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We examine statistical isotropy of large scale anisotropies of the Internal Linear Combination (ILC)
map, based on 3 yr WMAP data. Our study reveals no significant deviation from statistical isotropy on
large angular scales of the 3 yr ILC map. Comparing statistical isotropy of the 3 yr ILC map and 1 yr ILC
map, we find a significant improvement in the 3 yr ILC map which can be due to the gain model, improved
ILC map processing, and foreground minimization.
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I. INTRODUCTION

The cosmic microwave background (CMB) anisotropy
has been shown to be a very powerful observational probe
of cosmology. Detailed measurements of the anisotropies
in the CMB can provide a wealth of information about the
global properties, constituents, and history of the Universe.
In standard cosmology, the CMB anisotropy is expected to
be statistically isotropic, i.e., statistical expectation values
of the temperature fluctuations (and, in particular, the
angular correlation function) are preserved under rotations
of the sky. This property of CMB anisotropy has been
under scrutiny after the release of the first year of
WMAP data [1–25]. We use a method based on bipolar
expansion of the two-point correlation function which is an
improved and enhanced follow-up on our previous work on
first year WMAP data [25,26]. This method is shown to be
sensitive to structures and patterns in the underlying two-
point correlation function.

We apply our method to the improved Internal Linear
Combination (ILC) map [27], based on 3 yr WMAP data
[28]. We choose the ILC map for testing statistical isotropy
(SI) of the CMB anisotropy for the following reasons:

(1) The ILC is a full-sky map and hence is easier to
work with. Masking the sky results in violation of
statistical isotropy. An originally SI CMB anisot-
ropy map deviates from SI after masking [26].

(2) Residuals from galactic removal errors in the 3 yr
ILC map are estimated to be less than 5 �K on
angular scales greater than �10 deg [27]. Hence
at low-l, multipoles are not significantly affected by
foregrounds. In addition, it is interesting to examine
the above statement by testing the statistical iso-
tropy of the ILC map.

(3) On large scales, the 3 yr ILC map is believed to
provide a reliable estimate of the CMB signal, with
negligible instrument noise, over the full sky [27].
These properties of the ILC map allow us to study

the cosmological signal on large scales. In addition,
there are theoretical motivations for hunting for SI
violation on large scales of CMB anisotropy.
Topologically compact spaces [29–32] and aniso-
tropic cosmological models [33–39] are examples
of this. Both observational artifacts and the above
theoretical models cause a departure from statistical
isotropy and it has been shown that our method is a
useful tool to find out these deviations (see e.g. [39–
42]). The rest of this paper is organized as follows:
Section II is a brief introduction to temperature
anisotropy of CMB. Section III describes the for-
mulation of statistical isotropy in general.
Section IV is a description of estimators we use to
look for deviations from statistical isotropy. We
present the application of our method on the
WMAP data in Sec. V. Section VI contains discus-
sion on the cosmological implications of our null
detection of deviations from statistical isotropy on
large angular scales in the 3 yr ILC map of WMAP
data, and in Sec. VII we summarize our results.

II. CHARACTERIZATION OF CMB
TEMPERATURE ANISOTROPY

The CMB anisotropy is fully described by its tempera-
ture anisotropy and polarization. The temperature anisot-
ropy is a scalar random field, �T�n̂� � T�n̂� � T0, on a 2-
dimensional surface of a sphere (the sky), where n̂ �
��;�� is a unit vector on the sphere and T0 �

R d�n̂
4� T�n̂�

represents the mean temperature of the CMB. It is conve-
nient to expand the temperature anisotropy field into
spherical harmonics, the orthonormal basis on the sphere,
as

 �T�n̂� �
X
l;m

almYlm�n̂�; (1)

where the complex quantities alm are given by
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 alm �
Z

d�n̂Y
�
lm�n̂��T�n̂�: (2)

Statistical properties of this field can be characterized by
n-point correlation functions

 h�T�n̂1��T�n̂2� � � ��T�n̂n�i: (3)

Here the bracket denotes the ensemble average, i.e. an
average over all possible configurations of the field.
CMB anisotropy is believed to be Gaussian [43,44].
Hence the connected part of n-point functions disappears
for n > 2. Nonzero (even-n)-point correlation functions
can be expressed in terms of the two-point correlation
function. As a result, a Gaussian distribution is completely
described by the two-point correlation function

 C�n̂; n̂0� � h�T�n̂��T�n̂0�i: (4)

Equivalently, as it is seen from Eq. (2), for a Gaussian
CMB anisotropy, alm are complex Gaussian random vari-
ables too. Therefore, the covariance matrix halma�l0m0 i fully
describes the whole field. Throughout this paper we as-
sume Gaussianity to be valid.

III. STATISTICAL ISOTROPY

Two-point correlations of CMB anisotropy, C�n̂1; n̂2�,
are two-point functions on S2 � S2, and hence can be
expanded as

 C�n̂1; n̂2� �
X

l1;l2;‘;M

A‘Mjl1l2Y
l1l2
‘M �n̂1; n̂2�: (5)

Here A‘Mjl1l2 are coefficients of the expansion (hereafter

BipoSH coefficients) and Yl1l2‘M �n̂1; n̂2� are bipolar spherical
harmonics defined by Eq. (A1). Bipolar spherical harmon-
ics form an orthonormal basis on S2 � S2 and transform in
the same manner as the spherical harmonic function with ‘,
M with respect to rotations [45]. One can inverse transform
C�n̂1; n̂2� in Eq. (5) to get the coefficients of expansion,
A‘Mjl1l2 , by multiplying both sides of Eq. (5) by

Y
�l01l

0
2

‘0M0 �n̂1; n̂2� and integrating over all angles. Then the
orthonormality of bipolar harmonics, Eq. (A3), implies
that

 A‘Mjl1l2 �
Z
d�n̂1

Z
d�n̂2

C�n̂1; n̂2�Y
�l1l2
‘M �n̂1; n̂2�: (6)

The above expression and the fact that C�n̂1; n̂2� is sym-
metric under the exchange of n̂1 and n̂2 leads to the
following symmetries of A‘Mjl1l2
 

A‘Mjl2l1 � ��1��l1	l2�‘�A‘Mjl1l2 ; A‘Mjll � A‘Mjll�‘;2k;

k � 0; 1; 2; 3; � � � : (7)

It has been shown [26] that bipolar spherical harmonic
(BipoSH) coefficients, A‘Mjl1l2 , are in fact linear combina-
tions of off-diagonal elements of the covariance matrix

 A‘Mjl1l2 �
X
m1m2

hal1m1
a�l2m2

i��1�m2C‘Ml1m1l2�m2
; (8)

where C‘Ml1m1l2m2
are Clebsch-Gordan coefficients (see the

appendix). This clearly shows that A‘Mjl1l2 completely
represent the information of the covariance matrix. When
statistical isotropy holds, it is guaranteed that the covari-
ance matrix is diagonal,

 halma�l0m0 i � Cl�ll0�mm0 (9)

and hence the angular power spectra carry all information
of the field. Substituting this into Eq. (8) gives

 A‘Mjll0 � ��1�lCl�2l	 1�1=2�ll0�‘0�M0: (10)

The above expression tells us that when statistical isotropy
holds, all BipoSH coefficients, A‘Mjll0 , are zero except
those with ‘ � 0, M � 0 which are equal to the angular
power spectra up to a ��1�l�2l	 1�1=2 factor. BipoSH
expansion is the most general way of studying two-point
correlation functions of CMB anisotropy. The well-known
angular power spectrum Cl is in fact a subset of the
corresponding BipoSH coefficients,

 Cl �
��1�l��������������
2l	 1
p A00jll: (11)

Therefore to test a CMB map for statistical isotropy, one
should compute the BipoSH coefficients for the maps and
look for nonzero BipoSH coefficients. Statistically signifi-
cant deviations from zero would mean violation of statis-
tical isotropy.

IV. ESTIMATORS

Given a CMB anisotropy map, one can measure BipoSH
coefficients by the following estimator [46]

 

~A ‘Mjll0 �
X
mm0

�������������
WlWl0

p
~alm~al0m0C‘Mlml0m0 ; (12)

where Wl is the Legendre transform of the window func-
tion. The above estimator is a combination of Cl and hence
is unbiased [47]. However it is impossible to measure all
A‘Mjll0 individually because of cosmic variance.
Combining BipoSH coefficients helps to reduce the cosmic
variance [48]. There are several ways of combining
BipoSH coefficients. Here we choose two methods.

A. First method: BiPS

Among the several possible combinations of BipoSH
coefficients, the bipolar power spectrum (BiPS) was
proved to be a useful tool with interesting features [49].
BiPS of CMB anisotropy is defined as a convenient con-
traction of the BipoSH coefficients

 �‘ �
X
l;l0;M

jA‘Mjll0 j
2 
 0: (13)
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BiPS is interesting because it is orientation independent,
i.e. invariant under rotations of the sky. For models in
which statistical isotropy is valid, BipoSH coefficients
are given by Eq. (10), and therefore SI condition implies
a null BiPS, i.e. �‘ � 0 for every ‘ > 0,

 �‘ � �0�‘0: (14)

Nonzero components of BiPS imply breakdown of statis-
tical isotropy, and this introduces BiPS as a measure of
statistical isotropy. It is worth noting that although BiPS is
quartic in alm, it is designed to detect SI violation and not
non-Gaussianity [25,26,49–51]. An unbiased estimator of
BiPS is given by

 ~� ‘ �
X
ll0M

j ~A‘Mjll0 j2 �B‘; (15)

where B‘ is the bias that arises from the SI part of the map
and is given by the angular power spectrum Cl,

 B ‘ � h~�
B
‘ iSI

� �2‘	 1�
X
l1

X‘	l1
l2�j‘�l1j

Wl1Wl2�Cl1Cl2

	 ��1�‘�l1l2�Cl1�
2
: (16)

The above expression for B‘ is obtained by assuming
Gaussian statistics of the temperature fluctuations [26,49].

B. New method: reduced bipolar coefficients

The BipoSH coefficients of Eq. (12) can be summed
over l and l0 to reduce the cosmic variance

 A‘M �
X1
l�0

X‘	l
l0�j‘�lj

A‘Mjll0 : (17)

These reduced bipolar coefficients, A‘M, by definition
respect the following symmetry:

 A‘M � ��1�MA�‘�M; (18)

which indicates A‘0 are always real. When SI condition is
valid, the ensemble average of A‘M vanishes for all ‘ and
M

 hA‘Mi � 0: (19)

In any given CMB anisotropy map, A‘M would fluctuate
about zero. A severe breakdown of statistical isotropy will
result in huge deviations from zero. Reduced bipolar co-
efficients are not rotationally invariant, hence they assign
direction to the correlation patterns of a map. We can
combine A‘M further to define a power spectrum similar
to how alm are combined to construct the angular power
spectrum, Cl. We define

 D‘ �
1

2‘	 1

X‘
M��‘

A‘MA
�
‘M: (20)

The above estimator is rotationally invariant. It has a
positive bias and hence it has similar issues that have
been addressed for the BiPS studies earlier. This means
although the ensemble average of A‘M for a statistically
isotropic case is zero, the ensemble average ofD‘ is always
greater than zero. However a major deviation from statis-
tical isotropy will result in a big D‘ (compared to that of a
SI case). In Sec. V we compare A‘M of the ILC map against
an average of 1000 simulations of statistically isotropic
maps. We defer detailed studies of D‘ to the future
publication.

V. APPLICATION TO THE WMAP DATA

We carry out our analysis on the 3 yr ILC map and
compare it to 1 yr ILC map [52]. In order to attribute a
statistical significance to our results, we compare our
results to 1000 simulations of SI CMB maps. alm’s of these
maps are generated up to an lmax of 1024 (corresponding to
HEALPix [53] resolution Nside � 512). Since we are only
interested in large angular scales we smooth all maps with
appropriate filters to cut the power on small angular scales.
These filters are low-pass Gaussian filters

 WG
l � NG exp

�
�

�
2l	 1

2ls 	 1

�
2
�

(21)

that cut power on scales (l 
 ls) and band pass filters of the
form

 WS
l � 2NS

�
1� J0

�
2l	 1

2lt 	 1

��
exp

�
�

�
2l	 1

2ls 	 1

�
2
�
; (22)

that keep the power on scales corresponding to lt < l < ls.
J0 is the bessel function and NG and NS are normalization
constants chosen such that

 

X
l

�2l	 1�Wl

2l�l	 1�
� 1; (23)

i.e., unit rms for unit flat band angular power spectrum
Cl �

2�
l�l	1� .

We compute the BipoSH coefficients, A‘Mjll0 , for the 3 yr
ILC map (ILC-3) for several window functions using
Eq. (12). We combine these coefficients using Eq. (17) to
obtain A‘M. An interesting way of visualizing these coef-
ficients is to make a map from them. Making a map from
A‘M is simply done similar to making a temperature an-
isotropy map from a given set of spherical harmonic co-
efficients, alm;

 ��n̂� �
X1
‘�0

X‘
M��‘

A‘MY‘M�n̂�: (24)

The symmetry of reduced bipolar coefficients, Eq. (18),
guarantees reality of ��n̂�. The ‘‘bipolar’’ map based on
bipolar coefficients of ILC-3 is shown in the top panel of
Fig. 1. The map has small fluctuations except for a pair of
hot and cold spots near the equator. To compare, we have
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also made a bipolar map of the 1 yr ILC map (ILC-1) from
bipolar coefficients of ILC-1 (middle panel of Fig. 1). The
difference map (Fig. 1 (bottom)) shows that differences
between these two maps mostly arise from a band around
the equator in bipolar space. As it is seen in Fig. 1, the
bipolar map of ILC-3 has less fluctuations compared to that
of ILC-1. This is because almost all of A‘M ’s of ILC-3 are
smaller than those of ILC-1 (i.e. are closer to zero).
Reduced bipolar coefficients of the above maps are in
Fig. 2, in which ‘ and M indices are combined to a single
index n � ‘�‘	 1� 	M	 1 (only the real part of A‘M is
plotted). And the dotted lines define 1-� error bars derived
from 1000 simulations of SI CMB anisotropy maps. As can

be seen, many spikes in A‘M’s of ILC-1 have either dis-
appeared or reduced in ILC-3 (e.g. those around n � 20,
40 and a big spike at n � 111). To get a quantitative
description of differences between ILC-3 and ILC-1 we
compare them against 1000 simulations of SI CMB anisot-
ropy maps. A simple �2 comparison of A‘M with simula-
tions gives us a rough estimate of overall differences
between the two ILC maps: ILC-3 has a smaller �2 than
ILC-1. For a WS�10; 2� filter, the reduced �2 falls from
1.089 for ILC-1 to 0.9619 for ILC-3. Although the �2

statistic is simple, it should be used with caution because
it is only valid if every A‘M is independent and has a
Gaussian distribution function. In order to study deviations
of A‘M from zero without worrying about the Gaussianity
of the A‘M, we look at the most deviant (biggest) A‘M. We
compare the biggest A‘M’s of ILC to A‘M’s of 1000 simu-
lations to find out what fraction of simulations have A‘M’s
smaller than those of ILC maps. Figure 3 shows the results.
The horizontal axis is n � ‘�‘	 1� 	M	 1 and the ver-
tical axis is the fraction of A‘M ’s in 1000 simulations that
are smaller than A‘M of ILC. In this figure, squares repre-
sent the ILC-1 while ILC-3 is represented by lines. When a
line crosses a point, A‘M’s of ILC-3 are greater than ILC-1,
otherwise points above the spikes show smaller A‘M’s for
ILC-3. The results are interesting: several deviations in
ILC-1 have been corrected in ILC-3. Especially on the
largest scales, several deviations beyond 95% in ILC-1
have gone away in ILC-3 (the points above the dotted
line in Fig. 3 have been replaced by significantly smaller
values).

Combining the BipoSH coefficients to construct bipolar
power spectrum allows further examinations of ILC maps
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FIG. 1 (color online). Top: A bipolar map generated from
bipolar coefficients A‘M of the 3 yr ILC map. Middle: bipolar
map based on the 1 yr ILC map. Bottom: differences between the
two maps (note the scales). The top map (ILC-3) has smaller
fluctuations comparing to the middle one (ILC-1) except for the
hot spot near the equator. Differences between these two maps
mostly arise from a band around the equator in bipolar space.
Both ILC maps are smoothed by a band pass filter, WS�lt �
2; ls � 10�.
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for departures from SI. We compute the BiPS using
Eq. (15). It is worth mentioning that BiPS in this paper
has been computed in a slightly different way than in our
previous paper [25]. Here we compute the BiPS using
Eq. (15) and we use the derived Cl from each map to
estimate the bias B‘ using Eq. (16) [54]. The bias corrected
BiPS is then averaged over 1000 simulations and is com-
pared to the bias corrected BiPS of ILC maps. BiPS results

shown in Fig. 4 agree with our results on A‘M. It can be
seen that ILC-3 has a smaller bipolar power spectrum than
ILC-1 and is more consistent with statistical isotropy. The
same is true for theD‘ estimator defined by Eq. (20) which
we defer to the future publications. We should emphasize
that these results are only for large angular scales, l � 25,
and not beyond that.

VI. DISCUSSION AND CONCLUSIONS

The null results of search for departure from statistical
isotropy has implications for the observation and data
analysis techniques used to create the CMB anisotropy
maps. Observational artifacts such as the noncircular
beam, inhomogeneous noise correlation, residual striping
patterns, and residuals from foregrounds are potential
sources of SI breakdown. Our null results confirm that
these artifacts do not significantly contribute to large scale
anisotropies of the 3 yr ILC map (see [26,41,42] for more
details). We have also quantified the differences between
the 1 yr and 3 yr ILC maps. It is shown that the 3 yr ILC
map is ‘‘cleaner’’ than the 1 yr ILC map at l � 25. This can
be due to the gain model and improved ILC map process-
ing and foreground minimization. We limit ourselves to the
low-l limit because in addition to observational artifacts,
there are theoretical motivations for hunting for SI viola-
tion on large scales of CMB anisotropy. Topologically
compact spaces [29–32] and anisotropic cosmological
models [33–39] are examples of this. Each of these models
will cause departures from statistical isotropy in CMB
anisotropy maps. And a null detection of departure from
statistical isotropy at low l in the WMAP data can be used
to put constraints on these models. To prove that the null
detection is meaningful, it should be shown that the method
is actually capable of detecting potential anomalies in
CMB anisotropy maps. Below we point out some examples
of violation of statistical isotropy which our method has
been shown to be able to detect. Most of them have been
studied in previous publications.

(1) Anisotropic cosmological models [Bianchi models]:
Bianchi VIIh models have been proposed to explain
potential anomalies in the CMB anisotropy as ob-
served by WMAP [38]. These anisotropic patterns
have a nonzero bipolar power spectrum. BiPS has
been used to test the consistency of embedded
Bianchi VIIh templates in the CMB anisotropy
maps with the WMAP data and a limit of ��=H�0 >
2:55� 10�10 (99.9% C.L.) was put on the shear
parameter in Bianchi VIIh models by examining
the statistical isotropy of these maps [39].

(2) Compact spaces: The CMB sky maps in spatially
compact universe models violate statistical isotropy.
This breakdown of statistical isotropy usually mani-
fests itself as underlying correlation patterns on
large angular separation (that would correspond to
large physical separation in a universe with trivial
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topology). The patterns reflect the existence of pre-
ferred directions in these models. Bipolar power
spectrum signatures of statistical isotropy violation
in compact spaces have been studied. It has been
shown that BiPS can be numerically computed for
these models from their two-point correlation ma-
trices and the results can be understood (and pre-
dicted) using the leading order terms of the
correlation function in a torus where BiPS can be
calculated analytically. This has been studied in [40]
and in more details in the Ph.D. thesis [41].

(3) Foreground contamination: Statistical isotropy vio-
lation due to foreground contamination was studied
in a recent publication where a generalization of the
BiPS to polarization maps has been presented [55].
As a demonstration it has been shown that for
E-polarization this test can detect the breakdown
of statistical isotropy due to polarized synchrotron
foreground.

(4) Residuals from foregrounds in temperature maps:
The signature of residuals from foregrounds in our
measure has been studied and the result will be
reported in a future publication. The foreground
cleaned maps obtained as part of an independent
CMB power spectrum estimation from WMAP-1 in
[56] show traces of foreground residuals along the
galactic plane. These provide ideal, ‘‘real life’’ case
study material for the bipolar analysis. These maps
show clear measurable violation of statistical iso-
tropy in terms of a characteristic nonzero bipolar
power spectrum. We find that BiPS can distinguish
between the quality of maps made with different
iteration levels of cleaning algorithm (where the
actual differences are very small but have a pattern).

(5) Anisotropic noise: The CMB temperature measured
by an instrument is a linear sum of the cosmological
signal as well as instrumental noise. Both signal and
noise should be statistically isotropic to have a
statistically isotropic CMB map. So even for a sta-
tistically isotropic signal, if the noise fails to be
statistically isotropic the resultant map will turn
out to be anisotropic. This effect has been studied
using BiPS [26,41].

(6) Galactic cut: The incomplete sky or mask effect is
another source of breakdown of SI. This effect has
been studied using BiPS in [26] in both analytical
and numerical ways. Especially a galactic mask was
applied to an originally SI CMB anisotropy map and
it was shown that the signature of this mask on BiPS
is a rising tail at bipolar ‘, (‘ < 20).

Our measure is sensitive to axial asymmetries in the
two-point correlation of the temperature anisotropy [40].
And this is even more significant now because the new
measure of reduced bipolar coefficients does retain direc-
tional information. Our analysis does not show a significant

detection of an ‘‘axis of evil’’ in the WMAP data. We have
redone our analysis on the ILC map filtered with a low-pass
filter that only keeps l � 2, 3, 4 to search for a preferred
direction at low multipoles. We have not been able to
detect any significant deviation from statistical isotropy
using various filters. We could not test the reported specific
alignments of low multipoles since those results were not
posed in terms of an underlying model for the correlation
[57]. Validity of statistical isotropy at large angular scales
can put tight constraints on anisotropic mechanisms that
are candidates of explaining the low quadrupole of WMAP
and COBE data. It is worth noticing that our method can be
extended to polarization maps of CMB anisotropy [55,58].
Analysis of statistical isotropy of full-sky polarization
maps of WMAP are currently under progress and will be
reported in a separate publication.

VII. SUMMARY

We examine statistical isotropy of large scale anisotro-
pies of the improved the ILC map, based on 3 yr WMAP
data. In order to attribute a statistical significance to our
results, we use 1000 simulations of statistically isotropic
CMB maps. We have done our analysis using a series of
filters that span the low-l multipoles. We only explicitly
present the results for one of them that roughly retains
power in the multipoles between 2 and 15. This reveals no
significant deviation from statistical isotropy on large an-
gular scales of the 3 yr ILC map. Comparing statistical
isotropy of the 3 yr ILC map and 1 yr ILC map, we find a
significant improvement in the 3 yr ILC map which can be
due to the gain model and improved ILC map processing
and foreground minimization. We get consistent and simi-
lar results from other filters.
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APPENDIX: USEFUL MATHEMATICAL
RELATIONS

Bipolar spherical harmonics form an orthonormal basis
of S2 � S2 and are defined as

 Yl1l2‘M �n̂1; n̂2� �
X
m1m2

C‘Ml1m1l2m2
Yl1m1

�n̂1�Yl2m2
�n̂2�; (A1)
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in which C‘Ml1m1l2m2
are Clebsch-Gordan coefficients.

Clebsch-Gordan coefficients are nonzero only if the trian-
gularity relation holds, fl1l2‘g, and M � m1 	m2. Where
the 3j-symbol fabcg is defined by

 fabcg�
�

1 if a	b	c is integer and ja�bj�c��a	b�;
0 otherwise;

(A2)

Orthonormality of bipolar spherical harmonics

 

Z
d�n̂1

d�n̂2
Yl1l2‘M �n̂1; n̂2�Y

�l01l
0
2

‘0M0 �n̂1; n̂2�

� �l1l01�l2l02�‘‘0�MM0 : (A3)

Symmetry properties of Clebsch-Gordan coefficients

 Cc	a
b� � ��1�a	b�cCc	b�a
;

Cc	a
b� � ��1�a	b�cCc�	a�
b��:
(A4)

Summation rules of Clebsch-Gordan coefficients

 

X

�

Cc	a
b�C
c0	0

a
b� � �cc0�		0 fabcgfabc
0g;

X
a	

Cc	a
b�C
c	
a
b0�0 �

2c	 1

2b	 1
�bb0���0 fabcgfab

0cg;

X
c	

Cc	a
b�C
c	
a
0b�0 � �

0���0 fabcg:

(A5)
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