphere is replaced by the
direct product S2 � S2.

APPENDIX B

It may be interesting to write down some special exact
solutions of the Einstein-GB system corresponding to the
possible asymptotic behavior associated with the different
critical points at infinity. The properties of these solutions
are more transparent in their six-dimensional form, in the
Schwarzschild-like gauge

 ds2 � �e2�dt2 � e�2�dr2 � e2�d�2
e � e

2�d�2
i :

In this gauge is evident the presence of a symmetry for the
interchange of � and �, that follows from the specific
compactification considered. This entails a duality be-
tween points b), c) and e), f).

2As mentioned above, the solutions i), l) and m
) arise only in
the limit of vanishing Einstein-Hilbert contribution and can
therefore be neglected.
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b) ds2 � �dt2 � dr2 � r2d�2
� � d�2

0.
c) ds2 � �dt2 � dr2 � d�2

0 � r
2d�2

�.
e) ds2 � �� r

2

2� � 1�dt2 � � r
2

2� � 1��1dr2 � r2d�2
� �

10�
3 d�2

�, or ds2 � � r2

2� dt
2 � 2�

r2 dr2 � r2d�2
0 �

10�
3 d�2

�.
f) ds2 � �� r

2

2�� 1�dt2 � � r
2

2�� 1��1dr2 � 10�
3 d�2

� �

r2d�2
�, or ds2 � � r2

2� dt
2 � 2�

r2 dr2 � 10�
3 d�2

� � r2d�2
0.

g) ds2 � �� r
2

2��m�dt
2 � � r

2

2��m�
�1dr2 � 2�d�2

� �

2�d�2
�.

h) ds2 � � r2

6� dt
2 � 6�

r2 dr2 � r2d�2
0 � r

2d�2
0.

The parameter m is an arbitrary constant.
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